2 * Copyright 2011 (c) Oracle Corp.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
29 * - Pool collects resently freed pages for reuse (and hooks up to
31 * - Tracks currently in use pages
32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
36 #define pr_fmt(fmt) "[TTM] " fmt
38 #include <linux/dma-mapping.h>
39 #include <linux/list.h>
40 #include <linux/seq_file.h> /* for seq_printf */
41 #include <linux/slab.h>
42 #include <linux/spinlock.h>
43 #include <linux/highmem.h>
44 #include <linux/mm_types.h>
45 #include <linux/module.h>
47 #include <linux/atomic.h>
48 #include <linux/device.h>
49 #include <linux/kthread.h>
50 #include <drm/ttm/ttm_bo_driver.h>
51 #include <drm/ttm/ttm_page_alloc.h>
56 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
57 #define SMALL_ALLOCATION 4
58 #define FREE_ALL_PAGES (~0U)
59 /* times are in msecs */
60 #define IS_UNDEFINED (0)
63 #define IS_CACHED (1<<3)
64 #define IS_DMA32 (1<<4)
70 POOL_IS_CACHED
= IS_CACHED
,
71 POOL_IS_WC_DMA32
= IS_WC
| IS_DMA32
,
72 POOL_IS_UC_DMA32
= IS_UC
| IS_DMA32
,
73 POOL_IS_CACHED_DMA32
= IS_CACHED
| IS_DMA32
,
76 * The pool structure. There are usually six pools:
77 * - generic (not restricted to DMA32):
78 * - write combined, uncached, cached.
79 * - dma32 (up to 2^32 - so up 4GB):
80 * - write combined, uncached, cached.
81 * for each 'struct device'. The 'cached' is for pages that are actively used.
82 * The other ones can be shrunk by the shrinker API if neccessary.
83 * @pools: The 'struct device->dma_pools' link.
84 * @type: Type of the pool
85 * @lock: Protects the inuse_list and free_list from concurrnet access. Must be
86 * used with irqsave/irqrestore variants because pool allocator maybe called
88 * @inuse_list: Pool of pages that are in use. The order is very important and
89 * it is in the order that the TTM pages that are put back are in.
90 * @free_list: Pool of pages that are free to be used. No order requirements.
91 * @dev: The device that is associated with these pools.
92 * @size: Size used during DMA allocation.
93 * @npages_free: Count of available pages for re-use.
94 * @npages_in_use: Count of pages that are in use.
95 * @nfrees: Stats when pool is shrinking.
96 * @nrefills: Stats when the pool is grown.
97 * @gfp_flags: Flags to pass for alloc_page.
98 * @name: Name of the pool.
99 * @dev_name: Name derieved from dev - similar to how dev_info works.
100 * Used during shutdown as the dev_info during release is unavailable.
103 struct list_head pools
; /* The 'struct device->dma_pools link */
106 struct list_head inuse_list
;
107 struct list_head free_list
;
110 unsigned npages_free
;
111 unsigned npages_in_use
;
112 unsigned long nfrees
; /* Stats when shrunk. */
113 unsigned long nrefills
; /* Stats when grown. */
115 char name
[13]; /* "cached dma32" */
116 char dev_name
[64]; /* Constructed from dev */
120 * The accounting page keeping track of the allocated page along with
122 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
123 * @vaddr: The virtual address of the page
124 * @dma: The bus address of the page. If the page is not allocated
125 * via the DMA API, it will be -1.
128 struct list_head page_list
;
135 * Limits for the pool. They are handled without locks because only place where
136 * they may change is in sysfs store. They won't have immediate effect anyway
137 * so forcing serialization to access them is pointless.
140 struct ttm_pool_opts
{
147 * Contains the list of all of the 'struct device' and their corresponding
148 * DMA pools. Guarded by _mutex->lock.
149 * @pools: The link to 'struct ttm_pool_manager->pools'
150 * @dev: The 'struct device' associated with the 'pool'
151 * @pool: The 'struct dma_pool' associated with the 'dev'
153 struct device_pools
{
154 struct list_head pools
;
156 struct dma_pool
*pool
;
160 * struct ttm_pool_manager - Holds memory pools for fast allocation
162 * @lock: Lock used when adding/removing from pools
163 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
164 * @options: Limits for the pool.
165 * @npools: Total amount of pools in existence.
166 * @shrinker: The structure used by [un|]register_shrinker
168 struct ttm_pool_manager
{
170 struct list_head pools
;
171 struct ttm_pool_opts options
;
173 struct shrinker mm_shrink
;
177 static struct ttm_pool_manager
*_manager
;
179 static struct attribute ttm_page_pool_max
= {
180 .name
= "pool_max_size",
181 .mode
= S_IRUGO
| S_IWUSR
183 static struct attribute ttm_page_pool_small
= {
184 .name
= "pool_small_allocation",
185 .mode
= S_IRUGO
| S_IWUSR
187 static struct attribute ttm_page_pool_alloc_size
= {
188 .name
= "pool_allocation_size",
189 .mode
= S_IRUGO
| S_IWUSR
192 static struct attribute
*ttm_pool_attrs
[] = {
194 &ttm_page_pool_small
,
195 &ttm_page_pool_alloc_size
,
199 static void ttm_pool_kobj_release(struct kobject
*kobj
)
201 struct ttm_pool_manager
*m
=
202 container_of(kobj
, struct ttm_pool_manager
, kobj
);
206 static ssize_t
ttm_pool_store(struct kobject
*kobj
, struct attribute
*attr
,
207 const char *buffer
, size_t size
)
209 struct ttm_pool_manager
*m
=
210 container_of(kobj
, struct ttm_pool_manager
, kobj
);
213 chars
= sscanf(buffer
, "%u", &val
);
217 /* Convert kb to number of pages */
218 val
= val
/ (PAGE_SIZE
>> 10);
220 if (attr
== &ttm_page_pool_max
)
221 m
->options
.max_size
= val
;
222 else if (attr
== &ttm_page_pool_small
)
223 m
->options
.small
= val
;
224 else if (attr
== &ttm_page_pool_alloc_size
) {
225 if (val
> NUM_PAGES_TO_ALLOC
*8) {
226 pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
227 NUM_PAGES_TO_ALLOC
*(PAGE_SIZE
>> 7),
228 NUM_PAGES_TO_ALLOC
*(PAGE_SIZE
>> 10));
230 } else if (val
> NUM_PAGES_TO_ALLOC
) {
231 pr_warn("Setting allocation size to larger than %lu is not recommended\n",
232 NUM_PAGES_TO_ALLOC
*(PAGE_SIZE
>> 10));
234 m
->options
.alloc_size
= val
;
240 static ssize_t
ttm_pool_show(struct kobject
*kobj
, struct attribute
*attr
,
243 struct ttm_pool_manager
*m
=
244 container_of(kobj
, struct ttm_pool_manager
, kobj
);
247 if (attr
== &ttm_page_pool_max
)
248 val
= m
->options
.max_size
;
249 else if (attr
== &ttm_page_pool_small
)
250 val
= m
->options
.small
;
251 else if (attr
== &ttm_page_pool_alloc_size
)
252 val
= m
->options
.alloc_size
;
254 val
= val
* (PAGE_SIZE
>> 10);
256 return snprintf(buffer
, PAGE_SIZE
, "%u\n", val
);
259 static const struct sysfs_ops ttm_pool_sysfs_ops
= {
260 .show
= &ttm_pool_show
,
261 .store
= &ttm_pool_store
,
264 static struct kobj_type ttm_pool_kobj_type
= {
265 .release
= &ttm_pool_kobj_release
,
266 .sysfs_ops
= &ttm_pool_sysfs_ops
,
267 .default_attrs
= ttm_pool_attrs
,
271 static int set_pages_array_wb(struct page
**pages
, int addrinarray
)
276 for (i
= 0; i
< addrinarray
; i
++)
277 unmap_page_from_agp(pages
[i
]);
282 static int set_pages_array_wc(struct page
**pages
, int addrinarray
)
287 for (i
= 0; i
< addrinarray
; i
++)
288 map_page_into_agp(pages
[i
]);
293 static int set_pages_array_uc(struct page
**pages
, int addrinarray
)
298 for (i
= 0; i
< addrinarray
; i
++)
299 map_page_into_agp(pages
[i
]);
303 #endif /* for !CONFIG_X86 */
305 static int ttm_set_pages_caching(struct dma_pool
*pool
,
306 struct page
**pages
, unsigned cpages
)
309 /* Set page caching */
310 if (pool
->type
& IS_UC
) {
311 r
= set_pages_array_uc(pages
, cpages
);
313 pr_err("%s: Failed to set %d pages to uc!\n",
314 pool
->dev_name
, cpages
);
316 if (pool
->type
& IS_WC
) {
317 r
= set_pages_array_wc(pages
, cpages
);
319 pr_err("%s: Failed to set %d pages to wc!\n",
320 pool
->dev_name
, cpages
);
325 static void __ttm_dma_free_page(struct dma_pool
*pool
, struct dma_page
*d_page
)
327 dma_addr_t dma
= d_page
->dma
;
328 dma_free_coherent(pool
->dev
, pool
->size
, d_page
->vaddr
, dma
);
333 static struct dma_page
*__ttm_dma_alloc_page(struct dma_pool
*pool
)
335 struct dma_page
*d_page
;
337 d_page
= kmalloc(sizeof(struct dma_page
), GFP_KERNEL
);
341 d_page
->vaddr
= dma_alloc_coherent(pool
->dev
, pool
->size
,
345 d_page
->p
= virt_to_page(d_page
->vaddr
);
352 static enum pool_type
ttm_to_type(int flags
, enum ttm_caching_state cstate
)
354 enum pool_type type
= IS_UNDEFINED
;
356 if (flags
& TTM_PAGE_FLAG_DMA32
)
358 if (cstate
== tt_cached
)
360 else if (cstate
== tt_uncached
)
368 static void ttm_pool_update_free_locked(struct dma_pool
*pool
,
369 unsigned freed_pages
)
371 pool
->npages_free
-= freed_pages
;
372 pool
->nfrees
+= freed_pages
;
376 /* set memory back to wb and free the pages. */
377 static void ttm_dma_pages_put(struct dma_pool
*pool
, struct list_head
*d_pages
,
378 struct page
*pages
[], unsigned npages
)
380 struct dma_page
*d_page
, *tmp
;
382 /* Don't set WB on WB page pool. */
383 if (npages
&& !(pool
->type
& IS_CACHED
) &&
384 set_pages_array_wb(pages
, npages
))
385 pr_err("%s: Failed to set %d pages to wb!\n",
386 pool
->dev_name
, npages
);
388 list_for_each_entry_safe(d_page
, tmp
, d_pages
, page_list
) {
389 list_del(&d_page
->page_list
);
390 __ttm_dma_free_page(pool
, d_page
);
394 static void ttm_dma_page_put(struct dma_pool
*pool
, struct dma_page
*d_page
)
396 /* Don't set WB on WB page pool. */
397 if (!(pool
->type
& IS_CACHED
) && set_pages_array_wb(&d_page
->p
, 1))
398 pr_err("%s: Failed to set %d pages to wb!\n",
401 list_del(&d_page
->page_list
);
402 __ttm_dma_free_page(pool
, d_page
);
406 * Free pages from pool.
408 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
409 * number of pages in one go.
411 * @pool: to free the pages from
412 * @nr_free: If set to true will free all pages in pool
414 static unsigned ttm_dma_page_pool_free(struct dma_pool
*pool
, unsigned nr_free
)
416 unsigned long irq_flags
;
417 struct dma_page
*dma_p
, *tmp
;
418 struct page
**pages_to_free
;
419 struct list_head d_pages
;
420 unsigned freed_pages
= 0,
421 npages_to_free
= nr_free
;
423 if (NUM_PAGES_TO_ALLOC
< nr_free
)
424 npages_to_free
= NUM_PAGES_TO_ALLOC
;
427 pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
428 pool
->dev_name
, pool
->name
, current
->pid
,
429 npages_to_free
, nr_free
);
432 pages_to_free
= kmalloc(npages_to_free
* sizeof(struct page
*),
435 if (!pages_to_free
) {
436 pr_err("%s: Failed to allocate memory for pool free operation\n",
440 INIT_LIST_HEAD(&d_pages
);
442 spin_lock_irqsave(&pool
->lock
, irq_flags
);
444 /* We picking the oldest ones off the list */
445 list_for_each_entry_safe_reverse(dma_p
, tmp
, &pool
->free_list
,
447 if (freed_pages
>= npages_to_free
)
450 /* Move the dma_page from one list to another. */
451 list_move(&dma_p
->page_list
, &d_pages
);
453 pages_to_free
[freed_pages
++] = dma_p
->p
;
454 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
455 if (freed_pages
>= NUM_PAGES_TO_ALLOC
) {
457 ttm_pool_update_free_locked(pool
, freed_pages
);
459 * Because changing page caching is costly
460 * we unlock the pool to prevent stalling.
462 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
464 ttm_dma_pages_put(pool
, &d_pages
, pages_to_free
,
467 INIT_LIST_HEAD(&d_pages
);
469 if (likely(nr_free
!= FREE_ALL_PAGES
))
470 nr_free
-= freed_pages
;
472 if (NUM_PAGES_TO_ALLOC
>= nr_free
)
473 npages_to_free
= nr_free
;
475 npages_to_free
= NUM_PAGES_TO_ALLOC
;
479 /* free all so restart the processing */
483 /* Not allowed to fall through or break because
484 * following context is inside spinlock while we are
492 /* remove range of pages from the pool */
494 ttm_pool_update_free_locked(pool
, freed_pages
);
495 nr_free
-= freed_pages
;
498 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
501 ttm_dma_pages_put(pool
, &d_pages
, pages_to_free
, freed_pages
);
503 kfree(pages_to_free
);
507 static void ttm_dma_free_pool(struct device
*dev
, enum pool_type type
)
509 struct device_pools
*p
;
510 struct dma_pool
*pool
;
515 mutex_lock(&_manager
->lock
);
516 list_for_each_entry_reverse(p
, &_manager
->pools
, pools
) {
520 if (pool
->type
!= type
)
528 list_for_each_entry_reverse(pool
, &dev
->dma_pools
, pools
) {
529 if (pool
->type
!= type
)
531 /* Takes a spinlock.. */
532 ttm_dma_page_pool_free(pool
, FREE_ALL_PAGES
);
533 WARN_ON(((pool
->npages_in_use
+ pool
->npages_free
) != 0));
534 /* This code path is called after _all_ references to the
535 * struct device has been dropped - so nobody should be
536 * touching it. In case somebody is trying to _add_ we are
537 * guarded by the mutex. */
538 list_del(&pool
->pools
);
542 mutex_unlock(&_manager
->lock
);
546 * On free-ing of the 'struct device' this deconstructor is run.
547 * Albeit the pool might have already been freed earlier.
549 static void ttm_dma_pool_release(struct device
*dev
, void *res
)
551 struct dma_pool
*pool
= *(struct dma_pool
**)res
;
554 ttm_dma_free_pool(dev
, pool
->type
);
557 static int ttm_dma_pool_match(struct device
*dev
, void *res
, void *match_data
)
559 return *(struct dma_pool
**)res
== match_data
;
562 static struct dma_pool
*ttm_dma_pool_init(struct device
*dev
, gfp_t flags
,
565 char *n
[] = {"wc", "uc", "cached", " dma32", "unknown",};
566 enum pool_type t
[] = {IS_WC
, IS_UC
, IS_CACHED
, IS_DMA32
, IS_UNDEFINED
};
567 struct device_pools
*sec_pool
= NULL
;
568 struct dma_pool
*pool
= NULL
, **ptr
;
576 ptr
= devres_alloc(ttm_dma_pool_release
, sizeof(*ptr
), GFP_KERNEL
);
582 pool
= kmalloc_node(sizeof(struct dma_pool
), GFP_KERNEL
,
587 sec_pool
= kmalloc_node(sizeof(struct device_pools
), GFP_KERNEL
,
592 INIT_LIST_HEAD(&sec_pool
->pools
);
594 sec_pool
->pool
= pool
;
596 INIT_LIST_HEAD(&pool
->free_list
);
597 INIT_LIST_HEAD(&pool
->inuse_list
);
598 INIT_LIST_HEAD(&pool
->pools
);
599 spin_lock_init(&pool
->lock
);
601 pool
->npages_free
= pool
->npages_in_use
= 0;
603 pool
->gfp_flags
= flags
;
604 pool
->size
= PAGE_SIZE
;
608 for (i
= 0; i
< 5; i
++) {
610 p
+= snprintf(p
, sizeof(pool
->name
) - (p
- pool
->name
),
615 /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
616 * - the kobj->name has already been deallocated.*/
617 snprintf(pool
->dev_name
, sizeof(pool
->dev_name
), "%s %s",
618 dev_driver_string(dev
), dev_name(dev
));
619 mutex_lock(&_manager
->lock
);
620 /* You can get the dma_pool from either the global: */
621 list_add(&sec_pool
->pools
, &_manager
->pools
);
623 /* or from 'struct device': */
624 list_add(&pool
->pools
, &dev
->dma_pools
);
625 mutex_unlock(&_manager
->lock
);
628 devres_add(dev
, ptr
);
638 static struct dma_pool
*ttm_dma_find_pool(struct device
*dev
,
641 struct dma_pool
*pool
, *tmp
, *found
= NULL
;
643 if (type
== IS_UNDEFINED
)
646 /* NB: We iterate on the 'struct dev' which has no spinlock, but
647 * it does have a kref which we have taken. The kref is taken during
648 * graphic driver loading - in the drm_pci_init it calls either
649 * pci_dev_get or pci_register_driver which both end up taking a kref
650 * on 'struct device'.
652 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
653 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
654 * thing is at that point of time there are no pages associated with the
655 * driver so this function will not be called.
657 list_for_each_entry_safe(pool
, tmp
, &dev
->dma_pools
, pools
) {
658 if (pool
->type
!= type
)
667 * Free pages the pages that failed to change the caching state. If there
668 * are pages that have changed their caching state already put them to the
671 static void ttm_dma_handle_caching_state_failure(struct dma_pool
*pool
,
672 struct list_head
*d_pages
,
673 struct page
**failed_pages
,
676 struct dma_page
*d_page
, *tmp
;
683 /* Find the failed page. */
684 list_for_each_entry_safe(d_page
, tmp
, d_pages
, page_list
) {
687 /* .. and then progress over the full list. */
688 list_del(&d_page
->page_list
);
689 __ttm_dma_free_page(pool
, d_page
);
699 * Allocate 'count' pages, and put 'need' number of them on the
700 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
701 * The full list of pages should also be on 'd_pages'.
702 * We return zero for success, and negative numbers as errors.
704 static int ttm_dma_pool_alloc_new_pages(struct dma_pool
*pool
,
705 struct list_head
*d_pages
,
708 struct page
**caching_array
;
709 struct dma_page
*dma_p
;
713 unsigned max_cpages
= min(count
,
714 (unsigned)(PAGE_SIZE
/sizeof(struct page
*)));
716 /* allocate array for page caching change */
717 caching_array
= kmalloc(max_cpages
*sizeof(struct page
*), GFP_KERNEL
);
719 if (!caching_array
) {
720 pr_err("%s: Unable to allocate table for new pages\n",
726 pr_debug("%s: (%s:%d) Getting %d pages\n",
727 pool
->dev_name
, pool
->name
, current
->pid
, count
);
730 for (i
= 0, cpages
= 0; i
< count
; ++i
) {
731 dma_p
= __ttm_dma_alloc_page(pool
);
733 pr_err("%s: Unable to get page %u\n",
736 /* store already allocated pages in the pool after
737 * setting the caching state */
739 r
= ttm_set_pages_caching(pool
, caching_array
,
742 ttm_dma_handle_caching_state_failure(
743 pool
, d_pages
, caching_array
,
750 #ifdef CONFIG_HIGHMEM
751 /* gfp flags of highmem page should never be dma32 so we
752 * we should be fine in such case
757 caching_array
[cpages
++] = p
;
758 if (cpages
== max_cpages
) {
759 /* Note: Cannot hold the spinlock */
760 r
= ttm_set_pages_caching(pool
, caching_array
,
763 ttm_dma_handle_caching_state_failure(
764 pool
, d_pages
, caching_array
,
771 list_add(&dma_p
->page_list
, d_pages
);
775 r
= ttm_set_pages_caching(pool
, caching_array
, cpages
);
777 ttm_dma_handle_caching_state_failure(pool
, d_pages
,
778 caching_array
, cpages
);
781 kfree(caching_array
);
786 * @return count of pages still required to fulfill the request.
788 static int ttm_dma_page_pool_fill_locked(struct dma_pool
*pool
,
789 unsigned long *irq_flags
)
791 unsigned count
= _manager
->options
.small
;
792 int r
= pool
->npages_free
;
794 if (count
> pool
->npages_free
) {
795 struct list_head d_pages
;
797 INIT_LIST_HEAD(&d_pages
);
799 spin_unlock_irqrestore(&pool
->lock
, *irq_flags
);
801 /* Returns how many more are neccessary to fulfill the
803 r
= ttm_dma_pool_alloc_new_pages(pool
, &d_pages
, count
);
805 spin_lock_irqsave(&pool
->lock
, *irq_flags
);
807 /* Add the fresh to the end.. */
808 list_splice(&d_pages
, &pool
->free_list
);
810 pool
->npages_free
+= count
;
813 struct dma_page
*d_page
;
816 pr_err("%s: Failed to fill %s pool (r:%d)!\n",
817 pool
->dev_name
, pool
->name
, r
);
819 list_for_each_entry(d_page
, &d_pages
, page_list
) {
822 list_splice_tail(&d_pages
, &pool
->free_list
);
823 pool
->npages_free
+= cpages
;
831 * @return count of pages still required to fulfill the request.
832 * The populate list is actually a stack (not that is matters as TTM
833 * allocates one page at a time.
835 static int ttm_dma_pool_get_pages(struct dma_pool
*pool
,
836 struct ttm_dma_tt
*ttm_dma
,
839 struct dma_page
*d_page
;
840 struct ttm_tt
*ttm
= &ttm_dma
->ttm
;
841 unsigned long irq_flags
;
842 int count
, r
= -ENOMEM
;
844 spin_lock_irqsave(&pool
->lock
, irq_flags
);
845 count
= ttm_dma_page_pool_fill_locked(pool
, &irq_flags
);
847 d_page
= list_first_entry(&pool
->free_list
, struct dma_page
, page_list
);
848 ttm
->pages
[index
] = d_page
->p
;
849 ttm_dma
->dma_address
[index
] = d_page
->dma
;
850 list_move_tail(&d_page
->page_list
, &ttm_dma
->pages_list
);
852 pool
->npages_in_use
+= 1;
853 pool
->npages_free
-= 1;
855 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
860 * On success pages list will hold count number of correctly
861 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
863 int ttm_dma_populate(struct ttm_dma_tt
*ttm_dma
, struct device
*dev
)
865 struct ttm_tt
*ttm
= &ttm_dma
->ttm
;
866 struct ttm_mem_global
*mem_glob
= ttm
->glob
->mem_glob
;
867 struct dma_pool
*pool
;
873 if (ttm
->state
!= tt_unpopulated
)
876 type
= ttm_to_type(ttm
->page_flags
, ttm
->caching_state
);
877 if (ttm
->page_flags
& TTM_PAGE_FLAG_DMA32
)
878 gfp_flags
= GFP_USER
| GFP_DMA32
;
880 gfp_flags
= GFP_HIGHUSER
;
881 if (ttm
->page_flags
& TTM_PAGE_FLAG_ZERO_ALLOC
)
882 gfp_flags
|= __GFP_ZERO
;
884 pool
= ttm_dma_find_pool(dev
, type
);
886 pool
= ttm_dma_pool_init(dev
, gfp_flags
, type
);
887 if (IS_ERR_OR_NULL(pool
)) {
892 INIT_LIST_HEAD(&ttm_dma
->pages_list
);
893 for (i
= 0; i
< ttm
->num_pages
; ++i
) {
894 ret
= ttm_dma_pool_get_pages(pool
, ttm_dma
, i
);
896 ttm_dma_unpopulate(ttm_dma
, dev
);
900 ret
= ttm_mem_global_alloc_page(mem_glob
, ttm
->pages
[i
],
902 if (unlikely(ret
!= 0)) {
903 ttm_dma_unpopulate(ttm_dma
, dev
);
908 if (unlikely(ttm
->page_flags
& TTM_PAGE_FLAG_SWAPPED
)) {
909 ret
= ttm_tt_swapin(ttm
);
910 if (unlikely(ret
!= 0)) {
911 ttm_dma_unpopulate(ttm_dma
, dev
);
916 ttm
->state
= tt_unbound
;
919 EXPORT_SYMBOL_GPL(ttm_dma_populate
);
921 /* Put all pages in pages list to correct pool to wait for reuse */
922 void ttm_dma_unpopulate(struct ttm_dma_tt
*ttm_dma
, struct device
*dev
)
924 struct ttm_tt
*ttm
= &ttm_dma
->ttm
;
925 struct dma_pool
*pool
;
926 struct dma_page
*d_page
, *next
;
928 bool is_cached
= false;
929 unsigned count
= 0, i
, npages
= 0;
930 unsigned long irq_flags
;
932 type
= ttm_to_type(ttm
->page_flags
, ttm
->caching_state
);
933 pool
= ttm_dma_find_pool(dev
, type
);
937 is_cached
= (ttm_dma_find_pool(pool
->dev
,
938 ttm_to_type(ttm
->page_flags
, tt_cached
)) == pool
);
940 /* make sure pages array match list and count number of pages */
941 list_for_each_entry(d_page
, &ttm_dma
->pages_list
, page_list
) {
942 ttm
->pages
[count
] = d_page
->p
;
946 spin_lock_irqsave(&pool
->lock
, irq_flags
);
947 pool
->npages_in_use
-= count
;
949 pool
->nfrees
+= count
;
951 pool
->npages_free
+= count
;
952 list_splice(&ttm_dma
->pages_list
, &pool
->free_list
);
954 if (pool
->npages_free
> _manager
->options
.max_size
) {
955 npages
= pool
->npages_free
- _manager
->options
.max_size
;
956 /* free at least NUM_PAGES_TO_ALLOC number of pages
957 * to reduce calls to set_memory_wb */
958 if (npages
< NUM_PAGES_TO_ALLOC
)
959 npages
= NUM_PAGES_TO_ALLOC
;
962 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
965 list_for_each_entry_safe(d_page
, next
, &ttm_dma
->pages_list
, page_list
) {
966 ttm_mem_global_free_page(ttm
->glob
->mem_glob
,
968 ttm_dma_page_put(pool
, d_page
);
971 for (i
= 0; i
< count
; i
++) {
972 ttm_mem_global_free_page(ttm
->glob
->mem_glob
,
977 INIT_LIST_HEAD(&ttm_dma
->pages_list
);
978 for (i
= 0; i
< ttm
->num_pages
; i
++) {
979 ttm
->pages
[i
] = NULL
;
980 ttm_dma
->dma_address
[i
] = 0;
983 /* shrink pool if necessary (only on !is_cached pools)*/
985 ttm_dma_page_pool_free(pool
, npages
);
986 ttm
->state
= tt_unpopulated
;
988 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate
);
991 * Callback for mm to request pool to reduce number of page held.
993 * XXX: (dchinner) Deadlock warning!
995 * ttm_dma_page_pool_free() does GFP_KERNEL memory allocation, and so attention
996 * needs to be paid to sc->gfp_mask to determine if this can be done or not.
997 * GFP_KERNEL memory allocation in a GFP_ATOMIC reclaim context woul dbe really
1000 * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1003 static unsigned long
1004 ttm_dma_pool_shrink_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
1006 static atomic_t start_pool
= ATOMIC_INIT(0);
1008 unsigned pool_offset
= atomic_add_return(1, &start_pool
);
1009 unsigned shrink_pages
= sc
->nr_to_scan
;
1010 struct device_pools
*p
;
1011 unsigned long freed
= 0;
1013 if (list_empty(&_manager
->pools
))
1016 mutex_lock(&_manager
->lock
);
1017 pool_offset
= pool_offset
% _manager
->npools
;
1018 list_for_each_entry(p
, &_manager
->pools
, pools
) {
1023 if (shrink_pages
== 0)
1025 /* Do it in round-robin fashion. */
1026 if (++idx
< pool_offset
)
1028 nr_free
= shrink_pages
;
1029 shrink_pages
= ttm_dma_page_pool_free(p
->pool
, nr_free
);
1030 freed
+= nr_free
- shrink_pages
;
1032 pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1033 p
->pool
->dev_name
, p
->pool
->name
, current
->pid
,
1034 nr_free
, shrink_pages
);
1036 mutex_unlock(&_manager
->lock
);
1040 static unsigned long
1041 ttm_dma_pool_shrink_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
1043 struct device_pools
*p
;
1044 unsigned long count
= 0;
1046 mutex_lock(&_manager
->lock
);
1047 list_for_each_entry(p
, &_manager
->pools
, pools
)
1048 count
+= p
->pool
->npages_free
;
1049 mutex_unlock(&_manager
->lock
);
1053 static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager
*manager
)
1055 manager
->mm_shrink
.count_objects
= ttm_dma_pool_shrink_count
;
1056 manager
->mm_shrink
.scan_objects
= &ttm_dma_pool_shrink_scan
;
1057 manager
->mm_shrink
.seeks
= 1;
1058 register_shrinker(&manager
->mm_shrink
);
1061 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager
*manager
)
1063 unregister_shrinker(&manager
->mm_shrink
);
1066 int ttm_dma_page_alloc_init(struct ttm_mem_global
*glob
, unsigned max_pages
)
1072 pr_info("Initializing DMA pool allocator\n");
1074 _manager
= kzalloc(sizeof(*_manager
), GFP_KERNEL
);
1078 mutex_init(&_manager
->lock
);
1079 INIT_LIST_HEAD(&_manager
->pools
);
1081 _manager
->options
.max_size
= max_pages
;
1082 _manager
->options
.small
= SMALL_ALLOCATION
;
1083 _manager
->options
.alloc_size
= NUM_PAGES_TO_ALLOC
;
1085 /* This takes care of auto-freeing the _manager */
1086 ret
= kobject_init_and_add(&_manager
->kobj
, &ttm_pool_kobj_type
,
1087 &glob
->kobj
, "dma_pool");
1088 if (unlikely(ret
!= 0)) {
1089 kobject_put(&_manager
->kobj
);
1092 ttm_dma_pool_mm_shrink_init(_manager
);
1098 void ttm_dma_page_alloc_fini(void)
1100 struct device_pools
*p
, *t
;
1102 pr_info("Finalizing DMA pool allocator\n");
1103 ttm_dma_pool_mm_shrink_fini(_manager
);
1105 list_for_each_entry_safe_reverse(p
, t
, &_manager
->pools
, pools
) {
1106 dev_dbg(p
->dev
, "(%s:%d) Freeing.\n", p
->pool
->name
,
1108 WARN_ON(devres_destroy(p
->dev
, ttm_dma_pool_release
,
1109 ttm_dma_pool_match
, p
->pool
));
1110 ttm_dma_free_pool(p
->dev
, p
->pool
->type
);
1112 kobject_put(&_manager
->kobj
);
1116 int ttm_dma_page_alloc_debugfs(struct seq_file
*m
, void *data
)
1118 struct device_pools
*p
;
1119 struct dma_pool
*pool
= NULL
;
1120 char *h
[] = {"pool", "refills", "pages freed", "inuse", "available",
1121 "name", "virt", "busaddr"};
1124 seq_printf(m
, "No pool allocator running.\n");
1127 seq_printf(m
, "%13s %12s %13s %8s %8s %8s\n",
1128 h
[0], h
[1], h
[2], h
[3], h
[4], h
[5]);
1129 mutex_lock(&_manager
->lock
);
1130 list_for_each_entry(p
, &_manager
->pools
, pools
) {
1131 struct device
*dev
= p
->dev
;
1135 seq_printf(m
, "%13s %12ld %13ld %8d %8d %8s\n",
1136 pool
->name
, pool
->nrefills
,
1137 pool
->nfrees
, pool
->npages_in_use
,
1141 mutex_unlock(&_manager
->lock
);
1144 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs
);