x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / infiniband / hw / cxgb4 / cq.c
blob88de3aa9c5b0205952299a7823ad0bfc071d3a5d
1 /*
2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include "iw_cxgb4.h"
35 static int destroy_cq(struct c4iw_rdev *rdev, struct t4_cq *cq,
36 struct c4iw_dev_ucontext *uctx)
38 struct fw_ri_res_wr *res_wr;
39 struct fw_ri_res *res;
40 int wr_len;
41 struct c4iw_wr_wait wr_wait;
42 struct sk_buff *skb;
43 int ret;
45 wr_len = sizeof *res_wr + sizeof *res;
46 skb = alloc_skb(wr_len, GFP_KERNEL);
47 if (!skb)
48 return -ENOMEM;
49 set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
51 res_wr = (struct fw_ri_res_wr *)__skb_put(skb, wr_len);
52 memset(res_wr, 0, wr_len);
53 res_wr->op_nres = cpu_to_be32(
54 FW_WR_OP(FW_RI_RES_WR) |
55 V_FW_RI_RES_WR_NRES(1) |
56 FW_WR_COMPL(1));
57 res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16));
58 res_wr->cookie = (unsigned long) &wr_wait;
59 res = res_wr->res;
60 res->u.cq.restype = FW_RI_RES_TYPE_CQ;
61 res->u.cq.op = FW_RI_RES_OP_RESET;
62 res->u.cq.iqid = cpu_to_be32(cq->cqid);
64 c4iw_init_wr_wait(&wr_wait);
65 ret = c4iw_ofld_send(rdev, skb);
66 if (!ret) {
67 ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
70 kfree(cq->sw_queue);
71 dma_free_coherent(&(rdev->lldi.pdev->dev),
72 cq->memsize, cq->queue,
73 dma_unmap_addr(cq, mapping));
74 c4iw_put_cqid(rdev, cq->cqid, uctx);
75 return ret;
78 static int create_cq(struct c4iw_rdev *rdev, struct t4_cq *cq,
79 struct c4iw_dev_ucontext *uctx)
81 struct fw_ri_res_wr *res_wr;
82 struct fw_ri_res *res;
83 int wr_len;
84 int user = (uctx != &rdev->uctx);
85 struct c4iw_wr_wait wr_wait;
86 int ret;
87 struct sk_buff *skb;
89 cq->cqid = c4iw_get_cqid(rdev, uctx);
90 if (!cq->cqid) {
91 ret = -ENOMEM;
92 goto err1;
95 if (!user) {
96 cq->sw_queue = kzalloc(cq->memsize, GFP_KERNEL);
97 if (!cq->sw_queue) {
98 ret = -ENOMEM;
99 goto err2;
102 cq->queue = dma_alloc_coherent(&rdev->lldi.pdev->dev, cq->memsize,
103 &cq->dma_addr, GFP_KERNEL);
104 if (!cq->queue) {
105 ret = -ENOMEM;
106 goto err3;
108 dma_unmap_addr_set(cq, mapping, cq->dma_addr);
109 memset(cq->queue, 0, cq->memsize);
111 /* build fw_ri_res_wr */
112 wr_len = sizeof *res_wr + sizeof *res;
114 skb = alloc_skb(wr_len, GFP_KERNEL);
115 if (!skb) {
116 ret = -ENOMEM;
117 goto err4;
119 set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
121 res_wr = (struct fw_ri_res_wr *)__skb_put(skb, wr_len);
122 memset(res_wr, 0, wr_len);
123 res_wr->op_nres = cpu_to_be32(
124 FW_WR_OP(FW_RI_RES_WR) |
125 V_FW_RI_RES_WR_NRES(1) |
126 FW_WR_COMPL(1));
127 res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16));
128 res_wr->cookie = (unsigned long) &wr_wait;
129 res = res_wr->res;
130 res->u.cq.restype = FW_RI_RES_TYPE_CQ;
131 res->u.cq.op = FW_RI_RES_OP_WRITE;
132 res->u.cq.iqid = cpu_to_be32(cq->cqid);
133 res->u.cq.iqandst_to_iqandstindex = cpu_to_be32(
134 V_FW_RI_RES_WR_IQANUS(0) |
135 V_FW_RI_RES_WR_IQANUD(1) |
136 F_FW_RI_RES_WR_IQANDST |
137 V_FW_RI_RES_WR_IQANDSTINDEX(*rdev->lldi.rxq_ids));
138 res->u.cq.iqdroprss_to_iqesize = cpu_to_be16(
139 F_FW_RI_RES_WR_IQDROPRSS |
140 V_FW_RI_RES_WR_IQPCIECH(2) |
141 V_FW_RI_RES_WR_IQINTCNTTHRESH(0) |
142 F_FW_RI_RES_WR_IQO |
143 V_FW_RI_RES_WR_IQESIZE(1));
144 res->u.cq.iqsize = cpu_to_be16(cq->size);
145 res->u.cq.iqaddr = cpu_to_be64(cq->dma_addr);
147 c4iw_init_wr_wait(&wr_wait);
149 ret = c4iw_ofld_send(rdev, skb);
150 if (ret)
151 goto err4;
152 PDBG("%s wait_event wr_wait %p\n", __func__, &wr_wait);
153 ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
154 if (ret)
155 goto err4;
157 cq->gen = 1;
158 cq->gts = rdev->lldi.gts_reg;
159 cq->rdev = rdev;
160 if (user) {
161 cq->ugts = (u64)pci_resource_start(rdev->lldi.pdev, 2) +
162 (cq->cqid << rdev->cqshift);
163 cq->ugts &= PAGE_MASK;
165 return 0;
166 err4:
167 dma_free_coherent(&rdev->lldi.pdev->dev, cq->memsize, cq->queue,
168 dma_unmap_addr(cq, mapping));
169 err3:
170 kfree(cq->sw_queue);
171 err2:
172 c4iw_put_cqid(rdev, cq->cqid, uctx);
173 err1:
174 return ret;
177 static void insert_recv_cqe(struct t4_wq *wq, struct t4_cq *cq)
179 struct t4_cqe cqe;
181 PDBG("%s wq %p cq %p sw_cidx %u sw_pidx %u\n", __func__,
182 wq, cq, cq->sw_cidx, cq->sw_pidx);
183 memset(&cqe, 0, sizeof(cqe));
184 cqe.header = cpu_to_be32(V_CQE_STATUS(T4_ERR_SWFLUSH) |
185 V_CQE_OPCODE(FW_RI_SEND) |
186 V_CQE_TYPE(0) |
187 V_CQE_SWCQE(1) |
188 V_CQE_QPID(wq->sq.qid));
189 cqe.bits_type_ts = cpu_to_be64(V_CQE_GENBIT((u64)cq->gen));
190 cq->sw_queue[cq->sw_pidx] = cqe;
191 t4_swcq_produce(cq);
194 int c4iw_flush_rq(struct t4_wq *wq, struct t4_cq *cq, int count)
196 int flushed = 0;
197 int in_use = wq->rq.in_use - count;
199 BUG_ON(in_use < 0);
200 PDBG("%s wq %p cq %p rq.in_use %u skip count %u\n", __func__,
201 wq, cq, wq->rq.in_use, count);
202 while (in_use--) {
203 insert_recv_cqe(wq, cq);
204 flushed++;
206 return flushed;
209 static void insert_sq_cqe(struct t4_wq *wq, struct t4_cq *cq,
210 struct t4_swsqe *swcqe)
212 struct t4_cqe cqe;
214 PDBG("%s wq %p cq %p sw_cidx %u sw_pidx %u\n", __func__,
215 wq, cq, cq->sw_cidx, cq->sw_pidx);
216 memset(&cqe, 0, sizeof(cqe));
217 cqe.header = cpu_to_be32(V_CQE_STATUS(T4_ERR_SWFLUSH) |
218 V_CQE_OPCODE(swcqe->opcode) |
219 V_CQE_TYPE(1) |
220 V_CQE_SWCQE(1) |
221 V_CQE_QPID(wq->sq.qid));
222 CQE_WRID_SQ_IDX(&cqe) = swcqe->idx;
223 cqe.bits_type_ts = cpu_to_be64(V_CQE_GENBIT((u64)cq->gen));
224 cq->sw_queue[cq->sw_pidx] = cqe;
225 t4_swcq_produce(cq);
228 static void advance_oldest_read(struct t4_wq *wq);
230 int c4iw_flush_sq(struct c4iw_qp *qhp)
232 int flushed = 0;
233 struct t4_wq *wq = &qhp->wq;
234 struct c4iw_cq *chp = to_c4iw_cq(qhp->ibqp.send_cq);
235 struct t4_cq *cq = &chp->cq;
236 int idx;
237 struct t4_swsqe *swsqe;
238 int error = (qhp->attr.state != C4IW_QP_STATE_CLOSING &&
239 qhp->attr.state != C4IW_QP_STATE_IDLE);
241 if (wq->sq.flush_cidx == -1)
242 wq->sq.flush_cidx = wq->sq.cidx;
243 idx = wq->sq.flush_cidx;
244 BUG_ON(idx >= wq->sq.size);
245 while (idx != wq->sq.pidx) {
246 if (error) {
247 swsqe = &wq->sq.sw_sq[idx];
248 BUG_ON(swsqe->flushed);
249 swsqe->flushed = 1;
250 insert_sq_cqe(wq, cq, swsqe);
251 if (wq->sq.oldest_read == swsqe) {
252 BUG_ON(swsqe->opcode != FW_RI_READ_REQ);
253 advance_oldest_read(wq);
255 flushed++;
256 } else {
257 t4_sq_consume(wq);
259 if (++idx == wq->sq.size)
260 idx = 0;
262 wq->sq.flush_cidx += flushed;
263 if (wq->sq.flush_cidx >= wq->sq.size)
264 wq->sq.flush_cidx -= wq->sq.size;
265 return flushed;
268 static void flush_completed_wrs(struct t4_wq *wq, struct t4_cq *cq)
270 struct t4_swsqe *swsqe;
271 int cidx;
273 if (wq->sq.flush_cidx == -1)
274 wq->sq.flush_cidx = wq->sq.cidx;
275 cidx = wq->sq.flush_cidx;
276 BUG_ON(cidx > wq->sq.size);
278 while (cidx != wq->sq.pidx) {
279 swsqe = &wq->sq.sw_sq[cidx];
280 if (!swsqe->signaled) {
281 if (++cidx == wq->sq.size)
282 cidx = 0;
283 } else if (swsqe->complete) {
285 BUG_ON(swsqe->flushed);
288 * Insert this completed cqe into the swcq.
290 PDBG("%s moving cqe into swcq sq idx %u cq idx %u\n",
291 __func__, cidx, cq->sw_pidx);
292 swsqe->cqe.header |= htonl(V_CQE_SWCQE(1));
293 cq->sw_queue[cq->sw_pidx] = swsqe->cqe;
294 t4_swcq_produce(cq);
295 swsqe->flushed = 1;
296 if (++cidx == wq->sq.size)
297 cidx = 0;
298 wq->sq.flush_cidx = cidx;
299 } else
300 break;
304 static void create_read_req_cqe(struct t4_wq *wq, struct t4_cqe *hw_cqe,
305 struct t4_cqe *read_cqe)
307 read_cqe->u.scqe.cidx = wq->sq.oldest_read->idx;
308 read_cqe->len = htonl(wq->sq.oldest_read->read_len);
309 read_cqe->header = htonl(V_CQE_QPID(CQE_QPID(hw_cqe)) |
310 V_CQE_SWCQE(SW_CQE(hw_cqe)) |
311 V_CQE_OPCODE(FW_RI_READ_REQ) |
312 V_CQE_TYPE(1));
313 read_cqe->bits_type_ts = hw_cqe->bits_type_ts;
316 static void advance_oldest_read(struct t4_wq *wq)
319 u32 rptr = wq->sq.oldest_read - wq->sq.sw_sq + 1;
321 if (rptr == wq->sq.size)
322 rptr = 0;
323 while (rptr != wq->sq.pidx) {
324 wq->sq.oldest_read = &wq->sq.sw_sq[rptr];
326 if (wq->sq.oldest_read->opcode == FW_RI_READ_REQ)
327 return;
328 if (++rptr == wq->sq.size)
329 rptr = 0;
331 wq->sq.oldest_read = NULL;
335 * Move all CQEs from the HWCQ into the SWCQ.
336 * Deal with out-of-order and/or completions that complete
337 * prior unsignalled WRs.
339 void c4iw_flush_hw_cq(struct c4iw_cq *chp)
341 struct t4_cqe *hw_cqe, *swcqe, read_cqe;
342 struct c4iw_qp *qhp;
343 struct t4_swsqe *swsqe;
344 int ret;
346 PDBG("%s cqid 0x%x\n", __func__, chp->cq.cqid);
347 ret = t4_next_hw_cqe(&chp->cq, &hw_cqe);
350 * This logic is similar to poll_cq(), but not quite the same
351 * unfortunately. Need to move pertinent HW CQEs to the SW CQ but
352 * also do any translation magic that poll_cq() normally does.
354 while (!ret) {
355 qhp = get_qhp(chp->rhp, CQE_QPID(hw_cqe));
358 * drop CQEs with no associated QP
360 if (qhp == NULL)
361 goto next_cqe;
363 if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE)
364 goto next_cqe;
366 if (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP) {
369 * drop peer2peer RTR reads.
371 if (CQE_WRID_STAG(hw_cqe) == 1)
372 goto next_cqe;
375 * Eat completions for unsignaled read WRs.
377 if (!qhp->wq.sq.oldest_read->signaled) {
378 advance_oldest_read(&qhp->wq);
379 goto next_cqe;
383 * Don't write to the HWCQ, create a new read req CQE
384 * in local memory and move it into the swcq.
386 create_read_req_cqe(&qhp->wq, hw_cqe, &read_cqe);
387 hw_cqe = &read_cqe;
388 advance_oldest_read(&qhp->wq);
391 /* if its a SQ completion, then do the magic to move all the
392 * unsignaled and now in-order completions into the swcq.
394 if (SQ_TYPE(hw_cqe)) {
395 swsqe = &qhp->wq.sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)];
396 swsqe->cqe = *hw_cqe;
397 swsqe->complete = 1;
398 flush_completed_wrs(&qhp->wq, &chp->cq);
399 } else {
400 swcqe = &chp->cq.sw_queue[chp->cq.sw_pidx];
401 *swcqe = *hw_cqe;
402 swcqe->header |= cpu_to_be32(V_CQE_SWCQE(1));
403 t4_swcq_produce(&chp->cq);
405 next_cqe:
406 t4_hwcq_consume(&chp->cq);
407 ret = t4_next_hw_cqe(&chp->cq, &hw_cqe);
411 static int cqe_completes_wr(struct t4_cqe *cqe, struct t4_wq *wq)
413 if (CQE_OPCODE(cqe) == FW_RI_TERMINATE)
414 return 0;
416 if ((CQE_OPCODE(cqe) == FW_RI_RDMA_WRITE) && RQ_TYPE(cqe))
417 return 0;
419 if ((CQE_OPCODE(cqe) == FW_RI_READ_RESP) && SQ_TYPE(cqe))
420 return 0;
422 if (CQE_SEND_OPCODE(cqe) && RQ_TYPE(cqe) && t4_rq_empty(wq))
423 return 0;
424 return 1;
427 void c4iw_count_rcqes(struct t4_cq *cq, struct t4_wq *wq, int *count)
429 struct t4_cqe *cqe;
430 u32 ptr;
432 *count = 0;
433 PDBG("%s count zero %d\n", __func__, *count);
434 ptr = cq->sw_cidx;
435 while (ptr != cq->sw_pidx) {
436 cqe = &cq->sw_queue[ptr];
437 if (RQ_TYPE(cqe) && (CQE_OPCODE(cqe) != FW_RI_READ_RESP) &&
438 (CQE_QPID(cqe) == wq->sq.qid) && cqe_completes_wr(cqe, wq))
439 (*count)++;
440 if (++ptr == cq->size)
441 ptr = 0;
443 PDBG("%s cq %p count %d\n", __func__, cq, *count);
447 * poll_cq
449 * Caller must:
450 * check the validity of the first CQE,
451 * supply the wq assicated with the qpid.
453 * credit: cq credit to return to sge.
454 * cqe_flushed: 1 iff the CQE is flushed.
455 * cqe: copy of the polled CQE.
457 * return value:
458 * 0 CQE returned ok.
459 * -EAGAIN CQE skipped, try again.
460 * -EOVERFLOW CQ overflow detected.
462 static int poll_cq(struct t4_wq *wq, struct t4_cq *cq, struct t4_cqe *cqe,
463 u8 *cqe_flushed, u64 *cookie, u32 *credit)
465 int ret = 0;
466 struct t4_cqe *hw_cqe, read_cqe;
468 *cqe_flushed = 0;
469 *credit = 0;
470 ret = t4_next_cqe(cq, &hw_cqe);
471 if (ret)
472 return ret;
474 PDBG("%s CQE OVF %u qpid 0x%0x genbit %u type %u status 0x%0x"
475 " opcode 0x%0x len 0x%0x wrid_hi_stag 0x%x wrid_low_msn 0x%x\n",
476 __func__, CQE_OVFBIT(hw_cqe), CQE_QPID(hw_cqe),
477 CQE_GENBIT(hw_cqe), CQE_TYPE(hw_cqe), CQE_STATUS(hw_cqe),
478 CQE_OPCODE(hw_cqe), CQE_LEN(hw_cqe), CQE_WRID_HI(hw_cqe),
479 CQE_WRID_LOW(hw_cqe));
482 * skip cqe's not affiliated with a QP.
484 if (wq == NULL) {
485 ret = -EAGAIN;
486 goto skip_cqe;
490 * skip hw cqe's if the wq is flushed.
492 if (wq->flushed && !SW_CQE(hw_cqe)) {
493 ret = -EAGAIN;
494 goto skip_cqe;
498 * skip TERMINATE cqes...
500 if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE) {
501 ret = -EAGAIN;
502 goto skip_cqe;
506 * Gotta tweak READ completions:
507 * 1) the cqe doesn't contain the sq_wptr from the wr.
508 * 2) opcode not reflected from the wr.
509 * 3) read_len not reflected from the wr.
510 * 4) cq_type is RQ_TYPE not SQ_TYPE.
512 if (RQ_TYPE(hw_cqe) && (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP)) {
515 * If this is an unsolicited read response, then the read
516 * was generated by the kernel driver as part of peer-2-peer
517 * connection setup. So ignore the completion.
519 if (CQE_WRID_STAG(hw_cqe) == 1) {
520 if (CQE_STATUS(hw_cqe))
521 t4_set_wq_in_error(wq);
522 ret = -EAGAIN;
523 goto skip_cqe;
527 * Eat completions for unsignaled read WRs.
529 if (!wq->sq.oldest_read->signaled) {
530 advance_oldest_read(wq);
531 ret = -EAGAIN;
532 goto skip_cqe;
536 * Don't write to the HWCQ, so create a new read req CQE
537 * in local memory.
539 create_read_req_cqe(wq, hw_cqe, &read_cqe);
540 hw_cqe = &read_cqe;
541 advance_oldest_read(wq);
544 if (CQE_STATUS(hw_cqe) || t4_wq_in_error(wq)) {
545 *cqe_flushed = (CQE_STATUS(hw_cqe) == T4_ERR_SWFLUSH);
546 t4_set_wq_in_error(wq);
550 * RECV completion.
552 if (RQ_TYPE(hw_cqe)) {
555 * HW only validates 4 bits of MSN. So we must validate that
556 * the MSN in the SEND is the next expected MSN. If its not,
557 * then we complete this with T4_ERR_MSN and mark the wq in
558 * error.
561 if (t4_rq_empty(wq)) {
562 t4_set_wq_in_error(wq);
563 ret = -EAGAIN;
564 goto skip_cqe;
566 if (unlikely((CQE_WRID_MSN(hw_cqe) != (wq->rq.msn)))) {
567 t4_set_wq_in_error(wq);
568 hw_cqe->header |= htonl(V_CQE_STATUS(T4_ERR_MSN));
569 goto proc_cqe;
571 goto proc_cqe;
575 * If we get here its a send completion.
577 * Handle out of order completion. These get stuffed
578 * in the SW SQ. Then the SW SQ is walked to move any
579 * now in-order completions into the SW CQ. This handles
580 * 2 cases:
581 * 1) reaping unsignaled WRs when the first subsequent
582 * signaled WR is completed.
583 * 2) out of order read completions.
585 if (!SW_CQE(hw_cqe) && (CQE_WRID_SQ_IDX(hw_cqe) != wq->sq.cidx)) {
586 struct t4_swsqe *swsqe;
588 PDBG("%s out of order completion going in sw_sq at idx %u\n",
589 __func__, CQE_WRID_SQ_IDX(hw_cqe));
590 swsqe = &wq->sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)];
591 swsqe->cqe = *hw_cqe;
592 swsqe->complete = 1;
593 ret = -EAGAIN;
594 goto flush_wq;
597 proc_cqe:
598 *cqe = *hw_cqe;
601 * Reap the associated WR(s) that are freed up with this
602 * completion.
604 if (SQ_TYPE(hw_cqe)) {
605 int idx = CQE_WRID_SQ_IDX(hw_cqe);
606 BUG_ON(idx > wq->sq.size);
609 * Account for any unsignaled completions completed by
610 * this signaled completion. In this case, cidx points
611 * to the first unsignaled one, and idx points to the
612 * signaled one. So adjust in_use based on this delta.
613 * if this is not completing any unsigned wrs, then the
614 * delta will be 0. Handle wrapping also!
616 if (idx < wq->sq.cidx)
617 wq->sq.in_use -= wq->sq.size + idx - wq->sq.cidx;
618 else
619 wq->sq.in_use -= idx - wq->sq.cidx;
620 BUG_ON(wq->sq.in_use < 0 && wq->sq.in_use < wq->sq.size);
622 wq->sq.cidx = (uint16_t)idx;
623 PDBG("%s completing sq idx %u\n", __func__, wq->sq.cidx);
624 *cookie = wq->sq.sw_sq[wq->sq.cidx].wr_id;
625 t4_sq_consume(wq);
626 } else {
627 PDBG("%s completing rq idx %u\n", __func__, wq->rq.cidx);
628 *cookie = wq->rq.sw_rq[wq->rq.cidx].wr_id;
629 BUG_ON(t4_rq_empty(wq));
630 t4_rq_consume(wq);
631 goto skip_cqe;
634 flush_wq:
636 * Flush any completed cqes that are now in-order.
638 flush_completed_wrs(wq, cq);
640 skip_cqe:
641 if (SW_CQE(hw_cqe)) {
642 PDBG("%s cq %p cqid 0x%x skip sw cqe cidx %u\n",
643 __func__, cq, cq->cqid, cq->sw_cidx);
644 t4_swcq_consume(cq);
645 } else {
646 PDBG("%s cq %p cqid 0x%x skip hw cqe cidx %u\n",
647 __func__, cq, cq->cqid, cq->cidx);
648 t4_hwcq_consume(cq);
650 return ret;
654 * Get one cq entry from c4iw and map it to openib.
656 * Returns:
657 * 0 cqe returned
658 * -ENODATA EMPTY;
659 * -EAGAIN caller must try again
660 * any other -errno fatal error
662 static int c4iw_poll_cq_one(struct c4iw_cq *chp, struct ib_wc *wc)
664 struct c4iw_qp *qhp = NULL;
665 struct t4_cqe cqe = {0, 0}, *rd_cqe;
666 struct t4_wq *wq;
667 u32 credit = 0;
668 u8 cqe_flushed;
669 u64 cookie = 0;
670 int ret;
672 ret = t4_next_cqe(&chp->cq, &rd_cqe);
674 if (ret)
675 return ret;
677 qhp = get_qhp(chp->rhp, CQE_QPID(rd_cqe));
678 if (!qhp)
679 wq = NULL;
680 else {
681 spin_lock(&qhp->lock);
682 wq = &(qhp->wq);
684 ret = poll_cq(wq, &(chp->cq), &cqe, &cqe_flushed, &cookie, &credit);
685 if (ret)
686 goto out;
688 wc->wr_id = cookie;
689 wc->qp = &qhp->ibqp;
690 wc->vendor_err = CQE_STATUS(&cqe);
691 wc->wc_flags = 0;
693 PDBG("%s qpid 0x%x type %d opcode %d status 0x%x len %u wrid hi 0x%x "
694 "lo 0x%x cookie 0x%llx\n", __func__, CQE_QPID(&cqe),
695 CQE_TYPE(&cqe), CQE_OPCODE(&cqe), CQE_STATUS(&cqe), CQE_LEN(&cqe),
696 CQE_WRID_HI(&cqe), CQE_WRID_LOW(&cqe), (unsigned long long)cookie);
698 if (CQE_TYPE(&cqe) == 0) {
699 if (!CQE_STATUS(&cqe))
700 wc->byte_len = CQE_LEN(&cqe);
701 else
702 wc->byte_len = 0;
703 wc->opcode = IB_WC_RECV;
704 if (CQE_OPCODE(&cqe) == FW_RI_SEND_WITH_INV ||
705 CQE_OPCODE(&cqe) == FW_RI_SEND_WITH_SE_INV) {
706 wc->ex.invalidate_rkey = CQE_WRID_STAG(&cqe);
707 wc->wc_flags |= IB_WC_WITH_INVALIDATE;
709 } else {
710 switch (CQE_OPCODE(&cqe)) {
711 case FW_RI_RDMA_WRITE:
712 wc->opcode = IB_WC_RDMA_WRITE;
713 break;
714 case FW_RI_READ_REQ:
715 wc->opcode = IB_WC_RDMA_READ;
716 wc->byte_len = CQE_LEN(&cqe);
717 break;
718 case FW_RI_SEND_WITH_INV:
719 case FW_RI_SEND_WITH_SE_INV:
720 wc->opcode = IB_WC_SEND;
721 wc->wc_flags |= IB_WC_WITH_INVALIDATE;
722 break;
723 case FW_RI_SEND:
724 case FW_RI_SEND_WITH_SE:
725 wc->opcode = IB_WC_SEND;
726 break;
727 case FW_RI_BIND_MW:
728 wc->opcode = IB_WC_BIND_MW;
729 break;
731 case FW_RI_LOCAL_INV:
732 wc->opcode = IB_WC_LOCAL_INV;
733 break;
734 case FW_RI_FAST_REGISTER:
735 wc->opcode = IB_WC_FAST_REG_MR;
736 break;
737 default:
738 printk(KERN_ERR MOD "Unexpected opcode %d "
739 "in the CQE received for QPID=0x%0x\n",
740 CQE_OPCODE(&cqe), CQE_QPID(&cqe));
741 ret = -EINVAL;
742 goto out;
746 if (cqe_flushed)
747 wc->status = IB_WC_WR_FLUSH_ERR;
748 else {
750 switch (CQE_STATUS(&cqe)) {
751 case T4_ERR_SUCCESS:
752 wc->status = IB_WC_SUCCESS;
753 break;
754 case T4_ERR_STAG:
755 wc->status = IB_WC_LOC_ACCESS_ERR;
756 break;
757 case T4_ERR_PDID:
758 wc->status = IB_WC_LOC_PROT_ERR;
759 break;
760 case T4_ERR_QPID:
761 case T4_ERR_ACCESS:
762 wc->status = IB_WC_LOC_ACCESS_ERR;
763 break;
764 case T4_ERR_WRAP:
765 wc->status = IB_WC_GENERAL_ERR;
766 break;
767 case T4_ERR_BOUND:
768 wc->status = IB_WC_LOC_LEN_ERR;
769 break;
770 case T4_ERR_INVALIDATE_SHARED_MR:
771 case T4_ERR_INVALIDATE_MR_WITH_MW_BOUND:
772 wc->status = IB_WC_MW_BIND_ERR;
773 break;
774 case T4_ERR_CRC:
775 case T4_ERR_MARKER:
776 case T4_ERR_PDU_LEN_ERR:
777 case T4_ERR_OUT_OF_RQE:
778 case T4_ERR_DDP_VERSION:
779 case T4_ERR_RDMA_VERSION:
780 case T4_ERR_DDP_QUEUE_NUM:
781 case T4_ERR_MSN:
782 case T4_ERR_TBIT:
783 case T4_ERR_MO:
784 case T4_ERR_MSN_RANGE:
785 case T4_ERR_IRD_OVERFLOW:
786 case T4_ERR_OPCODE:
787 case T4_ERR_INTERNAL_ERR:
788 wc->status = IB_WC_FATAL_ERR;
789 break;
790 case T4_ERR_SWFLUSH:
791 wc->status = IB_WC_WR_FLUSH_ERR;
792 break;
793 default:
794 printk(KERN_ERR MOD
795 "Unexpected cqe_status 0x%x for QPID=0x%0x\n",
796 CQE_STATUS(&cqe), CQE_QPID(&cqe));
797 ret = -EINVAL;
800 out:
801 if (wq)
802 spin_unlock(&qhp->lock);
803 return ret;
806 int c4iw_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *wc)
808 struct c4iw_cq *chp;
809 unsigned long flags;
810 int npolled;
811 int err = 0;
813 chp = to_c4iw_cq(ibcq);
815 spin_lock_irqsave(&chp->lock, flags);
816 for (npolled = 0; npolled < num_entries; ++npolled) {
817 do {
818 err = c4iw_poll_cq_one(chp, wc + npolled);
819 } while (err == -EAGAIN);
820 if (err)
821 break;
823 spin_unlock_irqrestore(&chp->lock, flags);
824 return !err || err == -ENODATA ? npolled : err;
827 int c4iw_destroy_cq(struct ib_cq *ib_cq)
829 struct c4iw_cq *chp;
830 struct c4iw_ucontext *ucontext;
832 PDBG("%s ib_cq %p\n", __func__, ib_cq);
833 chp = to_c4iw_cq(ib_cq);
835 remove_handle(chp->rhp, &chp->rhp->cqidr, chp->cq.cqid);
836 atomic_dec(&chp->refcnt);
837 wait_event(chp->wait, !atomic_read(&chp->refcnt));
839 ucontext = ib_cq->uobject ? to_c4iw_ucontext(ib_cq->uobject->context)
840 : NULL;
841 destroy_cq(&chp->rhp->rdev, &chp->cq,
842 ucontext ? &ucontext->uctx : &chp->cq.rdev->uctx);
843 kfree(chp);
844 return 0;
847 struct ib_cq *c4iw_create_cq(struct ib_device *ibdev, int entries,
848 int vector, struct ib_ucontext *ib_context,
849 struct ib_udata *udata)
851 struct c4iw_dev *rhp;
852 struct c4iw_cq *chp;
853 struct c4iw_create_cq_resp uresp;
854 struct c4iw_ucontext *ucontext = NULL;
855 int ret;
856 size_t memsize, hwentries;
857 struct c4iw_mm_entry *mm, *mm2;
859 PDBG("%s ib_dev %p entries %d\n", __func__, ibdev, entries);
861 rhp = to_c4iw_dev(ibdev);
863 chp = kzalloc(sizeof(*chp), GFP_KERNEL);
864 if (!chp)
865 return ERR_PTR(-ENOMEM);
867 if (ib_context)
868 ucontext = to_c4iw_ucontext(ib_context);
870 /* account for the status page. */
871 entries++;
873 /* IQ needs one extra entry to differentiate full vs empty. */
874 entries++;
877 * entries must be multiple of 16 for HW.
879 entries = roundup(entries, 16);
882 * Make actual HW queue 2x to avoid cdix_inc overflows.
884 hwentries = entries * 2;
887 * Make HW queue at least 64 entries so GTS updates aren't too
888 * frequent.
890 if (hwentries < 64)
891 hwentries = 64;
893 memsize = hwentries * sizeof *chp->cq.queue;
896 * memsize must be a multiple of the page size if its a user cq.
898 if (ucontext) {
899 memsize = roundup(memsize, PAGE_SIZE);
900 hwentries = memsize / sizeof *chp->cq.queue;
901 while (hwentries > T4_MAX_IQ_SIZE) {
902 memsize -= PAGE_SIZE;
903 hwentries = memsize / sizeof *chp->cq.queue;
906 chp->cq.size = hwentries;
907 chp->cq.memsize = memsize;
909 ret = create_cq(&rhp->rdev, &chp->cq,
910 ucontext ? &ucontext->uctx : &rhp->rdev.uctx);
911 if (ret)
912 goto err1;
914 chp->rhp = rhp;
915 chp->cq.size--; /* status page */
916 chp->ibcq.cqe = entries - 2;
917 spin_lock_init(&chp->lock);
918 spin_lock_init(&chp->comp_handler_lock);
919 atomic_set(&chp->refcnt, 1);
920 init_waitqueue_head(&chp->wait);
921 ret = insert_handle(rhp, &rhp->cqidr, chp, chp->cq.cqid);
922 if (ret)
923 goto err2;
925 if (ucontext) {
926 mm = kmalloc(sizeof *mm, GFP_KERNEL);
927 if (!mm)
928 goto err3;
929 mm2 = kmalloc(sizeof *mm2, GFP_KERNEL);
930 if (!mm2)
931 goto err4;
933 uresp.qid_mask = rhp->rdev.cqmask;
934 uresp.cqid = chp->cq.cqid;
935 uresp.size = chp->cq.size;
936 uresp.memsize = chp->cq.memsize;
937 spin_lock(&ucontext->mmap_lock);
938 uresp.key = ucontext->key;
939 ucontext->key += PAGE_SIZE;
940 uresp.gts_key = ucontext->key;
941 ucontext->key += PAGE_SIZE;
942 spin_unlock(&ucontext->mmap_lock);
943 ret = ib_copy_to_udata(udata, &uresp, sizeof uresp);
944 if (ret)
945 goto err5;
947 mm->key = uresp.key;
948 mm->addr = virt_to_phys(chp->cq.queue);
949 mm->len = chp->cq.memsize;
950 insert_mmap(ucontext, mm);
952 mm2->key = uresp.gts_key;
953 mm2->addr = chp->cq.ugts;
954 mm2->len = PAGE_SIZE;
955 insert_mmap(ucontext, mm2);
957 PDBG("%s cqid 0x%0x chp %p size %u memsize %zu, dma_addr 0x%0llx\n",
958 __func__, chp->cq.cqid, chp, chp->cq.size,
959 chp->cq.memsize,
960 (unsigned long long) chp->cq.dma_addr);
961 return &chp->ibcq;
962 err5:
963 kfree(mm2);
964 err4:
965 kfree(mm);
966 err3:
967 remove_handle(rhp, &rhp->cqidr, chp->cq.cqid);
968 err2:
969 destroy_cq(&chp->rhp->rdev, &chp->cq,
970 ucontext ? &ucontext->uctx : &rhp->rdev.uctx);
971 err1:
972 kfree(chp);
973 return ERR_PTR(ret);
976 int c4iw_resize_cq(struct ib_cq *cq, int cqe, struct ib_udata *udata)
978 return -ENOSYS;
981 int c4iw_arm_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags flags)
983 struct c4iw_cq *chp;
984 int ret;
985 unsigned long flag;
987 chp = to_c4iw_cq(ibcq);
988 spin_lock_irqsave(&chp->lock, flag);
989 ret = t4_arm_cq(&chp->cq,
990 (flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED);
991 spin_unlock_irqrestore(&chp->lock, flag);
992 if (ret && !(flags & IB_CQ_REPORT_MISSED_EVENTS))
993 ret = 0;
994 return ret;