2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_tcq.h>
45 #include <target/configfs_macros.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric_configfs.h>
48 #include <target/target_core_fabric.h>
49 #include <target/target_core_configfs.h>
52 /* Name of this kernel module. */
53 #define DRV_NAME "ib_srpt"
54 #define DRV_VERSION "2.0.0"
55 #define DRV_RELDATE "2011-02-14"
57 #define SRPT_ID_STRING "Linux SRP target"
60 #define pr_fmt(fmt) DRV_NAME " " fmt
62 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64 "v" DRV_VERSION
" (" DRV_RELDATE
")");
65 MODULE_LICENSE("Dual BSD/GPL");
71 static u64 srpt_service_guid
;
72 static DEFINE_SPINLOCK(srpt_dev_lock
); /* Protects srpt_dev_list. */
73 static LIST_HEAD(srpt_dev_list
); /* List of srpt_device structures. */
75 static unsigned srp_max_req_size
= DEFAULT_MAX_REQ_SIZE
;
76 module_param(srp_max_req_size
, int, 0444);
77 MODULE_PARM_DESC(srp_max_req_size
,
78 "Maximum size of SRP request messages in bytes.");
80 static int srpt_srq_size
= DEFAULT_SRPT_SRQ_SIZE
;
81 module_param(srpt_srq_size
, int, 0444);
82 MODULE_PARM_DESC(srpt_srq_size
,
83 "Shared receive queue (SRQ) size.");
85 static int srpt_get_u64_x(char *buffer
, struct kernel_param
*kp
)
87 return sprintf(buffer
, "0x%016llx", *(u64
*)kp
->arg
);
89 module_param_call(srpt_service_guid
, NULL
, srpt_get_u64_x
, &srpt_service_guid
,
91 MODULE_PARM_DESC(srpt_service_guid
,
92 "Using this value for ioc_guid, id_ext, and cm_listen_id"
93 " instead of using the node_guid of the first HCA.");
95 static struct ib_client srpt_client
;
96 static struct target_fabric_configfs
*srpt_target
;
97 static void srpt_release_channel(struct srpt_rdma_ch
*ch
);
98 static int srpt_queue_status(struct se_cmd
*cmd
);
101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
104 enum dma_data_direction
opposite_dma_dir(enum dma_data_direction dir
)
107 case DMA_TO_DEVICE
: return DMA_FROM_DEVICE
;
108 case DMA_FROM_DEVICE
: return DMA_TO_DEVICE
;
114 * srpt_sdev_name() - Return the name associated with the HCA.
116 * Examples are ib0, ib1, ...
118 static inline const char *srpt_sdev_name(struct srpt_device
*sdev
)
120 return sdev
->device
->name
;
123 static enum rdma_ch_state
srpt_get_ch_state(struct srpt_rdma_ch
*ch
)
126 enum rdma_ch_state state
;
128 spin_lock_irqsave(&ch
->spinlock
, flags
);
130 spin_unlock_irqrestore(&ch
->spinlock
, flags
);
134 static enum rdma_ch_state
135 srpt_set_ch_state(struct srpt_rdma_ch
*ch
, enum rdma_ch_state new_state
)
138 enum rdma_ch_state prev
;
140 spin_lock_irqsave(&ch
->spinlock
, flags
);
142 ch
->state
= new_state
;
143 spin_unlock_irqrestore(&ch
->spinlock
, flags
);
148 * srpt_test_and_set_ch_state() - Test and set the channel state.
150 * Returns true if and only if the channel state has been set to the new state.
153 srpt_test_and_set_ch_state(struct srpt_rdma_ch
*ch
, enum rdma_ch_state old
,
154 enum rdma_ch_state
new)
157 enum rdma_ch_state prev
;
159 spin_lock_irqsave(&ch
->spinlock
, flags
);
163 spin_unlock_irqrestore(&ch
->spinlock
, flags
);
168 * srpt_event_handler() - Asynchronous IB event callback function.
170 * Callback function called by the InfiniBand core when an asynchronous IB
171 * event occurs. This callback may occur in interrupt context. See also
172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
173 * Architecture Specification.
175 static void srpt_event_handler(struct ib_event_handler
*handler
,
176 struct ib_event
*event
)
178 struct srpt_device
*sdev
;
179 struct srpt_port
*sport
;
181 sdev
= ib_get_client_data(event
->device
, &srpt_client
);
182 if (!sdev
|| sdev
->device
!= event
->device
)
185 pr_debug("ASYNC event= %d on device= %s\n", event
->event
,
186 srpt_sdev_name(sdev
));
188 switch (event
->event
) {
189 case IB_EVENT_PORT_ERR
:
190 if (event
->element
.port_num
<= sdev
->device
->phys_port_cnt
) {
191 sport
= &sdev
->port
[event
->element
.port_num
- 1];
196 case IB_EVENT_PORT_ACTIVE
:
197 case IB_EVENT_LID_CHANGE
:
198 case IB_EVENT_PKEY_CHANGE
:
199 case IB_EVENT_SM_CHANGE
:
200 case IB_EVENT_CLIENT_REREGISTER
:
201 /* Refresh port data asynchronously. */
202 if (event
->element
.port_num
<= sdev
->device
->phys_port_cnt
) {
203 sport
= &sdev
->port
[event
->element
.port_num
- 1];
204 if (!sport
->lid
&& !sport
->sm_lid
)
205 schedule_work(&sport
->work
);
209 printk(KERN_ERR
"received unrecognized IB event %d\n",
216 * srpt_srq_event() - SRQ event callback function.
218 static void srpt_srq_event(struct ib_event
*event
, void *ctx
)
220 printk(KERN_INFO
"SRQ event %d\n", event
->event
);
224 * srpt_qp_event() - QP event callback function.
226 static void srpt_qp_event(struct ib_event
*event
, struct srpt_rdma_ch
*ch
)
228 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
229 event
->event
, ch
->cm_id
, ch
->sess_name
, srpt_get_ch_state(ch
));
231 switch (event
->event
) {
232 case IB_EVENT_COMM_EST
:
233 ib_cm_notify(ch
->cm_id
, event
->event
);
235 case IB_EVENT_QP_LAST_WQE_REACHED
:
236 if (srpt_test_and_set_ch_state(ch
, CH_DRAINING
,
238 srpt_release_channel(ch
);
240 pr_debug("%s: state %d - ignored LAST_WQE.\n",
241 ch
->sess_name
, srpt_get_ch_state(ch
));
244 printk(KERN_ERR
"received unrecognized IB QP event %d\n",
251 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
253 * @slot: one-based slot number.
254 * @value: four-bit value.
256 * Copies the lowest four bits of value in element slot of the array of four
257 * bit elements called c_list (controller list). The index slot is one-based.
259 static void srpt_set_ioc(u8
*c_list
, u32 slot
, u8 value
)
266 tmp
= c_list
[id
] & 0xf;
267 c_list
[id
] = (value
<< 4) | tmp
;
269 tmp
= c_list
[id
] & 0xf0;
270 c_list
[id
] = (value
& 0xf) | tmp
;
275 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
277 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
280 static void srpt_get_class_port_info(struct ib_dm_mad
*mad
)
282 struct ib_class_port_info
*cif
;
284 cif
= (struct ib_class_port_info
*)mad
->data
;
285 memset(cif
, 0, sizeof *cif
);
286 cif
->base_version
= 1;
287 cif
->class_version
= 1;
288 cif
->resp_time_value
= 20;
290 mad
->mad_hdr
.status
= 0;
294 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
296 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
297 * Specification. See also section B.7, table B.6 in the SRP r16a document.
299 static void srpt_get_iou(struct ib_dm_mad
*mad
)
301 struct ib_dm_iou_info
*ioui
;
305 ioui
= (struct ib_dm_iou_info
*)mad
->data
;
306 ioui
->change_id
= __constant_cpu_to_be16(1);
307 ioui
->max_controllers
= 16;
309 /* set present for slot 1 and empty for the rest */
310 srpt_set_ioc(ioui
->controller_list
, 1, 1);
311 for (i
= 1, slot
= 2; i
< 16; i
++, slot
++)
312 srpt_set_ioc(ioui
->controller_list
, slot
, 0);
314 mad
->mad_hdr
.status
= 0;
318 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
321 * Architecture Specification. See also section B.7, table B.7 in the SRP
324 static void srpt_get_ioc(struct srpt_port
*sport
, u32 slot
,
325 struct ib_dm_mad
*mad
)
327 struct srpt_device
*sdev
= sport
->sdev
;
328 struct ib_dm_ioc_profile
*iocp
;
330 iocp
= (struct ib_dm_ioc_profile
*)mad
->data
;
332 if (!slot
|| slot
> 16) {
334 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD
);
340 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC
);
344 memset(iocp
, 0, sizeof *iocp
);
345 strcpy(iocp
->id_string
, SRPT_ID_STRING
);
346 iocp
->guid
= cpu_to_be64(srpt_service_guid
);
347 iocp
->vendor_id
= cpu_to_be32(sdev
->dev_attr
.vendor_id
);
348 iocp
->device_id
= cpu_to_be32(sdev
->dev_attr
.vendor_part_id
);
349 iocp
->device_version
= cpu_to_be16(sdev
->dev_attr
.hw_ver
);
350 iocp
->subsys_vendor_id
= cpu_to_be32(sdev
->dev_attr
.vendor_id
);
351 iocp
->subsys_device_id
= 0x0;
352 iocp
->io_class
= __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS
);
353 iocp
->io_subclass
= __constant_cpu_to_be16(SRP_IO_SUBCLASS
);
354 iocp
->protocol
= __constant_cpu_to_be16(SRP_PROTOCOL
);
355 iocp
->protocol_version
= __constant_cpu_to_be16(SRP_PROTOCOL_VERSION
);
356 iocp
->send_queue_depth
= cpu_to_be16(sdev
->srq_size
);
357 iocp
->rdma_read_depth
= 4;
358 iocp
->send_size
= cpu_to_be32(srp_max_req_size
);
359 iocp
->rdma_size
= cpu_to_be32(min(sport
->port_attrib
.srp_max_rdma_size
,
361 iocp
->num_svc_entries
= 1;
362 iocp
->op_cap_mask
= SRP_SEND_TO_IOC
| SRP_SEND_FROM_IOC
|
363 SRP_RDMA_READ_FROM_IOC
| SRP_RDMA_WRITE_FROM_IOC
;
365 mad
->mad_hdr
.status
= 0;
369 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
371 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
372 * Specification. See also section B.7, table B.8 in the SRP r16a document.
374 static void srpt_get_svc_entries(u64 ioc_guid
,
375 u16 slot
, u8 hi
, u8 lo
, struct ib_dm_mad
*mad
)
377 struct ib_dm_svc_entries
*svc_entries
;
381 if (!slot
|| slot
> 16) {
383 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD
);
387 if (slot
> 2 || lo
> hi
|| hi
> 1) {
389 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC
);
393 svc_entries
= (struct ib_dm_svc_entries
*)mad
->data
;
394 memset(svc_entries
, 0, sizeof *svc_entries
);
395 svc_entries
->service_entries
[0].id
= cpu_to_be64(ioc_guid
);
396 snprintf(svc_entries
->service_entries
[0].name
,
397 sizeof(svc_entries
->service_entries
[0].name
),
399 SRP_SERVICE_NAME_PREFIX
,
402 mad
->mad_hdr
.status
= 0;
406 * srpt_mgmt_method_get() - Process a received management datagram.
407 * @sp: source port through which the MAD has been received.
408 * @rq_mad: received MAD.
409 * @rsp_mad: response MAD.
411 static void srpt_mgmt_method_get(struct srpt_port
*sp
, struct ib_mad
*rq_mad
,
412 struct ib_dm_mad
*rsp_mad
)
418 attr_id
= be16_to_cpu(rq_mad
->mad_hdr
.attr_id
);
420 case DM_ATTR_CLASS_PORT_INFO
:
421 srpt_get_class_port_info(rsp_mad
);
423 case DM_ATTR_IOU_INFO
:
424 srpt_get_iou(rsp_mad
);
426 case DM_ATTR_IOC_PROFILE
:
427 slot
= be32_to_cpu(rq_mad
->mad_hdr
.attr_mod
);
428 srpt_get_ioc(sp
, slot
, rsp_mad
);
430 case DM_ATTR_SVC_ENTRIES
:
431 slot
= be32_to_cpu(rq_mad
->mad_hdr
.attr_mod
);
432 hi
= (u8
) ((slot
>> 8) & 0xff);
433 lo
= (u8
) (slot
& 0xff);
434 slot
= (u16
) ((slot
>> 16) & 0xffff);
435 srpt_get_svc_entries(srpt_service_guid
,
436 slot
, hi
, lo
, rsp_mad
);
439 rsp_mad
->mad_hdr
.status
=
440 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR
);
446 * srpt_mad_send_handler() - Post MAD-send callback function.
448 static void srpt_mad_send_handler(struct ib_mad_agent
*mad_agent
,
449 struct ib_mad_send_wc
*mad_wc
)
451 ib_destroy_ah(mad_wc
->send_buf
->ah
);
452 ib_free_send_mad(mad_wc
->send_buf
);
456 * srpt_mad_recv_handler() - MAD reception callback function.
458 static void srpt_mad_recv_handler(struct ib_mad_agent
*mad_agent
,
459 struct ib_mad_recv_wc
*mad_wc
)
461 struct srpt_port
*sport
= (struct srpt_port
*)mad_agent
->context
;
463 struct ib_mad_send_buf
*rsp
;
464 struct ib_dm_mad
*dm_mad
;
466 if (!mad_wc
|| !mad_wc
->recv_buf
.mad
)
469 ah
= ib_create_ah_from_wc(mad_agent
->qp
->pd
, mad_wc
->wc
,
470 mad_wc
->recv_buf
.grh
, mad_agent
->port_num
);
474 BUILD_BUG_ON(offsetof(struct ib_dm_mad
, data
) != IB_MGMT_DEVICE_HDR
);
476 rsp
= ib_create_send_mad(mad_agent
, mad_wc
->wc
->src_qp
,
477 mad_wc
->wc
->pkey_index
, 0,
478 IB_MGMT_DEVICE_HDR
, IB_MGMT_DEVICE_DATA
,
486 memcpy(dm_mad
, mad_wc
->recv_buf
.mad
, sizeof *dm_mad
);
487 dm_mad
->mad_hdr
.method
= IB_MGMT_METHOD_GET_RESP
;
488 dm_mad
->mad_hdr
.status
= 0;
490 switch (mad_wc
->recv_buf
.mad
->mad_hdr
.method
) {
491 case IB_MGMT_METHOD_GET
:
492 srpt_mgmt_method_get(sport
, mad_wc
->recv_buf
.mad
, dm_mad
);
494 case IB_MGMT_METHOD_SET
:
495 dm_mad
->mad_hdr
.status
=
496 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR
);
499 dm_mad
->mad_hdr
.status
=
500 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD
);
504 if (!ib_post_send_mad(rsp
, NULL
)) {
505 ib_free_recv_mad(mad_wc
);
506 /* will destroy_ah & free_send_mad in send completion */
510 ib_free_send_mad(rsp
);
515 ib_free_recv_mad(mad_wc
);
519 * srpt_refresh_port() - Configure a HCA port.
521 * Enable InfiniBand management datagram processing, update the cached sm_lid,
522 * lid and gid values, and register a callback function for processing MADs
523 * on the specified port.
525 * Note: It is safe to call this function more than once for the same port.
527 static int srpt_refresh_port(struct srpt_port
*sport
)
529 struct ib_mad_reg_req reg_req
;
530 struct ib_port_modify port_modify
;
531 struct ib_port_attr port_attr
;
534 memset(&port_modify
, 0, sizeof port_modify
);
535 port_modify
.set_port_cap_mask
= IB_PORT_DEVICE_MGMT_SUP
;
536 port_modify
.clr_port_cap_mask
= 0;
538 ret
= ib_modify_port(sport
->sdev
->device
, sport
->port
, 0, &port_modify
);
542 ret
= ib_query_port(sport
->sdev
->device
, sport
->port
, &port_attr
);
546 sport
->sm_lid
= port_attr
.sm_lid
;
547 sport
->lid
= port_attr
.lid
;
549 ret
= ib_query_gid(sport
->sdev
->device
, sport
->port
, 0, &sport
->gid
);
553 if (!sport
->mad_agent
) {
554 memset(®_req
, 0, sizeof reg_req
);
555 reg_req
.mgmt_class
= IB_MGMT_CLASS_DEVICE_MGMT
;
556 reg_req
.mgmt_class_version
= IB_MGMT_BASE_VERSION
;
557 set_bit(IB_MGMT_METHOD_GET
, reg_req
.method_mask
);
558 set_bit(IB_MGMT_METHOD_SET
, reg_req
.method_mask
);
560 sport
->mad_agent
= ib_register_mad_agent(sport
->sdev
->device
,
564 srpt_mad_send_handler
,
565 srpt_mad_recv_handler
,
567 if (IS_ERR(sport
->mad_agent
)) {
568 ret
= PTR_ERR(sport
->mad_agent
);
569 sport
->mad_agent
= NULL
;
578 port_modify
.set_port_cap_mask
= 0;
579 port_modify
.clr_port_cap_mask
= IB_PORT_DEVICE_MGMT_SUP
;
580 ib_modify_port(sport
->sdev
->device
, sport
->port
, 0, &port_modify
);
588 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
590 * Note: It is safe to call this function more than once for the same device.
592 static void srpt_unregister_mad_agent(struct srpt_device
*sdev
)
594 struct ib_port_modify port_modify
= {
595 .clr_port_cap_mask
= IB_PORT_DEVICE_MGMT_SUP
,
597 struct srpt_port
*sport
;
600 for (i
= 1; i
<= sdev
->device
->phys_port_cnt
; i
++) {
601 sport
= &sdev
->port
[i
- 1];
602 WARN_ON(sport
->port
!= i
);
603 if (ib_modify_port(sdev
->device
, i
, 0, &port_modify
) < 0)
604 printk(KERN_ERR
"disabling MAD processing failed.\n");
605 if (sport
->mad_agent
) {
606 ib_unregister_mad_agent(sport
->mad_agent
);
607 sport
->mad_agent
= NULL
;
613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
615 static struct srpt_ioctx
*srpt_alloc_ioctx(struct srpt_device
*sdev
,
616 int ioctx_size
, int dma_size
,
617 enum dma_data_direction dir
)
619 struct srpt_ioctx
*ioctx
;
621 ioctx
= kmalloc(ioctx_size
, GFP_KERNEL
);
625 ioctx
->buf
= kmalloc(dma_size
, GFP_KERNEL
);
629 ioctx
->dma
= ib_dma_map_single(sdev
->device
, ioctx
->buf
, dma_size
, dir
);
630 if (ib_dma_mapping_error(sdev
->device
, ioctx
->dma
))
644 * srpt_free_ioctx() - Free an SRPT I/O context structure.
646 static void srpt_free_ioctx(struct srpt_device
*sdev
, struct srpt_ioctx
*ioctx
,
647 int dma_size
, enum dma_data_direction dir
)
652 ib_dma_unmap_single(sdev
->device
, ioctx
->dma
, dma_size
, dir
);
658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
659 * @sdev: Device to allocate the I/O context ring for.
660 * @ring_size: Number of elements in the I/O context ring.
661 * @ioctx_size: I/O context size.
662 * @dma_size: DMA buffer size.
663 * @dir: DMA data direction.
665 static struct srpt_ioctx
**srpt_alloc_ioctx_ring(struct srpt_device
*sdev
,
666 int ring_size
, int ioctx_size
,
667 int dma_size
, enum dma_data_direction dir
)
669 struct srpt_ioctx
**ring
;
672 WARN_ON(ioctx_size
!= sizeof(struct srpt_recv_ioctx
)
673 && ioctx_size
!= sizeof(struct srpt_send_ioctx
));
675 ring
= kmalloc(ring_size
* sizeof(ring
[0]), GFP_KERNEL
);
678 for (i
= 0; i
< ring_size
; ++i
) {
679 ring
[i
] = srpt_alloc_ioctx(sdev
, ioctx_size
, dma_size
, dir
);
688 srpt_free_ioctx(sdev
, ring
[i
], dma_size
, dir
);
696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
698 static void srpt_free_ioctx_ring(struct srpt_ioctx
**ioctx_ring
,
699 struct srpt_device
*sdev
, int ring_size
,
700 int dma_size
, enum dma_data_direction dir
)
704 for (i
= 0; i
< ring_size
; ++i
)
705 srpt_free_ioctx(sdev
, ioctx_ring
[i
], dma_size
, dir
);
710 * srpt_get_cmd_state() - Get the state of a SCSI command.
712 static enum srpt_command_state
srpt_get_cmd_state(struct srpt_send_ioctx
*ioctx
)
714 enum srpt_command_state state
;
719 spin_lock_irqsave(&ioctx
->spinlock
, flags
);
720 state
= ioctx
->state
;
721 spin_unlock_irqrestore(&ioctx
->spinlock
, flags
);
726 * srpt_set_cmd_state() - Set the state of a SCSI command.
728 * Does not modify the state of aborted commands. Returns the previous command
731 static enum srpt_command_state
srpt_set_cmd_state(struct srpt_send_ioctx
*ioctx
,
732 enum srpt_command_state
new)
734 enum srpt_command_state previous
;
739 spin_lock_irqsave(&ioctx
->spinlock
, flags
);
740 previous
= ioctx
->state
;
741 if (previous
!= SRPT_STATE_DONE
)
743 spin_unlock_irqrestore(&ioctx
->spinlock
, flags
);
749 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
751 * Returns true if and only if the previous command state was equal to 'old'.
753 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx
*ioctx
,
754 enum srpt_command_state old
,
755 enum srpt_command_state
new)
757 enum srpt_command_state previous
;
761 WARN_ON(old
== SRPT_STATE_DONE
);
762 WARN_ON(new == SRPT_STATE_NEW
);
764 spin_lock_irqsave(&ioctx
->spinlock
, flags
);
765 previous
= ioctx
->state
;
768 spin_unlock_irqrestore(&ioctx
->spinlock
, flags
);
769 return previous
== old
;
773 * srpt_post_recv() - Post an IB receive request.
775 static int srpt_post_recv(struct srpt_device
*sdev
,
776 struct srpt_recv_ioctx
*ioctx
)
779 struct ib_recv_wr wr
, *bad_wr
;
782 wr
.wr_id
= encode_wr_id(SRPT_RECV
, ioctx
->ioctx
.index
);
784 list
.addr
= ioctx
->ioctx
.dma
;
785 list
.length
= srp_max_req_size
;
786 list
.lkey
= sdev
->mr
->lkey
;
792 return ib_post_srq_recv(sdev
->srq
, &wr
, &bad_wr
);
796 * srpt_post_send() - Post an IB send request.
798 * Returns zero upon success and a non-zero value upon failure.
800 static int srpt_post_send(struct srpt_rdma_ch
*ch
,
801 struct srpt_send_ioctx
*ioctx
, int len
)
804 struct ib_send_wr wr
, *bad_wr
;
805 struct srpt_device
*sdev
= ch
->sport
->sdev
;
808 atomic_inc(&ch
->req_lim
);
811 if (unlikely(atomic_dec_return(&ch
->sq_wr_avail
) < 0)) {
812 printk(KERN_WARNING
"IB send queue full (needed 1)\n");
816 ib_dma_sync_single_for_device(sdev
->device
, ioctx
->ioctx
.dma
, len
,
819 list
.addr
= ioctx
->ioctx
.dma
;
821 list
.lkey
= sdev
->mr
->lkey
;
824 wr
.wr_id
= encode_wr_id(SRPT_SEND
, ioctx
->ioctx
.index
);
827 wr
.opcode
= IB_WR_SEND
;
828 wr
.send_flags
= IB_SEND_SIGNALED
;
830 ret
= ib_post_send(ch
->qp
, &wr
, &bad_wr
);
834 atomic_inc(&ch
->sq_wr_avail
);
835 atomic_dec(&ch
->req_lim
);
841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
842 * @ioctx: Pointer to the I/O context associated with the request.
843 * @srp_cmd: Pointer to the SRP_CMD request data.
844 * @dir: Pointer to the variable to which the transfer direction will be
846 * @data_len: Pointer to the variable to which the total data length of all
847 * descriptors in the SRP_CMD request will be written.
849 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
852 * -ENOMEM when memory allocation fails and zero upon success.
854 static int srpt_get_desc_tbl(struct srpt_send_ioctx
*ioctx
,
855 struct srp_cmd
*srp_cmd
,
856 enum dma_data_direction
*dir
, u64
*data_len
)
858 struct srp_indirect_buf
*idb
;
859 struct srp_direct_buf
*db
;
860 unsigned add_cdb_offset
;
864 * The pointer computations below will only be compiled correctly
865 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
866 * whether srp_cmd::add_data has been declared as a byte pointer.
868 BUILD_BUG_ON(!__same_type(srp_cmd
->add_data
[0], (s8
)0)
869 && !__same_type(srp_cmd
->add_data
[0], (u8
)0));
878 * The lower four bits of the buffer format field contain the DATA-IN
879 * buffer descriptor format, and the highest four bits contain the
880 * DATA-OUT buffer descriptor format.
883 if (srp_cmd
->buf_fmt
& 0xf)
884 /* DATA-IN: transfer data from target to initiator (read). */
885 *dir
= DMA_FROM_DEVICE
;
886 else if (srp_cmd
->buf_fmt
>> 4)
887 /* DATA-OUT: transfer data from initiator to target (write). */
888 *dir
= DMA_TO_DEVICE
;
891 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
892 * CDB LENGTH' field are reserved and the size in bytes of this field
893 * is four times the value specified in bits 3..7. Hence the "& ~3".
895 add_cdb_offset
= srp_cmd
->add_cdb_len
& ~3;
896 if (((srp_cmd
->buf_fmt
& 0xf) == SRP_DATA_DESC_DIRECT
) ||
897 ((srp_cmd
->buf_fmt
>> 4) == SRP_DATA_DESC_DIRECT
)) {
899 ioctx
->rbufs
= &ioctx
->single_rbuf
;
901 db
= (struct srp_direct_buf
*)(srp_cmd
->add_data
903 memcpy(ioctx
->rbufs
, db
, sizeof *db
);
904 *data_len
= be32_to_cpu(db
->len
);
905 } else if (((srp_cmd
->buf_fmt
& 0xf) == SRP_DATA_DESC_INDIRECT
) ||
906 ((srp_cmd
->buf_fmt
>> 4) == SRP_DATA_DESC_INDIRECT
)) {
907 idb
= (struct srp_indirect_buf
*)(srp_cmd
->add_data
910 ioctx
->n_rbuf
= be32_to_cpu(idb
->table_desc
.len
) / sizeof *db
;
913 (srp_cmd
->data_out_desc_cnt
+ srp_cmd
->data_in_desc_cnt
)) {
914 printk(KERN_ERR
"received unsupported SRP_CMD request"
915 " type (%u out + %u in != %u / %zu)\n",
916 srp_cmd
->data_out_desc_cnt
,
917 srp_cmd
->data_in_desc_cnt
,
918 be32_to_cpu(idb
->table_desc
.len
),
925 if (ioctx
->n_rbuf
== 1)
926 ioctx
->rbufs
= &ioctx
->single_rbuf
;
929 kmalloc(ioctx
->n_rbuf
* sizeof *db
, GFP_ATOMIC
);
938 memcpy(ioctx
->rbufs
, db
, ioctx
->n_rbuf
* sizeof *db
);
939 *data_len
= be32_to_cpu(idb
->len
);
946 * srpt_init_ch_qp() - Initialize queue pair attributes.
948 * Initialized the attributes of queue pair 'qp' by allowing local write,
949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
951 static int srpt_init_ch_qp(struct srpt_rdma_ch
*ch
, struct ib_qp
*qp
)
953 struct ib_qp_attr
*attr
;
956 attr
= kzalloc(sizeof *attr
, GFP_KERNEL
);
960 attr
->qp_state
= IB_QPS_INIT
;
961 attr
->qp_access_flags
= IB_ACCESS_LOCAL_WRITE
| IB_ACCESS_REMOTE_READ
|
962 IB_ACCESS_REMOTE_WRITE
;
963 attr
->port_num
= ch
->sport
->port
;
964 attr
->pkey_index
= 0;
966 ret
= ib_modify_qp(qp
, attr
,
967 IB_QP_STATE
| IB_QP_ACCESS_FLAGS
| IB_QP_PORT
|
975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
976 * @ch: channel of the queue pair.
977 * @qp: queue pair to change the state of.
979 * Returns zero upon success and a negative value upon failure.
981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
982 * If this structure ever becomes larger, it might be necessary to allocate
983 * it dynamically instead of on the stack.
985 static int srpt_ch_qp_rtr(struct srpt_rdma_ch
*ch
, struct ib_qp
*qp
)
987 struct ib_qp_attr qp_attr
;
991 qp_attr
.qp_state
= IB_QPS_RTR
;
992 ret
= ib_cm_init_qp_attr(ch
->cm_id
, &qp_attr
, &attr_mask
);
996 qp_attr
.max_dest_rd_atomic
= 4;
998 ret
= ib_modify_qp(qp
, &qp_attr
, attr_mask
);
1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1006 * @ch: channel of the queue pair.
1007 * @qp: queue pair to change the state of.
1009 * Returns zero upon success and a negative value upon failure.
1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1012 * If this structure ever becomes larger, it might be necessary to allocate
1013 * it dynamically instead of on the stack.
1015 static int srpt_ch_qp_rts(struct srpt_rdma_ch
*ch
, struct ib_qp
*qp
)
1017 struct ib_qp_attr qp_attr
;
1021 qp_attr
.qp_state
= IB_QPS_RTS
;
1022 ret
= ib_cm_init_qp_attr(ch
->cm_id
, &qp_attr
, &attr_mask
);
1026 qp_attr
.max_rd_atomic
= 4;
1028 ret
= ib_modify_qp(qp
, &qp_attr
, attr_mask
);
1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1037 static int srpt_ch_qp_err(struct srpt_rdma_ch
*ch
)
1039 struct ib_qp_attr qp_attr
;
1041 qp_attr
.qp_state
= IB_QPS_ERR
;
1042 return ib_modify_qp(ch
->qp
, &qp_attr
, IB_QP_STATE
);
1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1048 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch
*ch
,
1049 struct srpt_send_ioctx
*ioctx
)
1051 struct scatterlist
*sg
;
1052 enum dma_data_direction dir
;
1056 BUG_ON(ioctx
->n_rdma
&& !ioctx
->rdma_ius
);
1058 while (ioctx
->n_rdma
)
1059 kfree(ioctx
->rdma_ius
[--ioctx
->n_rdma
].sge
);
1061 kfree(ioctx
->rdma_ius
);
1062 ioctx
->rdma_ius
= NULL
;
1064 if (ioctx
->mapped_sg_count
) {
1067 dir
= ioctx
->cmd
.data_direction
;
1068 BUG_ON(dir
== DMA_NONE
);
1069 ib_dma_unmap_sg(ch
->sport
->sdev
->device
, sg
, ioctx
->sg_cnt
,
1070 opposite_dma_dir(dir
));
1071 ioctx
->mapped_sg_count
= 0;
1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1078 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch
*ch
,
1079 struct srpt_send_ioctx
*ioctx
)
1081 struct ib_device
*dev
= ch
->sport
->sdev
->device
;
1083 struct scatterlist
*sg
, *sg_orig
;
1085 enum dma_data_direction dir
;
1086 struct rdma_iu
*riu
;
1087 struct srp_direct_buf
*db
;
1088 dma_addr_t dma_addr
;
1100 dir
= cmd
->data_direction
;
1101 BUG_ON(dir
== DMA_NONE
);
1103 ioctx
->sg
= sg
= sg_orig
= cmd
->t_data_sg
;
1104 ioctx
->sg_cnt
= sg_cnt
= cmd
->t_data_nents
;
1106 count
= ib_dma_map_sg(ch
->sport
->sdev
->device
, sg
, sg_cnt
,
1107 opposite_dma_dir(dir
));
1108 if (unlikely(!count
))
1111 ioctx
->mapped_sg_count
= count
;
1113 if (ioctx
->rdma_ius
&& ioctx
->n_rdma_ius
)
1114 nrdma
= ioctx
->n_rdma_ius
;
1116 nrdma
= (count
+ SRPT_DEF_SG_PER_WQE
- 1) / SRPT_DEF_SG_PER_WQE
1119 ioctx
->rdma_ius
= kzalloc(nrdma
* sizeof *riu
, GFP_KERNEL
);
1120 if (!ioctx
->rdma_ius
)
1123 ioctx
->n_rdma_ius
= nrdma
;
1127 tsize
= cmd
->data_length
;
1128 dma_len
= ib_sg_dma_len(dev
, &sg
[0]);
1129 riu
= ioctx
->rdma_ius
;
1132 * For each remote desc - calculate the #ib_sge.
1133 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1134 * each remote desc rdma_iu is required a rdma wr;
1136 * we need to allocate extra rdma_iu to carry extra #ib_sge in
1140 j
< count
&& i
< ioctx
->n_rbuf
&& tsize
> 0; ++i
, ++riu
, ++db
) {
1141 rsize
= be32_to_cpu(db
->len
);
1142 raddr
= be64_to_cpu(db
->va
);
1144 riu
->rkey
= be32_to_cpu(db
->key
);
1147 /* calculate how many sge required for this remote_buf */
1148 while (rsize
> 0 && tsize
> 0) {
1150 if (rsize
>= dma_len
) {
1159 dma_len
= ib_sg_dma_len(
1171 if (rsize
> 0 && riu
->sge_cnt
== SRPT_DEF_SG_PER_WQE
) {
1174 kmalloc(riu
->sge_cnt
* sizeof *riu
->sge
,
1182 riu
->rkey
= be32_to_cpu(db
->key
);
1187 riu
->sge
= kmalloc(riu
->sge_cnt
* sizeof *riu
->sge
,
1194 tsize
= cmd
->data_length
;
1195 riu
= ioctx
->rdma_ius
;
1197 dma_len
= ib_sg_dma_len(dev
, &sg
[0]);
1198 dma_addr
= ib_sg_dma_address(dev
, &sg
[0]);
1200 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1202 j
< count
&& i
< ioctx
->n_rbuf
&& tsize
> 0; ++i
, ++riu
, ++db
) {
1203 rsize
= be32_to_cpu(db
->len
);
1207 while (rsize
> 0 && tsize
> 0) {
1208 sge
->addr
= dma_addr
;
1209 sge
->lkey
= ch
->sport
->sdev
->mr
->lkey
;
1211 if (rsize
>= dma_len
) {
1213 (tsize
< dma_len
) ? tsize
: dma_len
;
1221 dma_len
= ib_sg_dma_len(
1223 dma_addr
= ib_sg_dma_address(
1228 sge
->length
= (tsize
< rsize
) ? tsize
: rsize
;
1236 if (k
== riu
->sge_cnt
&& rsize
> 0 && tsize
> 0) {
1240 } else if (rsize
> 0 && tsize
> 0)
1248 srpt_unmap_sg_to_ib_sge(ch
, ioctx
);
1254 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1256 static struct srpt_send_ioctx
*srpt_get_send_ioctx(struct srpt_rdma_ch
*ch
)
1258 struct srpt_send_ioctx
*ioctx
;
1259 unsigned long flags
;
1264 spin_lock_irqsave(&ch
->spinlock
, flags
);
1265 if (!list_empty(&ch
->free_list
)) {
1266 ioctx
= list_first_entry(&ch
->free_list
,
1267 struct srpt_send_ioctx
, free_list
);
1268 list_del(&ioctx
->free_list
);
1270 spin_unlock_irqrestore(&ch
->spinlock
, flags
);
1275 BUG_ON(ioctx
->ch
!= ch
);
1276 spin_lock_init(&ioctx
->spinlock
);
1277 ioctx
->state
= SRPT_STATE_NEW
;
1279 ioctx
->rbufs
= NULL
;
1281 ioctx
->n_rdma_ius
= 0;
1282 ioctx
->rdma_ius
= NULL
;
1283 ioctx
->mapped_sg_count
= 0;
1284 init_completion(&ioctx
->tx_done
);
1285 ioctx
->queue_status_only
= false;
1287 * transport_init_se_cmd() does not initialize all fields, so do it
1290 memset(&ioctx
->cmd
, 0, sizeof(ioctx
->cmd
));
1291 memset(&ioctx
->sense_data
, 0, sizeof(ioctx
->sense_data
));
1297 * srpt_abort_cmd() - Abort a SCSI command.
1298 * @ioctx: I/O context associated with the SCSI command.
1299 * @context: Preferred execution context.
1301 static int srpt_abort_cmd(struct srpt_send_ioctx
*ioctx
)
1303 enum srpt_command_state state
;
1304 unsigned long flags
;
1309 * If the command is in a state where the target core is waiting for
1310 * the ib_srpt driver, change the state to the next state. Changing
1311 * the state of the command from SRPT_STATE_NEED_DATA to
1312 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1313 * function a second time.
1316 spin_lock_irqsave(&ioctx
->spinlock
, flags
);
1317 state
= ioctx
->state
;
1319 case SRPT_STATE_NEED_DATA
:
1320 ioctx
->state
= SRPT_STATE_DATA_IN
;
1322 case SRPT_STATE_DATA_IN
:
1323 case SRPT_STATE_CMD_RSP_SENT
:
1324 case SRPT_STATE_MGMT_RSP_SENT
:
1325 ioctx
->state
= SRPT_STATE_DONE
;
1330 spin_unlock_irqrestore(&ioctx
->spinlock
, flags
);
1332 if (state
== SRPT_STATE_DONE
) {
1333 struct srpt_rdma_ch
*ch
= ioctx
->ch
;
1335 BUG_ON(ch
->sess
== NULL
);
1337 target_put_sess_cmd(ch
->sess
, &ioctx
->cmd
);
1341 pr_debug("Aborting cmd with state %d and tag %lld\n", state
,
1345 case SRPT_STATE_NEW
:
1346 case SRPT_STATE_DATA_IN
:
1347 case SRPT_STATE_MGMT
:
1349 * Do nothing - defer abort processing until
1350 * srpt_queue_response() is invoked.
1352 WARN_ON(!transport_check_aborted_status(&ioctx
->cmd
, false));
1354 case SRPT_STATE_NEED_DATA
:
1355 /* DMA_TO_DEVICE (write) - RDMA read error. */
1357 /* XXX(hch): this is a horrible layering violation.. */
1358 spin_lock_irqsave(&ioctx
->cmd
.t_state_lock
, flags
);
1359 ioctx
->cmd
.transport_state
|= CMD_T_LUN_STOP
;
1360 ioctx
->cmd
.transport_state
&= ~CMD_T_ACTIVE
;
1361 spin_unlock_irqrestore(&ioctx
->cmd
.t_state_lock
, flags
);
1363 complete(&ioctx
->cmd
.transport_lun_stop_comp
);
1365 case SRPT_STATE_CMD_RSP_SENT
:
1367 * SRP_RSP sending failed or the SRP_RSP send completion has
1368 * not been received in time.
1370 srpt_unmap_sg_to_ib_sge(ioctx
->ch
, ioctx
);
1371 spin_lock_irqsave(&ioctx
->cmd
.t_state_lock
, flags
);
1372 ioctx
->cmd
.transport_state
|= CMD_T_LUN_STOP
;
1373 spin_unlock_irqrestore(&ioctx
->cmd
.t_state_lock
, flags
);
1374 target_put_sess_cmd(ioctx
->ch
->sess
, &ioctx
->cmd
);
1376 case SRPT_STATE_MGMT_RSP_SENT
:
1377 srpt_set_cmd_state(ioctx
, SRPT_STATE_DONE
);
1378 target_put_sess_cmd(ioctx
->ch
->sess
, &ioctx
->cmd
);
1381 WARN(1, "Unexpected command state (%d)", state
);
1390 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1392 static void srpt_handle_send_err_comp(struct srpt_rdma_ch
*ch
, u64 wr_id
)
1394 struct srpt_send_ioctx
*ioctx
;
1395 enum srpt_command_state state
;
1399 atomic_inc(&ch
->sq_wr_avail
);
1401 index
= idx_from_wr_id(wr_id
);
1402 ioctx
= ch
->ioctx_ring
[index
];
1403 state
= srpt_get_cmd_state(ioctx
);
1406 WARN_ON(state
!= SRPT_STATE_CMD_RSP_SENT
1407 && state
!= SRPT_STATE_MGMT_RSP_SENT
1408 && state
!= SRPT_STATE_NEED_DATA
1409 && state
!= SRPT_STATE_DONE
);
1411 /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1412 if (state
== SRPT_STATE_CMD_RSP_SENT
1413 || state
== SRPT_STATE_MGMT_RSP_SENT
)
1414 atomic_dec(&ch
->req_lim
);
1416 srpt_abort_cmd(ioctx
);
1420 * srpt_handle_send_comp() - Process an IB send completion notification.
1422 static void srpt_handle_send_comp(struct srpt_rdma_ch
*ch
,
1423 struct srpt_send_ioctx
*ioctx
)
1425 enum srpt_command_state state
;
1427 atomic_inc(&ch
->sq_wr_avail
);
1429 state
= srpt_set_cmd_state(ioctx
, SRPT_STATE_DONE
);
1431 if (WARN_ON(state
!= SRPT_STATE_CMD_RSP_SENT
1432 && state
!= SRPT_STATE_MGMT_RSP_SENT
1433 && state
!= SRPT_STATE_DONE
))
1434 pr_debug("state = %d\n", state
);
1436 if (state
!= SRPT_STATE_DONE
) {
1437 srpt_unmap_sg_to_ib_sge(ch
, ioctx
);
1438 transport_generic_free_cmd(&ioctx
->cmd
, 0);
1440 printk(KERN_ERR
"IB completion has been received too late for"
1441 " wr_id = %u.\n", ioctx
->ioctx
.index
);
1446 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1448 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1449 * the data that has been transferred via IB RDMA had to be postponed until the
1450 * check_stop_free() callback. None of this is necessary anymore and needs to
1453 static void srpt_handle_rdma_comp(struct srpt_rdma_ch
*ch
,
1454 struct srpt_send_ioctx
*ioctx
,
1455 enum srpt_opcode opcode
)
1457 WARN_ON(ioctx
->n_rdma
<= 0);
1458 atomic_add(ioctx
->n_rdma
, &ch
->sq_wr_avail
);
1460 if (opcode
== SRPT_RDMA_READ_LAST
) {
1461 if (srpt_test_and_set_cmd_state(ioctx
, SRPT_STATE_NEED_DATA
,
1462 SRPT_STATE_DATA_IN
))
1463 target_execute_cmd(&ioctx
->cmd
);
1465 printk(KERN_ERR
"%s[%d]: wrong state = %d\n", __func__
,
1466 __LINE__
, srpt_get_cmd_state(ioctx
));
1467 } else if (opcode
== SRPT_RDMA_ABORT
) {
1468 ioctx
->rdma_aborted
= true;
1470 WARN(true, "unexpected opcode %d\n", opcode
);
1475 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1477 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch
*ch
,
1478 struct srpt_send_ioctx
*ioctx
,
1479 enum srpt_opcode opcode
)
1482 enum srpt_command_state state
;
1483 unsigned long flags
;
1486 state
= srpt_get_cmd_state(ioctx
);
1488 case SRPT_RDMA_READ_LAST
:
1489 if (ioctx
->n_rdma
<= 0) {
1490 printk(KERN_ERR
"Received invalid RDMA read"
1491 " error completion with idx %d\n",
1492 ioctx
->ioctx
.index
);
1495 atomic_add(ioctx
->n_rdma
, &ch
->sq_wr_avail
);
1496 if (state
== SRPT_STATE_NEED_DATA
)
1497 srpt_abort_cmd(ioctx
);
1499 printk(KERN_ERR
"%s[%d]: wrong state = %d\n",
1500 __func__
, __LINE__
, state
);
1502 case SRPT_RDMA_WRITE_LAST
:
1503 spin_lock_irqsave(&ioctx
->cmd
.t_state_lock
, flags
);
1504 ioctx
->cmd
.transport_state
|= CMD_T_LUN_STOP
;
1505 spin_unlock_irqrestore(&ioctx
->cmd
.t_state_lock
, flags
);
1508 printk(KERN_ERR
"%s[%d]: opcode = %u\n", __func__
,
1515 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1516 * @ch: RDMA channel through which the request has been received.
1517 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1518 * be built in the buffer ioctx->buf points at and hence this function will
1519 * overwrite the request data.
1520 * @tag: tag of the request for which this response is being generated.
1521 * @status: value for the STATUS field of the SRP_RSP information unit.
1523 * Returns the size in bytes of the SRP_RSP response.
1525 * An SRP_RSP response contains a SCSI status or service response. See also
1526 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1527 * response. See also SPC-2 for more information about sense data.
1529 static int srpt_build_cmd_rsp(struct srpt_rdma_ch
*ch
,
1530 struct srpt_send_ioctx
*ioctx
, u64 tag
,
1533 struct srp_rsp
*srp_rsp
;
1534 const u8
*sense_data
;
1535 int sense_data_len
, max_sense_len
;
1538 * The lowest bit of all SAM-3 status codes is zero (see also
1539 * paragraph 5.3 in SAM-3).
1541 WARN_ON(status
& 1);
1543 srp_rsp
= ioctx
->ioctx
.buf
;
1546 sense_data
= ioctx
->sense_data
;
1547 sense_data_len
= ioctx
->cmd
.scsi_sense_length
;
1548 WARN_ON(sense_data_len
> sizeof(ioctx
->sense_data
));
1550 memset(srp_rsp
, 0, sizeof *srp_rsp
);
1551 srp_rsp
->opcode
= SRP_RSP
;
1552 srp_rsp
->req_lim_delta
=
1553 __constant_cpu_to_be32(1 + atomic_xchg(&ch
->req_lim_delta
, 0));
1555 srp_rsp
->status
= status
;
1557 if (sense_data_len
) {
1558 BUILD_BUG_ON(MIN_MAX_RSP_SIZE
<= sizeof(*srp_rsp
));
1559 max_sense_len
= ch
->max_ti_iu_len
- sizeof(*srp_rsp
);
1560 if (sense_data_len
> max_sense_len
) {
1561 printk(KERN_WARNING
"truncated sense data from %d to %d"
1562 " bytes\n", sense_data_len
, max_sense_len
);
1563 sense_data_len
= max_sense_len
;
1566 srp_rsp
->flags
|= SRP_RSP_FLAG_SNSVALID
;
1567 srp_rsp
->sense_data_len
= cpu_to_be32(sense_data_len
);
1568 memcpy(srp_rsp
+ 1, sense_data
, sense_data_len
);
1571 return sizeof(*srp_rsp
) + sense_data_len
;
1575 * srpt_build_tskmgmt_rsp() - Build a task management response.
1576 * @ch: RDMA channel through which the request has been received.
1577 * @ioctx: I/O context in which the SRP_RSP response will be built.
1578 * @rsp_code: RSP_CODE that will be stored in the response.
1579 * @tag: Tag of the request for which this response is being generated.
1581 * Returns the size in bytes of the SRP_RSP response.
1583 * An SRP_RSP response contains a SCSI status or service response. See also
1584 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1587 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch
*ch
,
1588 struct srpt_send_ioctx
*ioctx
,
1589 u8 rsp_code
, u64 tag
)
1591 struct srp_rsp
*srp_rsp
;
1596 resp_len
= sizeof(*srp_rsp
) + resp_data_len
;
1598 srp_rsp
= ioctx
->ioctx
.buf
;
1600 memset(srp_rsp
, 0, sizeof *srp_rsp
);
1602 srp_rsp
->opcode
= SRP_RSP
;
1603 srp_rsp
->req_lim_delta
= __constant_cpu_to_be32(1
1604 + atomic_xchg(&ch
->req_lim_delta
, 0));
1607 srp_rsp
->flags
|= SRP_RSP_FLAG_RSPVALID
;
1608 srp_rsp
->resp_data_len
= cpu_to_be32(resp_data_len
);
1609 srp_rsp
->data
[3] = rsp_code
;
1614 #define NO_SUCH_LUN ((uint64_t)-1LL)
1617 * SCSI LUN addressing method. See also SAM-2 and the section about
1620 enum scsi_lun_addr_method
{
1621 SCSI_LUN_ADDR_METHOD_PERIPHERAL
= 0,
1622 SCSI_LUN_ADDR_METHOD_FLAT
= 1,
1623 SCSI_LUN_ADDR_METHOD_LUN
= 2,
1624 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN
= 3,
1628 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1630 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1631 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1632 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1634 static uint64_t srpt_unpack_lun(const uint8_t *lun
, int len
)
1636 uint64_t res
= NO_SUCH_LUN
;
1637 int addressing_method
;
1639 if (unlikely(len
< 2)) {
1640 printk(KERN_ERR
"Illegal LUN length %d, expected 2 bytes or "
1647 if ((*((__be64
*)lun
) &
1648 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL
)) != 0)
1652 if (*((__be16
*)&lun
[2]) != 0)
1656 if (*((__be32
*)&lun
[2]) != 0)
1665 addressing_method
= (*lun
) >> 6; /* highest two bits of byte 0 */
1666 switch (addressing_method
) {
1667 case SCSI_LUN_ADDR_METHOD_PERIPHERAL
:
1668 case SCSI_LUN_ADDR_METHOD_FLAT
:
1669 case SCSI_LUN_ADDR_METHOD_LUN
:
1670 res
= *(lun
+ 1) | (((*lun
) & 0x3f) << 8);
1673 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN
:
1675 printk(KERN_ERR
"Unimplemented LUN addressing method %u",
1684 printk(KERN_ERR
"Support for multi-level LUNs has not yet been"
1689 static int srpt_check_stop_free(struct se_cmd
*cmd
)
1691 struct srpt_send_ioctx
*ioctx
= container_of(cmd
,
1692 struct srpt_send_ioctx
, cmd
);
1694 return target_put_sess_cmd(ioctx
->ch
->sess
, &ioctx
->cmd
);
1698 * srpt_handle_cmd() - Process SRP_CMD.
1700 static int srpt_handle_cmd(struct srpt_rdma_ch
*ch
,
1701 struct srpt_recv_ioctx
*recv_ioctx
,
1702 struct srpt_send_ioctx
*send_ioctx
)
1705 struct srp_cmd
*srp_cmd
;
1706 uint64_t unpacked_lun
;
1708 enum dma_data_direction dir
;
1712 BUG_ON(!send_ioctx
);
1714 srp_cmd
= recv_ioctx
->ioctx
.buf
;
1715 cmd
= &send_ioctx
->cmd
;
1716 send_ioctx
->tag
= srp_cmd
->tag
;
1718 switch (srp_cmd
->task_attr
) {
1719 case SRP_CMD_SIMPLE_Q
:
1720 cmd
->sam_task_attr
= MSG_SIMPLE_TAG
;
1722 case SRP_CMD_ORDERED_Q
:
1724 cmd
->sam_task_attr
= MSG_ORDERED_TAG
;
1726 case SRP_CMD_HEAD_OF_Q
:
1727 cmd
->sam_task_attr
= MSG_HEAD_TAG
;
1730 cmd
->sam_task_attr
= MSG_ACA_TAG
;
1734 if (srpt_get_desc_tbl(send_ioctx
, srp_cmd
, &dir
, &data_len
)) {
1735 printk(KERN_ERR
"0x%llx: parsing SRP descriptor table failed.\n",
1737 ret
= TCM_INVALID_CDB_FIELD
;
1741 unpacked_lun
= srpt_unpack_lun((uint8_t *)&srp_cmd
->lun
,
1742 sizeof(srp_cmd
->lun
));
1743 rc
= target_submit_cmd(cmd
, ch
->sess
, srp_cmd
->cdb
,
1744 &send_ioctx
->sense_data
[0], unpacked_lun
, data_len
,
1745 MSG_SIMPLE_TAG
, dir
, TARGET_SCF_ACK_KREF
);
1747 ret
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1753 transport_send_check_condition_and_sense(cmd
, ret
, 0);
1758 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1759 * @ch: RDMA channel of the task management request.
1760 * @fn: Task management function to perform.
1761 * @req_tag: Tag of the SRP task management request.
1762 * @mgmt_ioctx: I/O context of the task management request.
1764 * Returns zero if the target core will process the task management
1765 * request asynchronously.
1767 * Note: It is assumed that the initiator serializes tag-based task management
1770 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx
*ioctx
, u64 tag
)
1772 struct srpt_device
*sdev
;
1773 struct srpt_rdma_ch
*ch
;
1774 struct srpt_send_ioctx
*target
;
1781 sdev
= ch
->sport
->sdev
;
1783 spin_lock_irq(&sdev
->spinlock
);
1784 for (i
= 0; i
< ch
->rq_size
; ++i
) {
1785 target
= ch
->ioctx_ring
[i
];
1786 if (target
->cmd
.se_lun
== ioctx
->cmd
.se_lun
&&
1787 target
->tag
== tag
&&
1788 srpt_get_cmd_state(target
) != SRPT_STATE_DONE
) {
1790 /* now let the target core abort &target->cmd; */
1794 spin_unlock_irq(&sdev
->spinlock
);
1798 static int srp_tmr_to_tcm(int fn
)
1801 case SRP_TSK_ABORT_TASK
:
1802 return TMR_ABORT_TASK
;
1803 case SRP_TSK_ABORT_TASK_SET
:
1804 return TMR_ABORT_TASK_SET
;
1805 case SRP_TSK_CLEAR_TASK_SET
:
1806 return TMR_CLEAR_TASK_SET
;
1807 case SRP_TSK_LUN_RESET
:
1808 return TMR_LUN_RESET
;
1809 case SRP_TSK_CLEAR_ACA
:
1810 return TMR_CLEAR_ACA
;
1817 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1819 * Returns 0 if and only if the request will be processed by the target core.
1821 * For more information about SRP_TSK_MGMT information units, see also section
1822 * 6.7 in the SRP r16a document.
1824 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch
*ch
,
1825 struct srpt_recv_ioctx
*recv_ioctx
,
1826 struct srpt_send_ioctx
*send_ioctx
)
1828 struct srp_tsk_mgmt
*srp_tsk
;
1830 struct se_session
*sess
= ch
->sess
;
1831 uint64_t unpacked_lun
;
1836 BUG_ON(!send_ioctx
);
1838 srp_tsk
= recv_ioctx
->ioctx
.buf
;
1839 cmd
= &send_ioctx
->cmd
;
1841 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1842 " cm_id %p sess %p\n", srp_tsk
->tsk_mgmt_func
,
1843 srp_tsk
->task_tag
, srp_tsk
->tag
, ch
->cm_id
, ch
->sess
);
1845 srpt_set_cmd_state(send_ioctx
, SRPT_STATE_MGMT
);
1846 send_ioctx
->tag
= srp_tsk
->tag
;
1847 tcm_tmr
= srp_tmr_to_tcm(srp_tsk
->tsk_mgmt_func
);
1849 send_ioctx
->cmd
.se_tmr_req
->response
=
1850 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
1853 unpacked_lun
= srpt_unpack_lun((uint8_t *)&srp_tsk
->lun
,
1854 sizeof(srp_tsk
->lun
));
1856 if (srp_tsk
->tsk_mgmt_func
== SRP_TSK_ABORT_TASK
) {
1857 rc
= srpt_rx_mgmt_fn_tag(send_ioctx
, srp_tsk
->task_tag
);
1859 send_ioctx
->cmd
.se_tmr_req
->response
=
1860 TMR_TASK_DOES_NOT_EXIST
;
1863 tag
= srp_tsk
->task_tag
;
1865 rc
= target_submit_tmr(&send_ioctx
->cmd
, sess
, NULL
, unpacked_lun
,
1866 srp_tsk
, tcm_tmr
, GFP_KERNEL
, tag
,
1867 TARGET_SCF_ACK_KREF
);
1869 send_ioctx
->cmd
.se_tmr_req
->response
= TMR_FUNCTION_REJECTED
;
1874 transport_send_check_condition_and_sense(cmd
, 0, 0); // XXX:
1878 * srpt_handle_new_iu() - Process a newly received information unit.
1879 * @ch: RDMA channel through which the information unit has been received.
1880 * @ioctx: SRPT I/O context associated with the information unit.
1882 static void srpt_handle_new_iu(struct srpt_rdma_ch
*ch
,
1883 struct srpt_recv_ioctx
*recv_ioctx
,
1884 struct srpt_send_ioctx
*send_ioctx
)
1886 struct srp_cmd
*srp_cmd
;
1887 enum rdma_ch_state ch_state
;
1890 BUG_ON(!recv_ioctx
);
1892 ib_dma_sync_single_for_cpu(ch
->sport
->sdev
->device
,
1893 recv_ioctx
->ioctx
.dma
, srp_max_req_size
,
1896 ch_state
= srpt_get_ch_state(ch
);
1897 if (unlikely(ch_state
== CH_CONNECTING
)) {
1898 list_add_tail(&recv_ioctx
->wait_list
, &ch
->cmd_wait_list
);
1902 if (unlikely(ch_state
!= CH_LIVE
))
1905 srp_cmd
= recv_ioctx
->ioctx
.buf
;
1906 if (srp_cmd
->opcode
== SRP_CMD
|| srp_cmd
->opcode
== SRP_TSK_MGMT
) {
1908 send_ioctx
= srpt_get_send_ioctx(ch
);
1909 if (unlikely(!send_ioctx
)) {
1910 list_add_tail(&recv_ioctx
->wait_list
,
1911 &ch
->cmd_wait_list
);
1916 switch (srp_cmd
->opcode
) {
1918 srpt_handle_cmd(ch
, recv_ioctx
, send_ioctx
);
1921 srpt_handle_tsk_mgmt(ch
, recv_ioctx
, send_ioctx
);
1924 printk(KERN_ERR
"Not yet implemented: SRP_I_LOGOUT\n");
1927 pr_debug("received SRP_CRED_RSP\n");
1930 pr_debug("received SRP_AER_RSP\n");
1933 printk(KERN_ERR
"Received SRP_RSP\n");
1936 printk(KERN_ERR
"received IU with unknown opcode 0x%x\n",
1941 srpt_post_recv(ch
->sport
->sdev
, recv_ioctx
);
1946 static void srpt_process_rcv_completion(struct ib_cq
*cq
,
1947 struct srpt_rdma_ch
*ch
,
1950 struct srpt_device
*sdev
= ch
->sport
->sdev
;
1951 struct srpt_recv_ioctx
*ioctx
;
1954 index
= idx_from_wr_id(wc
->wr_id
);
1955 if (wc
->status
== IB_WC_SUCCESS
) {
1958 req_lim
= atomic_dec_return(&ch
->req_lim
);
1959 if (unlikely(req_lim
< 0))
1960 printk(KERN_ERR
"req_lim = %d < 0\n", req_lim
);
1961 ioctx
= sdev
->ioctx_ring
[index
];
1962 srpt_handle_new_iu(ch
, ioctx
, NULL
);
1964 printk(KERN_INFO
"receiving failed for idx %u with status %d\n",
1970 * srpt_process_send_completion() - Process an IB send completion.
1972 * Note: Although this has not yet been observed during tests, at least in
1973 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1974 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1975 * value in each response is set to one, and it is possible that this response
1976 * makes the initiator send a new request before the send completion for that
1977 * response has been processed. This could e.g. happen if the call to
1978 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1979 * if IB retransmission causes generation of the send completion to be
1980 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1981 * are queued on cmd_wait_list. The code below processes these delayed
1982 * requests one at a time.
1984 static void srpt_process_send_completion(struct ib_cq
*cq
,
1985 struct srpt_rdma_ch
*ch
,
1988 struct srpt_send_ioctx
*send_ioctx
;
1990 enum srpt_opcode opcode
;
1992 index
= idx_from_wr_id(wc
->wr_id
);
1993 opcode
= opcode_from_wr_id(wc
->wr_id
);
1994 send_ioctx
= ch
->ioctx_ring
[index
];
1995 if (wc
->status
== IB_WC_SUCCESS
) {
1996 if (opcode
== SRPT_SEND
)
1997 srpt_handle_send_comp(ch
, send_ioctx
);
1999 WARN_ON(opcode
!= SRPT_RDMA_ABORT
&&
2000 wc
->opcode
!= IB_WC_RDMA_READ
);
2001 srpt_handle_rdma_comp(ch
, send_ioctx
, opcode
);
2004 if (opcode
== SRPT_SEND
) {
2005 printk(KERN_INFO
"sending response for idx %u failed"
2006 " with status %d\n", index
, wc
->status
);
2007 srpt_handle_send_err_comp(ch
, wc
->wr_id
);
2008 } else if (opcode
!= SRPT_RDMA_MID
) {
2009 printk(KERN_INFO
"RDMA t %d for idx %u failed with"
2010 " status %d", opcode
, index
, wc
->status
);
2011 srpt_handle_rdma_err_comp(ch
, send_ioctx
, opcode
);
2015 while (unlikely(opcode
== SRPT_SEND
2016 && !list_empty(&ch
->cmd_wait_list
)
2017 && srpt_get_ch_state(ch
) == CH_LIVE
2018 && (send_ioctx
= srpt_get_send_ioctx(ch
)) != NULL
)) {
2019 struct srpt_recv_ioctx
*recv_ioctx
;
2021 recv_ioctx
= list_first_entry(&ch
->cmd_wait_list
,
2022 struct srpt_recv_ioctx
,
2024 list_del(&recv_ioctx
->wait_list
);
2025 srpt_handle_new_iu(ch
, recv_ioctx
, send_ioctx
);
2029 static void srpt_process_completion(struct ib_cq
*cq
, struct srpt_rdma_ch
*ch
)
2031 struct ib_wc
*const wc
= ch
->wc
;
2034 WARN_ON(cq
!= ch
->cq
);
2036 ib_req_notify_cq(cq
, IB_CQ_NEXT_COMP
);
2037 while ((n
= ib_poll_cq(cq
, ARRAY_SIZE(ch
->wc
), wc
)) > 0) {
2038 for (i
= 0; i
< n
; i
++) {
2039 if (opcode_from_wr_id(wc
[i
].wr_id
) == SRPT_RECV
)
2040 srpt_process_rcv_completion(cq
, ch
, &wc
[i
]);
2042 srpt_process_send_completion(cq
, ch
, &wc
[i
]);
2048 * srpt_completion() - IB completion queue callback function.
2051 * - It is guaranteed that a completion handler will never be invoked
2052 * concurrently on two different CPUs for the same completion queue. See also
2053 * Documentation/infiniband/core_locking.txt and the implementation of
2054 * handle_edge_irq() in kernel/irq/chip.c.
2055 * - When threaded IRQs are enabled, completion handlers are invoked in thread
2056 * context instead of interrupt context.
2058 static void srpt_completion(struct ib_cq
*cq
, void *ctx
)
2060 struct srpt_rdma_ch
*ch
= ctx
;
2062 wake_up_interruptible(&ch
->wait_queue
);
2065 static int srpt_compl_thread(void *arg
)
2067 struct srpt_rdma_ch
*ch
;
2069 /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2070 current
->flags
|= PF_NOFREEZE
;
2074 printk(KERN_INFO
"Session %s: kernel thread %s (PID %d) started\n",
2075 ch
->sess_name
, ch
->thread
->comm
, current
->pid
);
2076 while (!kthread_should_stop()) {
2077 wait_event_interruptible(ch
->wait_queue
,
2078 (srpt_process_completion(ch
->cq
, ch
),
2079 kthread_should_stop()));
2081 printk(KERN_INFO
"Session %s: kernel thread %s (PID %d) stopped\n",
2082 ch
->sess_name
, ch
->thread
->comm
, current
->pid
);
2087 * srpt_create_ch_ib() - Create receive and send completion queues.
2089 static int srpt_create_ch_ib(struct srpt_rdma_ch
*ch
)
2091 struct ib_qp_init_attr
*qp_init
;
2092 struct srpt_port
*sport
= ch
->sport
;
2093 struct srpt_device
*sdev
= sport
->sdev
;
2094 u32 srp_sq_size
= sport
->port_attrib
.srp_sq_size
;
2097 WARN_ON(ch
->rq_size
< 1);
2100 qp_init
= kzalloc(sizeof *qp_init
, GFP_KERNEL
);
2104 ch
->cq
= ib_create_cq(sdev
->device
, srpt_completion
, NULL
, ch
,
2105 ch
->rq_size
+ srp_sq_size
, 0);
2106 if (IS_ERR(ch
->cq
)) {
2107 ret
= PTR_ERR(ch
->cq
);
2108 printk(KERN_ERR
"failed to create CQ cqe= %d ret= %d\n",
2109 ch
->rq_size
+ srp_sq_size
, ret
);
2113 qp_init
->qp_context
= (void *)ch
;
2114 qp_init
->event_handler
2115 = (void(*)(struct ib_event
*, void*))srpt_qp_event
;
2116 qp_init
->send_cq
= ch
->cq
;
2117 qp_init
->recv_cq
= ch
->cq
;
2118 qp_init
->srq
= sdev
->srq
;
2119 qp_init
->sq_sig_type
= IB_SIGNAL_REQ_WR
;
2120 qp_init
->qp_type
= IB_QPT_RC
;
2121 qp_init
->cap
.max_send_wr
= srp_sq_size
;
2122 qp_init
->cap
.max_send_sge
= SRPT_DEF_SG_PER_WQE
;
2124 ch
->qp
= ib_create_qp(sdev
->pd
, qp_init
);
2125 if (IS_ERR(ch
->qp
)) {
2126 ret
= PTR_ERR(ch
->qp
);
2127 printk(KERN_ERR
"failed to create_qp ret= %d\n", ret
);
2128 goto err_destroy_cq
;
2131 atomic_set(&ch
->sq_wr_avail
, qp_init
->cap
.max_send_wr
);
2133 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2134 __func__
, ch
->cq
->cqe
, qp_init
->cap
.max_send_sge
,
2135 qp_init
->cap
.max_send_wr
, ch
->cm_id
);
2137 ret
= srpt_init_ch_qp(ch
, ch
->qp
);
2139 goto err_destroy_qp
;
2141 init_waitqueue_head(&ch
->wait_queue
);
2143 pr_debug("creating thread for session %s\n", ch
->sess_name
);
2145 ch
->thread
= kthread_run(srpt_compl_thread
, ch
, "ib_srpt_compl");
2146 if (IS_ERR(ch
->thread
)) {
2147 printk(KERN_ERR
"failed to create kernel thread %ld\n",
2148 PTR_ERR(ch
->thread
));
2150 goto err_destroy_qp
;
2158 ib_destroy_qp(ch
->qp
);
2160 ib_destroy_cq(ch
->cq
);
2164 static void srpt_destroy_ch_ib(struct srpt_rdma_ch
*ch
)
2167 kthread_stop(ch
->thread
);
2169 ib_destroy_qp(ch
->qp
);
2170 ib_destroy_cq(ch
->cq
);
2174 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2176 * Reset the QP and make sure all resources associated with the channel will
2177 * be deallocated at an appropriate time.
2179 * Note: The caller must hold ch->sport->sdev->spinlock.
2181 static void __srpt_close_ch(struct srpt_rdma_ch
*ch
)
2183 struct srpt_device
*sdev
;
2184 enum rdma_ch_state prev_state
;
2185 unsigned long flags
;
2187 sdev
= ch
->sport
->sdev
;
2189 spin_lock_irqsave(&ch
->spinlock
, flags
);
2190 prev_state
= ch
->state
;
2191 switch (prev_state
) {
2194 ch
->state
= CH_DISCONNECTING
;
2199 spin_unlock_irqrestore(&ch
->spinlock
, flags
);
2201 switch (prev_state
) {
2203 ib_send_cm_rej(ch
->cm_id
, IB_CM_REJ_NO_RESOURCES
, NULL
, 0,
2207 if (ib_send_cm_dreq(ch
->cm_id
, NULL
, 0) < 0)
2208 printk(KERN_ERR
"sending CM DREQ failed.\n");
2210 case CH_DISCONNECTING
:
2219 * srpt_close_ch() - Close an RDMA channel.
2221 static void srpt_close_ch(struct srpt_rdma_ch
*ch
)
2223 struct srpt_device
*sdev
;
2225 sdev
= ch
->sport
->sdev
;
2226 spin_lock_irq(&sdev
->spinlock
);
2227 __srpt_close_ch(ch
);
2228 spin_unlock_irq(&sdev
->spinlock
);
2232 * srpt_shutdown_session() - Whether or not a session may be shut down.
2234 static int srpt_shutdown_session(struct se_session
*se_sess
)
2236 struct srpt_rdma_ch
*ch
= se_sess
->fabric_sess_ptr
;
2237 unsigned long flags
;
2239 spin_lock_irqsave(&ch
->spinlock
, flags
);
2240 if (ch
->in_shutdown
) {
2241 spin_unlock_irqrestore(&ch
->spinlock
, flags
);
2245 ch
->in_shutdown
= true;
2246 target_sess_cmd_list_set_waiting(se_sess
);
2247 spin_unlock_irqrestore(&ch
->spinlock
, flags
);
2253 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2254 * @cm_id: Pointer to the CM ID of the channel to be drained.
2256 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2257 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2258 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2259 * waits until all target sessions for the associated IB device have been
2260 * unregistered and target session registration involves a call to
2261 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2262 * this function has finished).
2264 static void srpt_drain_channel(struct ib_cm_id
*cm_id
)
2266 struct srpt_device
*sdev
;
2267 struct srpt_rdma_ch
*ch
;
2269 bool do_reset
= false;
2271 WARN_ON_ONCE(irqs_disabled());
2273 sdev
= cm_id
->context
;
2275 spin_lock_irq(&sdev
->spinlock
);
2276 list_for_each_entry(ch
, &sdev
->rch_list
, list
) {
2277 if (ch
->cm_id
== cm_id
) {
2278 do_reset
= srpt_test_and_set_ch_state(ch
,
2279 CH_CONNECTING
, CH_DRAINING
) ||
2280 srpt_test_and_set_ch_state(ch
,
2281 CH_LIVE
, CH_DRAINING
) ||
2282 srpt_test_and_set_ch_state(ch
,
2283 CH_DISCONNECTING
, CH_DRAINING
);
2287 spin_unlock_irq(&sdev
->spinlock
);
2291 srpt_shutdown_session(ch
->sess
);
2293 ret
= srpt_ch_qp_err(ch
);
2295 printk(KERN_ERR
"Setting queue pair in error state"
2296 " failed: %d\n", ret
);
2301 * srpt_find_channel() - Look up an RDMA channel.
2302 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2304 * Return NULL if no matching RDMA channel has been found.
2306 static struct srpt_rdma_ch
*srpt_find_channel(struct srpt_device
*sdev
,
2307 struct ib_cm_id
*cm_id
)
2309 struct srpt_rdma_ch
*ch
;
2312 WARN_ON_ONCE(irqs_disabled());
2316 spin_lock_irq(&sdev
->spinlock
);
2317 list_for_each_entry(ch
, &sdev
->rch_list
, list
) {
2318 if (ch
->cm_id
== cm_id
) {
2323 spin_unlock_irq(&sdev
->spinlock
);
2325 return found
? ch
: NULL
;
2329 * srpt_release_channel() - Release channel resources.
2331 * Schedules the actual release because:
2332 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2333 * trigger a deadlock.
2334 * - It is not safe to call TCM transport_* functions from interrupt context.
2336 static void srpt_release_channel(struct srpt_rdma_ch
*ch
)
2338 schedule_work(&ch
->release_work
);
2341 static void srpt_release_channel_work(struct work_struct
*w
)
2343 struct srpt_rdma_ch
*ch
;
2344 struct srpt_device
*sdev
;
2345 struct se_session
*se_sess
;
2347 ch
= container_of(w
, struct srpt_rdma_ch
, release_work
);
2348 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch
, ch
->sess
,
2351 sdev
= ch
->sport
->sdev
;
2357 target_wait_for_sess_cmds(se_sess
);
2359 transport_deregister_session_configfs(se_sess
);
2360 transport_deregister_session(se_sess
);
2363 ib_destroy_cm_id(ch
->cm_id
);
2365 srpt_destroy_ch_ib(ch
);
2367 srpt_free_ioctx_ring((struct srpt_ioctx
**)ch
->ioctx_ring
,
2368 ch
->sport
->sdev
, ch
->rq_size
,
2369 ch
->rsp_size
, DMA_TO_DEVICE
);
2371 spin_lock_irq(&sdev
->spinlock
);
2372 list_del(&ch
->list
);
2373 spin_unlock_irq(&sdev
->spinlock
);
2375 if (ch
->release_done
)
2376 complete(ch
->release_done
);
2378 wake_up(&sdev
->ch_releaseQ
);
2383 static struct srpt_node_acl
*__srpt_lookup_acl(struct srpt_port
*sport
,
2386 struct srpt_node_acl
*nacl
;
2388 list_for_each_entry(nacl
, &sport
->port_acl_list
, list
)
2389 if (memcmp(nacl
->i_port_id
, i_port_id
,
2390 sizeof(nacl
->i_port_id
)) == 0)
2396 static struct srpt_node_acl
*srpt_lookup_acl(struct srpt_port
*sport
,
2399 struct srpt_node_acl
*nacl
;
2401 spin_lock_irq(&sport
->port_acl_lock
);
2402 nacl
= __srpt_lookup_acl(sport
, i_port_id
);
2403 spin_unlock_irq(&sport
->port_acl_lock
);
2409 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2411 * Ownership of the cm_id is transferred to the target session if this
2412 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2414 static int srpt_cm_req_recv(struct ib_cm_id
*cm_id
,
2415 struct ib_cm_req_event_param
*param
,
2418 struct srpt_device
*sdev
= cm_id
->context
;
2419 struct srpt_port
*sport
= &sdev
->port
[param
->port
- 1];
2420 struct srp_login_req
*req
;
2421 struct srp_login_rsp
*rsp
;
2422 struct srp_login_rej
*rej
;
2423 struct ib_cm_rep_param
*rep_param
;
2424 struct srpt_rdma_ch
*ch
, *tmp_ch
;
2425 struct srpt_node_acl
*nacl
;
2430 WARN_ON_ONCE(irqs_disabled());
2432 if (WARN_ON(!sdev
|| !private_data
))
2435 req
= (struct srp_login_req
*)private_data
;
2437 it_iu_len
= be32_to_cpu(req
->req_it_iu_len
);
2439 printk(KERN_INFO
"Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2440 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2441 " (guid=0x%llx:0x%llx)\n",
2442 be64_to_cpu(*(__be64
*)&req
->initiator_port_id
[0]),
2443 be64_to_cpu(*(__be64
*)&req
->initiator_port_id
[8]),
2444 be64_to_cpu(*(__be64
*)&req
->target_port_id
[0]),
2445 be64_to_cpu(*(__be64
*)&req
->target_port_id
[8]),
2448 be64_to_cpu(*(__be64
*)&sdev
->port
[param
->port
- 1].gid
.raw
[0]),
2449 be64_to_cpu(*(__be64
*)&sdev
->port
[param
->port
- 1].gid
.raw
[8]));
2451 rsp
= kzalloc(sizeof *rsp
, GFP_KERNEL
);
2452 rej
= kzalloc(sizeof *rej
, GFP_KERNEL
);
2453 rep_param
= kzalloc(sizeof *rep_param
, GFP_KERNEL
);
2455 if (!rsp
|| !rej
|| !rep_param
) {
2460 if (it_iu_len
> srp_max_req_size
|| it_iu_len
< 64) {
2461 rej
->reason
= __constant_cpu_to_be32(
2462 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE
);
2464 printk(KERN_ERR
"rejected SRP_LOGIN_REQ because its"
2465 " length (%d bytes) is out of range (%d .. %d)\n",
2466 it_iu_len
, 64, srp_max_req_size
);
2470 if (!sport
->enabled
) {
2471 rej
->reason
= __constant_cpu_to_be32(
2472 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES
);
2474 printk(KERN_ERR
"rejected SRP_LOGIN_REQ because the target port"
2475 " has not yet been enabled\n");
2479 if ((req
->req_flags
& SRP_MTCH_ACTION
) == SRP_MULTICHAN_SINGLE
) {
2480 rsp
->rsp_flags
= SRP_LOGIN_RSP_MULTICHAN_NO_CHAN
;
2482 spin_lock_irq(&sdev
->spinlock
);
2484 list_for_each_entry_safe(ch
, tmp_ch
, &sdev
->rch_list
, list
) {
2485 if (!memcmp(ch
->i_port_id
, req
->initiator_port_id
, 16)
2486 && !memcmp(ch
->t_port_id
, req
->target_port_id
, 16)
2487 && param
->port
== ch
->sport
->port
2488 && param
->listen_id
== ch
->sport
->sdev
->cm_id
2490 enum rdma_ch_state ch_state
;
2492 ch_state
= srpt_get_ch_state(ch
);
2493 if (ch_state
!= CH_CONNECTING
2494 && ch_state
!= CH_LIVE
)
2497 /* found an existing channel */
2498 pr_debug("Found existing channel %s"
2499 " cm_id= %p state= %d\n",
2500 ch
->sess_name
, ch
->cm_id
, ch_state
);
2502 __srpt_close_ch(ch
);
2505 SRP_LOGIN_RSP_MULTICHAN_TERMINATED
;
2509 spin_unlock_irq(&sdev
->spinlock
);
2512 rsp
->rsp_flags
= SRP_LOGIN_RSP_MULTICHAN_MAINTAINED
;
2514 if (*(__be64
*)req
->target_port_id
!= cpu_to_be64(srpt_service_guid
)
2515 || *(__be64
*)(req
->target_port_id
+ 8) !=
2516 cpu_to_be64(srpt_service_guid
)) {
2517 rej
->reason
= __constant_cpu_to_be32(
2518 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL
);
2520 printk(KERN_ERR
"rejected SRP_LOGIN_REQ because it"
2521 " has an invalid target port identifier.\n");
2525 ch
= kzalloc(sizeof *ch
, GFP_KERNEL
);
2527 rej
->reason
= __constant_cpu_to_be32(
2528 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES
);
2529 printk(KERN_ERR
"rejected SRP_LOGIN_REQ because no memory.\n");
2534 INIT_WORK(&ch
->release_work
, srpt_release_channel_work
);
2535 memcpy(ch
->i_port_id
, req
->initiator_port_id
, 16);
2536 memcpy(ch
->t_port_id
, req
->target_port_id
, 16);
2537 ch
->sport
= &sdev
->port
[param
->port
- 1];
2540 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2541 * for the SRP protocol to the command queue size.
2543 ch
->rq_size
= SRPT_RQ_SIZE
;
2544 spin_lock_init(&ch
->spinlock
);
2545 ch
->state
= CH_CONNECTING
;
2546 INIT_LIST_HEAD(&ch
->cmd_wait_list
);
2547 ch
->rsp_size
= ch
->sport
->port_attrib
.srp_max_rsp_size
;
2549 ch
->ioctx_ring
= (struct srpt_send_ioctx
**)
2550 srpt_alloc_ioctx_ring(ch
->sport
->sdev
, ch
->rq_size
,
2551 sizeof(*ch
->ioctx_ring
[0]),
2552 ch
->rsp_size
, DMA_TO_DEVICE
);
2553 if (!ch
->ioctx_ring
)
2556 INIT_LIST_HEAD(&ch
->free_list
);
2557 for (i
= 0; i
< ch
->rq_size
; i
++) {
2558 ch
->ioctx_ring
[i
]->ch
= ch
;
2559 list_add_tail(&ch
->ioctx_ring
[i
]->free_list
, &ch
->free_list
);
2562 ret
= srpt_create_ch_ib(ch
);
2564 rej
->reason
= __constant_cpu_to_be32(
2565 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES
);
2566 printk(KERN_ERR
"rejected SRP_LOGIN_REQ because creating"
2567 " a new RDMA channel failed.\n");
2571 ret
= srpt_ch_qp_rtr(ch
, ch
->qp
);
2573 rej
->reason
= __constant_cpu_to_be32(
2574 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES
);
2575 printk(KERN_ERR
"rejected SRP_LOGIN_REQ because enabling"
2576 " RTR failed (error code = %d)\n", ret
);
2580 * Use the initator port identifier as the session name.
2582 snprintf(ch
->sess_name
, sizeof(ch
->sess_name
), "0x%016llx%016llx",
2583 be64_to_cpu(*(__be64
*)ch
->i_port_id
),
2584 be64_to_cpu(*(__be64
*)(ch
->i_port_id
+ 8)));
2586 pr_debug("registering session %s\n", ch
->sess_name
);
2588 nacl
= srpt_lookup_acl(sport
, ch
->i_port_id
);
2590 printk(KERN_INFO
"Rejected login because no ACL has been"
2591 " configured yet for initiator %s.\n", ch
->sess_name
);
2592 rej
->reason
= __constant_cpu_to_be32(
2593 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED
);
2597 ch
->sess
= transport_init_session();
2598 if (IS_ERR(ch
->sess
)) {
2599 rej
->reason
= __constant_cpu_to_be32(
2600 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES
);
2601 pr_debug("Failed to create session\n");
2602 goto deregister_session
;
2604 ch
->sess
->se_node_acl
= &nacl
->nacl
;
2605 transport_register_session(&sport
->port_tpg_1
, &nacl
->nacl
, ch
->sess
, ch
);
2607 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch
->sess
,
2608 ch
->sess_name
, ch
->cm_id
);
2610 /* create srp_login_response */
2611 rsp
->opcode
= SRP_LOGIN_RSP
;
2612 rsp
->tag
= req
->tag
;
2613 rsp
->max_it_iu_len
= req
->req_it_iu_len
;
2614 rsp
->max_ti_iu_len
= req
->req_it_iu_len
;
2615 ch
->max_ti_iu_len
= it_iu_len
;
2616 rsp
->buf_fmt
= __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2617 | SRP_BUF_FORMAT_INDIRECT
);
2618 rsp
->req_lim_delta
= cpu_to_be32(ch
->rq_size
);
2619 atomic_set(&ch
->req_lim
, ch
->rq_size
);
2620 atomic_set(&ch
->req_lim_delta
, 0);
2622 /* create cm reply */
2623 rep_param
->qp_num
= ch
->qp
->qp_num
;
2624 rep_param
->private_data
= (void *)rsp
;
2625 rep_param
->private_data_len
= sizeof *rsp
;
2626 rep_param
->rnr_retry_count
= 7;
2627 rep_param
->flow_control
= 1;
2628 rep_param
->failover_accepted
= 0;
2630 rep_param
->responder_resources
= 4;
2631 rep_param
->initiator_depth
= 4;
2633 ret
= ib_send_cm_rep(cm_id
, rep_param
);
2635 printk(KERN_ERR
"sending SRP_LOGIN_REQ response failed"
2636 " (error code = %d)\n", ret
);
2637 goto release_channel
;
2640 spin_lock_irq(&sdev
->spinlock
);
2641 list_add_tail(&ch
->list
, &sdev
->rch_list
);
2642 spin_unlock_irq(&sdev
->spinlock
);
2647 srpt_set_ch_state(ch
, CH_RELEASING
);
2648 transport_deregister_session_configfs(ch
->sess
);
2651 transport_deregister_session(ch
->sess
);
2655 srpt_destroy_ch_ib(ch
);
2658 srpt_free_ioctx_ring((struct srpt_ioctx
**)ch
->ioctx_ring
,
2659 ch
->sport
->sdev
, ch
->rq_size
,
2660 ch
->rsp_size
, DMA_TO_DEVICE
);
2665 rej
->opcode
= SRP_LOGIN_REJ
;
2666 rej
->tag
= req
->tag
;
2667 rej
->buf_fmt
= __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2668 | SRP_BUF_FORMAT_INDIRECT
);
2670 ib_send_cm_rej(cm_id
, IB_CM_REJ_CONSUMER_DEFINED
, NULL
, 0,
2671 (void *)rej
, sizeof *rej
);
2681 static void srpt_cm_rej_recv(struct ib_cm_id
*cm_id
)
2683 printk(KERN_INFO
"Received IB REJ for cm_id %p.\n", cm_id
);
2684 srpt_drain_channel(cm_id
);
2688 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2690 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2691 * and that the recipient may begin transmitting (RTU = ready to use).
2693 static void srpt_cm_rtu_recv(struct ib_cm_id
*cm_id
)
2695 struct srpt_rdma_ch
*ch
;
2698 ch
= srpt_find_channel(cm_id
->context
, cm_id
);
2701 if (srpt_test_and_set_ch_state(ch
, CH_CONNECTING
, CH_LIVE
)) {
2702 struct srpt_recv_ioctx
*ioctx
, *ioctx_tmp
;
2704 ret
= srpt_ch_qp_rts(ch
, ch
->qp
);
2706 list_for_each_entry_safe(ioctx
, ioctx_tmp
, &ch
->cmd_wait_list
,
2708 list_del(&ioctx
->wait_list
);
2709 srpt_handle_new_iu(ch
, ioctx
, NULL
);
2716 static void srpt_cm_timewait_exit(struct ib_cm_id
*cm_id
)
2718 printk(KERN_INFO
"Received IB TimeWait exit for cm_id %p.\n", cm_id
);
2719 srpt_drain_channel(cm_id
);
2722 static void srpt_cm_rep_error(struct ib_cm_id
*cm_id
)
2724 printk(KERN_INFO
"Received IB REP error for cm_id %p.\n", cm_id
);
2725 srpt_drain_channel(cm_id
);
2729 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2731 static void srpt_cm_dreq_recv(struct ib_cm_id
*cm_id
)
2733 struct srpt_rdma_ch
*ch
;
2734 unsigned long flags
;
2735 bool send_drep
= false;
2737 ch
= srpt_find_channel(cm_id
->context
, cm_id
);
2740 pr_debug("cm_id= %p ch->state= %d\n", cm_id
, srpt_get_ch_state(ch
));
2742 spin_lock_irqsave(&ch
->spinlock
, flags
);
2743 switch (ch
->state
) {
2747 ch
->state
= CH_DISCONNECTING
;
2749 case CH_DISCONNECTING
:
2752 WARN(true, "unexpected channel state %d\n", ch
->state
);
2755 spin_unlock_irqrestore(&ch
->spinlock
, flags
);
2758 if (ib_send_cm_drep(ch
->cm_id
, NULL
, 0) < 0)
2759 printk(KERN_ERR
"Sending IB DREP failed.\n");
2760 printk(KERN_INFO
"Received DREQ and sent DREP for session %s.\n",
2766 * srpt_cm_drep_recv() - Process reception of a DREP message.
2768 static void srpt_cm_drep_recv(struct ib_cm_id
*cm_id
)
2770 printk(KERN_INFO
"Received InfiniBand DREP message for cm_id %p.\n",
2772 srpt_drain_channel(cm_id
);
2776 * srpt_cm_handler() - IB connection manager callback function.
2778 * A non-zero return value will cause the caller destroy the CM ID.
2780 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2781 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2782 * a non-zero value in any other case will trigger a race with the
2783 * ib_destroy_cm_id() call in srpt_release_channel().
2785 static int srpt_cm_handler(struct ib_cm_id
*cm_id
, struct ib_cm_event
*event
)
2790 switch (event
->event
) {
2791 case IB_CM_REQ_RECEIVED
:
2792 ret
= srpt_cm_req_recv(cm_id
, &event
->param
.req_rcvd
,
2793 event
->private_data
);
2795 case IB_CM_REJ_RECEIVED
:
2796 srpt_cm_rej_recv(cm_id
);
2798 case IB_CM_RTU_RECEIVED
:
2799 case IB_CM_USER_ESTABLISHED
:
2800 srpt_cm_rtu_recv(cm_id
);
2802 case IB_CM_DREQ_RECEIVED
:
2803 srpt_cm_dreq_recv(cm_id
);
2805 case IB_CM_DREP_RECEIVED
:
2806 srpt_cm_drep_recv(cm_id
);
2808 case IB_CM_TIMEWAIT_EXIT
:
2809 srpt_cm_timewait_exit(cm_id
);
2811 case IB_CM_REP_ERROR
:
2812 srpt_cm_rep_error(cm_id
);
2814 case IB_CM_DREQ_ERROR
:
2815 printk(KERN_INFO
"Received IB DREQ ERROR event.\n");
2817 case IB_CM_MRA_RECEIVED
:
2818 printk(KERN_INFO
"Received IB MRA event\n");
2821 printk(KERN_ERR
"received unrecognized IB CM event %d\n",
2830 * srpt_perform_rdmas() - Perform IB RDMA.
2832 * Returns zero upon success or a negative number upon failure.
2834 static int srpt_perform_rdmas(struct srpt_rdma_ch
*ch
,
2835 struct srpt_send_ioctx
*ioctx
)
2837 struct ib_send_wr wr
;
2838 struct ib_send_wr
*bad_wr
;
2839 struct rdma_iu
*riu
;
2843 enum dma_data_direction dir
;
2844 const int n_rdma
= ioctx
->n_rdma
;
2846 dir
= ioctx
->cmd
.data_direction
;
2847 if (dir
== DMA_TO_DEVICE
) {
2850 sq_wr_avail
= atomic_sub_return(n_rdma
, &ch
->sq_wr_avail
);
2851 if (sq_wr_avail
< 0) {
2852 printk(KERN_WARNING
"IB send queue full (needed %d)\n",
2858 ioctx
->rdma_aborted
= false;
2860 riu
= ioctx
->rdma_ius
;
2861 memset(&wr
, 0, sizeof wr
);
2863 for (i
= 0; i
< n_rdma
; ++i
, ++riu
) {
2864 if (dir
== DMA_FROM_DEVICE
) {
2865 wr
.opcode
= IB_WR_RDMA_WRITE
;
2866 wr
.wr_id
= encode_wr_id(i
== n_rdma
- 1 ?
2867 SRPT_RDMA_WRITE_LAST
:
2869 ioctx
->ioctx
.index
);
2871 wr
.opcode
= IB_WR_RDMA_READ
;
2872 wr
.wr_id
= encode_wr_id(i
== n_rdma
- 1 ?
2873 SRPT_RDMA_READ_LAST
:
2875 ioctx
->ioctx
.index
);
2878 wr
.wr
.rdma
.remote_addr
= riu
->raddr
;
2879 wr
.wr
.rdma
.rkey
= riu
->rkey
;
2880 wr
.num_sge
= riu
->sge_cnt
;
2881 wr
.sg_list
= riu
->sge
;
2883 /* only get completion event for the last rdma write */
2884 if (i
== (n_rdma
- 1) && dir
== DMA_TO_DEVICE
)
2885 wr
.send_flags
= IB_SEND_SIGNALED
;
2887 ret
= ib_post_send(ch
->qp
, &wr
, &bad_wr
);
2893 printk(KERN_ERR
"%s[%d]: ib_post_send() returned %d for %d/%d",
2894 __func__
, __LINE__
, ret
, i
, n_rdma
);
2897 wr
.wr_id
= encode_wr_id(SRPT_RDMA_ABORT
, ioctx
->ioctx
.index
);
2898 wr
.send_flags
= IB_SEND_SIGNALED
;
2899 while (ch
->state
== CH_LIVE
&&
2900 ib_post_send(ch
->qp
, &wr
, &bad_wr
) != 0) {
2901 printk(KERN_INFO
"Trying to abort failed RDMA transfer [%d]",
2902 ioctx
->ioctx
.index
);
2905 while (ch
->state
!= CH_RELEASING
&& !ioctx
->rdma_aborted
) {
2906 printk(KERN_INFO
"Waiting until RDMA abort finished [%d]",
2907 ioctx
->ioctx
.index
);
2912 if (unlikely(dir
== DMA_TO_DEVICE
&& ret
< 0))
2913 atomic_add(n_rdma
, &ch
->sq_wr_avail
);
2918 * srpt_xfer_data() - Start data transfer from initiator to target.
2920 static int srpt_xfer_data(struct srpt_rdma_ch
*ch
,
2921 struct srpt_send_ioctx
*ioctx
)
2925 ret
= srpt_map_sg_to_ib_sge(ch
, ioctx
);
2927 printk(KERN_ERR
"%s[%d] ret=%d\n", __func__
, __LINE__
, ret
);
2931 ret
= srpt_perform_rdmas(ch
, ioctx
);
2933 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2934 printk(KERN_INFO
"%s[%d] queue full -- ret=%d\n",
2935 __func__
, __LINE__
, ret
);
2937 printk(KERN_ERR
"%s[%d] fatal error -- ret=%d\n",
2938 __func__
, __LINE__
, ret
);
2945 srpt_unmap_sg_to_ib_sge(ch
, ioctx
);
2949 static int srpt_write_pending_status(struct se_cmd
*se_cmd
)
2951 struct srpt_send_ioctx
*ioctx
;
2953 ioctx
= container_of(se_cmd
, struct srpt_send_ioctx
, cmd
);
2954 return srpt_get_cmd_state(ioctx
) == SRPT_STATE_NEED_DATA
;
2958 * srpt_write_pending() - Start data transfer from initiator to target (write).
2960 static int srpt_write_pending(struct se_cmd
*se_cmd
)
2962 struct srpt_rdma_ch
*ch
;
2963 struct srpt_send_ioctx
*ioctx
;
2964 enum srpt_command_state new_state
;
2965 enum rdma_ch_state ch_state
;
2968 ioctx
= container_of(se_cmd
, struct srpt_send_ioctx
, cmd
);
2970 new_state
= srpt_set_cmd_state(ioctx
, SRPT_STATE_NEED_DATA
);
2971 WARN_ON(new_state
== SRPT_STATE_DONE
);
2976 ch_state
= srpt_get_ch_state(ch
);
2979 WARN(true, "unexpected channel state %d\n", ch_state
);
2984 case CH_DISCONNECTING
:
2987 pr_debug("cmd with tag %lld: channel disconnecting\n",
2989 srpt_set_cmd_state(ioctx
, SRPT_STATE_DATA_IN
);
2993 ret
= srpt_xfer_data(ch
, ioctx
);
2999 static u8
tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status
)
3001 switch (tcm_mgmt_status
) {
3002 case TMR_FUNCTION_COMPLETE
:
3003 return SRP_TSK_MGMT_SUCCESS
;
3004 case TMR_FUNCTION_REJECTED
:
3005 return SRP_TSK_MGMT_FUNC_NOT_SUPP
;
3007 return SRP_TSK_MGMT_FAILED
;
3011 * srpt_queue_response() - Transmits the response to a SCSI command.
3013 * Callback function called by the TCM core. Must not block since it can be
3014 * invoked on the context of the IB completion handler.
3016 static void srpt_queue_response(struct se_cmd
*cmd
)
3018 struct srpt_rdma_ch
*ch
;
3019 struct srpt_send_ioctx
*ioctx
;
3020 enum srpt_command_state state
;
3021 unsigned long flags
;
3023 enum dma_data_direction dir
;
3027 ioctx
= container_of(cmd
, struct srpt_send_ioctx
, cmd
);
3031 spin_lock_irqsave(&ioctx
->spinlock
, flags
);
3032 state
= ioctx
->state
;
3034 case SRPT_STATE_NEW
:
3035 case SRPT_STATE_DATA_IN
:
3036 ioctx
->state
= SRPT_STATE_CMD_RSP_SENT
;
3038 case SRPT_STATE_MGMT
:
3039 ioctx
->state
= SRPT_STATE_MGMT_RSP_SENT
;
3042 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3043 ch
, ioctx
->ioctx
.index
, ioctx
->state
);
3046 spin_unlock_irqrestore(&ioctx
->spinlock
, flags
);
3048 if (unlikely(transport_check_aborted_status(&ioctx
->cmd
, false)
3049 || WARN_ON_ONCE(state
== SRPT_STATE_CMD_RSP_SENT
))) {
3050 atomic_inc(&ch
->req_lim_delta
);
3051 srpt_abort_cmd(ioctx
);
3055 dir
= ioctx
->cmd
.data_direction
;
3057 /* For read commands, transfer the data to the initiator. */
3058 if (dir
== DMA_FROM_DEVICE
&& ioctx
->cmd
.data_length
&&
3059 !ioctx
->queue_status_only
) {
3060 ret
= srpt_xfer_data(ch
, ioctx
);
3062 printk(KERN_ERR
"xfer_data failed for tag %llu\n",
3068 if (state
!= SRPT_STATE_MGMT
)
3069 resp_len
= srpt_build_cmd_rsp(ch
, ioctx
, ioctx
->tag
,
3073 = tcm_to_srp_tsk_mgmt_status(cmd
->se_tmr_req
->response
);
3074 resp_len
= srpt_build_tskmgmt_rsp(ch
, ioctx
, srp_tm_status
,
3077 ret
= srpt_post_send(ch
, ioctx
, resp_len
);
3079 printk(KERN_ERR
"sending cmd response failed for tag %llu\n",
3081 srpt_unmap_sg_to_ib_sge(ch
, ioctx
);
3082 srpt_set_cmd_state(ioctx
, SRPT_STATE_DONE
);
3083 target_put_sess_cmd(ioctx
->ch
->sess
, &ioctx
->cmd
);
3087 static int srpt_queue_data_in(struct se_cmd
*cmd
)
3089 srpt_queue_response(cmd
);
3093 static void srpt_queue_tm_rsp(struct se_cmd
*cmd
)
3095 srpt_queue_response(cmd
);
3098 static int srpt_queue_status(struct se_cmd
*cmd
)
3100 struct srpt_send_ioctx
*ioctx
;
3102 ioctx
= container_of(cmd
, struct srpt_send_ioctx
, cmd
);
3103 BUG_ON(ioctx
->sense_data
!= cmd
->sense_buffer
);
3104 if (cmd
->se_cmd_flags
&
3105 (SCF_TRANSPORT_TASK_SENSE
| SCF_EMULATED_TASK_SENSE
))
3106 WARN_ON(cmd
->scsi_status
!= SAM_STAT_CHECK_CONDITION
);
3107 ioctx
->queue_status_only
= true;
3108 srpt_queue_response(cmd
);
3112 static void srpt_refresh_port_work(struct work_struct
*work
)
3114 struct srpt_port
*sport
= container_of(work
, struct srpt_port
, work
);
3116 srpt_refresh_port(sport
);
3119 static int srpt_ch_list_empty(struct srpt_device
*sdev
)
3123 spin_lock_irq(&sdev
->spinlock
);
3124 res
= list_empty(&sdev
->rch_list
);
3125 spin_unlock_irq(&sdev
->spinlock
);
3131 * srpt_release_sdev() - Free the channel resources associated with a target.
3133 static int srpt_release_sdev(struct srpt_device
*sdev
)
3135 struct srpt_rdma_ch
*ch
, *tmp_ch
;
3138 WARN_ON_ONCE(irqs_disabled());
3142 spin_lock_irq(&sdev
->spinlock
);
3143 list_for_each_entry_safe(ch
, tmp_ch
, &sdev
->rch_list
, list
)
3144 __srpt_close_ch(ch
);
3145 spin_unlock_irq(&sdev
->spinlock
);
3147 res
= wait_event_interruptible(sdev
->ch_releaseQ
,
3148 srpt_ch_list_empty(sdev
));
3150 printk(KERN_ERR
"%s: interrupted.\n", __func__
);
3155 static struct srpt_port
*__srpt_lookup_port(const char *name
)
3157 struct ib_device
*dev
;
3158 struct srpt_device
*sdev
;
3159 struct srpt_port
*sport
;
3162 list_for_each_entry(sdev
, &srpt_dev_list
, list
) {
3167 for (i
= 0; i
< dev
->phys_port_cnt
; i
++) {
3168 sport
= &sdev
->port
[i
];
3170 if (!strcmp(sport
->port_guid
, name
))
3178 static struct srpt_port
*srpt_lookup_port(const char *name
)
3180 struct srpt_port
*sport
;
3182 spin_lock(&srpt_dev_lock
);
3183 sport
= __srpt_lookup_port(name
);
3184 spin_unlock(&srpt_dev_lock
);
3190 * srpt_add_one() - Infiniband device addition callback function.
3192 static void srpt_add_one(struct ib_device
*device
)
3194 struct srpt_device
*sdev
;
3195 struct srpt_port
*sport
;
3196 struct ib_srq_init_attr srq_attr
;
3199 pr_debug("device = %p, device->dma_ops = %p\n", device
,
3202 sdev
= kzalloc(sizeof *sdev
, GFP_KERNEL
);
3206 sdev
->device
= device
;
3207 INIT_LIST_HEAD(&sdev
->rch_list
);
3208 init_waitqueue_head(&sdev
->ch_releaseQ
);
3209 spin_lock_init(&sdev
->spinlock
);
3211 if (ib_query_device(device
, &sdev
->dev_attr
))
3214 sdev
->pd
= ib_alloc_pd(device
);
3215 if (IS_ERR(sdev
->pd
))
3218 sdev
->mr
= ib_get_dma_mr(sdev
->pd
, IB_ACCESS_LOCAL_WRITE
);
3219 if (IS_ERR(sdev
->mr
))
3222 sdev
->srq_size
= min(srpt_srq_size
, sdev
->dev_attr
.max_srq_wr
);
3224 srq_attr
.event_handler
= srpt_srq_event
;
3225 srq_attr
.srq_context
= (void *)sdev
;
3226 srq_attr
.attr
.max_wr
= sdev
->srq_size
;
3227 srq_attr
.attr
.max_sge
= 1;
3228 srq_attr
.attr
.srq_limit
= 0;
3229 srq_attr
.srq_type
= IB_SRQT_BASIC
;
3231 sdev
->srq
= ib_create_srq(sdev
->pd
, &srq_attr
);
3232 if (IS_ERR(sdev
->srq
))
3235 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3236 __func__
, sdev
->srq_size
, sdev
->dev_attr
.max_srq_wr
,
3239 if (!srpt_service_guid
)
3240 srpt_service_guid
= be64_to_cpu(device
->node_guid
);
3242 sdev
->cm_id
= ib_create_cm_id(device
, srpt_cm_handler
, sdev
);
3243 if (IS_ERR(sdev
->cm_id
))
3246 /* print out target login information */
3247 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3248 "pkey=ffff,service_id=%016llx\n", srpt_service_guid
,
3249 srpt_service_guid
, srpt_service_guid
);
3252 * We do not have a consistent service_id (ie. also id_ext of target_id)
3253 * to identify this target. We currently use the guid of the first HCA
3254 * in the system as service_id; therefore, the target_id will change
3255 * if this HCA is gone bad and replaced by different HCA
3257 if (ib_cm_listen(sdev
->cm_id
, cpu_to_be64(srpt_service_guid
), 0, NULL
))
3260 INIT_IB_EVENT_HANDLER(&sdev
->event_handler
, sdev
->device
,
3261 srpt_event_handler
);
3262 if (ib_register_event_handler(&sdev
->event_handler
))
3265 sdev
->ioctx_ring
= (struct srpt_recv_ioctx
**)
3266 srpt_alloc_ioctx_ring(sdev
, sdev
->srq_size
,
3267 sizeof(*sdev
->ioctx_ring
[0]),
3268 srp_max_req_size
, DMA_FROM_DEVICE
);
3269 if (!sdev
->ioctx_ring
)
3272 for (i
= 0; i
< sdev
->srq_size
; ++i
)
3273 srpt_post_recv(sdev
, sdev
->ioctx_ring
[i
]);
3275 WARN_ON(sdev
->device
->phys_port_cnt
> ARRAY_SIZE(sdev
->port
));
3277 for (i
= 1; i
<= sdev
->device
->phys_port_cnt
; i
++) {
3278 sport
= &sdev
->port
[i
- 1];
3281 sport
->port_attrib
.srp_max_rdma_size
= DEFAULT_MAX_RDMA_SIZE
;
3282 sport
->port_attrib
.srp_max_rsp_size
= DEFAULT_MAX_RSP_SIZE
;
3283 sport
->port_attrib
.srp_sq_size
= DEF_SRPT_SQ_SIZE
;
3284 INIT_WORK(&sport
->work
, srpt_refresh_port_work
);
3285 INIT_LIST_HEAD(&sport
->port_acl_list
);
3286 spin_lock_init(&sport
->port_acl_lock
);
3288 if (srpt_refresh_port(sport
)) {
3289 printk(KERN_ERR
"MAD registration failed for %s-%d.\n",
3290 srpt_sdev_name(sdev
), i
);
3293 snprintf(sport
->port_guid
, sizeof(sport
->port_guid
),
3295 be64_to_cpu(sport
->gid
.global
.subnet_prefix
),
3296 be64_to_cpu(sport
->gid
.global
.interface_id
));
3299 spin_lock(&srpt_dev_lock
);
3300 list_add_tail(&sdev
->list
, &srpt_dev_list
);
3301 spin_unlock(&srpt_dev_lock
);
3304 ib_set_client_data(device
, &srpt_client
, sdev
);
3305 pr_debug("added %s.\n", device
->name
);
3309 srpt_free_ioctx_ring((struct srpt_ioctx
**)sdev
->ioctx_ring
, sdev
,
3310 sdev
->srq_size
, srp_max_req_size
,
3313 ib_unregister_event_handler(&sdev
->event_handler
);
3315 ib_destroy_cm_id(sdev
->cm_id
);
3317 ib_destroy_srq(sdev
->srq
);
3319 ib_dereg_mr(sdev
->mr
);
3321 ib_dealloc_pd(sdev
->pd
);
3326 printk(KERN_INFO
"%s(%s) failed.\n", __func__
, device
->name
);
3331 * srpt_remove_one() - InfiniBand device removal callback function.
3333 static void srpt_remove_one(struct ib_device
*device
)
3335 struct srpt_device
*sdev
;
3338 sdev
= ib_get_client_data(device
, &srpt_client
);
3340 printk(KERN_INFO
"%s(%s): nothing to do.\n", __func__
,
3345 srpt_unregister_mad_agent(sdev
);
3347 ib_unregister_event_handler(&sdev
->event_handler
);
3349 /* Cancel any work queued by the just unregistered IB event handler. */
3350 for (i
= 0; i
< sdev
->device
->phys_port_cnt
; i
++)
3351 cancel_work_sync(&sdev
->port
[i
].work
);
3353 ib_destroy_cm_id(sdev
->cm_id
);
3356 * Unregistering a target must happen after destroying sdev->cm_id
3357 * such that no new SRP_LOGIN_REQ information units can arrive while
3358 * destroying the target.
3360 spin_lock(&srpt_dev_lock
);
3361 list_del(&sdev
->list
);
3362 spin_unlock(&srpt_dev_lock
);
3363 srpt_release_sdev(sdev
);
3365 ib_destroy_srq(sdev
->srq
);
3366 ib_dereg_mr(sdev
->mr
);
3367 ib_dealloc_pd(sdev
->pd
);
3369 srpt_free_ioctx_ring((struct srpt_ioctx
**)sdev
->ioctx_ring
, sdev
,
3370 sdev
->srq_size
, srp_max_req_size
, DMA_FROM_DEVICE
);
3371 sdev
->ioctx_ring
= NULL
;
3375 static struct ib_client srpt_client
= {
3377 .add
= srpt_add_one
,
3378 .remove
= srpt_remove_one
3381 static int srpt_check_true(struct se_portal_group
*se_tpg
)
3386 static int srpt_check_false(struct se_portal_group
*se_tpg
)
3391 static char *srpt_get_fabric_name(void)
3396 static u8
srpt_get_fabric_proto_ident(struct se_portal_group
*se_tpg
)
3398 return SCSI_TRANSPORTID_PROTOCOLID_SRP
;
3401 static char *srpt_get_fabric_wwn(struct se_portal_group
*tpg
)
3403 struct srpt_port
*sport
= container_of(tpg
, struct srpt_port
, port_tpg_1
);
3405 return sport
->port_guid
;
3408 static u16
srpt_get_tag(struct se_portal_group
*tpg
)
3413 static u32
srpt_get_default_depth(struct se_portal_group
*se_tpg
)
3418 static u32
srpt_get_pr_transport_id(struct se_portal_group
*se_tpg
,
3419 struct se_node_acl
*se_nacl
,
3420 struct t10_pr_registration
*pr_reg
,
3421 int *format_code
, unsigned char *buf
)
3423 struct srpt_node_acl
*nacl
;
3424 struct spc_rdma_transport_id
*tr_id
;
3426 nacl
= container_of(se_nacl
, struct srpt_node_acl
, nacl
);
3427 tr_id
= (void *)buf
;
3428 tr_id
->protocol_identifier
= SCSI_TRANSPORTID_PROTOCOLID_SRP
;
3429 memcpy(tr_id
->i_port_id
, nacl
->i_port_id
, sizeof(tr_id
->i_port_id
));
3430 return sizeof(*tr_id
);
3433 static u32
srpt_get_pr_transport_id_len(struct se_portal_group
*se_tpg
,
3434 struct se_node_acl
*se_nacl
,
3435 struct t10_pr_registration
*pr_reg
,
3439 return sizeof(struct spc_rdma_transport_id
);
3442 static char *srpt_parse_pr_out_transport_id(struct se_portal_group
*se_tpg
,
3443 const char *buf
, u32
*out_tid_len
,
3444 char **port_nexus_ptr
)
3446 struct spc_rdma_transport_id
*tr_id
;
3448 *port_nexus_ptr
= NULL
;
3449 *out_tid_len
= sizeof(struct spc_rdma_transport_id
);
3450 tr_id
= (void *)buf
;
3451 return (char *)tr_id
->i_port_id
;
3454 static struct se_node_acl
*srpt_alloc_fabric_acl(struct se_portal_group
*se_tpg
)
3456 struct srpt_node_acl
*nacl
;
3458 nacl
= kzalloc(sizeof(struct srpt_node_acl
), GFP_KERNEL
);
3460 printk(KERN_ERR
"Unable to allocate struct srpt_node_acl\n");
3467 static void srpt_release_fabric_acl(struct se_portal_group
*se_tpg
,
3468 struct se_node_acl
*se_nacl
)
3470 struct srpt_node_acl
*nacl
;
3472 nacl
= container_of(se_nacl
, struct srpt_node_acl
, nacl
);
3476 static u32
srpt_tpg_get_inst_index(struct se_portal_group
*se_tpg
)
3481 static void srpt_release_cmd(struct se_cmd
*se_cmd
)
3483 struct srpt_send_ioctx
*ioctx
= container_of(se_cmd
,
3484 struct srpt_send_ioctx
, cmd
);
3485 struct srpt_rdma_ch
*ch
= ioctx
->ch
;
3486 unsigned long flags
;
3488 WARN_ON(ioctx
->state
!= SRPT_STATE_DONE
);
3489 WARN_ON(ioctx
->mapped_sg_count
!= 0);
3491 if (ioctx
->n_rbuf
> 1) {
3492 kfree(ioctx
->rbufs
);
3493 ioctx
->rbufs
= NULL
;
3497 spin_lock_irqsave(&ch
->spinlock
, flags
);
3498 list_add(&ioctx
->free_list
, &ch
->free_list
);
3499 spin_unlock_irqrestore(&ch
->spinlock
, flags
);
3503 * srpt_close_session() - Forcibly close a session.
3505 * Callback function invoked by the TCM core to clean up sessions associated
3506 * with a node ACL when the user invokes
3507 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3509 static void srpt_close_session(struct se_session
*se_sess
)
3511 DECLARE_COMPLETION_ONSTACK(release_done
);
3512 struct srpt_rdma_ch
*ch
;
3513 struct srpt_device
*sdev
;
3516 ch
= se_sess
->fabric_sess_ptr
;
3517 WARN_ON(ch
->sess
!= se_sess
);
3519 pr_debug("ch %p state %d\n", ch
, srpt_get_ch_state(ch
));
3521 sdev
= ch
->sport
->sdev
;
3522 spin_lock_irq(&sdev
->spinlock
);
3523 BUG_ON(ch
->release_done
);
3524 ch
->release_done
= &release_done
;
3525 __srpt_close_ch(ch
);
3526 spin_unlock_irq(&sdev
->spinlock
);
3528 res
= wait_for_completion_timeout(&release_done
, 60 * HZ
);
3533 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3535 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3536 * This object represents an arbitrary integer used to uniquely identify a
3537 * particular attached remote initiator port to a particular SCSI target port
3538 * within a particular SCSI target device within a particular SCSI instance.
3540 static u32
srpt_sess_get_index(struct se_session
*se_sess
)
3545 static void srpt_set_default_node_attrs(struct se_node_acl
*nacl
)
3549 static u32
srpt_get_task_tag(struct se_cmd
*se_cmd
)
3551 struct srpt_send_ioctx
*ioctx
;
3553 ioctx
= container_of(se_cmd
, struct srpt_send_ioctx
, cmd
);
3557 /* Note: only used from inside debug printk's by the TCM core. */
3558 static int srpt_get_tcm_cmd_state(struct se_cmd
*se_cmd
)
3560 struct srpt_send_ioctx
*ioctx
;
3562 ioctx
= container_of(se_cmd
, struct srpt_send_ioctx
, cmd
);
3563 return srpt_get_cmd_state(ioctx
);
3567 * srpt_parse_i_port_id() - Parse an initiator port ID.
3568 * @name: ASCII representation of a 128-bit initiator port ID.
3569 * @i_port_id: Binary 128-bit port ID.
3571 static int srpt_parse_i_port_id(u8 i_port_id
[16], const char *name
)
3574 unsigned len
, count
, leading_zero_bytes
;
3578 if (strnicmp(p
, "0x", 2) == 0)
3584 count
= min(len
/ 2, 16U);
3585 leading_zero_bytes
= 16 - count
;
3586 memset(i_port_id
, 0, leading_zero_bytes
);
3587 rc
= hex2bin(i_port_id
+ leading_zero_bytes
, p
, count
);
3589 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc
);
3596 * configfs callback function invoked for
3597 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3599 static struct se_node_acl
*srpt_make_nodeacl(struct se_portal_group
*tpg
,
3600 struct config_group
*group
,
3603 struct srpt_port
*sport
= container_of(tpg
, struct srpt_port
, port_tpg_1
);
3604 struct se_node_acl
*se_nacl
, *se_nacl_new
;
3605 struct srpt_node_acl
*nacl
;
3607 u32 nexus_depth
= 1;
3610 if (srpt_parse_i_port_id(i_port_id
, name
) < 0) {
3611 printk(KERN_ERR
"invalid initiator port ID %s\n", name
);
3616 se_nacl_new
= srpt_alloc_fabric_acl(tpg
);
3622 * nacl_new may be released by core_tpg_add_initiator_node_acl()
3623 * when converting a node ACL from demo mode to explict
3625 se_nacl
= core_tpg_add_initiator_node_acl(tpg
, se_nacl_new
, name
,
3627 if (IS_ERR(se_nacl
)) {
3628 ret
= PTR_ERR(se_nacl
);
3631 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */
3632 nacl
= container_of(se_nacl
, struct srpt_node_acl
, nacl
);
3633 memcpy(&nacl
->i_port_id
[0], &i_port_id
[0], 16);
3634 nacl
->sport
= sport
;
3636 spin_lock_irq(&sport
->port_acl_lock
);
3637 list_add_tail(&nacl
->list
, &sport
->port_acl_list
);
3638 spin_unlock_irq(&sport
->port_acl_lock
);
3642 return ERR_PTR(ret
);
3646 * configfs callback function invoked for
3647 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3649 static void srpt_drop_nodeacl(struct se_node_acl
*se_nacl
)
3651 struct srpt_node_acl
*nacl
;
3652 struct srpt_device
*sdev
;
3653 struct srpt_port
*sport
;
3655 nacl
= container_of(se_nacl
, struct srpt_node_acl
, nacl
);
3656 sport
= nacl
->sport
;
3658 spin_lock_irq(&sport
->port_acl_lock
);
3659 list_del(&nacl
->list
);
3660 spin_unlock_irq(&sport
->port_acl_lock
);
3661 core_tpg_del_initiator_node_acl(&sport
->port_tpg_1
, se_nacl
, 1);
3662 srpt_release_fabric_acl(NULL
, se_nacl
);
3665 static ssize_t
srpt_tpg_attrib_show_srp_max_rdma_size(
3666 struct se_portal_group
*se_tpg
,
3669 struct srpt_port
*sport
= container_of(se_tpg
, struct srpt_port
, port_tpg_1
);
3671 return sprintf(page
, "%u\n", sport
->port_attrib
.srp_max_rdma_size
);
3674 static ssize_t
srpt_tpg_attrib_store_srp_max_rdma_size(
3675 struct se_portal_group
*se_tpg
,
3679 struct srpt_port
*sport
= container_of(se_tpg
, struct srpt_port
, port_tpg_1
);
3683 ret
= strict_strtoul(page
, 0, &val
);
3685 pr_err("strict_strtoul() failed with ret: %d\n", ret
);
3688 if (val
> MAX_SRPT_RDMA_SIZE
) {
3689 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val
,
3690 MAX_SRPT_RDMA_SIZE
);
3693 if (val
< DEFAULT_MAX_RDMA_SIZE
) {
3694 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3695 val
, DEFAULT_MAX_RDMA_SIZE
);
3698 sport
->port_attrib
.srp_max_rdma_size
= val
;
3703 TF_TPG_ATTRIB_ATTR(srpt
, srp_max_rdma_size
, S_IRUGO
| S_IWUSR
);
3705 static ssize_t
srpt_tpg_attrib_show_srp_max_rsp_size(
3706 struct se_portal_group
*se_tpg
,
3709 struct srpt_port
*sport
= container_of(se_tpg
, struct srpt_port
, port_tpg_1
);
3711 return sprintf(page
, "%u\n", sport
->port_attrib
.srp_max_rsp_size
);
3714 static ssize_t
srpt_tpg_attrib_store_srp_max_rsp_size(
3715 struct se_portal_group
*se_tpg
,
3719 struct srpt_port
*sport
= container_of(se_tpg
, struct srpt_port
, port_tpg_1
);
3723 ret
= strict_strtoul(page
, 0, &val
);
3725 pr_err("strict_strtoul() failed with ret: %d\n", ret
);
3728 if (val
> MAX_SRPT_RSP_SIZE
) {
3729 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val
,
3733 if (val
< MIN_MAX_RSP_SIZE
) {
3734 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val
,
3738 sport
->port_attrib
.srp_max_rsp_size
= val
;
3743 TF_TPG_ATTRIB_ATTR(srpt
, srp_max_rsp_size
, S_IRUGO
| S_IWUSR
);
3745 static ssize_t
srpt_tpg_attrib_show_srp_sq_size(
3746 struct se_portal_group
*se_tpg
,
3749 struct srpt_port
*sport
= container_of(se_tpg
, struct srpt_port
, port_tpg_1
);
3751 return sprintf(page
, "%u\n", sport
->port_attrib
.srp_sq_size
);
3754 static ssize_t
srpt_tpg_attrib_store_srp_sq_size(
3755 struct se_portal_group
*se_tpg
,
3759 struct srpt_port
*sport
= container_of(se_tpg
, struct srpt_port
, port_tpg_1
);
3763 ret
= strict_strtoul(page
, 0, &val
);
3765 pr_err("strict_strtoul() failed with ret: %d\n", ret
);
3768 if (val
> MAX_SRPT_SRQ_SIZE
) {
3769 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val
,
3773 if (val
< MIN_SRPT_SRQ_SIZE
) {
3774 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val
,
3778 sport
->port_attrib
.srp_sq_size
= val
;
3783 TF_TPG_ATTRIB_ATTR(srpt
, srp_sq_size
, S_IRUGO
| S_IWUSR
);
3785 static struct configfs_attribute
*srpt_tpg_attrib_attrs
[] = {
3786 &srpt_tpg_attrib_srp_max_rdma_size
.attr
,
3787 &srpt_tpg_attrib_srp_max_rsp_size
.attr
,
3788 &srpt_tpg_attrib_srp_sq_size
.attr
,
3792 static ssize_t
srpt_tpg_show_enable(
3793 struct se_portal_group
*se_tpg
,
3796 struct srpt_port
*sport
= container_of(se_tpg
, struct srpt_port
, port_tpg_1
);
3798 return snprintf(page
, PAGE_SIZE
, "%d\n", (sport
->enabled
) ? 1: 0);
3801 static ssize_t
srpt_tpg_store_enable(
3802 struct se_portal_group
*se_tpg
,
3806 struct srpt_port
*sport
= container_of(se_tpg
, struct srpt_port
, port_tpg_1
);
3810 ret
= strict_strtoul(page
, 0, &tmp
);
3812 printk(KERN_ERR
"Unable to extract srpt_tpg_store_enable\n");
3816 if ((tmp
!= 0) && (tmp
!= 1)) {
3817 printk(KERN_ERR
"Illegal value for srpt_tpg_store_enable: %lu\n", tmp
);
3821 sport
->enabled
= true;
3823 sport
->enabled
= false;
3828 TF_TPG_BASE_ATTR(srpt
, enable
, S_IRUGO
| S_IWUSR
);
3830 static struct configfs_attribute
*srpt_tpg_attrs
[] = {
3831 &srpt_tpg_enable
.attr
,
3836 * configfs callback invoked for
3837 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3839 static struct se_portal_group
*srpt_make_tpg(struct se_wwn
*wwn
,
3840 struct config_group
*group
,
3843 struct srpt_port
*sport
= container_of(wwn
, struct srpt_port
, port_wwn
);
3846 /* Initialize sport->port_wwn and sport->port_tpg_1 */
3847 res
= core_tpg_register(&srpt_target
->tf_ops
, &sport
->port_wwn
,
3848 &sport
->port_tpg_1
, sport
, TRANSPORT_TPG_TYPE_NORMAL
);
3850 return ERR_PTR(res
);
3852 return &sport
->port_tpg_1
;
3856 * configfs callback invoked for
3857 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3859 static void srpt_drop_tpg(struct se_portal_group
*tpg
)
3861 struct srpt_port
*sport
= container_of(tpg
,
3862 struct srpt_port
, port_tpg_1
);
3864 sport
->enabled
= false;
3865 core_tpg_deregister(&sport
->port_tpg_1
);
3869 * configfs callback invoked for
3870 * mkdir /sys/kernel/config/target/$driver/$port
3872 static struct se_wwn
*srpt_make_tport(struct target_fabric_configfs
*tf
,
3873 struct config_group
*group
,
3876 struct srpt_port
*sport
;
3879 sport
= srpt_lookup_port(name
);
3880 pr_debug("make_tport(%s)\n", name
);
3885 return &sport
->port_wwn
;
3888 return ERR_PTR(ret
);
3892 * configfs callback invoked for
3893 * rmdir /sys/kernel/config/target/$driver/$port
3895 static void srpt_drop_tport(struct se_wwn
*wwn
)
3897 struct srpt_port
*sport
= container_of(wwn
, struct srpt_port
, port_wwn
);
3899 pr_debug("drop_tport(%s\n", config_item_name(&sport
->port_wwn
.wwn_group
.cg_item
));
3902 static ssize_t
srpt_wwn_show_attr_version(struct target_fabric_configfs
*tf
,
3905 return scnprintf(buf
, PAGE_SIZE
, "%s\n", DRV_VERSION
);
3908 TF_WWN_ATTR_RO(srpt
, version
);
3910 static struct configfs_attribute
*srpt_wwn_attrs
[] = {
3911 &srpt_wwn_version
.attr
,
3915 static struct target_core_fabric_ops srpt_template
= {
3916 .get_fabric_name
= srpt_get_fabric_name
,
3917 .get_fabric_proto_ident
= srpt_get_fabric_proto_ident
,
3918 .tpg_get_wwn
= srpt_get_fabric_wwn
,
3919 .tpg_get_tag
= srpt_get_tag
,
3920 .tpg_get_default_depth
= srpt_get_default_depth
,
3921 .tpg_get_pr_transport_id
= srpt_get_pr_transport_id
,
3922 .tpg_get_pr_transport_id_len
= srpt_get_pr_transport_id_len
,
3923 .tpg_parse_pr_out_transport_id
= srpt_parse_pr_out_transport_id
,
3924 .tpg_check_demo_mode
= srpt_check_false
,
3925 .tpg_check_demo_mode_cache
= srpt_check_true
,
3926 .tpg_check_demo_mode_write_protect
= srpt_check_true
,
3927 .tpg_check_prod_mode_write_protect
= srpt_check_false
,
3928 .tpg_alloc_fabric_acl
= srpt_alloc_fabric_acl
,
3929 .tpg_release_fabric_acl
= srpt_release_fabric_acl
,
3930 .tpg_get_inst_index
= srpt_tpg_get_inst_index
,
3931 .release_cmd
= srpt_release_cmd
,
3932 .check_stop_free
= srpt_check_stop_free
,
3933 .shutdown_session
= srpt_shutdown_session
,
3934 .close_session
= srpt_close_session
,
3935 .sess_get_index
= srpt_sess_get_index
,
3936 .sess_get_initiator_sid
= NULL
,
3937 .write_pending
= srpt_write_pending
,
3938 .write_pending_status
= srpt_write_pending_status
,
3939 .set_default_node_attributes
= srpt_set_default_node_attrs
,
3940 .get_task_tag
= srpt_get_task_tag
,
3941 .get_cmd_state
= srpt_get_tcm_cmd_state
,
3942 .queue_data_in
= srpt_queue_data_in
,
3943 .queue_status
= srpt_queue_status
,
3944 .queue_tm_rsp
= srpt_queue_tm_rsp
,
3946 * Setup function pointers for generic logic in
3947 * target_core_fabric_configfs.c
3949 .fabric_make_wwn
= srpt_make_tport
,
3950 .fabric_drop_wwn
= srpt_drop_tport
,
3951 .fabric_make_tpg
= srpt_make_tpg
,
3952 .fabric_drop_tpg
= srpt_drop_tpg
,
3953 .fabric_post_link
= NULL
,
3954 .fabric_pre_unlink
= NULL
,
3955 .fabric_make_np
= NULL
,
3956 .fabric_drop_np
= NULL
,
3957 .fabric_make_nodeacl
= srpt_make_nodeacl
,
3958 .fabric_drop_nodeacl
= srpt_drop_nodeacl
,
3962 * srpt_init_module() - Kernel module initialization.
3964 * Note: Since ib_register_client() registers callback functions, and since at
3965 * least one of these callback functions (srpt_add_one()) calls target core
3966 * functions, this driver must be registered with the target core before
3967 * ib_register_client() is called.
3969 static int __init
srpt_init_module(void)
3974 if (srp_max_req_size
< MIN_MAX_REQ_SIZE
) {
3975 printk(KERN_ERR
"invalid value %d for kernel module parameter"
3976 " srp_max_req_size -- must be at least %d.\n",
3977 srp_max_req_size
, MIN_MAX_REQ_SIZE
);
3981 if (srpt_srq_size
< MIN_SRPT_SRQ_SIZE
3982 || srpt_srq_size
> MAX_SRPT_SRQ_SIZE
) {
3983 printk(KERN_ERR
"invalid value %d for kernel module parameter"
3984 " srpt_srq_size -- must be in the range [%d..%d].\n",
3985 srpt_srq_size
, MIN_SRPT_SRQ_SIZE
, MAX_SRPT_SRQ_SIZE
);
3989 srpt_target
= target_fabric_configfs_init(THIS_MODULE
, "srpt");
3990 if (IS_ERR(srpt_target
)) {
3991 printk(KERN_ERR
"couldn't register\n");
3992 ret
= PTR_ERR(srpt_target
);
3996 srpt_target
->tf_ops
= srpt_template
;
3999 * Set up default attribute lists.
4001 srpt_target
->tf_cit_tmpl
.tfc_wwn_cit
.ct_attrs
= srpt_wwn_attrs
;
4002 srpt_target
->tf_cit_tmpl
.tfc_tpg_base_cit
.ct_attrs
= srpt_tpg_attrs
;
4003 srpt_target
->tf_cit_tmpl
.tfc_tpg_attrib_cit
.ct_attrs
= srpt_tpg_attrib_attrs
;
4004 srpt_target
->tf_cit_tmpl
.tfc_tpg_param_cit
.ct_attrs
= NULL
;
4005 srpt_target
->tf_cit_tmpl
.tfc_tpg_np_base_cit
.ct_attrs
= NULL
;
4006 srpt_target
->tf_cit_tmpl
.tfc_tpg_nacl_base_cit
.ct_attrs
= NULL
;
4007 srpt_target
->tf_cit_tmpl
.tfc_tpg_nacl_attrib_cit
.ct_attrs
= NULL
;
4008 srpt_target
->tf_cit_tmpl
.tfc_tpg_nacl_auth_cit
.ct_attrs
= NULL
;
4009 srpt_target
->tf_cit_tmpl
.tfc_tpg_nacl_param_cit
.ct_attrs
= NULL
;
4011 ret
= target_fabric_configfs_register(srpt_target
);
4013 printk(KERN_ERR
"couldn't register\n");
4014 goto out_free_target
;
4017 ret
= ib_register_client(&srpt_client
);
4019 printk(KERN_ERR
"couldn't register IB client\n");
4020 goto out_unregister_target
;
4025 out_unregister_target
:
4026 target_fabric_configfs_deregister(srpt_target
);
4030 target_fabric_configfs_free(srpt_target
);
4035 static void __exit
srpt_cleanup_module(void)
4037 ib_unregister_client(&srpt_client
);
4038 target_fabric_configfs_deregister(srpt_target
);
4042 module_init(srpt_init_module
);
4043 module_exit(srpt_cleanup_module
);