x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / iommu / intel-iommu.c
blob911ecb230b5a1cfb5aea5e2f0acfae31ef74d932
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <asm/irq_remapping.h>
46 #include <asm/cacheflush.h>
47 #include <asm/iommu.h>
49 #include "irq_remapping.h"
50 #include "pci.h"
52 #define ROOT_SIZE VTD_PAGE_SIZE
53 #define CONTEXT_SIZE VTD_PAGE_SIZE
55 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
56 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
57 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
59 #define IOAPIC_RANGE_START (0xfee00000)
60 #define IOAPIC_RANGE_END (0xfeefffff)
61 #define IOVA_START_ADDR (0x1000)
63 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
65 #define MAX_AGAW_WIDTH 64
67 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
68 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
70 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
71 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
72 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
73 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
74 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
76 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
77 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
78 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
80 /* page table handling */
81 #define LEVEL_STRIDE (9)
82 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
85 * This bitmap is used to advertise the page sizes our hardware support
86 * to the IOMMU core, which will then use this information to split
87 * physically contiguous memory regions it is mapping into page sizes
88 * that we support.
90 * Traditionally the IOMMU core just handed us the mappings directly,
91 * after making sure the size is an order of a 4KiB page and that the
92 * mapping has natural alignment.
94 * To retain this behavior, we currently advertise that we support
95 * all page sizes that are an order of 4KiB.
97 * If at some point we'd like to utilize the IOMMU core's new behavior,
98 * we could change this to advertise the real page sizes we support.
100 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
102 static inline int agaw_to_level(int agaw)
104 return agaw + 2;
107 static inline int agaw_to_width(int agaw)
109 return 30 + agaw * LEVEL_STRIDE;
112 static inline int width_to_agaw(int width)
114 return (width - 30) / LEVEL_STRIDE;
117 static inline unsigned int level_to_offset_bits(int level)
119 return (level - 1) * LEVEL_STRIDE;
122 static inline int pfn_level_offset(unsigned long pfn, int level)
124 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
127 static inline unsigned long level_mask(int level)
129 return -1UL << level_to_offset_bits(level);
132 static inline unsigned long level_size(int level)
134 return 1UL << level_to_offset_bits(level);
137 static inline unsigned long align_to_level(unsigned long pfn, int level)
139 return (pfn + level_size(level) - 1) & level_mask(level);
142 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
144 return 1 << ((lvl - 1) * LEVEL_STRIDE);
147 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
148 are never going to work. */
149 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
151 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
154 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
156 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
158 static inline unsigned long page_to_dma_pfn(struct page *pg)
160 return mm_to_dma_pfn(page_to_pfn(pg));
162 static inline unsigned long virt_to_dma_pfn(void *p)
164 return page_to_dma_pfn(virt_to_page(p));
167 /* global iommu list, set NULL for ignored DMAR units */
168 static struct intel_iommu **g_iommus;
170 static void __init check_tylersburg_isoch(void);
171 static int rwbf_quirk;
174 * set to 1 to panic kernel if can't successfully enable VT-d
175 * (used when kernel is launched w/ TXT)
177 static int force_on = 0;
180 * 0: Present
181 * 1-11: Reserved
182 * 12-63: Context Ptr (12 - (haw-1))
183 * 64-127: Reserved
185 struct root_entry {
186 u64 val;
187 u64 rsvd1;
189 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
190 static inline bool root_present(struct root_entry *root)
192 return (root->val & 1);
194 static inline void set_root_present(struct root_entry *root)
196 root->val |= 1;
198 static inline void set_root_value(struct root_entry *root, unsigned long value)
200 root->val |= value & VTD_PAGE_MASK;
203 static inline struct context_entry *
204 get_context_addr_from_root(struct root_entry *root)
206 return (struct context_entry *)
207 (root_present(root)?phys_to_virt(
208 root->val & VTD_PAGE_MASK) :
209 NULL);
213 * low 64 bits:
214 * 0: present
215 * 1: fault processing disable
216 * 2-3: translation type
217 * 12-63: address space root
218 * high 64 bits:
219 * 0-2: address width
220 * 3-6: aval
221 * 8-23: domain id
223 struct context_entry {
224 u64 lo;
225 u64 hi;
228 static inline bool context_present(struct context_entry *context)
230 return (context->lo & 1);
232 static inline void context_set_present(struct context_entry *context)
234 context->lo |= 1;
237 static inline void context_set_fault_enable(struct context_entry *context)
239 context->lo &= (((u64)-1) << 2) | 1;
242 static inline void context_set_translation_type(struct context_entry *context,
243 unsigned long value)
245 context->lo &= (((u64)-1) << 4) | 3;
246 context->lo |= (value & 3) << 2;
249 static inline void context_set_address_root(struct context_entry *context,
250 unsigned long value)
252 context->lo |= value & VTD_PAGE_MASK;
255 static inline void context_set_address_width(struct context_entry *context,
256 unsigned long value)
258 context->hi |= value & 7;
261 static inline void context_set_domain_id(struct context_entry *context,
262 unsigned long value)
264 context->hi |= (value & ((1 << 16) - 1)) << 8;
267 static inline void context_clear_entry(struct context_entry *context)
269 context->lo = 0;
270 context->hi = 0;
274 * 0: readable
275 * 1: writable
276 * 2-6: reserved
277 * 7: super page
278 * 8-10: available
279 * 11: snoop behavior
280 * 12-63: Host physcial address
282 struct dma_pte {
283 u64 val;
286 static inline void dma_clear_pte(struct dma_pte *pte)
288 pte->val = 0;
291 static inline void dma_set_pte_readable(struct dma_pte *pte)
293 pte->val |= DMA_PTE_READ;
296 static inline void dma_set_pte_writable(struct dma_pte *pte)
298 pte->val |= DMA_PTE_WRITE;
301 static inline void dma_set_pte_snp(struct dma_pte *pte)
303 pte->val |= DMA_PTE_SNP;
306 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
308 pte->val = (pte->val & ~3) | (prot & 3);
311 static inline u64 dma_pte_addr(struct dma_pte *pte)
313 #ifdef CONFIG_64BIT
314 return pte->val & VTD_PAGE_MASK;
315 #else
316 /* Must have a full atomic 64-bit read */
317 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
318 #endif
321 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
323 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
326 static inline bool dma_pte_present(struct dma_pte *pte)
328 return (pte->val & 3) != 0;
331 static inline bool dma_pte_superpage(struct dma_pte *pte)
333 return (pte->val & (1 << 7));
336 static inline int first_pte_in_page(struct dma_pte *pte)
338 return !((unsigned long)pte & ~VTD_PAGE_MASK);
342 * This domain is a statically identity mapping domain.
343 * 1. This domain creats a static 1:1 mapping to all usable memory.
344 * 2. It maps to each iommu if successful.
345 * 3. Each iommu mapps to this domain if successful.
347 static struct dmar_domain *si_domain;
348 static int hw_pass_through = 1;
350 /* devices under the same p2p bridge are owned in one domain */
351 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
353 /* domain represents a virtual machine, more than one devices
354 * across iommus may be owned in one domain, e.g. kvm guest.
356 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
358 /* si_domain contains mulitple devices */
359 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
361 /* define the limit of IOMMUs supported in each domain */
362 #ifdef CONFIG_X86
363 # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS
364 #else
365 # define IOMMU_UNITS_SUPPORTED 64
366 #endif
368 struct dmar_domain {
369 int id; /* domain id */
370 int nid; /* node id */
371 DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED);
372 /* bitmap of iommus this domain uses*/
374 struct list_head devices; /* all devices' list */
375 struct iova_domain iovad; /* iova's that belong to this domain */
377 struct dma_pte *pgd; /* virtual address */
378 int gaw; /* max guest address width */
380 /* adjusted guest address width, 0 is level 2 30-bit */
381 int agaw;
383 int flags; /* flags to find out type of domain */
385 int iommu_coherency;/* indicate coherency of iommu access */
386 int iommu_snooping; /* indicate snooping control feature*/
387 int iommu_count; /* reference count of iommu */
388 int iommu_superpage;/* Level of superpages supported:
389 0 == 4KiB (no superpages), 1 == 2MiB,
390 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
391 spinlock_t iommu_lock; /* protect iommu set in domain */
392 u64 max_addr; /* maximum mapped address */
395 /* PCI domain-device relationship */
396 struct device_domain_info {
397 struct list_head link; /* link to domain siblings */
398 struct list_head global; /* link to global list */
399 int segment; /* PCI domain */
400 u8 bus; /* PCI bus number */
401 u8 devfn; /* PCI devfn number */
402 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
403 struct intel_iommu *iommu; /* IOMMU used by this device */
404 struct dmar_domain *domain; /* pointer to domain */
407 static void flush_unmaps_timeout(unsigned long data);
409 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
411 #define HIGH_WATER_MARK 250
412 struct deferred_flush_tables {
413 int next;
414 struct iova *iova[HIGH_WATER_MARK];
415 struct dmar_domain *domain[HIGH_WATER_MARK];
418 static struct deferred_flush_tables *deferred_flush;
420 /* bitmap for indexing intel_iommus */
421 static int g_num_of_iommus;
423 static DEFINE_SPINLOCK(async_umap_flush_lock);
424 static LIST_HEAD(unmaps_to_do);
426 static int timer_on;
427 static long list_size;
429 static void domain_remove_dev_info(struct dmar_domain *domain);
431 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
432 int dmar_disabled = 0;
433 #else
434 int dmar_disabled = 1;
435 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
437 int intel_iommu_enabled = 0;
438 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
440 static int dmar_map_gfx = 1;
441 static int dmar_forcedac;
442 static int intel_iommu_strict;
443 static int intel_iommu_superpage = 1;
445 int intel_iommu_gfx_mapped;
446 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
448 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
449 static DEFINE_SPINLOCK(device_domain_lock);
450 static LIST_HEAD(device_domain_list);
452 static struct iommu_ops intel_iommu_ops;
454 static int __init intel_iommu_setup(char *str)
456 if (!str)
457 return -EINVAL;
458 while (*str) {
459 if (!strncmp(str, "on", 2)) {
460 dmar_disabled = 0;
461 printk(KERN_INFO "Intel-IOMMU: enabled\n");
462 } else if (!strncmp(str, "off", 3)) {
463 dmar_disabled = 1;
464 printk(KERN_INFO "Intel-IOMMU: disabled\n");
465 } else if (!strncmp(str, "igfx_off", 8)) {
466 dmar_map_gfx = 0;
467 printk(KERN_INFO
468 "Intel-IOMMU: disable GFX device mapping\n");
469 } else if (!strncmp(str, "forcedac", 8)) {
470 printk(KERN_INFO
471 "Intel-IOMMU: Forcing DAC for PCI devices\n");
472 dmar_forcedac = 1;
473 } else if (!strncmp(str, "strict", 6)) {
474 printk(KERN_INFO
475 "Intel-IOMMU: disable batched IOTLB flush\n");
476 intel_iommu_strict = 1;
477 } else if (!strncmp(str, "sp_off", 6)) {
478 printk(KERN_INFO
479 "Intel-IOMMU: disable supported super page\n");
480 intel_iommu_superpage = 0;
483 str += strcspn(str, ",");
484 while (*str == ',')
485 str++;
487 return 0;
489 __setup("intel_iommu=", intel_iommu_setup);
491 static struct kmem_cache *iommu_domain_cache;
492 static struct kmem_cache *iommu_devinfo_cache;
493 static struct kmem_cache *iommu_iova_cache;
495 static inline void *alloc_pgtable_page(int node)
497 struct page *page;
498 void *vaddr = NULL;
500 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
501 if (page)
502 vaddr = page_address(page);
503 return vaddr;
506 static inline void free_pgtable_page(void *vaddr)
508 free_page((unsigned long)vaddr);
511 static inline void *alloc_domain_mem(void)
513 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
516 static void free_domain_mem(void *vaddr)
518 kmem_cache_free(iommu_domain_cache, vaddr);
521 static inline void * alloc_devinfo_mem(void)
523 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
526 static inline void free_devinfo_mem(void *vaddr)
528 kmem_cache_free(iommu_devinfo_cache, vaddr);
531 struct iova *alloc_iova_mem(void)
533 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
536 void free_iova_mem(struct iova *iova)
538 kmem_cache_free(iommu_iova_cache, iova);
542 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
544 unsigned long sagaw;
545 int agaw = -1;
547 sagaw = cap_sagaw(iommu->cap);
548 for (agaw = width_to_agaw(max_gaw);
549 agaw >= 0; agaw--) {
550 if (test_bit(agaw, &sagaw))
551 break;
554 return agaw;
558 * Calculate max SAGAW for each iommu.
560 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
562 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
566 * calculate agaw for each iommu.
567 * "SAGAW" may be different across iommus, use a default agaw, and
568 * get a supported less agaw for iommus that don't support the default agaw.
570 int iommu_calculate_agaw(struct intel_iommu *iommu)
572 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
575 /* This functionin only returns single iommu in a domain */
576 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
578 int iommu_id;
580 /* si_domain and vm domain should not get here. */
581 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
582 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
584 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
585 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
586 return NULL;
588 return g_iommus[iommu_id];
591 static void domain_update_iommu_coherency(struct dmar_domain *domain)
593 int i;
595 i = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
597 domain->iommu_coherency = i < g_num_of_iommus ? 1 : 0;
599 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
600 if (!ecap_coherent(g_iommus[i]->ecap)) {
601 domain->iommu_coherency = 0;
602 break;
607 static void domain_update_iommu_snooping(struct dmar_domain *domain)
609 int i;
611 domain->iommu_snooping = 1;
613 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
614 if (!ecap_sc_support(g_iommus[i]->ecap)) {
615 domain->iommu_snooping = 0;
616 break;
621 static void domain_update_iommu_superpage(struct dmar_domain *domain)
623 struct dmar_drhd_unit *drhd;
624 struct intel_iommu *iommu = NULL;
625 int mask = 0xf;
627 if (!intel_iommu_superpage) {
628 domain->iommu_superpage = 0;
629 return;
632 /* set iommu_superpage to the smallest common denominator */
633 for_each_active_iommu(iommu, drhd) {
634 mask &= cap_super_page_val(iommu->cap);
635 if (!mask) {
636 break;
639 domain->iommu_superpage = fls(mask);
642 /* Some capabilities may be different across iommus */
643 static void domain_update_iommu_cap(struct dmar_domain *domain)
645 domain_update_iommu_coherency(domain);
646 domain_update_iommu_snooping(domain);
647 domain_update_iommu_superpage(domain);
650 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
652 struct dmar_drhd_unit *drhd = NULL;
653 int i;
655 for_each_drhd_unit(drhd) {
656 if (drhd->ignored)
657 continue;
658 if (segment != drhd->segment)
659 continue;
661 for (i = 0; i < drhd->devices_cnt; i++) {
662 if (drhd->devices[i] &&
663 drhd->devices[i]->bus->number == bus &&
664 drhd->devices[i]->devfn == devfn)
665 return drhd->iommu;
666 if (drhd->devices[i] &&
667 drhd->devices[i]->subordinate &&
668 drhd->devices[i]->subordinate->number <= bus &&
669 drhd->devices[i]->subordinate->busn_res.end >= bus)
670 return drhd->iommu;
673 if (drhd->include_all)
674 return drhd->iommu;
677 return NULL;
680 static void domain_flush_cache(struct dmar_domain *domain,
681 void *addr, int size)
683 if (!domain->iommu_coherency)
684 clflush_cache_range(addr, size);
687 /* Gets context entry for a given bus and devfn */
688 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
689 u8 bus, u8 devfn)
691 struct root_entry *root;
692 struct context_entry *context;
693 unsigned long phy_addr;
694 unsigned long flags;
696 spin_lock_irqsave(&iommu->lock, flags);
697 root = &iommu->root_entry[bus];
698 context = get_context_addr_from_root(root);
699 if (!context) {
700 context = (struct context_entry *)
701 alloc_pgtable_page(iommu->node);
702 if (!context) {
703 spin_unlock_irqrestore(&iommu->lock, flags);
704 return NULL;
706 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
707 phy_addr = virt_to_phys((void *)context);
708 set_root_value(root, phy_addr);
709 set_root_present(root);
710 __iommu_flush_cache(iommu, root, sizeof(*root));
712 spin_unlock_irqrestore(&iommu->lock, flags);
713 return &context[devfn];
716 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
718 struct root_entry *root;
719 struct context_entry *context;
720 int ret;
721 unsigned long flags;
723 spin_lock_irqsave(&iommu->lock, flags);
724 root = &iommu->root_entry[bus];
725 context = get_context_addr_from_root(root);
726 if (!context) {
727 ret = 0;
728 goto out;
730 ret = context_present(&context[devfn]);
731 out:
732 spin_unlock_irqrestore(&iommu->lock, flags);
733 return ret;
736 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
738 struct root_entry *root;
739 struct context_entry *context;
740 unsigned long flags;
742 spin_lock_irqsave(&iommu->lock, flags);
743 root = &iommu->root_entry[bus];
744 context = get_context_addr_from_root(root);
745 if (context) {
746 context_clear_entry(&context[devfn]);
747 __iommu_flush_cache(iommu, &context[devfn], \
748 sizeof(*context));
750 spin_unlock_irqrestore(&iommu->lock, flags);
753 static void free_context_table(struct intel_iommu *iommu)
755 struct root_entry *root;
756 int i;
757 unsigned long flags;
758 struct context_entry *context;
760 spin_lock_irqsave(&iommu->lock, flags);
761 if (!iommu->root_entry) {
762 goto out;
764 for (i = 0; i < ROOT_ENTRY_NR; i++) {
765 root = &iommu->root_entry[i];
766 context = get_context_addr_from_root(root);
767 if (context)
768 free_pgtable_page(context);
770 free_pgtable_page(iommu->root_entry);
771 iommu->root_entry = NULL;
772 out:
773 spin_unlock_irqrestore(&iommu->lock, flags);
776 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
777 unsigned long pfn, int target_level)
779 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
780 struct dma_pte *parent, *pte = NULL;
781 int level = agaw_to_level(domain->agaw);
782 int offset;
784 BUG_ON(!domain->pgd);
786 if (addr_width < BITS_PER_LONG && pfn >> addr_width)
787 /* Address beyond IOMMU's addressing capabilities. */
788 return NULL;
790 parent = domain->pgd;
792 while (level > 0) {
793 void *tmp_page;
795 offset = pfn_level_offset(pfn, level);
796 pte = &parent[offset];
797 if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
798 break;
799 if (level == target_level)
800 break;
802 if (!dma_pte_present(pte)) {
803 uint64_t pteval;
805 tmp_page = alloc_pgtable_page(domain->nid);
807 if (!tmp_page)
808 return NULL;
810 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
811 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
812 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
813 /* Someone else set it while we were thinking; use theirs. */
814 free_pgtable_page(tmp_page);
815 } else {
816 dma_pte_addr(pte);
817 domain_flush_cache(domain, pte, sizeof(*pte));
820 parent = phys_to_virt(dma_pte_addr(pte));
821 level--;
824 return pte;
828 /* return address's pte at specific level */
829 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
830 unsigned long pfn,
831 int level, int *large_page)
833 struct dma_pte *parent, *pte = NULL;
834 int total = agaw_to_level(domain->agaw);
835 int offset;
837 parent = domain->pgd;
838 while (level <= total) {
839 offset = pfn_level_offset(pfn, total);
840 pte = &parent[offset];
841 if (level == total)
842 return pte;
844 if (!dma_pte_present(pte)) {
845 *large_page = total;
846 break;
849 if (pte->val & DMA_PTE_LARGE_PAGE) {
850 *large_page = total;
851 return pte;
854 parent = phys_to_virt(dma_pte_addr(pte));
855 total--;
857 return NULL;
860 /* clear last level pte, a tlb flush should be followed */
861 static int dma_pte_clear_range(struct dmar_domain *domain,
862 unsigned long start_pfn,
863 unsigned long last_pfn)
865 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
866 unsigned int large_page = 1;
867 struct dma_pte *first_pte, *pte;
868 int order;
870 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
871 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
872 BUG_ON(start_pfn > last_pfn);
874 /* we don't need lock here; nobody else touches the iova range */
875 do {
876 large_page = 1;
877 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
878 if (!pte) {
879 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
880 continue;
882 do {
883 dma_clear_pte(pte);
884 start_pfn += lvl_to_nr_pages(large_page);
885 pte++;
886 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
888 domain_flush_cache(domain, first_pte,
889 (void *)pte - (void *)first_pte);
891 } while (start_pfn && start_pfn <= last_pfn);
893 order = (large_page - 1) * 9;
894 return order;
897 static void dma_pte_free_level(struct dmar_domain *domain, int level,
898 struct dma_pte *pte, unsigned long pfn,
899 unsigned long start_pfn, unsigned long last_pfn)
901 pfn = max(start_pfn, pfn);
902 pte = &pte[pfn_level_offset(pfn, level)];
904 do {
905 unsigned long level_pfn;
906 struct dma_pte *level_pte;
908 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
909 goto next;
911 level_pfn = pfn & level_mask(level - 1);
912 level_pte = phys_to_virt(dma_pte_addr(pte));
914 if (level > 2)
915 dma_pte_free_level(domain, level - 1, level_pte,
916 level_pfn, start_pfn, last_pfn);
918 /* If range covers entire pagetable, free it */
919 if (!(start_pfn > level_pfn ||
920 last_pfn < level_pfn + level_size(level) - 1)) {
921 dma_clear_pte(pte);
922 domain_flush_cache(domain, pte, sizeof(*pte));
923 free_pgtable_page(level_pte);
925 next:
926 pfn += level_size(level);
927 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
930 /* free page table pages. last level pte should already be cleared */
931 static void dma_pte_free_pagetable(struct dmar_domain *domain,
932 unsigned long start_pfn,
933 unsigned long last_pfn)
935 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
937 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
938 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
939 BUG_ON(start_pfn > last_pfn);
941 /* We don't need lock here; nobody else touches the iova range */
942 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
943 domain->pgd, 0, start_pfn, last_pfn);
945 /* free pgd */
946 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
947 free_pgtable_page(domain->pgd);
948 domain->pgd = NULL;
952 /* iommu handling */
953 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
955 struct root_entry *root;
956 unsigned long flags;
958 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
959 if (!root)
960 return -ENOMEM;
962 __iommu_flush_cache(iommu, root, ROOT_SIZE);
964 spin_lock_irqsave(&iommu->lock, flags);
965 iommu->root_entry = root;
966 spin_unlock_irqrestore(&iommu->lock, flags);
968 return 0;
971 static void iommu_set_root_entry(struct intel_iommu *iommu)
973 void *addr;
974 u32 sts;
975 unsigned long flag;
977 addr = iommu->root_entry;
979 raw_spin_lock_irqsave(&iommu->register_lock, flag);
980 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
982 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
984 /* Make sure hardware complete it */
985 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
986 readl, (sts & DMA_GSTS_RTPS), sts);
988 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
991 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
993 u32 val;
994 unsigned long flag;
996 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
997 return;
999 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1000 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1002 /* Make sure hardware complete it */
1003 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1004 readl, (!(val & DMA_GSTS_WBFS)), val);
1006 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1009 /* return value determine if we need a write buffer flush */
1010 static void __iommu_flush_context(struct intel_iommu *iommu,
1011 u16 did, u16 source_id, u8 function_mask,
1012 u64 type)
1014 u64 val = 0;
1015 unsigned long flag;
1017 switch (type) {
1018 case DMA_CCMD_GLOBAL_INVL:
1019 val = DMA_CCMD_GLOBAL_INVL;
1020 break;
1021 case DMA_CCMD_DOMAIN_INVL:
1022 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1023 break;
1024 case DMA_CCMD_DEVICE_INVL:
1025 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1026 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1027 break;
1028 default:
1029 BUG();
1031 val |= DMA_CCMD_ICC;
1033 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1034 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1036 /* Make sure hardware complete it */
1037 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1038 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1040 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1043 /* return value determine if we need a write buffer flush */
1044 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1045 u64 addr, unsigned int size_order, u64 type)
1047 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1048 u64 val = 0, val_iva = 0;
1049 unsigned long flag;
1051 switch (type) {
1052 case DMA_TLB_GLOBAL_FLUSH:
1053 /* global flush doesn't need set IVA_REG */
1054 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1055 break;
1056 case DMA_TLB_DSI_FLUSH:
1057 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1058 break;
1059 case DMA_TLB_PSI_FLUSH:
1060 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1061 /* Note: always flush non-leaf currently */
1062 val_iva = size_order | addr;
1063 break;
1064 default:
1065 BUG();
1067 /* Note: set drain read/write */
1068 #if 0
1070 * This is probably to be super secure.. Looks like we can
1071 * ignore it without any impact.
1073 if (cap_read_drain(iommu->cap))
1074 val |= DMA_TLB_READ_DRAIN;
1075 #endif
1076 if (cap_write_drain(iommu->cap))
1077 val |= DMA_TLB_WRITE_DRAIN;
1079 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1080 /* Note: Only uses first TLB reg currently */
1081 if (val_iva)
1082 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1083 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1085 /* Make sure hardware complete it */
1086 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1087 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1089 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1091 /* check IOTLB invalidation granularity */
1092 if (DMA_TLB_IAIG(val) == 0)
1093 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1094 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1095 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1096 (unsigned long long)DMA_TLB_IIRG(type),
1097 (unsigned long long)DMA_TLB_IAIG(val));
1100 static struct device_domain_info *iommu_support_dev_iotlb(
1101 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1103 int found = 0;
1104 unsigned long flags;
1105 struct device_domain_info *info;
1106 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1108 if (!ecap_dev_iotlb_support(iommu->ecap))
1109 return NULL;
1111 if (!iommu->qi)
1112 return NULL;
1114 spin_lock_irqsave(&device_domain_lock, flags);
1115 list_for_each_entry(info, &domain->devices, link)
1116 if (info->bus == bus && info->devfn == devfn) {
1117 found = 1;
1118 break;
1120 spin_unlock_irqrestore(&device_domain_lock, flags);
1122 if (!found || !info->dev)
1123 return NULL;
1125 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1126 return NULL;
1128 if (!dmar_find_matched_atsr_unit(info->dev))
1129 return NULL;
1131 info->iommu = iommu;
1133 return info;
1136 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1138 if (!info)
1139 return;
1141 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1144 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1146 if (!info->dev || !pci_ats_enabled(info->dev))
1147 return;
1149 pci_disable_ats(info->dev);
1152 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1153 u64 addr, unsigned mask)
1155 u16 sid, qdep;
1156 unsigned long flags;
1157 struct device_domain_info *info;
1159 spin_lock_irqsave(&device_domain_lock, flags);
1160 list_for_each_entry(info, &domain->devices, link) {
1161 if (!info->dev || !pci_ats_enabled(info->dev))
1162 continue;
1164 sid = info->bus << 8 | info->devfn;
1165 qdep = pci_ats_queue_depth(info->dev);
1166 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1168 spin_unlock_irqrestore(&device_domain_lock, flags);
1171 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1172 unsigned long pfn, unsigned int pages, int map)
1174 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1175 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1177 BUG_ON(pages == 0);
1180 * Fallback to domain selective flush if no PSI support or the size is
1181 * too big.
1182 * PSI requires page size to be 2 ^ x, and the base address is naturally
1183 * aligned to the size
1185 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1186 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1187 DMA_TLB_DSI_FLUSH);
1188 else
1189 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1190 DMA_TLB_PSI_FLUSH);
1193 * In caching mode, changes of pages from non-present to present require
1194 * flush. However, device IOTLB doesn't need to be flushed in this case.
1196 if (!cap_caching_mode(iommu->cap) || !map)
1197 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1200 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1202 u32 pmen;
1203 unsigned long flags;
1205 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1206 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1207 pmen &= ~DMA_PMEN_EPM;
1208 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1210 /* wait for the protected region status bit to clear */
1211 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1212 readl, !(pmen & DMA_PMEN_PRS), pmen);
1214 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1217 static int iommu_enable_translation(struct intel_iommu *iommu)
1219 u32 sts;
1220 unsigned long flags;
1222 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1223 iommu->gcmd |= DMA_GCMD_TE;
1224 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1226 /* Make sure hardware complete it */
1227 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1228 readl, (sts & DMA_GSTS_TES), sts);
1230 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1231 return 0;
1234 static int iommu_disable_translation(struct intel_iommu *iommu)
1236 u32 sts;
1237 unsigned long flag;
1239 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1240 iommu->gcmd &= ~DMA_GCMD_TE;
1241 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1243 /* Make sure hardware complete it */
1244 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1245 readl, (!(sts & DMA_GSTS_TES)), sts);
1247 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1248 return 0;
1252 static int iommu_init_domains(struct intel_iommu *iommu)
1254 unsigned long ndomains;
1255 unsigned long nlongs;
1257 ndomains = cap_ndoms(iommu->cap);
1258 pr_debug("IOMMU %d: Number of Domains supported <%ld>\n", iommu->seq_id,
1259 ndomains);
1260 nlongs = BITS_TO_LONGS(ndomains);
1262 spin_lock_init(&iommu->lock);
1264 /* TBD: there might be 64K domains,
1265 * consider other allocation for future chip
1267 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1268 if (!iommu->domain_ids) {
1269 printk(KERN_ERR "Allocating domain id array failed\n");
1270 return -ENOMEM;
1272 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1273 GFP_KERNEL);
1274 if (!iommu->domains) {
1275 printk(KERN_ERR "Allocating domain array failed\n");
1276 return -ENOMEM;
1280 * if Caching mode is set, then invalid translations are tagged
1281 * with domainid 0. Hence we need to pre-allocate it.
1283 if (cap_caching_mode(iommu->cap))
1284 set_bit(0, iommu->domain_ids);
1285 return 0;
1289 static void domain_exit(struct dmar_domain *domain);
1290 static void vm_domain_exit(struct dmar_domain *domain);
1292 void free_dmar_iommu(struct intel_iommu *iommu)
1294 struct dmar_domain *domain;
1295 int i;
1296 unsigned long flags;
1298 if ((iommu->domains) && (iommu->domain_ids)) {
1299 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1300 domain = iommu->domains[i];
1301 clear_bit(i, iommu->domain_ids);
1303 spin_lock_irqsave(&domain->iommu_lock, flags);
1304 if (--domain->iommu_count == 0) {
1305 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1306 vm_domain_exit(domain);
1307 else
1308 domain_exit(domain);
1310 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1314 if (iommu->gcmd & DMA_GCMD_TE)
1315 iommu_disable_translation(iommu);
1317 if (iommu->irq) {
1318 irq_set_handler_data(iommu->irq, NULL);
1319 /* This will mask the irq */
1320 free_irq(iommu->irq, iommu);
1321 destroy_irq(iommu->irq);
1324 kfree(iommu->domains);
1325 kfree(iommu->domain_ids);
1327 g_iommus[iommu->seq_id] = NULL;
1329 /* if all iommus are freed, free g_iommus */
1330 for (i = 0; i < g_num_of_iommus; i++) {
1331 if (g_iommus[i])
1332 break;
1335 if (i == g_num_of_iommus)
1336 kfree(g_iommus);
1338 /* free context mapping */
1339 free_context_table(iommu);
1342 static struct dmar_domain *alloc_domain(void)
1344 struct dmar_domain *domain;
1346 domain = alloc_domain_mem();
1347 if (!domain)
1348 return NULL;
1350 domain->nid = -1;
1351 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
1352 domain->flags = 0;
1354 return domain;
1357 static int iommu_attach_domain(struct dmar_domain *domain,
1358 struct intel_iommu *iommu)
1360 int num;
1361 unsigned long ndomains;
1362 unsigned long flags;
1364 ndomains = cap_ndoms(iommu->cap);
1366 spin_lock_irqsave(&iommu->lock, flags);
1368 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1369 if (num >= ndomains) {
1370 spin_unlock_irqrestore(&iommu->lock, flags);
1371 printk(KERN_ERR "IOMMU: no free domain ids\n");
1372 return -ENOMEM;
1375 domain->id = num;
1376 set_bit(num, iommu->domain_ids);
1377 set_bit(iommu->seq_id, domain->iommu_bmp);
1378 iommu->domains[num] = domain;
1379 spin_unlock_irqrestore(&iommu->lock, flags);
1381 return 0;
1384 static void iommu_detach_domain(struct dmar_domain *domain,
1385 struct intel_iommu *iommu)
1387 unsigned long flags;
1388 int num, ndomains;
1389 int found = 0;
1391 spin_lock_irqsave(&iommu->lock, flags);
1392 ndomains = cap_ndoms(iommu->cap);
1393 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1394 if (iommu->domains[num] == domain) {
1395 found = 1;
1396 break;
1400 if (found) {
1401 clear_bit(num, iommu->domain_ids);
1402 clear_bit(iommu->seq_id, domain->iommu_bmp);
1403 iommu->domains[num] = NULL;
1405 spin_unlock_irqrestore(&iommu->lock, flags);
1408 static struct iova_domain reserved_iova_list;
1409 static struct lock_class_key reserved_rbtree_key;
1411 static int dmar_init_reserved_ranges(void)
1413 struct pci_dev *pdev = NULL;
1414 struct iova *iova;
1415 int i;
1417 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1419 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1420 &reserved_rbtree_key);
1422 /* IOAPIC ranges shouldn't be accessed by DMA */
1423 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1424 IOVA_PFN(IOAPIC_RANGE_END));
1425 if (!iova) {
1426 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1427 return -ENODEV;
1430 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1431 for_each_pci_dev(pdev) {
1432 struct resource *r;
1434 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1435 r = &pdev->resource[i];
1436 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1437 continue;
1438 iova = reserve_iova(&reserved_iova_list,
1439 IOVA_PFN(r->start),
1440 IOVA_PFN(r->end));
1441 if (!iova) {
1442 printk(KERN_ERR "Reserve iova failed\n");
1443 return -ENODEV;
1447 return 0;
1450 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1452 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1455 static inline int guestwidth_to_adjustwidth(int gaw)
1457 int agaw;
1458 int r = (gaw - 12) % 9;
1460 if (r == 0)
1461 agaw = gaw;
1462 else
1463 agaw = gaw + 9 - r;
1464 if (agaw > 64)
1465 agaw = 64;
1466 return agaw;
1469 static int domain_init(struct dmar_domain *domain, int guest_width)
1471 struct intel_iommu *iommu;
1472 int adjust_width, agaw;
1473 unsigned long sagaw;
1475 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1476 spin_lock_init(&domain->iommu_lock);
1478 domain_reserve_special_ranges(domain);
1480 /* calculate AGAW */
1481 iommu = domain_get_iommu(domain);
1482 if (guest_width > cap_mgaw(iommu->cap))
1483 guest_width = cap_mgaw(iommu->cap);
1484 domain->gaw = guest_width;
1485 adjust_width = guestwidth_to_adjustwidth(guest_width);
1486 agaw = width_to_agaw(adjust_width);
1487 sagaw = cap_sagaw(iommu->cap);
1488 if (!test_bit(agaw, &sagaw)) {
1489 /* hardware doesn't support it, choose a bigger one */
1490 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1491 agaw = find_next_bit(&sagaw, 5, agaw);
1492 if (agaw >= 5)
1493 return -ENODEV;
1495 domain->agaw = agaw;
1496 INIT_LIST_HEAD(&domain->devices);
1498 if (ecap_coherent(iommu->ecap))
1499 domain->iommu_coherency = 1;
1500 else
1501 domain->iommu_coherency = 0;
1503 if (ecap_sc_support(iommu->ecap))
1504 domain->iommu_snooping = 1;
1505 else
1506 domain->iommu_snooping = 0;
1508 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1509 domain->iommu_count = 1;
1510 domain->nid = iommu->node;
1512 /* always allocate the top pgd */
1513 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1514 if (!domain->pgd)
1515 return -ENOMEM;
1516 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1517 return 0;
1520 static void domain_exit(struct dmar_domain *domain)
1522 struct dmar_drhd_unit *drhd;
1523 struct intel_iommu *iommu;
1525 /* Domain 0 is reserved, so dont process it */
1526 if (!domain)
1527 return;
1529 /* Flush any lazy unmaps that may reference this domain */
1530 if (!intel_iommu_strict)
1531 flush_unmaps_timeout(0);
1533 domain_remove_dev_info(domain);
1534 /* destroy iovas */
1535 put_iova_domain(&domain->iovad);
1537 /* clear ptes */
1538 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1540 /* free page tables */
1541 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1543 for_each_active_iommu(iommu, drhd)
1544 if (test_bit(iommu->seq_id, domain->iommu_bmp))
1545 iommu_detach_domain(domain, iommu);
1547 free_domain_mem(domain);
1550 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1551 u8 bus, u8 devfn, int translation)
1553 struct context_entry *context;
1554 unsigned long flags;
1555 struct intel_iommu *iommu;
1556 struct dma_pte *pgd;
1557 unsigned long num;
1558 unsigned long ndomains;
1559 int id;
1560 int agaw;
1561 struct device_domain_info *info = NULL;
1563 pr_debug("Set context mapping for %02x:%02x.%d\n",
1564 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1566 BUG_ON(!domain->pgd);
1567 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1568 translation != CONTEXT_TT_MULTI_LEVEL);
1570 iommu = device_to_iommu(segment, bus, devfn);
1571 if (!iommu)
1572 return -ENODEV;
1574 context = device_to_context_entry(iommu, bus, devfn);
1575 if (!context)
1576 return -ENOMEM;
1577 spin_lock_irqsave(&iommu->lock, flags);
1578 if (context_present(context)) {
1579 spin_unlock_irqrestore(&iommu->lock, flags);
1580 return 0;
1583 id = domain->id;
1584 pgd = domain->pgd;
1586 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1587 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1588 int found = 0;
1590 /* find an available domain id for this device in iommu */
1591 ndomains = cap_ndoms(iommu->cap);
1592 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1593 if (iommu->domains[num] == domain) {
1594 id = num;
1595 found = 1;
1596 break;
1600 if (found == 0) {
1601 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1602 if (num >= ndomains) {
1603 spin_unlock_irqrestore(&iommu->lock, flags);
1604 printk(KERN_ERR "IOMMU: no free domain ids\n");
1605 return -EFAULT;
1608 set_bit(num, iommu->domain_ids);
1609 iommu->domains[num] = domain;
1610 id = num;
1613 /* Skip top levels of page tables for
1614 * iommu which has less agaw than default.
1615 * Unnecessary for PT mode.
1617 if (translation != CONTEXT_TT_PASS_THROUGH) {
1618 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1619 pgd = phys_to_virt(dma_pte_addr(pgd));
1620 if (!dma_pte_present(pgd)) {
1621 spin_unlock_irqrestore(&iommu->lock, flags);
1622 return -ENOMEM;
1628 context_set_domain_id(context, id);
1630 if (translation != CONTEXT_TT_PASS_THROUGH) {
1631 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1632 translation = info ? CONTEXT_TT_DEV_IOTLB :
1633 CONTEXT_TT_MULTI_LEVEL;
1636 * In pass through mode, AW must be programmed to indicate the largest
1637 * AGAW value supported by hardware. And ASR is ignored by hardware.
1639 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1640 context_set_address_width(context, iommu->msagaw);
1641 else {
1642 context_set_address_root(context, virt_to_phys(pgd));
1643 context_set_address_width(context, iommu->agaw);
1646 context_set_translation_type(context, translation);
1647 context_set_fault_enable(context);
1648 context_set_present(context);
1649 domain_flush_cache(domain, context, sizeof(*context));
1652 * It's a non-present to present mapping. If hardware doesn't cache
1653 * non-present entry we only need to flush the write-buffer. If the
1654 * _does_ cache non-present entries, then it does so in the special
1655 * domain #0, which we have to flush:
1657 if (cap_caching_mode(iommu->cap)) {
1658 iommu->flush.flush_context(iommu, 0,
1659 (((u16)bus) << 8) | devfn,
1660 DMA_CCMD_MASK_NOBIT,
1661 DMA_CCMD_DEVICE_INVL);
1662 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1663 } else {
1664 iommu_flush_write_buffer(iommu);
1666 iommu_enable_dev_iotlb(info);
1667 spin_unlock_irqrestore(&iommu->lock, flags);
1669 spin_lock_irqsave(&domain->iommu_lock, flags);
1670 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1671 domain->iommu_count++;
1672 if (domain->iommu_count == 1)
1673 domain->nid = iommu->node;
1674 domain_update_iommu_cap(domain);
1676 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1677 return 0;
1680 static int
1681 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1682 int translation)
1684 int ret;
1685 struct pci_dev *tmp, *parent;
1687 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1688 pdev->bus->number, pdev->devfn,
1689 translation);
1690 if (ret)
1691 return ret;
1693 /* dependent device mapping */
1694 tmp = pci_find_upstream_pcie_bridge(pdev);
1695 if (!tmp)
1696 return 0;
1697 /* Secondary interface's bus number and devfn 0 */
1698 parent = pdev->bus->self;
1699 while (parent != tmp) {
1700 ret = domain_context_mapping_one(domain,
1701 pci_domain_nr(parent->bus),
1702 parent->bus->number,
1703 parent->devfn, translation);
1704 if (ret)
1705 return ret;
1706 parent = parent->bus->self;
1708 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1709 return domain_context_mapping_one(domain,
1710 pci_domain_nr(tmp->subordinate),
1711 tmp->subordinate->number, 0,
1712 translation);
1713 else /* this is a legacy PCI bridge */
1714 return domain_context_mapping_one(domain,
1715 pci_domain_nr(tmp->bus),
1716 tmp->bus->number,
1717 tmp->devfn,
1718 translation);
1721 static int domain_context_mapped(struct pci_dev *pdev)
1723 int ret;
1724 struct pci_dev *tmp, *parent;
1725 struct intel_iommu *iommu;
1727 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1728 pdev->devfn);
1729 if (!iommu)
1730 return -ENODEV;
1732 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1733 if (!ret)
1734 return ret;
1735 /* dependent device mapping */
1736 tmp = pci_find_upstream_pcie_bridge(pdev);
1737 if (!tmp)
1738 return ret;
1739 /* Secondary interface's bus number and devfn 0 */
1740 parent = pdev->bus->self;
1741 while (parent != tmp) {
1742 ret = device_context_mapped(iommu, parent->bus->number,
1743 parent->devfn);
1744 if (!ret)
1745 return ret;
1746 parent = parent->bus->self;
1748 if (pci_is_pcie(tmp))
1749 return device_context_mapped(iommu, tmp->subordinate->number,
1751 else
1752 return device_context_mapped(iommu, tmp->bus->number,
1753 tmp->devfn);
1756 /* Returns a number of VTD pages, but aligned to MM page size */
1757 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1758 size_t size)
1760 host_addr &= ~PAGE_MASK;
1761 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1764 /* Return largest possible superpage level for a given mapping */
1765 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1766 unsigned long iov_pfn,
1767 unsigned long phy_pfn,
1768 unsigned long pages)
1770 int support, level = 1;
1771 unsigned long pfnmerge;
1773 support = domain->iommu_superpage;
1775 /* To use a large page, the virtual *and* physical addresses
1776 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1777 of them will mean we have to use smaller pages. So just
1778 merge them and check both at once. */
1779 pfnmerge = iov_pfn | phy_pfn;
1781 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1782 pages >>= VTD_STRIDE_SHIFT;
1783 if (!pages)
1784 break;
1785 pfnmerge >>= VTD_STRIDE_SHIFT;
1786 level++;
1787 support--;
1789 return level;
1792 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1793 struct scatterlist *sg, unsigned long phys_pfn,
1794 unsigned long nr_pages, int prot)
1796 struct dma_pte *first_pte = NULL, *pte = NULL;
1797 phys_addr_t uninitialized_var(pteval);
1798 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1799 unsigned long sg_res;
1800 unsigned int largepage_lvl = 0;
1801 unsigned long lvl_pages = 0;
1803 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1805 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1806 return -EINVAL;
1808 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1810 if (sg)
1811 sg_res = 0;
1812 else {
1813 sg_res = nr_pages + 1;
1814 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1817 while (nr_pages > 0) {
1818 uint64_t tmp;
1820 if (!sg_res) {
1821 sg_res = aligned_nrpages(sg->offset, sg->length);
1822 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1823 sg->dma_length = sg->length;
1824 pteval = page_to_phys(sg_page(sg)) | prot;
1825 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1828 if (!pte) {
1829 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1831 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl);
1832 if (!pte)
1833 return -ENOMEM;
1834 /* It is large page*/
1835 if (largepage_lvl > 1) {
1836 pteval |= DMA_PTE_LARGE_PAGE;
1837 /* Ensure that old small page tables are removed to make room
1838 for superpage, if they exist. */
1839 dma_pte_clear_range(domain, iov_pfn,
1840 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
1841 dma_pte_free_pagetable(domain, iov_pfn,
1842 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
1843 } else {
1844 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1848 /* We don't need lock here, nobody else
1849 * touches the iova range
1851 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1852 if (tmp) {
1853 static int dumps = 5;
1854 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1855 iov_pfn, tmp, (unsigned long long)pteval);
1856 if (dumps) {
1857 dumps--;
1858 debug_dma_dump_mappings(NULL);
1860 WARN_ON(1);
1863 lvl_pages = lvl_to_nr_pages(largepage_lvl);
1865 BUG_ON(nr_pages < lvl_pages);
1866 BUG_ON(sg_res < lvl_pages);
1868 nr_pages -= lvl_pages;
1869 iov_pfn += lvl_pages;
1870 phys_pfn += lvl_pages;
1871 pteval += lvl_pages * VTD_PAGE_SIZE;
1872 sg_res -= lvl_pages;
1874 /* If the next PTE would be the first in a new page, then we
1875 need to flush the cache on the entries we've just written.
1876 And then we'll need to recalculate 'pte', so clear it and
1877 let it get set again in the if (!pte) block above.
1879 If we're done (!nr_pages) we need to flush the cache too.
1881 Also if we've been setting superpages, we may need to
1882 recalculate 'pte' and switch back to smaller pages for the
1883 end of the mapping, if the trailing size is not enough to
1884 use another superpage (i.e. sg_res < lvl_pages). */
1885 pte++;
1886 if (!nr_pages || first_pte_in_page(pte) ||
1887 (largepage_lvl > 1 && sg_res < lvl_pages)) {
1888 domain_flush_cache(domain, first_pte,
1889 (void *)pte - (void *)first_pte);
1890 pte = NULL;
1893 if (!sg_res && nr_pages)
1894 sg = sg_next(sg);
1896 return 0;
1899 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1900 struct scatterlist *sg, unsigned long nr_pages,
1901 int prot)
1903 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1906 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1907 unsigned long phys_pfn, unsigned long nr_pages,
1908 int prot)
1910 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1913 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1915 if (!iommu)
1916 return;
1918 clear_context_table(iommu, bus, devfn);
1919 iommu->flush.flush_context(iommu, 0, 0, 0,
1920 DMA_CCMD_GLOBAL_INVL);
1921 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1924 static inline void unlink_domain_info(struct device_domain_info *info)
1926 assert_spin_locked(&device_domain_lock);
1927 list_del(&info->link);
1928 list_del(&info->global);
1929 if (info->dev)
1930 info->dev->dev.archdata.iommu = NULL;
1933 static void domain_remove_dev_info(struct dmar_domain *domain)
1935 struct device_domain_info *info;
1936 unsigned long flags;
1937 struct intel_iommu *iommu;
1939 spin_lock_irqsave(&device_domain_lock, flags);
1940 while (!list_empty(&domain->devices)) {
1941 info = list_entry(domain->devices.next,
1942 struct device_domain_info, link);
1943 unlink_domain_info(info);
1944 spin_unlock_irqrestore(&device_domain_lock, flags);
1946 iommu_disable_dev_iotlb(info);
1947 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1948 iommu_detach_dev(iommu, info->bus, info->devfn);
1949 free_devinfo_mem(info);
1951 spin_lock_irqsave(&device_domain_lock, flags);
1953 spin_unlock_irqrestore(&device_domain_lock, flags);
1957 * find_domain
1958 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1960 static struct dmar_domain *
1961 find_domain(struct pci_dev *pdev)
1963 struct device_domain_info *info;
1965 /* No lock here, assumes no domain exit in normal case */
1966 info = pdev->dev.archdata.iommu;
1967 if (info)
1968 return info->domain;
1969 return NULL;
1972 /* domain is initialized */
1973 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1975 struct dmar_domain *domain, *found = NULL;
1976 struct intel_iommu *iommu;
1977 struct dmar_drhd_unit *drhd;
1978 struct device_domain_info *info, *tmp;
1979 struct pci_dev *dev_tmp;
1980 unsigned long flags;
1981 int bus = 0, devfn = 0;
1982 int segment;
1983 int ret;
1985 domain = find_domain(pdev);
1986 if (domain)
1987 return domain;
1989 segment = pci_domain_nr(pdev->bus);
1991 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1992 if (dev_tmp) {
1993 if (pci_is_pcie(dev_tmp)) {
1994 bus = dev_tmp->subordinate->number;
1995 devfn = 0;
1996 } else {
1997 bus = dev_tmp->bus->number;
1998 devfn = dev_tmp->devfn;
2000 spin_lock_irqsave(&device_domain_lock, flags);
2001 list_for_each_entry(info, &device_domain_list, global) {
2002 if (info->segment == segment &&
2003 info->bus == bus && info->devfn == devfn) {
2004 found = info->domain;
2005 break;
2008 spin_unlock_irqrestore(&device_domain_lock, flags);
2009 /* pcie-pci bridge already has a domain, uses it */
2010 if (found) {
2011 domain = found;
2012 goto found_domain;
2016 domain = alloc_domain();
2017 if (!domain)
2018 goto error;
2020 /* Allocate new domain for the device */
2021 drhd = dmar_find_matched_drhd_unit(pdev);
2022 if (!drhd) {
2023 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
2024 pci_name(pdev));
2025 free_domain_mem(domain);
2026 return NULL;
2028 iommu = drhd->iommu;
2030 ret = iommu_attach_domain(domain, iommu);
2031 if (ret) {
2032 free_domain_mem(domain);
2033 goto error;
2036 if (domain_init(domain, gaw)) {
2037 domain_exit(domain);
2038 goto error;
2041 /* register pcie-to-pci device */
2042 if (dev_tmp) {
2043 info = alloc_devinfo_mem();
2044 if (!info) {
2045 domain_exit(domain);
2046 goto error;
2048 info->segment = segment;
2049 info->bus = bus;
2050 info->devfn = devfn;
2051 info->dev = NULL;
2052 info->domain = domain;
2053 /* This domain is shared by devices under p2p bridge */
2054 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2056 /* pcie-to-pci bridge already has a domain, uses it */
2057 found = NULL;
2058 spin_lock_irqsave(&device_domain_lock, flags);
2059 list_for_each_entry(tmp, &device_domain_list, global) {
2060 if (tmp->segment == segment &&
2061 tmp->bus == bus && tmp->devfn == devfn) {
2062 found = tmp->domain;
2063 break;
2066 if (found) {
2067 spin_unlock_irqrestore(&device_domain_lock, flags);
2068 free_devinfo_mem(info);
2069 domain_exit(domain);
2070 domain = found;
2071 } else {
2072 list_add(&info->link, &domain->devices);
2073 list_add(&info->global, &device_domain_list);
2074 spin_unlock_irqrestore(&device_domain_lock, flags);
2078 found_domain:
2079 info = alloc_devinfo_mem();
2080 if (!info)
2081 goto error;
2082 info->segment = segment;
2083 info->bus = pdev->bus->number;
2084 info->devfn = pdev->devfn;
2085 info->dev = pdev;
2086 info->domain = domain;
2087 spin_lock_irqsave(&device_domain_lock, flags);
2088 /* somebody is fast */
2089 found = find_domain(pdev);
2090 if (found != NULL) {
2091 spin_unlock_irqrestore(&device_domain_lock, flags);
2092 if (found != domain) {
2093 domain_exit(domain);
2094 domain = found;
2096 free_devinfo_mem(info);
2097 return domain;
2099 list_add(&info->link, &domain->devices);
2100 list_add(&info->global, &device_domain_list);
2101 pdev->dev.archdata.iommu = info;
2102 spin_unlock_irqrestore(&device_domain_lock, flags);
2103 return domain;
2104 error:
2105 /* recheck it here, maybe others set it */
2106 return find_domain(pdev);
2109 static int iommu_identity_mapping;
2110 #define IDENTMAP_ALL 1
2111 #define IDENTMAP_GFX 2
2112 #define IDENTMAP_AZALIA 4
2114 static int iommu_domain_identity_map(struct dmar_domain *domain,
2115 unsigned long long start,
2116 unsigned long long end)
2118 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2119 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2121 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2122 dma_to_mm_pfn(last_vpfn))) {
2123 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2124 return -ENOMEM;
2127 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2128 start, end, domain->id);
2130 * RMRR range might have overlap with physical memory range,
2131 * clear it first
2133 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2135 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2136 last_vpfn - first_vpfn + 1,
2137 DMA_PTE_READ|DMA_PTE_WRITE);
2140 static int iommu_prepare_identity_map(struct pci_dev *pdev,
2141 unsigned long long start,
2142 unsigned long long end)
2144 struct dmar_domain *domain;
2145 int ret;
2147 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2148 if (!domain)
2149 return -ENOMEM;
2151 /* For _hardware_ passthrough, don't bother. But for software
2152 passthrough, we do it anyway -- it may indicate a memory
2153 range which is reserved in E820, so which didn't get set
2154 up to start with in si_domain */
2155 if (domain == si_domain && hw_pass_through) {
2156 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2157 pci_name(pdev), start, end);
2158 return 0;
2161 printk(KERN_INFO
2162 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2163 pci_name(pdev), start, end);
2165 if (end < start) {
2166 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2167 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2168 dmi_get_system_info(DMI_BIOS_VENDOR),
2169 dmi_get_system_info(DMI_BIOS_VERSION),
2170 dmi_get_system_info(DMI_PRODUCT_VERSION));
2171 ret = -EIO;
2172 goto error;
2175 if (end >> agaw_to_width(domain->agaw)) {
2176 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2177 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2178 agaw_to_width(domain->agaw),
2179 dmi_get_system_info(DMI_BIOS_VENDOR),
2180 dmi_get_system_info(DMI_BIOS_VERSION),
2181 dmi_get_system_info(DMI_PRODUCT_VERSION));
2182 ret = -EIO;
2183 goto error;
2186 ret = iommu_domain_identity_map(domain, start, end);
2187 if (ret)
2188 goto error;
2190 /* context entry init */
2191 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2192 if (ret)
2193 goto error;
2195 return 0;
2197 error:
2198 domain_exit(domain);
2199 return ret;
2202 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2203 struct pci_dev *pdev)
2205 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2206 return 0;
2207 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2208 rmrr->end_address);
2211 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2212 static inline void iommu_prepare_isa(void)
2214 struct pci_dev *pdev;
2215 int ret;
2217 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2218 if (!pdev)
2219 return;
2221 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2222 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2224 if (ret)
2225 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2226 "floppy might not work\n");
2229 #else
2230 static inline void iommu_prepare_isa(void)
2232 return;
2234 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2236 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2238 static int __init si_domain_init(int hw)
2240 struct dmar_drhd_unit *drhd;
2241 struct intel_iommu *iommu;
2242 int nid, ret = 0;
2244 si_domain = alloc_domain();
2245 if (!si_domain)
2246 return -EFAULT;
2248 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2250 for_each_active_iommu(iommu, drhd) {
2251 ret = iommu_attach_domain(si_domain, iommu);
2252 if (ret) {
2253 domain_exit(si_domain);
2254 return -EFAULT;
2258 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2259 domain_exit(si_domain);
2260 return -EFAULT;
2263 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2265 if (hw)
2266 return 0;
2268 for_each_online_node(nid) {
2269 unsigned long start_pfn, end_pfn;
2270 int i;
2272 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2273 ret = iommu_domain_identity_map(si_domain,
2274 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2275 if (ret)
2276 return ret;
2280 return 0;
2283 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2284 struct pci_dev *pdev);
2285 static int identity_mapping(struct pci_dev *pdev)
2287 struct device_domain_info *info;
2289 if (likely(!iommu_identity_mapping))
2290 return 0;
2292 info = pdev->dev.archdata.iommu;
2293 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2294 return (info->domain == si_domain);
2296 return 0;
2299 static int domain_add_dev_info(struct dmar_domain *domain,
2300 struct pci_dev *pdev,
2301 int translation)
2303 struct device_domain_info *info;
2304 unsigned long flags;
2305 int ret;
2307 info = alloc_devinfo_mem();
2308 if (!info)
2309 return -ENOMEM;
2311 info->segment = pci_domain_nr(pdev->bus);
2312 info->bus = pdev->bus->number;
2313 info->devfn = pdev->devfn;
2314 info->dev = pdev;
2315 info->domain = domain;
2317 spin_lock_irqsave(&device_domain_lock, flags);
2318 list_add(&info->link, &domain->devices);
2319 list_add(&info->global, &device_domain_list);
2320 pdev->dev.archdata.iommu = info;
2321 spin_unlock_irqrestore(&device_domain_lock, flags);
2323 ret = domain_context_mapping(domain, pdev, translation);
2324 if (ret) {
2325 spin_lock_irqsave(&device_domain_lock, flags);
2326 unlink_domain_info(info);
2327 spin_unlock_irqrestore(&device_domain_lock, flags);
2328 free_devinfo_mem(info);
2329 return ret;
2332 return 0;
2335 static bool device_has_rmrr(struct pci_dev *dev)
2337 struct dmar_rmrr_unit *rmrr;
2338 int i;
2340 for_each_rmrr_units(rmrr) {
2341 for (i = 0; i < rmrr->devices_cnt; i++) {
2343 * Return TRUE if this RMRR contains the device that
2344 * is passed in.
2346 if (rmrr->devices[i] == dev)
2347 return true;
2350 return false;
2353 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2357 * We want to prevent any device associated with an RMRR from
2358 * getting placed into the SI Domain. This is done because
2359 * problems exist when devices are moved in and out of domains
2360 * and their respective RMRR info is lost. We exempt USB devices
2361 * from this process due to their usage of RMRRs that are known
2362 * to not be needed after BIOS hand-off to OS.
2364 if (device_has_rmrr(pdev) &&
2365 (pdev->class >> 8) != PCI_CLASS_SERIAL_USB)
2366 return 0;
2368 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2369 return 1;
2371 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2372 return 1;
2374 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2375 return 0;
2378 * We want to start off with all devices in the 1:1 domain, and
2379 * take them out later if we find they can't access all of memory.
2381 * However, we can't do this for PCI devices behind bridges,
2382 * because all PCI devices behind the same bridge will end up
2383 * with the same source-id on their transactions.
2385 * Practically speaking, we can't change things around for these
2386 * devices at run-time, because we can't be sure there'll be no
2387 * DMA transactions in flight for any of their siblings.
2389 * So PCI devices (unless they're on the root bus) as well as
2390 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2391 * the 1:1 domain, just in _case_ one of their siblings turns out
2392 * not to be able to map all of memory.
2394 if (!pci_is_pcie(pdev)) {
2395 if (!pci_is_root_bus(pdev->bus))
2396 return 0;
2397 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2398 return 0;
2399 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2400 return 0;
2403 * At boot time, we don't yet know if devices will be 64-bit capable.
2404 * Assume that they will -- if they turn out not to be, then we can
2405 * take them out of the 1:1 domain later.
2407 if (!startup) {
2409 * If the device's dma_mask is less than the system's memory
2410 * size then this is not a candidate for identity mapping.
2412 u64 dma_mask = pdev->dma_mask;
2414 if (pdev->dev.coherent_dma_mask &&
2415 pdev->dev.coherent_dma_mask < dma_mask)
2416 dma_mask = pdev->dev.coherent_dma_mask;
2418 return dma_mask >= dma_get_required_mask(&pdev->dev);
2421 return 1;
2424 static int __init iommu_prepare_static_identity_mapping(int hw)
2426 struct pci_dev *pdev = NULL;
2427 int ret;
2429 ret = si_domain_init(hw);
2430 if (ret)
2431 return -EFAULT;
2433 for_each_pci_dev(pdev) {
2434 if (iommu_should_identity_map(pdev, 1)) {
2435 ret = domain_add_dev_info(si_domain, pdev,
2436 hw ? CONTEXT_TT_PASS_THROUGH :
2437 CONTEXT_TT_MULTI_LEVEL);
2438 if (ret) {
2439 /* device not associated with an iommu */
2440 if (ret == -ENODEV)
2441 continue;
2442 return ret;
2444 pr_info("IOMMU: %s identity mapping for device %s\n",
2445 hw ? "hardware" : "software", pci_name(pdev));
2449 return 0;
2452 static int __init init_dmars(void)
2454 struct dmar_drhd_unit *drhd;
2455 struct dmar_rmrr_unit *rmrr;
2456 struct pci_dev *pdev;
2457 struct intel_iommu *iommu;
2458 int i, ret;
2461 * for each drhd
2462 * allocate root
2463 * initialize and program root entry to not present
2464 * endfor
2466 for_each_drhd_unit(drhd) {
2468 * lock not needed as this is only incremented in the single
2469 * threaded kernel __init code path all other access are read
2470 * only
2472 if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) {
2473 g_num_of_iommus++;
2474 continue;
2476 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2477 IOMMU_UNITS_SUPPORTED);
2480 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2481 GFP_KERNEL);
2482 if (!g_iommus) {
2483 printk(KERN_ERR "Allocating global iommu array failed\n");
2484 ret = -ENOMEM;
2485 goto error;
2488 deferred_flush = kzalloc(g_num_of_iommus *
2489 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2490 if (!deferred_flush) {
2491 ret = -ENOMEM;
2492 goto error;
2495 for_each_drhd_unit(drhd) {
2496 if (drhd->ignored)
2497 continue;
2499 iommu = drhd->iommu;
2500 g_iommus[iommu->seq_id] = iommu;
2502 ret = iommu_init_domains(iommu);
2503 if (ret)
2504 goto error;
2507 * TBD:
2508 * we could share the same root & context tables
2509 * among all IOMMU's. Need to Split it later.
2511 ret = iommu_alloc_root_entry(iommu);
2512 if (ret) {
2513 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2514 goto error;
2516 if (!ecap_pass_through(iommu->ecap))
2517 hw_pass_through = 0;
2521 * Start from the sane iommu hardware state.
2523 for_each_drhd_unit(drhd) {
2524 if (drhd->ignored)
2525 continue;
2527 iommu = drhd->iommu;
2530 * If the queued invalidation is already initialized by us
2531 * (for example, while enabling interrupt-remapping) then
2532 * we got the things already rolling from a sane state.
2534 if (iommu->qi)
2535 continue;
2538 * Clear any previous faults.
2540 dmar_fault(-1, iommu);
2542 * Disable queued invalidation if supported and already enabled
2543 * before OS handover.
2545 dmar_disable_qi(iommu);
2548 for_each_drhd_unit(drhd) {
2549 if (drhd->ignored)
2550 continue;
2552 iommu = drhd->iommu;
2554 if (dmar_enable_qi(iommu)) {
2556 * Queued Invalidate not enabled, use Register Based
2557 * Invalidate
2559 iommu->flush.flush_context = __iommu_flush_context;
2560 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2561 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2562 "invalidation\n",
2563 iommu->seq_id,
2564 (unsigned long long)drhd->reg_base_addr);
2565 } else {
2566 iommu->flush.flush_context = qi_flush_context;
2567 iommu->flush.flush_iotlb = qi_flush_iotlb;
2568 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2569 "invalidation\n",
2570 iommu->seq_id,
2571 (unsigned long long)drhd->reg_base_addr);
2575 if (iommu_pass_through)
2576 iommu_identity_mapping |= IDENTMAP_ALL;
2578 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2579 iommu_identity_mapping |= IDENTMAP_GFX;
2580 #endif
2582 check_tylersburg_isoch();
2585 * If pass through is not set or not enabled, setup context entries for
2586 * identity mappings for rmrr, gfx, and isa and may fall back to static
2587 * identity mapping if iommu_identity_mapping is set.
2589 if (iommu_identity_mapping) {
2590 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2591 if (ret) {
2592 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2593 goto error;
2597 * For each rmrr
2598 * for each dev attached to rmrr
2599 * do
2600 * locate drhd for dev, alloc domain for dev
2601 * allocate free domain
2602 * allocate page table entries for rmrr
2603 * if context not allocated for bus
2604 * allocate and init context
2605 * set present in root table for this bus
2606 * init context with domain, translation etc
2607 * endfor
2608 * endfor
2610 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2611 for_each_rmrr_units(rmrr) {
2612 for (i = 0; i < rmrr->devices_cnt; i++) {
2613 pdev = rmrr->devices[i];
2615 * some BIOS lists non-exist devices in DMAR
2616 * table.
2618 if (!pdev)
2619 continue;
2620 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2621 if (ret)
2622 printk(KERN_ERR
2623 "IOMMU: mapping reserved region failed\n");
2627 iommu_prepare_isa();
2630 * for each drhd
2631 * enable fault log
2632 * global invalidate context cache
2633 * global invalidate iotlb
2634 * enable translation
2636 for_each_drhd_unit(drhd) {
2637 if (drhd->ignored) {
2639 * we always have to disable PMRs or DMA may fail on
2640 * this device
2642 if (force_on)
2643 iommu_disable_protect_mem_regions(drhd->iommu);
2644 continue;
2646 iommu = drhd->iommu;
2648 iommu_flush_write_buffer(iommu);
2650 ret = dmar_set_interrupt(iommu);
2651 if (ret)
2652 goto error;
2654 iommu_set_root_entry(iommu);
2656 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2657 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2659 ret = iommu_enable_translation(iommu);
2660 if (ret)
2661 goto error;
2663 iommu_disable_protect_mem_regions(iommu);
2666 return 0;
2667 error:
2668 for_each_drhd_unit(drhd) {
2669 if (drhd->ignored)
2670 continue;
2671 iommu = drhd->iommu;
2672 free_iommu(iommu);
2674 kfree(g_iommus);
2675 return ret;
2678 /* This takes a number of _MM_ pages, not VTD pages */
2679 static struct iova *intel_alloc_iova(struct device *dev,
2680 struct dmar_domain *domain,
2681 unsigned long nrpages, uint64_t dma_mask)
2683 struct pci_dev *pdev = to_pci_dev(dev);
2684 struct iova *iova = NULL;
2686 /* Restrict dma_mask to the width that the iommu can handle */
2687 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2689 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2691 * First try to allocate an io virtual address in
2692 * DMA_BIT_MASK(32) and if that fails then try allocating
2693 * from higher range
2695 iova = alloc_iova(&domain->iovad, nrpages,
2696 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2697 if (iova)
2698 return iova;
2700 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2701 if (unlikely(!iova)) {
2702 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2703 nrpages, pci_name(pdev));
2704 return NULL;
2707 return iova;
2710 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2712 struct dmar_domain *domain;
2713 int ret;
2715 domain = get_domain_for_dev(pdev,
2716 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2717 if (!domain) {
2718 printk(KERN_ERR
2719 "Allocating domain for %s failed", pci_name(pdev));
2720 return NULL;
2723 /* make sure context mapping is ok */
2724 if (unlikely(!domain_context_mapped(pdev))) {
2725 ret = domain_context_mapping(domain, pdev,
2726 CONTEXT_TT_MULTI_LEVEL);
2727 if (ret) {
2728 printk(KERN_ERR
2729 "Domain context map for %s failed",
2730 pci_name(pdev));
2731 return NULL;
2735 return domain;
2738 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2740 struct device_domain_info *info;
2742 /* No lock here, assumes no domain exit in normal case */
2743 info = dev->dev.archdata.iommu;
2744 if (likely(info))
2745 return info->domain;
2747 return __get_valid_domain_for_dev(dev);
2750 static int iommu_dummy(struct pci_dev *pdev)
2752 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2755 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2756 static int iommu_no_mapping(struct device *dev)
2758 struct pci_dev *pdev;
2759 int found;
2761 if (unlikely(dev->bus != &pci_bus_type))
2762 return 1;
2764 pdev = to_pci_dev(dev);
2765 if (iommu_dummy(pdev))
2766 return 1;
2768 if (!iommu_identity_mapping)
2769 return 0;
2771 found = identity_mapping(pdev);
2772 if (found) {
2773 if (iommu_should_identity_map(pdev, 0))
2774 return 1;
2775 else {
2777 * 32 bit DMA is removed from si_domain and fall back
2778 * to non-identity mapping.
2780 domain_remove_one_dev_info(si_domain, pdev);
2781 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2782 pci_name(pdev));
2783 return 0;
2785 } else {
2787 * In case of a detached 64 bit DMA device from vm, the device
2788 * is put into si_domain for identity mapping.
2790 if (iommu_should_identity_map(pdev, 0)) {
2791 int ret;
2792 ret = domain_add_dev_info(si_domain, pdev,
2793 hw_pass_through ?
2794 CONTEXT_TT_PASS_THROUGH :
2795 CONTEXT_TT_MULTI_LEVEL);
2796 if (!ret) {
2797 printk(KERN_INFO "64bit %s uses identity mapping\n",
2798 pci_name(pdev));
2799 return 1;
2804 return 0;
2807 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2808 size_t size, int dir, u64 dma_mask)
2810 struct pci_dev *pdev = to_pci_dev(hwdev);
2811 struct dmar_domain *domain;
2812 phys_addr_t start_paddr;
2813 struct iova *iova;
2814 int prot = 0;
2815 int ret;
2816 struct intel_iommu *iommu;
2817 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2819 BUG_ON(dir == DMA_NONE);
2821 if (iommu_no_mapping(hwdev))
2822 return paddr;
2824 domain = get_valid_domain_for_dev(pdev);
2825 if (!domain)
2826 return 0;
2828 iommu = domain_get_iommu(domain);
2829 size = aligned_nrpages(paddr, size);
2831 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2832 if (!iova)
2833 goto error;
2836 * Check if DMAR supports zero-length reads on write only
2837 * mappings..
2839 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2840 !cap_zlr(iommu->cap))
2841 prot |= DMA_PTE_READ;
2842 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2843 prot |= DMA_PTE_WRITE;
2845 * paddr - (paddr + size) might be partial page, we should map the whole
2846 * page. Note: if two part of one page are separately mapped, we
2847 * might have two guest_addr mapping to the same host paddr, but this
2848 * is not a big problem
2850 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2851 mm_to_dma_pfn(paddr_pfn), size, prot);
2852 if (ret)
2853 goto error;
2855 /* it's a non-present to present mapping. Only flush if caching mode */
2856 if (cap_caching_mode(iommu->cap))
2857 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2858 else
2859 iommu_flush_write_buffer(iommu);
2861 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2862 start_paddr += paddr & ~PAGE_MASK;
2863 return start_paddr;
2865 error:
2866 if (iova)
2867 __free_iova(&domain->iovad, iova);
2868 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2869 pci_name(pdev), size, (unsigned long long)paddr, dir);
2870 return 0;
2873 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2874 unsigned long offset, size_t size,
2875 enum dma_data_direction dir,
2876 struct dma_attrs *attrs)
2878 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2879 dir, to_pci_dev(dev)->dma_mask);
2882 static void flush_unmaps(void)
2884 int i, j;
2886 timer_on = 0;
2888 /* just flush them all */
2889 for (i = 0; i < g_num_of_iommus; i++) {
2890 struct intel_iommu *iommu = g_iommus[i];
2891 if (!iommu)
2892 continue;
2894 if (!deferred_flush[i].next)
2895 continue;
2897 /* In caching mode, global flushes turn emulation expensive */
2898 if (!cap_caching_mode(iommu->cap))
2899 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2900 DMA_TLB_GLOBAL_FLUSH);
2901 for (j = 0; j < deferred_flush[i].next; j++) {
2902 unsigned long mask;
2903 struct iova *iova = deferred_flush[i].iova[j];
2904 struct dmar_domain *domain = deferred_flush[i].domain[j];
2906 /* On real hardware multiple invalidations are expensive */
2907 if (cap_caching_mode(iommu->cap))
2908 iommu_flush_iotlb_psi(iommu, domain->id,
2909 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2910 else {
2911 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2912 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2913 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2915 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2917 deferred_flush[i].next = 0;
2920 list_size = 0;
2923 static void flush_unmaps_timeout(unsigned long data)
2925 unsigned long flags;
2927 spin_lock_irqsave(&async_umap_flush_lock, flags);
2928 flush_unmaps();
2929 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2932 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2934 unsigned long flags;
2935 int next, iommu_id;
2936 struct intel_iommu *iommu;
2938 spin_lock_irqsave(&async_umap_flush_lock, flags);
2939 if (list_size == HIGH_WATER_MARK)
2940 flush_unmaps();
2942 iommu = domain_get_iommu(dom);
2943 iommu_id = iommu->seq_id;
2945 next = deferred_flush[iommu_id].next;
2946 deferred_flush[iommu_id].domain[next] = dom;
2947 deferred_flush[iommu_id].iova[next] = iova;
2948 deferred_flush[iommu_id].next++;
2950 if (!timer_on) {
2951 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2952 timer_on = 1;
2954 list_size++;
2955 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2958 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2959 size_t size, enum dma_data_direction dir,
2960 struct dma_attrs *attrs)
2962 struct pci_dev *pdev = to_pci_dev(dev);
2963 struct dmar_domain *domain;
2964 unsigned long start_pfn, last_pfn;
2965 struct iova *iova;
2966 struct intel_iommu *iommu;
2968 if (iommu_no_mapping(dev))
2969 return;
2971 domain = find_domain(pdev);
2972 BUG_ON(!domain);
2974 iommu = domain_get_iommu(domain);
2976 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2977 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2978 (unsigned long long)dev_addr))
2979 return;
2981 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2982 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2984 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2985 pci_name(pdev), start_pfn, last_pfn);
2987 /* clear the whole page */
2988 dma_pte_clear_range(domain, start_pfn, last_pfn);
2990 /* free page tables */
2991 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2993 if (intel_iommu_strict) {
2994 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2995 last_pfn - start_pfn + 1, 0);
2996 /* free iova */
2997 __free_iova(&domain->iovad, iova);
2998 } else {
2999 add_unmap(domain, iova);
3001 * queue up the release of the unmap to save the 1/6th of the
3002 * cpu used up by the iotlb flush operation...
3007 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
3008 dma_addr_t *dma_handle, gfp_t flags,
3009 struct dma_attrs *attrs)
3011 void *vaddr;
3012 int order;
3014 size = PAGE_ALIGN(size);
3015 order = get_order(size);
3017 if (!iommu_no_mapping(hwdev))
3018 flags &= ~(GFP_DMA | GFP_DMA32);
3019 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
3020 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
3021 flags |= GFP_DMA;
3022 else
3023 flags |= GFP_DMA32;
3026 vaddr = (void *)__get_free_pages(flags, order);
3027 if (!vaddr)
3028 return NULL;
3029 memset(vaddr, 0, size);
3031 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
3032 DMA_BIDIRECTIONAL,
3033 hwdev->coherent_dma_mask);
3034 if (*dma_handle)
3035 return vaddr;
3036 free_pages((unsigned long)vaddr, order);
3037 return NULL;
3040 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
3041 dma_addr_t dma_handle, struct dma_attrs *attrs)
3043 int order;
3045 size = PAGE_ALIGN(size);
3046 order = get_order(size);
3048 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
3049 free_pages((unsigned long)vaddr, order);
3052 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
3053 int nelems, enum dma_data_direction dir,
3054 struct dma_attrs *attrs)
3056 struct pci_dev *pdev = to_pci_dev(hwdev);
3057 struct dmar_domain *domain;
3058 unsigned long start_pfn, last_pfn;
3059 struct iova *iova;
3060 struct intel_iommu *iommu;
3062 if (iommu_no_mapping(hwdev))
3063 return;
3065 domain = find_domain(pdev);
3066 BUG_ON(!domain);
3068 iommu = domain_get_iommu(domain);
3070 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
3071 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
3072 (unsigned long long)sglist[0].dma_address))
3073 return;
3075 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3076 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3078 /* clear the whole page */
3079 dma_pte_clear_range(domain, start_pfn, last_pfn);
3081 /* free page tables */
3082 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
3084 if (intel_iommu_strict) {
3085 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3086 last_pfn - start_pfn + 1, 0);
3087 /* free iova */
3088 __free_iova(&domain->iovad, iova);
3089 } else {
3090 add_unmap(domain, iova);
3092 * queue up the release of the unmap to save the 1/6th of the
3093 * cpu used up by the iotlb flush operation...
3098 static int intel_nontranslate_map_sg(struct device *hddev,
3099 struct scatterlist *sglist, int nelems, int dir)
3101 int i;
3102 struct scatterlist *sg;
3104 for_each_sg(sglist, sg, nelems, i) {
3105 BUG_ON(!sg_page(sg));
3106 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3107 sg->dma_length = sg->length;
3109 return nelems;
3112 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3113 enum dma_data_direction dir, struct dma_attrs *attrs)
3115 int i;
3116 struct pci_dev *pdev = to_pci_dev(hwdev);
3117 struct dmar_domain *domain;
3118 size_t size = 0;
3119 int prot = 0;
3120 struct iova *iova = NULL;
3121 int ret;
3122 struct scatterlist *sg;
3123 unsigned long start_vpfn;
3124 struct intel_iommu *iommu;
3126 BUG_ON(dir == DMA_NONE);
3127 if (iommu_no_mapping(hwdev))
3128 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3130 domain = get_valid_domain_for_dev(pdev);
3131 if (!domain)
3132 return 0;
3134 iommu = domain_get_iommu(domain);
3136 for_each_sg(sglist, sg, nelems, i)
3137 size += aligned_nrpages(sg->offset, sg->length);
3139 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3140 pdev->dma_mask);
3141 if (!iova) {
3142 sglist->dma_length = 0;
3143 return 0;
3147 * Check if DMAR supports zero-length reads on write only
3148 * mappings..
3150 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3151 !cap_zlr(iommu->cap))
3152 prot |= DMA_PTE_READ;
3153 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3154 prot |= DMA_PTE_WRITE;
3156 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3158 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3159 if (unlikely(ret)) {
3160 /* clear the page */
3161 dma_pte_clear_range(domain, start_vpfn,
3162 start_vpfn + size - 1);
3163 /* free page tables */
3164 dma_pte_free_pagetable(domain, start_vpfn,
3165 start_vpfn + size - 1);
3166 /* free iova */
3167 __free_iova(&domain->iovad, iova);
3168 return 0;
3171 /* it's a non-present to present mapping. Only flush if caching mode */
3172 if (cap_caching_mode(iommu->cap))
3173 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
3174 else
3175 iommu_flush_write_buffer(iommu);
3177 return nelems;
3180 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3182 return !dma_addr;
3185 struct dma_map_ops intel_dma_ops = {
3186 .alloc = intel_alloc_coherent,
3187 .free = intel_free_coherent,
3188 .map_sg = intel_map_sg,
3189 .unmap_sg = intel_unmap_sg,
3190 .map_page = intel_map_page,
3191 .unmap_page = intel_unmap_page,
3192 .mapping_error = intel_mapping_error,
3195 static inline int iommu_domain_cache_init(void)
3197 int ret = 0;
3199 iommu_domain_cache = kmem_cache_create("iommu_domain",
3200 sizeof(struct dmar_domain),
3202 SLAB_HWCACHE_ALIGN,
3204 NULL);
3205 if (!iommu_domain_cache) {
3206 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3207 ret = -ENOMEM;
3210 return ret;
3213 static inline int iommu_devinfo_cache_init(void)
3215 int ret = 0;
3217 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3218 sizeof(struct device_domain_info),
3220 SLAB_HWCACHE_ALIGN,
3221 NULL);
3222 if (!iommu_devinfo_cache) {
3223 printk(KERN_ERR "Couldn't create devinfo cache\n");
3224 ret = -ENOMEM;
3227 return ret;
3230 static inline int iommu_iova_cache_init(void)
3232 int ret = 0;
3234 iommu_iova_cache = kmem_cache_create("iommu_iova",
3235 sizeof(struct iova),
3237 SLAB_HWCACHE_ALIGN,
3238 NULL);
3239 if (!iommu_iova_cache) {
3240 printk(KERN_ERR "Couldn't create iova cache\n");
3241 ret = -ENOMEM;
3244 return ret;
3247 static int __init iommu_init_mempool(void)
3249 int ret;
3250 ret = iommu_iova_cache_init();
3251 if (ret)
3252 return ret;
3254 ret = iommu_domain_cache_init();
3255 if (ret)
3256 goto domain_error;
3258 ret = iommu_devinfo_cache_init();
3259 if (!ret)
3260 return ret;
3262 kmem_cache_destroy(iommu_domain_cache);
3263 domain_error:
3264 kmem_cache_destroy(iommu_iova_cache);
3266 return -ENOMEM;
3269 static void __init iommu_exit_mempool(void)
3271 kmem_cache_destroy(iommu_devinfo_cache);
3272 kmem_cache_destroy(iommu_domain_cache);
3273 kmem_cache_destroy(iommu_iova_cache);
3277 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3279 struct dmar_drhd_unit *drhd;
3280 u32 vtbar;
3281 int rc;
3283 /* We know that this device on this chipset has its own IOMMU.
3284 * If we find it under a different IOMMU, then the BIOS is lying
3285 * to us. Hope that the IOMMU for this device is actually
3286 * disabled, and it needs no translation...
3288 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3289 if (rc) {
3290 /* "can't" happen */
3291 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3292 return;
3294 vtbar &= 0xffff0000;
3296 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3297 drhd = dmar_find_matched_drhd_unit(pdev);
3298 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3299 TAINT_FIRMWARE_WORKAROUND,
3300 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3301 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3303 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3305 static void __init init_no_remapping_devices(void)
3307 struct dmar_drhd_unit *drhd;
3309 for_each_drhd_unit(drhd) {
3310 if (!drhd->include_all) {
3311 int i;
3312 for (i = 0; i < drhd->devices_cnt; i++)
3313 if (drhd->devices[i] != NULL)
3314 break;
3315 /* ignore DMAR unit if no pci devices exist */
3316 if (i == drhd->devices_cnt)
3317 drhd->ignored = 1;
3321 for_each_drhd_unit(drhd) {
3322 int i;
3323 if (drhd->ignored || drhd->include_all)
3324 continue;
3326 for (i = 0; i < drhd->devices_cnt; i++)
3327 if (drhd->devices[i] &&
3328 !IS_GFX_DEVICE(drhd->devices[i]))
3329 break;
3331 if (i < drhd->devices_cnt)
3332 continue;
3334 /* This IOMMU has *only* gfx devices. Either bypass it or
3335 set the gfx_mapped flag, as appropriate */
3336 if (dmar_map_gfx) {
3337 intel_iommu_gfx_mapped = 1;
3338 } else {
3339 drhd->ignored = 1;
3340 for (i = 0; i < drhd->devices_cnt; i++) {
3341 if (!drhd->devices[i])
3342 continue;
3343 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3349 #ifdef CONFIG_SUSPEND
3350 static int init_iommu_hw(void)
3352 struct dmar_drhd_unit *drhd;
3353 struct intel_iommu *iommu = NULL;
3355 for_each_active_iommu(iommu, drhd)
3356 if (iommu->qi)
3357 dmar_reenable_qi(iommu);
3359 for_each_iommu(iommu, drhd) {
3360 if (drhd->ignored) {
3362 * we always have to disable PMRs or DMA may fail on
3363 * this device
3365 if (force_on)
3366 iommu_disable_protect_mem_regions(iommu);
3367 continue;
3370 iommu_flush_write_buffer(iommu);
3372 iommu_set_root_entry(iommu);
3374 iommu->flush.flush_context(iommu, 0, 0, 0,
3375 DMA_CCMD_GLOBAL_INVL);
3376 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3377 DMA_TLB_GLOBAL_FLUSH);
3378 if (iommu_enable_translation(iommu))
3379 return 1;
3380 iommu_disable_protect_mem_regions(iommu);
3383 return 0;
3386 static void iommu_flush_all(void)
3388 struct dmar_drhd_unit *drhd;
3389 struct intel_iommu *iommu;
3391 for_each_active_iommu(iommu, drhd) {
3392 iommu->flush.flush_context(iommu, 0, 0, 0,
3393 DMA_CCMD_GLOBAL_INVL);
3394 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3395 DMA_TLB_GLOBAL_FLUSH);
3399 static int iommu_suspend(void)
3401 struct dmar_drhd_unit *drhd;
3402 struct intel_iommu *iommu = NULL;
3403 unsigned long flag;
3405 for_each_active_iommu(iommu, drhd) {
3406 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3407 GFP_ATOMIC);
3408 if (!iommu->iommu_state)
3409 goto nomem;
3412 iommu_flush_all();
3414 for_each_active_iommu(iommu, drhd) {
3415 iommu_disable_translation(iommu);
3417 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3419 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3420 readl(iommu->reg + DMAR_FECTL_REG);
3421 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3422 readl(iommu->reg + DMAR_FEDATA_REG);
3423 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3424 readl(iommu->reg + DMAR_FEADDR_REG);
3425 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3426 readl(iommu->reg + DMAR_FEUADDR_REG);
3428 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3430 return 0;
3432 nomem:
3433 for_each_active_iommu(iommu, drhd)
3434 kfree(iommu->iommu_state);
3436 return -ENOMEM;
3439 static void iommu_resume(void)
3441 struct dmar_drhd_unit *drhd;
3442 struct intel_iommu *iommu = NULL;
3443 unsigned long flag;
3445 if (init_iommu_hw()) {
3446 if (force_on)
3447 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3448 else
3449 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3450 return;
3453 for_each_active_iommu(iommu, drhd) {
3455 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3457 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3458 iommu->reg + DMAR_FECTL_REG);
3459 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3460 iommu->reg + DMAR_FEDATA_REG);
3461 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3462 iommu->reg + DMAR_FEADDR_REG);
3463 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3464 iommu->reg + DMAR_FEUADDR_REG);
3466 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3469 for_each_active_iommu(iommu, drhd)
3470 kfree(iommu->iommu_state);
3473 static struct syscore_ops iommu_syscore_ops = {
3474 .resume = iommu_resume,
3475 .suspend = iommu_suspend,
3478 static void __init init_iommu_pm_ops(void)
3480 register_syscore_ops(&iommu_syscore_ops);
3483 #else
3484 static inline void init_iommu_pm_ops(void) {}
3485 #endif /* CONFIG_PM */
3487 LIST_HEAD(dmar_rmrr_units);
3489 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
3491 list_add(&rmrr->list, &dmar_rmrr_units);
3495 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3497 struct acpi_dmar_reserved_memory *rmrr;
3498 struct dmar_rmrr_unit *rmrru;
3500 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3501 if (!rmrru)
3502 return -ENOMEM;
3504 rmrru->hdr = header;
3505 rmrr = (struct acpi_dmar_reserved_memory *)header;
3506 rmrru->base_address = rmrr->base_address;
3507 rmrru->end_address = rmrr->end_address;
3509 dmar_register_rmrr_unit(rmrru);
3510 return 0;
3513 static int __init
3514 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
3516 struct acpi_dmar_reserved_memory *rmrr;
3517 int ret;
3519 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
3520 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
3521 ((void *)rmrr) + rmrr->header.length,
3522 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
3524 if (ret || (rmrru->devices_cnt == 0)) {
3525 list_del(&rmrru->list);
3526 kfree(rmrru);
3528 return ret;
3531 static LIST_HEAD(dmar_atsr_units);
3533 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3535 struct acpi_dmar_atsr *atsr;
3536 struct dmar_atsr_unit *atsru;
3538 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3539 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3540 if (!atsru)
3541 return -ENOMEM;
3543 atsru->hdr = hdr;
3544 atsru->include_all = atsr->flags & 0x1;
3546 list_add(&atsru->list, &dmar_atsr_units);
3548 return 0;
3551 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
3553 int rc;
3554 struct acpi_dmar_atsr *atsr;
3556 if (atsru->include_all)
3557 return 0;
3559 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3560 rc = dmar_parse_dev_scope((void *)(atsr + 1),
3561 (void *)atsr + atsr->header.length,
3562 &atsru->devices_cnt, &atsru->devices,
3563 atsr->segment);
3564 if (rc || !atsru->devices_cnt) {
3565 list_del(&atsru->list);
3566 kfree(atsru);
3569 return rc;
3572 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3574 int i;
3575 struct pci_bus *bus;
3576 struct acpi_dmar_atsr *atsr;
3577 struct dmar_atsr_unit *atsru;
3579 dev = pci_physfn(dev);
3581 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3582 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3583 if (atsr->segment == pci_domain_nr(dev->bus))
3584 goto found;
3587 return 0;
3589 found:
3590 for (bus = dev->bus; bus; bus = bus->parent) {
3591 struct pci_dev *bridge = bus->self;
3593 if (!bridge || !pci_is_pcie(bridge) ||
3594 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3595 return 0;
3597 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) {
3598 for (i = 0; i < atsru->devices_cnt; i++)
3599 if (atsru->devices[i] == bridge)
3600 return 1;
3601 break;
3605 if (atsru->include_all)
3606 return 1;
3608 return 0;
3611 int __init dmar_parse_rmrr_atsr_dev(void)
3613 struct dmar_rmrr_unit *rmrr, *rmrr_n;
3614 struct dmar_atsr_unit *atsr, *atsr_n;
3615 int ret = 0;
3617 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
3618 ret = rmrr_parse_dev(rmrr);
3619 if (ret)
3620 return ret;
3623 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
3624 ret = atsr_parse_dev(atsr);
3625 if (ret)
3626 return ret;
3629 return ret;
3633 * Here we only respond to action of unbound device from driver.
3635 * Added device is not attached to its DMAR domain here yet. That will happen
3636 * when mapping the device to iova.
3638 static int device_notifier(struct notifier_block *nb,
3639 unsigned long action, void *data)
3641 struct device *dev = data;
3642 struct pci_dev *pdev = to_pci_dev(dev);
3643 struct dmar_domain *domain;
3645 if (iommu_no_mapping(dev))
3646 return 0;
3648 domain = find_domain(pdev);
3649 if (!domain)
3650 return 0;
3652 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3653 domain_remove_one_dev_info(domain, pdev);
3655 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3656 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3657 list_empty(&domain->devices))
3658 domain_exit(domain);
3661 return 0;
3664 static struct notifier_block device_nb = {
3665 .notifier_call = device_notifier,
3668 int __init intel_iommu_init(void)
3670 int ret = 0;
3671 struct dmar_drhd_unit *drhd;
3673 /* VT-d is required for a TXT/tboot launch, so enforce that */
3674 force_on = tboot_force_iommu();
3676 if (dmar_table_init()) {
3677 if (force_on)
3678 panic("tboot: Failed to initialize DMAR table\n");
3679 return -ENODEV;
3683 * Disable translation if already enabled prior to OS handover.
3685 for_each_drhd_unit(drhd) {
3686 struct intel_iommu *iommu;
3688 if (drhd->ignored)
3689 continue;
3691 iommu = drhd->iommu;
3692 if (iommu->gcmd & DMA_GCMD_TE)
3693 iommu_disable_translation(iommu);
3696 if (dmar_dev_scope_init() < 0) {
3697 if (force_on)
3698 panic("tboot: Failed to initialize DMAR device scope\n");
3699 return -ENODEV;
3702 if (no_iommu || dmar_disabled)
3703 return -ENODEV;
3705 if (iommu_init_mempool()) {
3706 if (force_on)
3707 panic("tboot: Failed to initialize iommu memory\n");
3708 return -ENODEV;
3711 if (list_empty(&dmar_rmrr_units))
3712 printk(KERN_INFO "DMAR: No RMRR found\n");
3714 if (list_empty(&dmar_atsr_units))
3715 printk(KERN_INFO "DMAR: No ATSR found\n");
3717 if (dmar_init_reserved_ranges()) {
3718 if (force_on)
3719 panic("tboot: Failed to reserve iommu ranges\n");
3720 return -ENODEV;
3723 init_no_remapping_devices();
3725 ret = init_dmars();
3726 if (ret) {
3727 if (force_on)
3728 panic("tboot: Failed to initialize DMARs\n");
3729 printk(KERN_ERR "IOMMU: dmar init failed\n");
3730 put_iova_domain(&reserved_iova_list);
3731 iommu_exit_mempool();
3732 return ret;
3734 printk(KERN_INFO
3735 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3737 init_timer(&unmap_timer);
3738 #ifdef CONFIG_SWIOTLB
3739 swiotlb = 0;
3740 #endif
3741 dma_ops = &intel_dma_ops;
3743 init_iommu_pm_ops();
3745 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3747 bus_register_notifier(&pci_bus_type, &device_nb);
3749 intel_iommu_enabled = 1;
3751 return 0;
3754 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3755 struct pci_dev *pdev)
3757 struct pci_dev *tmp, *parent;
3759 if (!iommu || !pdev)
3760 return;
3762 /* dependent device detach */
3763 tmp = pci_find_upstream_pcie_bridge(pdev);
3764 /* Secondary interface's bus number and devfn 0 */
3765 if (tmp) {
3766 parent = pdev->bus->self;
3767 while (parent != tmp) {
3768 iommu_detach_dev(iommu, parent->bus->number,
3769 parent->devfn);
3770 parent = parent->bus->self;
3772 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3773 iommu_detach_dev(iommu,
3774 tmp->subordinate->number, 0);
3775 else /* this is a legacy PCI bridge */
3776 iommu_detach_dev(iommu, tmp->bus->number,
3777 tmp->devfn);
3781 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3782 struct pci_dev *pdev)
3784 struct device_domain_info *info;
3785 struct intel_iommu *iommu;
3786 unsigned long flags;
3787 int found = 0;
3788 struct list_head *entry, *tmp;
3790 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3791 pdev->devfn);
3792 if (!iommu)
3793 return;
3795 spin_lock_irqsave(&device_domain_lock, flags);
3796 list_for_each_safe(entry, tmp, &domain->devices) {
3797 info = list_entry(entry, struct device_domain_info, link);
3798 if (info->segment == pci_domain_nr(pdev->bus) &&
3799 info->bus == pdev->bus->number &&
3800 info->devfn == pdev->devfn) {
3801 unlink_domain_info(info);
3802 spin_unlock_irqrestore(&device_domain_lock, flags);
3804 iommu_disable_dev_iotlb(info);
3805 iommu_detach_dev(iommu, info->bus, info->devfn);
3806 iommu_detach_dependent_devices(iommu, pdev);
3807 free_devinfo_mem(info);
3809 spin_lock_irqsave(&device_domain_lock, flags);
3811 if (found)
3812 break;
3813 else
3814 continue;
3817 /* if there is no other devices under the same iommu
3818 * owned by this domain, clear this iommu in iommu_bmp
3819 * update iommu count and coherency
3821 if (iommu == device_to_iommu(info->segment, info->bus,
3822 info->devfn))
3823 found = 1;
3826 spin_unlock_irqrestore(&device_domain_lock, flags);
3828 if (found == 0) {
3829 unsigned long tmp_flags;
3830 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3831 clear_bit(iommu->seq_id, domain->iommu_bmp);
3832 domain->iommu_count--;
3833 domain_update_iommu_cap(domain);
3834 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3836 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3837 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
3838 spin_lock_irqsave(&iommu->lock, tmp_flags);
3839 clear_bit(domain->id, iommu->domain_ids);
3840 iommu->domains[domain->id] = NULL;
3841 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3846 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3848 struct device_domain_info *info;
3849 struct intel_iommu *iommu;
3850 unsigned long flags1, flags2;
3852 spin_lock_irqsave(&device_domain_lock, flags1);
3853 while (!list_empty(&domain->devices)) {
3854 info = list_entry(domain->devices.next,
3855 struct device_domain_info, link);
3856 unlink_domain_info(info);
3857 spin_unlock_irqrestore(&device_domain_lock, flags1);
3859 iommu_disable_dev_iotlb(info);
3860 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3861 iommu_detach_dev(iommu, info->bus, info->devfn);
3862 iommu_detach_dependent_devices(iommu, info->dev);
3864 /* clear this iommu in iommu_bmp, update iommu count
3865 * and capabilities
3867 spin_lock_irqsave(&domain->iommu_lock, flags2);
3868 if (test_and_clear_bit(iommu->seq_id,
3869 domain->iommu_bmp)) {
3870 domain->iommu_count--;
3871 domain_update_iommu_cap(domain);
3873 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3875 free_devinfo_mem(info);
3876 spin_lock_irqsave(&device_domain_lock, flags1);
3878 spin_unlock_irqrestore(&device_domain_lock, flags1);
3881 /* domain id for virtual machine, it won't be set in context */
3882 static unsigned long vm_domid;
3884 static struct dmar_domain *iommu_alloc_vm_domain(void)
3886 struct dmar_domain *domain;
3888 domain = alloc_domain_mem();
3889 if (!domain)
3890 return NULL;
3892 domain->id = vm_domid++;
3893 domain->nid = -1;
3894 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
3895 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3897 return domain;
3900 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3902 int adjust_width;
3904 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3905 spin_lock_init(&domain->iommu_lock);
3907 domain_reserve_special_ranges(domain);
3909 /* calculate AGAW */
3910 domain->gaw = guest_width;
3911 adjust_width = guestwidth_to_adjustwidth(guest_width);
3912 domain->agaw = width_to_agaw(adjust_width);
3914 INIT_LIST_HEAD(&domain->devices);
3916 domain->iommu_count = 0;
3917 domain->iommu_coherency = 0;
3918 domain->iommu_snooping = 0;
3919 domain->iommu_superpage = 0;
3920 domain->max_addr = 0;
3921 domain->nid = -1;
3923 /* always allocate the top pgd */
3924 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3925 if (!domain->pgd)
3926 return -ENOMEM;
3927 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3928 return 0;
3931 static void iommu_free_vm_domain(struct dmar_domain *domain)
3933 unsigned long flags;
3934 struct dmar_drhd_unit *drhd;
3935 struct intel_iommu *iommu;
3936 unsigned long i;
3937 unsigned long ndomains;
3939 for_each_drhd_unit(drhd) {
3940 if (drhd->ignored)
3941 continue;
3942 iommu = drhd->iommu;
3944 ndomains = cap_ndoms(iommu->cap);
3945 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3946 if (iommu->domains[i] == domain) {
3947 spin_lock_irqsave(&iommu->lock, flags);
3948 clear_bit(i, iommu->domain_ids);
3949 iommu->domains[i] = NULL;
3950 spin_unlock_irqrestore(&iommu->lock, flags);
3951 break;
3957 static void vm_domain_exit(struct dmar_domain *domain)
3959 /* Domain 0 is reserved, so dont process it */
3960 if (!domain)
3961 return;
3963 vm_domain_remove_all_dev_info(domain);
3964 /* destroy iovas */
3965 put_iova_domain(&domain->iovad);
3967 /* clear ptes */
3968 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3970 /* free page tables */
3971 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3973 iommu_free_vm_domain(domain);
3974 free_domain_mem(domain);
3977 static int intel_iommu_domain_init(struct iommu_domain *domain)
3979 struct dmar_domain *dmar_domain;
3981 dmar_domain = iommu_alloc_vm_domain();
3982 if (!dmar_domain) {
3983 printk(KERN_ERR
3984 "intel_iommu_domain_init: dmar_domain == NULL\n");
3985 return -ENOMEM;
3987 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3988 printk(KERN_ERR
3989 "intel_iommu_domain_init() failed\n");
3990 vm_domain_exit(dmar_domain);
3991 return -ENOMEM;
3993 domain_update_iommu_cap(dmar_domain);
3994 domain->priv = dmar_domain;
3996 domain->geometry.aperture_start = 0;
3997 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
3998 domain->geometry.force_aperture = true;
4000 return 0;
4003 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
4005 struct dmar_domain *dmar_domain = domain->priv;
4007 domain->priv = NULL;
4008 vm_domain_exit(dmar_domain);
4011 static int intel_iommu_attach_device(struct iommu_domain *domain,
4012 struct device *dev)
4014 struct dmar_domain *dmar_domain = domain->priv;
4015 struct pci_dev *pdev = to_pci_dev(dev);
4016 struct intel_iommu *iommu;
4017 int addr_width;
4019 /* normally pdev is not mapped */
4020 if (unlikely(domain_context_mapped(pdev))) {
4021 struct dmar_domain *old_domain;
4023 old_domain = find_domain(pdev);
4024 if (old_domain) {
4025 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
4026 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
4027 domain_remove_one_dev_info(old_domain, pdev);
4028 else
4029 domain_remove_dev_info(old_domain);
4033 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
4034 pdev->devfn);
4035 if (!iommu)
4036 return -ENODEV;
4038 /* check if this iommu agaw is sufficient for max mapped address */
4039 addr_width = agaw_to_width(iommu->agaw);
4040 if (addr_width > cap_mgaw(iommu->cap))
4041 addr_width = cap_mgaw(iommu->cap);
4043 if (dmar_domain->max_addr > (1LL << addr_width)) {
4044 printk(KERN_ERR "%s: iommu width (%d) is not "
4045 "sufficient for the mapped address (%llx)\n",
4046 __func__, addr_width, dmar_domain->max_addr);
4047 return -EFAULT;
4049 dmar_domain->gaw = addr_width;
4052 * Knock out extra levels of page tables if necessary
4054 while (iommu->agaw < dmar_domain->agaw) {
4055 struct dma_pte *pte;
4057 pte = dmar_domain->pgd;
4058 if (dma_pte_present(pte)) {
4059 dmar_domain->pgd = (struct dma_pte *)
4060 phys_to_virt(dma_pte_addr(pte));
4061 free_pgtable_page(pte);
4063 dmar_domain->agaw--;
4066 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
4069 static void intel_iommu_detach_device(struct iommu_domain *domain,
4070 struct device *dev)
4072 struct dmar_domain *dmar_domain = domain->priv;
4073 struct pci_dev *pdev = to_pci_dev(dev);
4075 domain_remove_one_dev_info(dmar_domain, pdev);
4078 static int intel_iommu_map(struct iommu_domain *domain,
4079 unsigned long iova, phys_addr_t hpa,
4080 size_t size, int iommu_prot)
4082 struct dmar_domain *dmar_domain = domain->priv;
4083 u64 max_addr;
4084 int prot = 0;
4085 int ret;
4087 if (iommu_prot & IOMMU_READ)
4088 prot |= DMA_PTE_READ;
4089 if (iommu_prot & IOMMU_WRITE)
4090 prot |= DMA_PTE_WRITE;
4091 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4092 prot |= DMA_PTE_SNP;
4094 max_addr = iova + size;
4095 if (dmar_domain->max_addr < max_addr) {
4096 u64 end;
4098 /* check if minimum agaw is sufficient for mapped address */
4099 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4100 if (end < max_addr) {
4101 printk(KERN_ERR "%s: iommu width (%d) is not "
4102 "sufficient for the mapped address (%llx)\n",
4103 __func__, dmar_domain->gaw, max_addr);
4104 return -EFAULT;
4106 dmar_domain->max_addr = max_addr;
4108 /* Round up size to next multiple of PAGE_SIZE, if it and
4109 the low bits of hpa would take us onto the next page */
4110 size = aligned_nrpages(hpa, size);
4111 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4112 hpa >> VTD_PAGE_SHIFT, size, prot);
4113 return ret;
4116 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4117 unsigned long iova, size_t size)
4119 struct dmar_domain *dmar_domain = domain->priv;
4120 int order, iommu_id;
4122 order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
4123 (iova + size - 1) >> VTD_PAGE_SHIFT);
4125 if (dmar_domain->max_addr == iova + size)
4126 dmar_domain->max_addr = iova;
4128 for_each_set_bit(iommu_id, dmar_domain->iommu_bmp, g_num_of_iommus) {
4129 struct intel_iommu *iommu = g_iommus[iommu_id];
4130 int num, ndomains;
4133 * find bit position of dmar_domain
4135 ndomains = cap_ndoms(iommu->cap);
4136 for_each_set_bit(num, iommu->domain_ids, ndomains) {
4137 if (iommu->domains[num] == dmar_domain)
4138 iommu_flush_iotlb_psi(iommu, num,
4139 iova >> VTD_PAGE_SHIFT,
4140 1 << order, 0);
4144 return PAGE_SIZE << order;
4147 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4148 dma_addr_t iova)
4150 struct dmar_domain *dmar_domain = domain->priv;
4151 struct dma_pte *pte;
4152 u64 phys = 0;
4154 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0);
4155 if (pte)
4156 phys = dma_pte_addr(pte);
4158 return phys;
4161 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4162 unsigned long cap)
4164 struct dmar_domain *dmar_domain = domain->priv;
4166 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4167 return dmar_domain->iommu_snooping;
4168 if (cap == IOMMU_CAP_INTR_REMAP)
4169 return irq_remapping_enabled;
4171 return 0;
4174 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
4176 static int intel_iommu_add_device(struct device *dev)
4178 struct pci_dev *pdev = to_pci_dev(dev);
4179 struct pci_dev *bridge, *dma_pdev = NULL;
4180 struct iommu_group *group;
4181 int ret;
4183 if (!device_to_iommu(pci_domain_nr(pdev->bus),
4184 pdev->bus->number, pdev->devfn))
4185 return -ENODEV;
4187 bridge = pci_find_upstream_pcie_bridge(pdev);
4188 if (bridge) {
4189 if (pci_is_pcie(bridge))
4190 dma_pdev = pci_get_domain_bus_and_slot(
4191 pci_domain_nr(pdev->bus),
4192 bridge->subordinate->number, 0);
4193 if (!dma_pdev)
4194 dma_pdev = pci_dev_get(bridge);
4195 } else
4196 dma_pdev = pci_dev_get(pdev);
4198 /* Account for quirked devices */
4199 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
4202 * If it's a multifunction device that does not support our
4203 * required ACS flags, add to the same group as lowest numbered
4204 * function that also does not suport the required ACS flags.
4206 if (dma_pdev->multifunction &&
4207 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) {
4208 u8 i, slot = PCI_SLOT(dma_pdev->devfn);
4210 for (i = 0; i < 8; i++) {
4211 struct pci_dev *tmp;
4213 tmp = pci_get_slot(dma_pdev->bus, PCI_DEVFN(slot, i));
4214 if (!tmp)
4215 continue;
4217 if (!pci_acs_enabled(tmp, REQ_ACS_FLAGS)) {
4218 swap_pci_ref(&dma_pdev, tmp);
4219 break;
4221 pci_dev_put(tmp);
4226 * Devices on the root bus go through the iommu. If that's not us,
4227 * find the next upstream device and test ACS up to the root bus.
4228 * Finding the next device may require skipping virtual buses.
4230 while (!pci_is_root_bus(dma_pdev->bus)) {
4231 struct pci_bus *bus = dma_pdev->bus;
4233 while (!bus->self) {
4234 if (!pci_is_root_bus(bus))
4235 bus = bus->parent;
4236 else
4237 goto root_bus;
4240 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
4241 break;
4243 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
4246 root_bus:
4247 group = iommu_group_get(&dma_pdev->dev);
4248 pci_dev_put(dma_pdev);
4249 if (!group) {
4250 group = iommu_group_alloc();
4251 if (IS_ERR(group))
4252 return PTR_ERR(group);
4255 ret = iommu_group_add_device(group, dev);
4257 iommu_group_put(group);
4258 return ret;
4261 static void intel_iommu_remove_device(struct device *dev)
4263 iommu_group_remove_device(dev);
4266 static struct iommu_ops intel_iommu_ops = {
4267 .domain_init = intel_iommu_domain_init,
4268 .domain_destroy = intel_iommu_domain_destroy,
4269 .attach_dev = intel_iommu_attach_device,
4270 .detach_dev = intel_iommu_detach_device,
4271 .map = intel_iommu_map,
4272 .unmap = intel_iommu_unmap,
4273 .iova_to_phys = intel_iommu_iova_to_phys,
4274 .domain_has_cap = intel_iommu_domain_has_cap,
4275 .add_device = intel_iommu_add_device,
4276 .remove_device = intel_iommu_remove_device,
4277 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4280 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4282 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4283 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4284 dmar_map_gfx = 0;
4287 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4288 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4289 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4290 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4291 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4292 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4293 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4295 static void quirk_iommu_rwbf(struct pci_dev *dev)
4298 * Mobile 4 Series Chipset neglects to set RWBF capability,
4299 * but needs it. Same seems to hold for the desktop versions.
4301 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4302 rwbf_quirk = 1;
4305 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4306 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4307 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4308 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4309 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4310 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4311 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4313 #define GGC 0x52
4314 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4315 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4316 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4317 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4318 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4319 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4320 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4321 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4323 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4325 unsigned short ggc;
4327 if (pci_read_config_word(dev, GGC, &ggc))
4328 return;
4330 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4331 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4332 dmar_map_gfx = 0;
4333 } else if (dmar_map_gfx) {
4334 /* we have to ensure the gfx device is idle before we flush */
4335 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4336 intel_iommu_strict = 1;
4339 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4340 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4341 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4342 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4344 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4345 ISOCH DMAR unit for the Azalia sound device, but not give it any
4346 TLB entries, which causes it to deadlock. Check for that. We do
4347 this in a function called from init_dmars(), instead of in a PCI
4348 quirk, because we don't want to print the obnoxious "BIOS broken"
4349 message if VT-d is actually disabled.
4351 static void __init check_tylersburg_isoch(void)
4353 struct pci_dev *pdev;
4354 uint32_t vtisochctrl;
4356 /* If there's no Azalia in the system anyway, forget it. */
4357 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4358 if (!pdev)
4359 return;
4360 pci_dev_put(pdev);
4362 /* System Management Registers. Might be hidden, in which case
4363 we can't do the sanity check. But that's OK, because the
4364 known-broken BIOSes _don't_ actually hide it, so far. */
4365 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4366 if (!pdev)
4367 return;
4369 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4370 pci_dev_put(pdev);
4371 return;
4374 pci_dev_put(pdev);
4376 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4377 if (vtisochctrl & 1)
4378 return;
4380 /* Drop all bits other than the number of TLB entries */
4381 vtisochctrl &= 0x1c;
4383 /* If we have the recommended number of TLB entries (16), fine. */
4384 if (vtisochctrl == 0x10)
4385 return;
4387 /* Zero TLB entries? You get to ride the short bus to school. */
4388 if (!vtisochctrl) {
4389 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4390 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4391 dmi_get_system_info(DMI_BIOS_VENDOR),
4392 dmi_get_system_info(DMI_BIOS_VERSION),
4393 dmi_get_system_info(DMI_PRODUCT_VERSION));
4394 iommu_identity_mapping |= IDENTMAP_AZALIA;
4395 return;
4398 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4399 vtisochctrl);