x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / md / dm-bufio.c
blob5056c45be97f4bfd41ed591c48561ba6f08a14a8
1 /*
2 * Copyright (C) 2009-2011 Red Hat, Inc.
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 * This file is released under the GPL.
7 */
9 #include "dm-bufio.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/shrinker.h>
16 #include <linux/module.h>
18 #define DM_MSG_PREFIX "bufio"
21 * Memory management policy:
22 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
23 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
24 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
25 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
26 * dirty buffers.
28 #define DM_BUFIO_MIN_BUFFERS 8
30 #define DM_BUFIO_MEMORY_PERCENT 2
31 #define DM_BUFIO_VMALLOC_PERCENT 25
32 #define DM_BUFIO_WRITEBACK_PERCENT 75
35 * Check buffer ages in this interval (seconds)
37 #define DM_BUFIO_WORK_TIMER_SECS 10
40 * Free buffers when they are older than this (seconds)
42 #define DM_BUFIO_DEFAULT_AGE_SECS 60
45 * The number of bvec entries that are embedded directly in the buffer.
46 * If the chunk size is larger, dm-io is used to do the io.
48 #define DM_BUFIO_INLINE_VECS 16
51 * Buffer hash
53 #define DM_BUFIO_HASH_BITS 20
54 #define DM_BUFIO_HASH(block) \
55 ((((block) >> DM_BUFIO_HASH_BITS) ^ (block)) & \
56 ((1 << DM_BUFIO_HASH_BITS) - 1))
59 * Don't try to use kmem_cache_alloc for blocks larger than this.
60 * For explanation, see alloc_buffer_data below.
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1))
66 * dm_buffer->list_mode
68 #define LIST_CLEAN 0
69 #define LIST_DIRTY 1
70 #define LIST_SIZE 2
73 * Linking of buffers:
74 * All buffers are linked to cache_hash with their hash_list field.
76 * Clean buffers that are not being written (B_WRITING not set)
77 * are linked to lru[LIST_CLEAN] with their lru_list field.
79 * Dirty and clean buffers that are being written are linked to
80 * lru[LIST_DIRTY] with their lru_list field. When the write
81 * finishes, the buffer cannot be relinked immediately (because we
82 * are in an interrupt context and relinking requires process
83 * context), so some clean-not-writing buffers can be held on
84 * dirty_lru too. They are later added to lru in the process
85 * context.
87 struct dm_bufio_client {
88 struct mutex lock;
90 struct list_head lru[LIST_SIZE];
91 unsigned long n_buffers[LIST_SIZE];
93 struct block_device *bdev;
94 unsigned block_size;
95 unsigned char sectors_per_block_bits;
96 unsigned char pages_per_block_bits;
97 unsigned char blocks_per_page_bits;
98 unsigned aux_size;
99 void (*alloc_callback)(struct dm_buffer *);
100 void (*write_callback)(struct dm_buffer *);
102 struct dm_io_client *dm_io;
104 struct list_head reserved_buffers;
105 unsigned need_reserved_buffers;
107 struct hlist_head *cache_hash;
108 wait_queue_head_t free_buffer_wait;
110 int async_write_error;
112 struct list_head client_list;
113 struct shrinker shrinker;
117 * Buffer state bits.
119 #define B_READING 0
120 #define B_WRITING 1
121 #define B_DIRTY 2
124 * Describes how the block was allocated:
125 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
126 * See the comment at alloc_buffer_data.
128 enum data_mode {
129 DATA_MODE_SLAB = 0,
130 DATA_MODE_GET_FREE_PAGES = 1,
131 DATA_MODE_VMALLOC = 2,
132 DATA_MODE_LIMIT = 3
135 struct dm_buffer {
136 struct hlist_node hash_list;
137 struct list_head lru_list;
138 sector_t block;
139 void *data;
140 enum data_mode data_mode;
141 unsigned char list_mode; /* LIST_* */
142 unsigned hold_count;
143 int read_error;
144 int write_error;
145 unsigned long state;
146 unsigned long last_accessed;
147 struct dm_bufio_client *c;
148 struct list_head write_list;
149 struct bio bio;
150 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
153 /*----------------------------------------------------------------*/
155 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
156 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
158 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
160 unsigned ret = c->blocks_per_page_bits - 1;
162 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
164 return ret;
167 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)])
168 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)])
170 #define dm_bufio_in_request() (!!current->bio_list)
172 static void dm_bufio_lock(struct dm_bufio_client *c)
174 mutex_lock_nested(&c->lock, dm_bufio_in_request());
177 static int dm_bufio_trylock(struct dm_bufio_client *c)
179 return mutex_trylock(&c->lock);
182 static void dm_bufio_unlock(struct dm_bufio_client *c)
184 mutex_unlock(&c->lock);
188 * FIXME Move to sched.h?
190 #ifdef CONFIG_PREEMPT_VOLUNTARY
191 # define dm_bufio_cond_resched() \
192 do { \
193 if (unlikely(need_resched())) \
194 _cond_resched(); \
195 } while (0)
196 #else
197 # define dm_bufio_cond_resched() do { } while (0)
198 #endif
200 /*----------------------------------------------------------------*/
203 * Default cache size: available memory divided by the ratio.
205 static unsigned long dm_bufio_default_cache_size;
208 * Total cache size set by the user.
210 static unsigned long dm_bufio_cache_size;
213 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
214 * at any time. If it disagrees, the user has changed cache size.
216 static unsigned long dm_bufio_cache_size_latch;
218 static DEFINE_SPINLOCK(param_spinlock);
221 * Buffers are freed after this timeout
223 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
225 static unsigned long dm_bufio_peak_allocated;
226 static unsigned long dm_bufio_allocated_kmem_cache;
227 static unsigned long dm_bufio_allocated_get_free_pages;
228 static unsigned long dm_bufio_allocated_vmalloc;
229 static unsigned long dm_bufio_current_allocated;
231 /*----------------------------------------------------------------*/
234 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
236 static unsigned long dm_bufio_cache_size_per_client;
239 * The current number of clients.
241 static int dm_bufio_client_count;
244 * The list of all clients.
246 static LIST_HEAD(dm_bufio_all_clients);
249 * This mutex protects dm_bufio_cache_size_latch,
250 * dm_bufio_cache_size_per_client and dm_bufio_client_count
252 static DEFINE_MUTEX(dm_bufio_clients_lock);
254 /*----------------------------------------------------------------*/
256 static void adjust_total_allocated(enum data_mode data_mode, long diff)
258 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
259 &dm_bufio_allocated_kmem_cache,
260 &dm_bufio_allocated_get_free_pages,
261 &dm_bufio_allocated_vmalloc,
264 spin_lock(&param_spinlock);
266 *class_ptr[data_mode] += diff;
268 dm_bufio_current_allocated += diff;
270 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
271 dm_bufio_peak_allocated = dm_bufio_current_allocated;
273 spin_unlock(&param_spinlock);
277 * Change the number of clients and recalculate per-client limit.
279 static void __cache_size_refresh(void)
281 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
282 BUG_ON(dm_bufio_client_count < 0);
284 dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
287 * Use default if set to 0 and report the actual cache size used.
289 if (!dm_bufio_cache_size_latch) {
290 (void)cmpxchg(&dm_bufio_cache_size, 0,
291 dm_bufio_default_cache_size);
292 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
295 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
296 (dm_bufio_client_count ? : 1);
300 * Allocating buffer data.
302 * Small buffers are allocated with kmem_cache, to use space optimally.
304 * For large buffers, we choose between get_free_pages and vmalloc.
305 * Each has advantages and disadvantages.
307 * __get_free_pages can randomly fail if the memory is fragmented.
308 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
309 * as low as 128M) so using it for caching is not appropriate.
311 * If the allocation may fail we use __get_free_pages. Memory fragmentation
312 * won't have a fatal effect here, but it just causes flushes of some other
313 * buffers and more I/O will be performed. Don't use __get_free_pages if it
314 * always fails (i.e. order >= MAX_ORDER).
316 * If the allocation shouldn't fail we use __vmalloc. This is only for the
317 * initial reserve allocation, so there's no risk of wasting all vmalloc
318 * space.
320 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
321 enum data_mode *data_mode)
323 unsigned noio_flag;
324 void *ptr;
326 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
327 *data_mode = DATA_MODE_SLAB;
328 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
331 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
332 gfp_mask & __GFP_NORETRY) {
333 *data_mode = DATA_MODE_GET_FREE_PAGES;
334 return (void *)__get_free_pages(gfp_mask,
335 c->pages_per_block_bits);
338 *data_mode = DATA_MODE_VMALLOC;
341 * __vmalloc allocates the data pages and auxiliary structures with
342 * gfp_flags that were specified, but pagetables are always allocated
343 * with GFP_KERNEL, no matter what was specified as gfp_mask.
345 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
346 * all allocations done by this process (including pagetables) are done
347 * as if GFP_NOIO was specified.
350 if (gfp_mask & __GFP_NORETRY)
351 noio_flag = memalloc_noio_save();
353 ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
355 if (gfp_mask & __GFP_NORETRY)
356 memalloc_noio_restore(noio_flag);
358 return ptr;
362 * Free buffer's data.
364 static void free_buffer_data(struct dm_bufio_client *c,
365 void *data, enum data_mode data_mode)
367 switch (data_mode) {
368 case DATA_MODE_SLAB:
369 kmem_cache_free(DM_BUFIO_CACHE(c), data);
370 break;
372 case DATA_MODE_GET_FREE_PAGES:
373 free_pages((unsigned long)data, c->pages_per_block_bits);
374 break;
376 case DATA_MODE_VMALLOC:
377 vfree(data);
378 break;
380 default:
381 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
382 data_mode);
383 BUG();
388 * Allocate buffer and its data.
390 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
392 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
393 gfp_mask);
395 if (!b)
396 return NULL;
398 b->c = c;
400 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
401 if (!b->data) {
402 kfree(b);
403 return NULL;
406 adjust_total_allocated(b->data_mode, (long)c->block_size);
408 return b;
412 * Free buffer and its data.
414 static void free_buffer(struct dm_buffer *b)
416 struct dm_bufio_client *c = b->c;
418 adjust_total_allocated(b->data_mode, -(long)c->block_size);
420 free_buffer_data(c, b->data, b->data_mode);
421 kfree(b);
425 * Link buffer to the hash list and clean or dirty queue.
427 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
429 struct dm_bufio_client *c = b->c;
431 c->n_buffers[dirty]++;
432 b->block = block;
433 b->list_mode = dirty;
434 list_add(&b->lru_list, &c->lru[dirty]);
435 hlist_add_head(&b->hash_list, &c->cache_hash[DM_BUFIO_HASH(block)]);
436 b->last_accessed = jiffies;
440 * Unlink buffer from the hash list and dirty or clean queue.
442 static void __unlink_buffer(struct dm_buffer *b)
444 struct dm_bufio_client *c = b->c;
446 BUG_ON(!c->n_buffers[b->list_mode]);
448 c->n_buffers[b->list_mode]--;
449 hlist_del(&b->hash_list);
450 list_del(&b->lru_list);
454 * Place the buffer to the head of dirty or clean LRU queue.
456 static void __relink_lru(struct dm_buffer *b, int dirty)
458 struct dm_bufio_client *c = b->c;
460 BUG_ON(!c->n_buffers[b->list_mode]);
462 c->n_buffers[b->list_mode]--;
463 c->n_buffers[dirty]++;
464 b->list_mode = dirty;
465 list_move(&b->lru_list, &c->lru[dirty]);
468 /*----------------------------------------------------------------
469 * Submit I/O on the buffer.
471 * Bio interface is faster but it has some problems:
472 * the vector list is limited (increasing this limit increases
473 * memory-consumption per buffer, so it is not viable);
475 * the memory must be direct-mapped, not vmalloced;
477 * the I/O driver can reject requests spuriously if it thinks that
478 * the requests are too big for the device or if they cross a
479 * controller-defined memory boundary.
481 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
482 * it is not vmalloced, try using the bio interface.
484 * If the buffer is big, if it is vmalloced or if the underlying device
485 * rejects the bio because it is too large, use dm-io layer to do the I/O.
486 * The dm-io layer splits the I/O into multiple requests, avoiding the above
487 * shortcomings.
488 *--------------------------------------------------------------*/
491 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
492 * that the request was handled directly with bio interface.
494 static void dmio_complete(unsigned long error, void *context)
496 struct dm_buffer *b = context;
498 b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
501 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
502 bio_end_io_t *end_io)
504 int r;
505 struct dm_io_request io_req = {
506 .bi_rw = rw,
507 .notify.fn = dmio_complete,
508 .notify.context = b,
509 .client = b->c->dm_io,
511 struct dm_io_region region = {
512 .bdev = b->c->bdev,
513 .sector = block << b->c->sectors_per_block_bits,
514 .count = b->c->block_size >> SECTOR_SHIFT,
517 if (b->data_mode != DATA_MODE_VMALLOC) {
518 io_req.mem.type = DM_IO_KMEM;
519 io_req.mem.ptr.addr = b->data;
520 } else {
521 io_req.mem.type = DM_IO_VMA;
522 io_req.mem.ptr.vma = b->data;
525 b->bio.bi_end_io = end_io;
527 r = dm_io(&io_req, 1, &region, NULL);
528 if (r)
529 end_io(&b->bio, r);
532 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
533 bio_end_io_t *end_io)
535 char *ptr;
536 int len;
538 bio_init(&b->bio);
539 b->bio.bi_io_vec = b->bio_vec;
540 b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
541 b->bio.bi_sector = block << b->c->sectors_per_block_bits;
542 b->bio.bi_bdev = b->c->bdev;
543 b->bio.bi_end_io = end_io;
546 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
547 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
549 ptr = b->data;
550 len = b->c->block_size;
552 if (len >= PAGE_SIZE)
553 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
554 else
555 BUG_ON((unsigned long)ptr & (len - 1));
557 do {
558 if (!bio_add_page(&b->bio, virt_to_page(ptr),
559 len < PAGE_SIZE ? len : PAGE_SIZE,
560 virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
561 BUG_ON(b->c->block_size <= PAGE_SIZE);
562 use_dmio(b, rw, block, end_io);
563 return;
566 len -= PAGE_SIZE;
567 ptr += PAGE_SIZE;
568 } while (len > 0);
570 submit_bio(rw, &b->bio);
573 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
574 bio_end_io_t *end_io)
576 if (rw == WRITE && b->c->write_callback)
577 b->c->write_callback(b);
579 if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
580 b->data_mode != DATA_MODE_VMALLOC)
581 use_inline_bio(b, rw, block, end_io);
582 else
583 use_dmio(b, rw, block, end_io);
586 /*----------------------------------------------------------------
587 * Writing dirty buffers
588 *--------------------------------------------------------------*/
591 * The endio routine for write.
593 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
594 * it.
596 static void write_endio(struct bio *bio, int error)
598 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
600 b->write_error = error;
601 if (unlikely(error)) {
602 struct dm_bufio_client *c = b->c;
603 (void)cmpxchg(&c->async_write_error, 0, error);
606 BUG_ON(!test_bit(B_WRITING, &b->state));
608 smp_mb__before_clear_bit();
609 clear_bit(B_WRITING, &b->state);
610 smp_mb__after_clear_bit();
612 wake_up_bit(&b->state, B_WRITING);
616 * This function is called when wait_on_bit is actually waiting.
618 static int do_io_schedule(void *word)
620 io_schedule();
622 return 0;
626 * Initiate a write on a dirty buffer, but don't wait for it.
628 * - If the buffer is not dirty, exit.
629 * - If there some previous write going on, wait for it to finish (we can't
630 * have two writes on the same buffer simultaneously).
631 * - Submit our write and don't wait on it. We set B_WRITING indicating
632 * that there is a write in progress.
634 static void __write_dirty_buffer(struct dm_buffer *b,
635 struct list_head *write_list)
637 if (!test_bit(B_DIRTY, &b->state))
638 return;
640 clear_bit(B_DIRTY, &b->state);
641 wait_on_bit_lock(&b->state, B_WRITING,
642 do_io_schedule, TASK_UNINTERRUPTIBLE);
644 if (!write_list)
645 submit_io(b, WRITE, b->block, write_endio);
646 else
647 list_add_tail(&b->write_list, write_list);
650 static void __flush_write_list(struct list_head *write_list)
652 struct blk_plug plug;
653 blk_start_plug(&plug);
654 while (!list_empty(write_list)) {
655 struct dm_buffer *b =
656 list_entry(write_list->next, struct dm_buffer, write_list);
657 list_del(&b->write_list);
658 submit_io(b, WRITE, b->block, write_endio);
659 dm_bufio_cond_resched();
661 blk_finish_plug(&plug);
665 * Wait until any activity on the buffer finishes. Possibly write the
666 * buffer if it is dirty. When this function finishes, there is no I/O
667 * running on the buffer and the buffer is not dirty.
669 static void __make_buffer_clean(struct dm_buffer *b)
671 BUG_ON(b->hold_count);
673 if (!b->state) /* fast case */
674 return;
676 wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
677 __write_dirty_buffer(b, NULL);
678 wait_on_bit(&b->state, B_WRITING, do_io_schedule, TASK_UNINTERRUPTIBLE);
682 * Find some buffer that is not held by anybody, clean it, unlink it and
683 * return it.
685 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
687 struct dm_buffer *b;
689 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
690 BUG_ON(test_bit(B_WRITING, &b->state));
691 BUG_ON(test_bit(B_DIRTY, &b->state));
693 if (!b->hold_count) {
694 __make_buffer_clean(b);
695 __unlink_buffer(b);
696 return b;
698 dm_bufio_cond_resched();
701 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
702 BUG_ON(test_bit(B_READING, &b->state));
704 if (!b->hold_count) {
705 __make_buffer_clean(b);
706 __unlink_buffer(b);
707 return b;
709 dm_bufio_cond_resched();
712 return NULL;
716 * Wait until some other threads free some buffer or release hold count on
717 * some buffer.
719 * This function is entered with c->lock held, drops it and regains it
720 * before exiting.
722 static void __wait_for_free_buffer(struct dm_bufio_client *c)
724 DECLARE_WAITQUEUE(wait, current);
726 add_wait_queue(&c->free_buffer_wait, &wait);
727 set_task_state(current, TASK_UNINTERRUPTIBLE);
728 dm_bufio_unlock(c);
730 io_schedule();
732 set_task_state(current, TASK_RUNNING);
733 remove_wait_queue(&c->free_buffer_wait, &wait);
735 dm_bufio_lock(c);
738 enum new_flag {
739 NF_FRESH = 0,
740 NF_READ = 1,
741 NF_GET = 2,
742 NF_PREFETCH = 3
746 * Allocate a new buffer. If the allocation is not possible, wait until
747 * some other thread frees a buffer.
749 * May drop the lock and regain it.
751 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
753 struct dm_buffer *b;
756 * dm-bufio is resistant to allocation failures (it just keeps
757 * one buffer reserved in cases all the allocations fail).
758 * So set flags to not try too hard:
759 * GFP_NOIO: don't recurse into the I/O layer
760 * __GFP_NORETRY: don't retry and rather return failure
761 * __GFP_NOMEMALLOC: don't use emergency reserves
762 * __GFP_NOWARN: don't print a warning in case of failure
764 * For debugging, if we set the cache size to 1, no new buffers will
765 * be allocated.
767 while (1) {
768 if (dm_bufio_cache_size_latch != 1) {
769 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
770 if (b)
771 return b;
774 if (nf == NF_PREFETCH)
775 return NULL;
777 if (!list_empty(&c->reserved_buffers)) {
778 b = list_entry(c->reserved_buffers.next,
779 struct dm_buffer, lru_list);
780 list_del(&b->lru_list);
781 c->need_reserved_buffers++;
783 return b;
786 b = __get_unclaimed_buffer(c);
787 if (b)
788 return b;
790 __wait_for_free_buffer(c);
794 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
796 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
798 if (!b)
799 return NULL;
801 if (c->alloc_callback)
802 c->alloc_callback(b);
804 return b;
808 * Free a buffer and wake other threads waiting for free buffers.
810 static void __free_buffer_wake(struct dm_buffer *b)
812 struct dm_bufio_client *c = b->c;
814 if (!c->need_reserved_buffers)
815 free_buffer(b);
816 else {
817 list_add(&b->lru_list, &c->reserved_buffers);
818 c->need_reserved_buffers--;
821 wake_up(&c->free_buffer_wait);
824 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
825 struct list_head *write_list)
827 struct dm_buffer *b, *tmp;
829 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
830 BUG_ON(test_bit(B_READING, &b->state));
832 if (!test_bit(B_DIRTY, &b->state) &&
833 !test_bit(B_WRITING, &b->state)) {
834 __relink_lru(b, LIST_CLEAN);
835 continue;
838 if (no_wait && test_bit(B_WRITING, &b->state))
839 return;
841 __write_dirty_buffer(b, write_list);
842 dm_bufio_cond_resched();
847 * Get writeback threshold and buffer limit for a given client.
849 static void __get_memory_limit(struct dm_bufio_client *c,
850 unsigned long *threshold_buffers,
851 unsigned long *limit_buffers)
853 unsigned long buffers;
855 if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
856 mutex_lock(&dm_bufio_clients_lock);
857 __cache_size_refresh();
858 mutex_unlock(&dm_bufio_clients_lock);
861 buffers = dm_bufio_cache_size_per_client >>
862 (c->sectors_per_block_bits + SECTOR_SHIFT);
864 if (buffers < DM_BUFIO_MIN_BUFFERS)
865 buffers = DM_BUFIO_MIN_BUFFERS;
867 *limit_buffers = buffers;
868 *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
872 * Check if we're over watermark.
873 * If we are over threshold_buffers, start freeing buffers.
874 * If we're over "limit_buffers", block until we get under the limit.
876 static void __check_watermark(struct dm_bufio_client *c,
877 struct list_head *write_list)
879 unsigned long threshold_buffers, limit_buffers;
881 __get_memory_limit(c, &threshold_buffers, &limit_buffers);
883 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
884 limit_buffers) {
886 struct dm_buffer *b = __get_unclaimed_buffer(c);
888 if (!b)
889 return;
891 __free_buffer_wake(b);
892 dm_bufio_cond_resched();
895 if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
896 __write_dirty_buffers_async(c, 1, write_list);
900 * Find a buffer in the hash.
902 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
904 struct dm_buffer *b;
906 hlist_for_each_entry(b, &c->cache_hash[DM_BUFIO_HASH(block)],
907 hash_list) {
908 dm_bufio_cond_resched();
909 if (b->block == block)
910 return b;
913 return NULL;
916 /*----------------------------------------------------------------
917 * Getting a buffer
918 *--------------------------------------------------------------*/
920 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
921 enum new_flag nf, int *need_submit,
922 struct list_head *write_list)
924 struct dm_buffer *b, *new_b = NULL;
926 *need_submit = 0;
928 b = __find(c, block);
929 if (b)
930 goto found_buffer;
932 if (nf == NF_GET)
933 return NULL;
935 new_b = __alloc_buffer_wait(c, nf);
936 if (!new_b)
937 return NULL;
940 * We've had a period where the mutex was unlocked, so need to
941 * recheck the hash table.
943 b = __find(c, block);
944 if (b) {
945 __free_buffer_wake(new_b);
946 goto found_buffer;
949 __check_watermark(c, write_list);
951 b = new_b;
952 b->hold_count = 1;
953 b->read_error = 0;
954 b->write_error = 0;
955 __link_buffer(b, block, LIST_CLEAN);
957 if (nf == NF_FRESH) {
958 b->state = 0;
959 return b;
962 b->state = 1 << B_READING;
963 *need_submit = 1;
965 return b;
967 found_buffer:
968 if (nf == NF_PREFETCH)
969 return NULL;
971 * Note: it is essential that we don't wait for the buffer to be
972 * read if dm_bufio_get function is used. Both dm_bufio_get and
973 * dm_bufio_prefetch can be used in the driver request routine.
974 * If the user called both dm_bufio_prefetch and dm_bufio_get on
975 * the same buffer, it would deadlock if we waited.
977 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
978 return NULL;
980 b->hold_count++;
981 __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
982 test_bit(B_WRITING, &b->state));
983 return b;
987 * The endio routine for reading: set the error, clear the bit and wake up
988 * anyone waiting on the buffer.
990 static void read_endio(struct bio *bio, int error)
992 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
994 b->read_error = error;
996 BUG_ON(!test_bit(B_READING, &b->state));
998 smp_mb__before_clear_bit();
999 clear_bit(B_READING, &b->state);
1000 smp_mb__after_clear_bit();
1002 wake_up_bit(&b->state, B_READING);
1006 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
1007 * functions is similar except that dm_bufio_new doesn't read the
1008 * buffer from the disk (assuming that the caller overwrites all the data
1009 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1011 static void *new_read(struct dm_bufio_client *c, sector_t block,
1012 enum new_flag nf, struct dm_buffer **bp)
1014 int need_submit;
1015 struct dm_buffer *b;
1017 LIST_HEAD(write_list);
1019 dm_bufio_lock(c);
1020 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1021 dm_bufio_unlock(c);
1023 __flush_write_list(&write_list);
1025 if (!b)
1026 return b;
1028 if (need_submit)
1029 submit_io(b, READ, b->block, read_endio);
1031 wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
1033 if (b->read_error) {
1034 int error = b->read_error;
1036 dm_bufio_release(b);
1038 return ERR_PTR(error);
1041 *bp = b;
1043 return b->data;
1046 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1047 struct dm_buffer **bp)
1049 return new_read(c, block, NF_GET, bp);
1051 EXPORT_SYMBOL_GPL(dm_bufio_get);
1053 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1054 struct dm_buffer **bp)
1056 BUG_ON(dm_bufio_in_request());
1058 return new_read(c, block, NF_READ, bp);
1060 EXPORT_SYMBOL_GPL(dm_bufio_read);
1062 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1063 struct dm_buffer **bp)
1065 BUG_ON(dm_bufio_in_request());
1067 return new_read(c, block, NF_FRESH, bp);
1069 EXPORT_SYMBOL_GPL(dm_bufio_new);
1071 void dm_bufio_prefetch(struct dm_bufio_client *c,
1072 sector_t block, unsigned n_blocks)
1074 struct blk_plug plug;
1076 LIST_HEAD(write_list);
1078 BUG_ON(dm_bufio_in_request());
1080 blk_start_plug(&plug);
1081 dm_bufio_lock(c);
1083 for (; n_blocks--; block++) {
1084 int need_submit;
1085 struct dm_buffer *b;
1086 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1087 &write_list);
1088 if (unlikely(!list_empty(&write_list))) {
1089 dm_bufio_unlock(c);
1090 blk_finish_plug(&plug);
1091 __flush_write_list(&write_list);
1092 blk_start_plug(&plug);
1093 dm_bufio_lock(c);
1095 if (unlikely(b != NULL)) {
1096 dm_bufio_unlock(c);
1098 if (need_submit)
1099 submit_io(b, READ, b->block, read_endio);
1100 dm_bufio_release(b);
1102 dm_bufio_cond_resched();
1104 if (!n_blocks)
1105 goto flush_plug;
1106 dm_bufio_lock(c);
1110 dm_bufio_unlock(c);
1112 flush_plug:
1113 blk_finish_plug(&plug);
1115 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1117 void dm_bufio_release(struct dm_buffer *b)
1119 struct dm_bufio_client *c = b->c;
1121 dm_bufio_lock(c);
1123 BUG_ON(!b->hold_count);
1125 b->hold_count--;
1126 if (!b->hold_count) {
1127 wake_up(&c->free_buffer_wait);
1130 * If there were errors on the buffer, and the buffer is not
1131 * to be written, free the buffer. There is no point in caching
1132 * invalid buffer.
1134 if ((b->read_error || b->write_error) &&
1135 !test_bit(B_READING, &b->state) &&
1136 !test_bit(B_WRITING, &b->state) &&
1137 !test_bit(B_DIRTY, &b->state)) {
1138 __unlink_buffer(b);
1139 __free_buffer_wake(b);
1143 dm_bufio_unlock(c);
1145 EXPORT_SYMBOL_GPL(dm_bufio_release);
1147 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1149 struct dm_bufio_client *c = b->c;
1151 dm_bufio_lock(c);
1153 BUG_ON(test_bit(B_READING, &b->state));
1155 if (!test_and_set_bit(B_DIRTY, &b->state))
1156 __relink_lru(b, LIST_DIRTY);
1158 dm_bufio_unlock(c);
1160 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1162 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1164 LIST_HEAD(write_list);
1166 BUG_ON(dm_bufio_in_request());
1168 dm_bufio_lock(c);
1169 __write_dirty_buffers_async(c, 0, &write_list);
1170 dm_bufio_unlock(c);
1171 __flush_write_list(&write_list);
1173 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1176 * For performance, it is essential that the buffers are written asynchronously
1177 * and simultaneously (so that the block layer can merge the writes) and then
1178 * waited upon.
1180 * Finally, we flush hardware disk cache.
1182 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1184 int a, f;
1185 unsigned long buffers_processed = 0;
1186 struct dm_buffer *b, *tmp;
1188 LIST_HEAD(write_list);
1190 dm_bufio_lock(c);
1191 __write_dirty_buffers_async(c, 0, &write_list);
1192 dm_bufio_unlock(c);
1193 __flush_write_list(&write_list);
1194 dm_bufio_lock(c);
1196 again:
1197 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1198 int dropped_lock = 0;
1200 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1201 buffers_processed++;
1203 BUG_ON(test_bit(B_READING, &b->state));
1205 if (test_bit(B_WRITING, &b->state)) {
1206 if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1207 dropped_lock = 1;
1208 b->hold_count++;
1209 dm_bufio_unlock(c);
1210 wait_on_bit(&b->state, B_WRITING,
1211 do_io_schedule,
1212 TASK_UNINTERRUPTIBLE);
1213 dm_bufio_lock(c);
1214 b->hold_count--;
1215 } else
1216 wait_on_bit(&b->state, B_WRITING,
1217 do_io_schedule,
1218 TASK_UNINTERRUPTIBLE);
1221 if (!test_bit(B_DIRTY, &b->state) &&
1222 !test_bit(B_WRITING, &b->state))
1223 __relink_lru(b, LIST_CLEAN);
1225 dm_bufio_cond_resched();
1228 * If we dropped the lock, the list is no longer consistent,
1229 * so we must restart the search.
1231 * In the most common case, the buffer just processed is
1232 * relinked to the clean list, so we won't loop scanning the
1233 * same buffer again and again.
1235 * This may livelock if there is another thread simultaneously
1236 * dirtying buffers, so we count the number of buffers walked
1237 * and if it exceeds the total number of buffers, it means that
1238 * someone is doing some writes simultaneously with us. In
1239 * this case, stop, dropping the lock.
1241 if (dropped_lock)
1242 goto again;
1244 wake_up(&c->free_buffer_wait);
1245 dm_bufio_unlock(c);
1247 a = xchg(&c->async_write_error, 0);
1248 f = dm_bufio_issue_flush(c);
1249 if (a)
1250 return a;
1252 return f;
1254 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1257 * Use dm-io to send and empty barrier flush the device.
1259 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1261 struct dm_io_request io_req = {
1262 .bi_rw = WRITE_FLUSH,
1263 .mem.type = DM_IO_KMEM,
1264 .mem.ptr.addr = NULL,
1265 .client = c->dm_io,
1267 struct dm_io_region io_reg = {
1268 .bdev = c->bdev,
1269 .sector = 0,
1270 .count = 0,
1273 BUG_ON(dm_bufio_in_request());
1275 return dm_io(&io_req, 1, &io_reg, NULL);
1277 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1280 * We first delete any other buffer that may be at that new location.
1282 * Then, we write the buffer to the original location if it was dirty.
1284 * Then, if we are the only one who is holding the buffer, relink the buffer
1285 * in the hash queue for the new location.
1287 * If there was someone else holding the buffer, we write it to the new
1288 * location but not relink it, because that other user needs to have the buffer
1289 * at the same place.
1291 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1293 struct dm_bufio_client *c = b->c;
1294 struct dm_buffer *new;
1296 BUG_ON(dm_bufio_in_request());
1298 dm_bufio_lock(c);
1300 retry:
1301 new = __find(c, new_block);
1302 if (new) {
1303 if (new->hold_count) {
1304 __wait_for_free_buffer(c);
1305 goto retry;
1309 * FIXME: Is there any point waiting for a write that's going
1310 * to be overwritten in a bit?
1312 __make_buffer_clean(new);
1313 __unlink_buffer(new);
1314 __free_buffer_wake(new);
1317 BUG_ON(!b->hold_count);
1318 BUG_ON(test_bit(B_READING, &b->state));
1320 __write_dirty_buffer(b, NULL);
1321 if (b->hold_count == 1) {
1322 wait_on_bit(&b->state, B_WRITING,
1323 do_io_schedule, TASK_UNINTERRUPTIBLE);
1324 set_bit(B_DIRTY, &b->state);
1325 __unlink_buffer(b);
1326 __link_buffer(b, new_block, LIST_DIRTY);
1327 } else {
1328 sector_t old_block;
1329 wait_on_bit_lock(&b->state, B_WRITING,
1330 do_io_schedule, TASK_UNINTERRUPTIBLE);
1332 * Relink buffer to "new_block" so that write_callback
1333 * sees "new_block" as a block number.
1334 * After the write, link the buffer back to old_block.
1335 * All this must be done in bufio lock, so that block number
1336 * change isn't visible to other threads.
1338 old_block = b->block;
1339 __unlink_buffer(b);
1340 __link_buffer(b, new_block, b->list_mode);
1341 submit_io(b, WRITE, new_block, write_endio);
1342 wait_on_bit(&b->state, B_WRITING,
1343 do_io_schedule, TASK_UNINTERRUPTIBLE);
1344 __unlink_buffer(b);
1345 __link_buffer(b, old_block, b->list_mode);
1348 dm_bufio_unlock(c);
1349 dm_bufio_release(b);
1351 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1353 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1355 return c->block_size;
1357 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1359 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1361 return i_size_read(c->bdev->bd_inode) >>
1362 (SECTOR_SHIFT + c->sectors_per_block_bits);
1364 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1366 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1368 return b->block;
1370 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1372 void *dm_bufio_get_block_data(struct dm_buffer *b)
1374 return b->data;
1376 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1378 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1380 return b + 1;
1382 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1384 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1386 return b->c;
1388 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1390 static void drop_buffers(struct dm_bufio_client *c)
1392 struct dm_buffer *b;
1393 int i;
1395 BUG_ON(dm_bufio_in_request());
1398 * An optimization so that the buffers are not written one-by-one.
1400 dm_bufio_write_dirty_buffers_async(c);
1402 dm_bufio_lock(c);
1404 while ((b = __get_unclaimed_buffer(c)))
1405 __free_buffer_wake(b);
1407 for (i = 0; i < LIST_SIZE; i++)
1408 list_for_each_entry(b, &c->lru[i], lru_list)
1409 DMERR("leaked buffer %llx, hold count %u, list %d",
1410 (unsigned long long)b->block, b->hold_count, i);
1412 for (i = 0; i < LIST_SIZE; i++)
1413 BUG_ON(!list_empty(&c->lru[i]));
1415 dm_bufio_unlock(c);
1419 * Test if the buffer is unused and too old, and commit it.
1420 * At if noio is set, we must not do any I/O because we hold
1421 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets rerouted to
1422 * different bufio client.
1424 static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp,
1425 unsigned long max_jiffies)
1427 if (jiffies - b->last_accessed < max_jiffies)
1428 return 0;
1430 if (!(gfp & __GFP_IO)) {
1431 if (test_bit(B_READING, &b->state) ||
1432 test_bit(B_WRITING, &b->state) ||
1433 test_bit(B_DIRTY, &b->state))
1434 return 0;
1437 if (b->hold_count)
1438 return 0;
1440 __make_buffer_clean(b);
1441 __unlink_buffer(b);
1442 __free_buffer_wake(b);
1444 return 1;
1447 static long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1448 gfp_t gfp_mask)
1450 int l;
1451 struct dm_buffer *b, *tmp;
1452 long freed = 0;
1454 for (l = 0; l < LIST_SIZE; l++) {
1455 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1456 freed += __cleanup_old_buffer(b, gfp_mask, 0);
1457 if (!--nr_to_scan)
1458 break;
1460 dm_bufio_cond_resched();
1462 return freed;
1465 static unsigned long
1466 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1468 struct dm_bufio_client *c;
1469 unsigned long freed;
1471 c = container_of(shrink, struct dm_bufio_client, shrinker);
1472 if (sc->gfp_mask & __GFP_IO)
1473 dm_bufio_lock(c);
1474 else if (!dm_bufio_trylock(c))
1475 return SHRINK_STOP;
1477 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1478 dm_bufio_unlock(c);
1479 return freed;
1482 static unsigned long
1483 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1485 struct dm_bufio_client *c;
1486 unsigned long count;
1488 c = container_of(shrink, struct dm_bufio_client, shrinker);
1489 if (sc->gfp_mask & __GFP_IO)
1490 dm_bufio_lock(c);
1491 else if (!dm_bufio_trylock(c))
1492 return 0;
1494 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1495 dm_bufio_unlock(c);
1496 return count;
1500 * Create the buffering interface
1502 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1503 unsigned reserved_buffers, unsigned aux_size,
1504 void (*alloc_callback)(struct dm_buffer *),
1505 void (*write_callback)(struct dm_buffer *))
1507 int r;
1508 struct dm_bufio_client *c;
1509 unsigned i;
1511 BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1512 (block_size & (block_size - 1)));
1514 c = kzalloc(sizeof(*c), GFP_KERNEL);
1515 if (!c) {
1516 r = -ENOMEM;
1517 goto bad_client;
1519 c->cache_hash = vmalloc(sizeof(struct hlist_head) << DM_BUFIO_HASH_BITS);
1520 if (!c->cache_hash) {
1521 r = -ENOMEM;
1522 goto bad_hash;
1525 c->bdev = bdev;
1526 c->block_size = block_size;
1527 c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1528 c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1529 ffs(block_size) - 1 - PAGE_SHIFT : 0;
1530 c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1531 PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1533 c->aux_size = aux_size;
1534 c->alloc_callback = alloc_callback;
1535 c->write_callback = write_callback;
1537 for (i = 0; i < LIST_SIZE; i++) {
1538 INIT_LIST_HEAD(&c->lru[i]);
1539 c->n_buffers[i] = 0;
1542 for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1543 INIT_HLIST_HEAD(&c->cache_hash[i]);
1545 mutex_init(&c->lock);
1546 INIT_LIST_HEAD(&c->reserved_buffers);
1547 c->need_reserved_buffers = reserved_buffers;
1549 init_waitqueue_head(&c->free_buffer_wait);
1550 c->async_write_error = 0;
1552 c->dm_io = dm_io_client_create();
1553 if (IS_ERR(c->dm_io)) {
1554 r = PTR_ERR(c->dm_io);
1555 goto bad_dm_io;
1558 mutex_lock(&dm_bufio_clients_lock);
1559 if (c->blocks_per_page_bits) {
1560 if (!DM_BUFIO_CACHE_NAME(c)) {
1561 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1562 if (!DM_BUFIO_CACHE_NAME(c)) {
1563 r = -ENOMEM;
1564 mutex_unlock(&dm_bufio_clients_lock);
1565 goto bad_cache;
1569 if (!DM_BUFIO_CACHE(c)) {
1570 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1571 c->block_size,
1572 c->block_size, 0, NULL);
1573 if (!DM_BUFIO_CACHE(c)) {
1574 r = -ENOMEM;
1575 mutex_unlock(&dm_bufio_clients_lock);
1576 goto bad_cache;
1580 mutex_unlock(&dm_bufio_clients_lock);
1582 while (c->need_reserved_buffers) {
1583 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1585 if (!b) {
1586 r = -ENOMEM;
1587 goto bad_buffer;
1589 __free_buffer_wake(b);
1592 mutex_lock(&dm_bufio_clients_lock);
1593 dm_bufio_client_count++;
1594 list_add(&c->client_list, &dm_bufio_all_clients);
1595 __cache_size_refresh();
1596 mutex_unlock(&dm_bufio_clients_lock);
1598 c->shrinker.count_objects = dm_bufio_shrink_count;
1599 c->shrinker.scan_objects = dm_bufio_shrink_scan;
1600 c->shrinker.seeks = 1;
1601 c->shrinker.batch = 0;
1602 register_shrinker(&c->shrinker);
1604 return c;
1606 bad_buffer:
1607 bad_cache:
1608 while (!list_empty(&c->reserved_buffers)) {
1609 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1610 struct dm_buffer, lru_list);
1611 list_del(&b->lru_list);
1612 free_buffer(b);
1614 dm_io_client_destroy(c->dm_io);
1615 bad_dm_io:
1616 vfree(c->cache_hash);
1617 bad_hash:
1618 kfree(c);
1619 bad_client:
1620 return ERR_PTR(r);
1622 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1625 * Free the buffering interface.
1626 * It is required that there are no references on any buffers.
1628 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1630 unsigned i;
1632 drop_buffers(c);
1634 unregister_shrinker(&c->shrinker);
1636 mutex_lock(&dm_bufio_clients_lock);
1638 list_del(&c->client_list);
1639 dm_bufio_client_count--;
1640 __cache_size_refresh();
1642 mutex_unlock(&dm_bufio_clients_lock);
1644 for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1645 BUG_ON(!hlist_empty(&c->cache_hash[i]));
1647 BUG_ON(c->need_reserved_buffers);
1649 while (!list_empty(&c->reserved_buffers)) {
1650 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1651 struct dm_buffer, lru_list);
1652 list_del(&b->lru_list);
1653 free_buffer(b);
1656 for (i = 0; i < LIST_SIZE; i++)
1657 if (c->n_buffers[i])
1658 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1660 for (i = 0; i < LIST_SIZE; i++)
1661 BUG_ON(c->n_buffers[i]);
1663 dm_io_client_destroy(c->dm_io);
1664 vfree(c->cache_hash);
1665 kfree(c);
1667 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1669 static void cleanup_old_buffers(void)
1671 unsigned long max_age = ACCESS_ONCE(dm_bufio_max_age);
1672 struct dm_bufio_client *c;
1674 if (max_age > ULONG_MAX / HZ)
1675 max_age = ULONG_MAX / HZ;
1677 mutex_lock(&dm_bufio_clients_lock);
1678 list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
1679 if (!dm_bufio_trylock(c))
1680 continue;
1682 while (!list_empty(&c->lru[LIST_CLEAN])) {
1683 struct dm_buffer *b;
1684 b = list_entry(c->lru[LIST_CLEAN].prev,
1685 struct dm_buffer, lru_list);
1686 if (!__cleanup_old_buffer(b, 0, max_age * HZ))
1687 break;
1688 dm_bufio_cond_resched();
1691 dm_bufio_unlock(c);
1692 dm_bufio_cond_resched();
1694 mutex_unlock(&dm_bufio_clients_lock);
1697 static struct workqueue_struct *dm_bufio_wq;
1698 static struct delayed_work dm_bufio_work;
1700 static void work_fn(struct work_struct *w)
1702 cleanup_old_buffers();
1704 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1705 DM_BUFIO_WORK_TIMER_SECS * HZ);
1708 /*----------------------------------------------------------------
1709 * Module setup
1710 *--------------------------------------------------------------*/
1713 * This is called only once for the whole dm_bufio module.
1714 * It initializes memory limit.
1716 static int __init dm_bufio_init(void)
1718 __u64 mem;
1720 dm_bufio_allocated_kmem_cache = 0;
1721 dm_bufio_allocated_get_free_pages = 0;
1722 dm_bufio_allocated_vmalloc = 0;
1723 dm_bufio_current_allocated = 0;
1725 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1726 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1728 mem = (__u64)((totalram_pages - totalhigh_pages) *
1729 DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1731 if (mem > ULONG_MAX)
1732 mem = ULONG_MAX;
1734 #ifdef CONFIG_MMU
1736 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1737 * in fs/proc/internal.h
1739 if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1740 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1741 #endif
1743 dm_bufio_default_cache_size = mem;
1745 mutex_lock(&dm_bufio_clients_lock);
1746 __cache_size_refresh();
1747 mutex_unlock(&dm_bufio_clients_lock);
1749 dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1750 if (!dm_bufio_wq)
1751 return -ENOMEM;
1753 INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1754 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1755 DM_BUFIO_WORK_TIMER_SECS * HZ);
1757 return 0;
1761 * This is called once when unloading the dm_bufio module.
1763 static void __exit dm_bufio_exit(void)
1765 int bug = 0;
1766 int i;
1768 cancel_delayed_work_sync(&dm_bufio_work);
1769 destroy_workqueue(dm_bufio_wq);
1771 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1772 struct kmem_cache *kc = dm_bufio_caches[i];
1774 if (kc)
1775 kmem_cache_destroy(kc);
1778 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1779 kfree(dm_bufio_cache_names[i]);
1781 if (dm_bufio_client_count) {
1782 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1783 __func__, dm_bufio_client_count);
1784 bug = 1;
1787 if (dm_bufio_current_allocated) {
1788 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1789 __func__, dm_bufio_current_allocated);
1790 bug = 1;
1793 if (dm_bufio_allocated_get_free_pages) {
1794 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1795 __func__, dm_bufio_allocated_get_free_pages);
1796 bug = 1;
1799 if (dm_bufio_allocated_vmalloc) {
1800 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1801 __func__, dm_bufio_allocated_vmalloc);
1802 bug = 1;
1805 if (bug)
1806 BUG();
1809 module_init(dm_bufio_init)
1810 module_exit(dm_bufio_exit)
1812 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1813 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1815 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1816 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1818 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1819 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1821 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1822 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1824 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1825 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1827 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1828 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1830 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1831 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1833 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1834 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1835 MODULE_LICENSE("GPL");