x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / md / dm-mpath.c
blob709ce1b2582eab6e585f122a3886ae636dd705c4
1 /*
2 * Copyright (C) 2003 Sistina Software Limited.
3 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include <linux/device-mapper.h>
10 #include "dm.h"
11 #include "dm-path-selector.h"
12 #include "dm-uevent.h"
14 #include <linux/ctype.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/pagemap.h>
19 #include <linux/slab.h>
20 #include <linux/time.h>
21 #include <linux/workqueue.h>
22 #include <linux/delay.h>
23 #include <scsi/scsi_dh.h>
24 #include <linux/atomic.h>
26 #define DM_MSG_PREFIX "multipath"
27 #define DM_PG_INIT_DELAY_MSECS 2000
28 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
30 /* Path properties */
31 struct pgpath {
32 struct list_head list;
34 struct priority_group *pg; /* Owning PG */
35 unsigned is_active; /* Path status */
36 unsigned fail_count; /* Cumulative failure count */
38 struct dm_path path;
39 struct delayed_work activate_path;
42 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
45 * Paths are grouped into Priority Groups and numbered from 1 upwards.
46 * Each has a path selector which controls which path gets used.
48 struct priority_group {
49 struct list_head list;
51 struct multipath *m; /* Owning multipath instance */
52 struct path_selector ps;
54 unsigned pg_num; /* Reference number */
55 unsigned bypassed; /* Temporarily bypass this PG? */
57 unsigned nr_pgpaths; /* Number of paths in PG */
58 struct list_head pgpaths;
61 /* Multipath context */
62 struct multipath {
63 struct list_head list;
64 struct dm_target *ti;
66 const char *hw_handler_name;
67 char *hw_handler_params;
69 spinlock_t lock;
71 unsigned nr_priority_groups;
72 struct list_head priority_groups;
74 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */
76 unsigned pg_init_required; /* pg_init needs calling? */
77 unsigned pg_init_in_progress; /* Only one pg_init allowed at once */
78 unsigned pg_init_delay_retry; /* Delay pg_init retry? */
80 unsigned nr_valid_paths; /* Total number of usable paths */
81 struct pgpath *current_pgpath;
82 struct priority_group *current_pg;
83 struct priority_group *next_pg; /* Switch to this PG if set */
84 unsigned repeat_count; /* I/Os left before calling PS again */
86 unsigned queue_io:1; /* Must we queue all I/O? */
87 unsigned queue_if_no_path:1; /* Queue I/O if last path fails? */
88 unsigned saved_queue_if_no_path:1; /* Saved state during suspension */
89 unsigned retain_attached_hw_handler:1; /* If there's already a hw_handler present, don't change it. */
90 unsigned pg_init_disabled:1; /* pg_init is not currently allowed */
92 unsigned pg_init_retries; /* Number of times to retry pg_init */
93 unsigned pg_init_count; /* Number of times pg_init called */
94 unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */
96 unsigned queue_size;
97 struct work_struct process_queued_ios;
98 struct list_head queued_ios;
100 struct work_struct trigger_event;
103 * We must use a mempool of dm_mpath_io structs so that we
104 * can resubmit bios on error.
106 mempool_t *mpio_pool;
108 struct mutex work_mutex;
112 * Context information attached to each bio we process.
114 struct dm_mpath_io {
115 struct pgpath *pgpath;
116 size_t nr_bytes;
119 typedef int (*action_fn) (struct pgpath *pgpath);
121 static struct kmem_cache *_mpio_cache;
123 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
124 static void process_queued_ios(struct work_struct *work);
125 static void trigger_event(struct work_struct *work);
126 static void activate_path(struct work_struct *work);
129 /*-----------------------------------------------
130 * Allocation routines
131 *-----------------------------------------------*/
133 static struct pgpath *alloc_pgpath(void)
135 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
137 if (pgpath) {
138 pgpath->is_active = 1;
139 INIT_DELAYED_WORK(&pgpath->activate_path, activate_path);
142 return pgpath;
145 static void free_pgpath(struct pgpath *pgpath)
147 kfree(pgpath);
150 static struct priority_group *alloc_priority_group(void)
152 struct priority_group *pg;
154 pg = kzalloc(sizeof(*pg), GFP_KERNEL);
156 if (pg)
157 INIT_LIST_HEAD(&pg->pgpaths);
159 return pg;
162 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
164 struct pgpath *pgpath, *tmp;
165 struct multipath *m = ti->private;
167 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
168 list_del(&pgpath->list);
169 if (m->hw_handler_name)
170 scsi_dh_detach(bdev_get_queue(pgpath->path.dev->bdev));
171 dm_put_device(ti, pgpath->path.dev);
172 free_pgpath(pgpath);
176 static void free_priority_group(struct priority_group *pg,
177 struct dm_target *ti)
179 struct path_selector *ps = &pg->ps;
181 if (ps->type) {
182 ps->type->destroy(ps);
183 dm_put_path_selector(ps->type);
186 free_pgpaths(&pg->pgpaths, ti);
187 kfree(pg);
190 static struct multipath *alloc_multipath(struct dm_target *ti)
192 struct multipath *m;
193 unsigned min_ios = dm_get_reserved_rq_based_ios();
195 m = kzalloc(sizeof(*m), GFP_KERNEL);
196 if (m) {
197 INIT_LIST_HEAD(&m->priority_groups);
198 INIT_LIST_HEAD(&m->queued_ios);
199 spin_lock_init(&m->lock);
200 m->queue_io = 1;
201 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
202 INIT_WORK(&m->process_queued_ios, process_queued_ios);
203 INIT_WORK(&m->trigger_event, trigger_event);
204 init_waitqueue_head(&m->pg_init_wait);
205 mutex_init(&m->work_mutex);
206 m->mpio_pool = mempool_create_slab_pool(min_ios, _mpio_cache);
207 if (!m->mpio_pool) {
208 kfree(m);
209 return NULL;
211 m->ti = ti;
212 ti->private = m;
215 return m;
218 static void free_multipath(struct multipath *m)
220 struct priority_group *pg, *tmp;
222 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
223 list_del(&pg->list);
224 free_priority_group(pg, m->ti);
227 kfree(m->hw_handler_name);
228 kfree(m->hw_handler_params);
229 mempool_destroy(m->mpio_pool);
230 kfree(m);
233 static int set_mapinfo(struct multipath *m, union map_info *info)
235 struct dm_mpath_io *mpio;
237 mpio = mempool_alloc(m->mpio_pool, GFP_ATOMIC);
238 if (!mpio)
239 return -ENOMEM;
241 memset(mpio, 0, sizeof(*mpio));
242 info->ptr = mpio;
244 return 0;
247 static void clear_mapinfo(struct multipath *m, union map_info *info)
249 struct dm_mpath_io *mpio = info->ptr;
251 info->ptr = NULL;
252 mempool_free(mpio, m->mpio_pool);
255 /*-----------------------------------------------
256 * Path selection
257 *-----------------------------------------------*/
259 static void __pg_init_all_paths(struct multipath *m)
261 struct pgpath *pgpath;
262 unsigned long pg_init_delay = 0;
264 m->pg_init_count++;
265 m->pg_init_required = 0;
266 if (m->pg_init_delay_retry)
267 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
268 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
269 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
270 /* Skip failed paths */
271 if (!pgpath->is_active)
272 continue;
273 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
274 pg_init_delay))
275 m->pg_init_in_progress++;
279 static void __switch_pg(struct multipath *m, struct pgpath *pgpath)
281 m->current_pg = pgpath->pg;
283 /* Must we initialise the PG first, and queue I/O till it's ready? */
284 if (m->hw_handler_name) {
285 m->pg_init_required = 1;
286 m->queue_io = 1;
287 } else {
288 m->pg_init_required = 0;
289 m->queue_io = 0;
292 m->pg_init_count = 0;
295 static int __choose_path_in_pg(struct multipath *m, struct priority_group *pg,
296 size_t nr_bytes)
298 struct dm_path *path;
300 path = pg->ps.type->select_path(&pg->ps, &m->repeat_count, nr_bytes);
301 if (!path)
302 return -ENXIO;
304 m->current_pgpath = path_to_pgpath(path);
306 if (m->current_pg != pg)
307 __switch_pg(m, m->current_pgpath);
309 return 0;
312 static void __choose_pgpath(struct multipath *m, size_t nr_bytes)
314 struct priority_group *pg;
315 unsigned bypassed = 1;
317 if (!m->nr_valid_paths)
318 goto failed;
320 /* Were we instructed to switch PG? */
321 if (m->next_pg) {
322 pg = m->next_pg;
323 m->next_pg = NULL;
324 if (!__choose_path_in_pg(m, pg, nr_bytes))
325 return;
328 /* Don't change PG until it has no remaining paths */
329 if (m->current_pg && !__choose_path_in_pg(m, m->current_pg, nr_bytes))
330 return;
333 * Loop through priority groups until we find a valid path.
334 * First time we skip PGs marked 'bypassed'.
335 * Second time we only try the ones we skipped, but set
336 * pg_init_delay_retry so we do not hammer controllers.
338 do {
339 list_for_each_entry(pg, &m->priority_groups, list) {
340 if (pg->bypassed == bypassed)
341 continue;
342 if (!__choose_path_in_pg(m, pg, nr_bytes)) {
343 if (!bypassed)
344 m->pg_init_delay_retry = 1;
345 return;
348 } while (bypassed--);
350 failed:
351 m->current_pgpath = NULL;
352 m->current_pg = NULL;
356 * Check whether bios must be queued in the device-mapper core rather
357 * than here in the target.
359 * m->lock must be held on entry.
361 * If m->queue_if_no_path and m->saved_queue_if_no_path hold the
362 * same value then we are not between multipath_presuspend()
363 * and multipath_resume() calls and we have no need to check
364 * for the DMF_NOFLUSH_SUSPENDING flag.
366 static int __must_push_back(struct multipath *m)
368 return (m->queue_if_no_path != m->saved_queue_if_no_path &&
369 dm_noflush_suspending(m->ti));
372 static int map_io(struct multipath *m, struct request *clone,
373 union map_info *map_context, unsigned was_queued)
375 int r = DM_MAPIO_REMAPPED;
376 size_t nr_bytes = blk_rq_bytes(clone);
377 unsigned long flags;
378 struct pgpath *pgpath;
379 struct block_device *bdev;
380 struct dm_mpath_io *mpio = map_context->ptr;
382 spin_lock_irqsave(&m->lock, flags);
384 /* Do we need to select a new pgpath? */
385 if (!m->current_pgpath ||
386 (!m->queue_io && (m->repeat_count && --m->repeat_count == 0)))
387 __choose_pgpath(m, nr_bytes);
389 pgpath = m->current_pgpath;
391 if (was_queued)
392 m->queue_size--;
394 if ((pgpath && m->queue_io) ||
395 (!pgpath && m->queue_if_no_path)) {
396 /* Queue for the daemon to resubmit */
397 list_add_tail(&clone->queuelist, &m->queued_ios);
398 m->queue_size++;
399 if ((m->pg_init_required && !m->pg_init_in_progress) ||
400 !m->queue_io)
401 queue_work(kmultipathd, &m->process_queued_ios);
402 pgpath = NULL;
403 r = DM_MAPIO_SUBMITTED;
404 } else if (pgpath) {
405 bdev = pgpath->path.dev->bdev;
406 clone->q = bdev_get_queue(bdev);
407 clone->rq_disk = bdev->bd_disk;
408 } else if (__must_push_back(m))
409 r = DM_MAPIO_REQUEUE;
410 else
411 r = -EIO; /* Failed */
413 mpio->pgpath = pgpath;
414 mpio->nr_bytes = nr_bytes;
416 if (r == DM_MAPIO_REMAPPED && pgpath->pg->ps.type->start_io)
417 pgpath->pg->ps.type->start_io(&pgpath->pg->ps, &pgpath->path,
418 nr_bytes);
420 spin_unlock_irqrestore(&m->lock, flags);
422 return r;
426 * If we run out of usable paths, should we queue I/O or error it?
428 static int queue_if_no_path(struct multipath *m, unsigned queue_if_no_path,
429 unsigned save_old_value)
431 unsigned long flags;
433 spin_lock_irqsave(&m->lock, flags);
435 if (save_old_value)
436 m->saved_queue_if_no_path = m->queue_if_no_path;
437 else
438 m->saved_queue_if_no_path = queue_if_no_path;
439 m->queue_if_no_path = queue_if_no_path;
440 if (!m->queue_if_no_path && m->queue_size)
441 queue_work(kmultipathd, &m->process_queued_ios);
443 spin_unlock_irqrestore(&m->lock, flags);
445 return 0;
448 /*-----------------------------------------------------------------
449 * The multipath daemon is responsible for resubmitting queued ios.
450 *---------------------------------------------------------------*/
452 static void dispatch_queued_ios(struct multipath *m)
454 int r;
455 unsigned long flags;
456 union map_info *info;
457 struct request *clone, *n;
458 LIST_HEAD(cl);
460 spin_lock_irqsave(&m->lock, flags);
461 list_splice_init(&m->queued_ios, &cl);
462 spin_unlock_irqrestore(&m->lock, flags);
464 list_for_each_entry_safe(clone, n, &cl, queuelist) {
465 list_del_init(&clone->queuelist);
467 info = dm_get_rq_mapinfo(clone);
469 r = map_io(m, clone, info, 1);
470 if (r < 0) {
471 clear_mapinfo(m, info);
472 dm_kill_unmapped_request(clone, r);
473 } else if (r == DM_MAPIO_REMAPPED)
474 dm_dispatch_request(clone);
475 else if (r == DM_MAPIO_REQUEUE) {
476 clear_mapinfo(m, info);
477 dm_requeue_unmapped_request(clone);
482 static void process_queued_ios(struct work_struct *work)
484 struct multipath *m =
485 container_of(work, struct multipath, process_queued_ios);
486 struct pgpath *pgpath = NULL;
487 unsigned must_queue = 1;
488 unsigned long flags;
490 spin_lock_irqsave(&m->lock, flags);
492 if (!m->current_pgpath)
493 __choose_pgpath(m, 0);
495 pgpath = m->current_pgpath;
497 if ((pgpath && !m->queue_io) ||
498 (!pgpath && !m->queue_if_no_path))
499 must_queue = 0;
501 if (m->pg_init_required && !m->pg_init_in_progress && pgpath &&
502 !m->pg_init_disabled)
503 __pg_init_all_paths(m);
505 spin_unlock_irqrestore(&m->lock, flags);
506 if (!must_queue)
507 dispatch_queued_ios(m);
511 * An event is triggered whenever a path is taken out of use.
512 * Includes path failure and PG bypass.
514 static void trigger_event(struct work_struct *work)
516 struct multipath *m =
517 container_of(work, struct multipath, trigger_event);
519 dm_table_event(m->ti->table);
522 /*-----------------------------------------------------------------
523 * Constructor/argument parsing:
524 * <#multipath feature args> [<arg>]*
525 * <#hw_handler args> [hw_handler [<arg>]*]
526 * <#priority groups>
527 * <initial priority group>
528 * [<selector> <#selector args> [<arg>]*
529 * <#paths> <#per-path selector args>
530 * [<path> [<arg>]* ]+ ]+
531 *---------------------------------------------------------------*/
532 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
533 struct dm_target *ti)
535 int r;
536 struct path_selector_type *pst;
537 unsigned ps_argc;
539 static struct dm_arg _args[] = {
540 {0, 1024, "invalid number of path selector args"},
543 pst = dm_get_path_selector(dm_shift_arg(as));
544 if (!pst) {
545 ti->error = "unknown path selector type";
546 return -EINVAL;
549 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
550 if (r) {
551 dm_put_path_selector(pst);
552 return -EINVAL;
555 r = pst->create(&pg->ps, ps_argc, as->argv);
556 if (r) {
557 dm_put_path_selector(pst);
558 ti->error = "path selector constructor failed";
559 return r;
562 pg->ps.type = pst;
563 dm_consume_args(as, ps_argc);
565 return 0;
568 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
569 struct dm_target *ti)
571 int r;
572 struct pgpath *p;
573 struct multipath *m = ti->private;
574 struct request_queue *q = NULL;
575 const char *attached_handler_name;
577 /* we need at least a path arg */
578 if (as->argc < 1) {
579 ti->error = "no device given";
580 return ERR_PTR(-EINVAL);
583 p = alloc_pgpath();
584 if (!p)
585 return ERR_PTR(-ENOMEM);
587 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
588 &p->path.dev);
589 if (r) {
590 ti->error = "error getting device";
591 goto bad;
594 if (m->retain_attached_hw_handler || m->hw_handler_name)
595 q = bdev_get_queue(p->path.dev->bdev);
597 if (m->retain_attached_hw_handler) {
598 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
599 if (attached_handler_name) {
601 * Reset hw_handler_name to match the attached handler
602 * and clear any hw_handler_params associated with the
603 * ignored handler.
605 * NB. This modifies the table line to show the actual
606 * handler instead of the original table passed in.
608 kfree(m->hw_handler_name);
609 m->hw_handler_name = attached_handler_name;
611 kfree(m->hw_handler_params);
612 m->hw_handler_params = NULL;
616 if (m->hw_handler_name) {
618 * Increments scsi_dh reference, even when using an
619 * already-attached handler.
621 r = scsi_dh_attach(q, m->hw_handler_name);
622 if (r == -EBUSY) {
624 * Already attached to different hw_handler:
625 * try to reattach with correct one.
627 scsi_dh_detach(q);
628 r = scsi_dh_attach(q, m->hw_handler_name);
631 if (r < 0) {
632 ti->error = "error attaching hardware handler";
633 dm_put_device(ti, p->path.dev);
634 goto bad;
637 if (m->hw_handler_params) {
638 r = scsi_dh_set_params(q, m->hw_handler_params);
639 if (r < 0) {
640 ti->error = "unable to set hardware "
641 "handler parameters";
642 scsi_dh_detach(q);
643 dm_put_device(ti, p->path.dev);
644 goto bad;
649 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
650 if (r) {
651 dm_put_device(ti, p->path.dev);
652 goto bad;
655 return p;
657 bad:
658 free_pgpath(p);
659 return ERR_PTR(r);
662 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
663 struct multipath *m)
665 static struct dm_arg _args[] = {
666 {1, 1024, "invalid number of paths"},
667 {0, 1024, "invalid number of selector args"}
670 int r;
671 unsigned i, nr_selector_args, nr_args;
672 struct priority_group *pg;
673 struct dm_target *ti = m->ti;
675 if (as->argc < 2) {
676 as->argc = 0;
677 ti->error = "not enough priority group arguments";
678 return ERR_PTR(-EINVAL);
681 pg = alloc_priority_group();
682 if (!pg) {
683 ti->error = "couldn't allocate priority group";
684 return ERR_PTR(-ENOMEM);
686 pg->m = m;
688 r = parse_path_selector(as, pg, ti);
689 if (r)
690 goto bad;
693 * read the paths
695 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
696 if (r)
697 goto bad;
699 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
700 if (r)
701 goto bad;
703 nr_args = 1 + nr_selector_args;
704 for (i = 0; i < pg->nr_pgpaths; i++) {
705 struct pgpath *pgpath;
706 struct dm_arg_set path_args;
708 if (as->argc < nr_args) {
709 ti->error = "not enough path parameters";
710 r = -EINVAL;
711 goto bad;
714 path_args.argc = nr_args;
715 path_args.argv = as->argv;
717 pgpath = parse_path(&path_args, &pg->ps, ti);
718 if (IS_ERR(pgpath)) {
719 r = PTR_ERR(pgpath);
720 goto bad;
723 pgpath->pg = pg;
724 list_add_tail(&pgpath->list, &pg->pgpaths);
725 dm_consume_args(as, nr_args);
728 return pg;
730 bad:
731 free_priority_group(pg, ti);
732 return ERR_PTR(r);
735 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
737 unsigned hw_argc;
738 int ret;
739 struct dm_target *ti = m->ti;
741 static struct dm_arg _args[] = {
742 {0, 1024, "invalid number of hardware handler args"},
745 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
746 return -EINVAL;
748 if (!hw_argc)
749 return 0;
751 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
752 if (!try_then_request_module(scsi_dh_handler_exist(m->hw_handler_name),
753 "scsi_dh_%s", m->hw_handler_name)) {
754 ti->error = "unknown hardware handler type";
755 ret = -EINVAL;
756 goto fail;
759 if (hw_argc > 1) {
760 char *p;
761 int i, j, len = 4;
763 for (i = 0; i <= hw_argc - 2; i++)
764 len += strlen(as->argv[i]) + 1;
765 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
766 if (!p) {
767 ti->error = "memory allocation failed";
768 ret = -ENOMEM;
769 goto fail;
771 j = sprintf(p, "%d", hw_argc - 1);
772 for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
773 j = sprintf(p, "%s", as->argv[i]);
775 dm_consume_args(as, hw_argc - 1);
777 return 0;
778 fail:
779 kfree(m->hw_handler_name);
780 m->hw_handler_name = NULL;
781 return ret;
784 static int parse_features(struct dm_arg_set *as, struct multipath *m)
786 int r;
787 unsigned argc;
788 struct dm_target *ti = m->ti;
789 const char *arg_name;
791 static struct dm_arg _args[] = {
792 {0, 6, "invalid number of feature args"},
793 {1, 50, "pg_init_retries must be between 1 and 50"},
794 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
797 r = dm_read_arg_group(_args, as, &argc, &ti->error);
798 if (r)
799 return -EINVAL;
801 if (!argc)
802 return 0;
804 do {
805 arg_name = dm_shift_arg(as);
806 argc--;
808 if (!strcasecmp(arg_name, "queue_if_no_path")) {
809 r = queue_if_no_path(m, 1, 0);
810 continue;
813 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
814 m->retain_attached_hw_handler = 1;
815 continue;
818 if (!strcasecmp(arg_name, "pg_init_retries") &&
819 (argc >= 1)) {
820 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
821 argc--;
822 continue;
825 if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
826 (argc >= 1)) {
827 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
828 argc--;
829 continue;
832 ti->error = "Unrecognised multipath feature request";
833 r = -EINVAL;
834 } while (argc && !r);
836 return r;
839 static int multipath_ctr(struct dm_target *ti, unsigned int argc,
840 char **argv)
842 /* target arguments */
843 static struct dm_arg _args[] = {
844 {0, 1024, "invalid number of priority groups"},
845 {0, 1024, "invalid initial priority group number"},
848 int r;
849 struct multipath *m;
850 struct dm_arg_set as;
851 unsigned pg_count = 0;
852 unsigned next_pg_num;
854 as.argc = argc;
855 as.argv = argv;
857 m = alloc_multipath(ti);
858 if (!m) {
859 ti->error = "can't allocate multipath";
860 return -EINVAL;
863 r = parse_features(&as, m);
864 if (r)
865 goto bad;
867 r = parse_hw_handler(&as, m);
868 if (r)
869 goto bad;
871 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
872 if (r)
873 goto bad;
875 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
876 if (r)
877 goto bad;
879 if ((!m->nr_priority_groups && next_pg_num) ||
880 (m->nr_priority_groups && !next_pg_num)) {
881 ti->error = "invalid initial priority group";
882 r = -EINVAL;
883 goto bad;
886 /* parse the priority groups */
887 while (as.argc) {
888 struct priority_group *pg;
890 pg = parse_priority_group(&as, m);
891 if (IS_ERR(pg)) {
892 r = PTR_ERR(pg);
893 goto bad;
896 m->nr_valid_paths += pg->nr_pgpaths;
897 list_add_tail(&pg->list, &m->priority_groups);
898 pg_count++;
899 pg->pg_num = pg_count;
900 if (!--next_pg_num)
901 m->next_pg = pg;
904 if (pg_count != m->nr_priority_groups) {
905 ti->error = "priority group count mismatch";
906 r = -EINVAL;
907 goto bad;
910 ti->num_flush_bios = 1;
911 ti->num_discard_bios = 1;
912 ti->num_write_same_bios = 1;
914 return 0;
916 bad:
917 free_multipath(m);
918 return r;
921 static void multipath_wait_for_pg_init_completion(struct multipath *m)
923 DECLARE_WAITQUEUE(wait, current);
924 unsigned long flags;
926 add_wait_queue(&m->pg_init_wait, &wait);
928 while (1) {
929 set_current_state(TASK_UNINTERRUPTIBLE);
931 spin_lock_irqsave(&m->lock, flags);
932 if (!m->pg_init_in_progress) {
933 spin_unlock_irqrestore(&m->lock, flags);
934 break;
936 spin_unlock_irqrestore(&m->lock, flags);
938 io_schedule();
940 set_current_state(TASK_RUNNING);
942 remove_wait_queue(&m->pg_init_wait, &wait);
945 static void flush_multipath_work(struct multipath *m)
947 unsigned long flags;
949 spin_lock_irqsave(&m->lock, flags);
950 m->pg_init_disabled = 1;
951 spin_unlock_irqrestore(&m->lock, flags);
953 flush_workqueue(kmpath_handlerd);
954 multipath_wait_for_pg_init_completion(m);
955 flush_workqueue(kmultipathd);
956 flush_work(&m->trigger_event);
958 spin_lock_irqsave(&m->lock, flags);
959 m->pg_init_disabled = 0;
960 spin_unlock_irqrestore(&m->lock, flags);
963 static void multipath_dtr(struct dm_target *ti)
965 struct multipath *m = ti->private;
967 flush_multipath_work(m);
968 free_multipath(m);
972 * Map cloned requests
974 static int multipath_map(struct dm_target *ti, struct request *clone,
975 union map_info *map_context)
977 int r;
978 struct multipath *m = (struct multipath *) ti->private;
980 if (set_mapinfo(m, map_context) < 0)
981 /* ENOMEM, requeue */
982 return DM_MAPIO_REQUEUE;
984 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
985 r = map_io(m, clone, map_context, 0);
986 if (r < 0 || r == DM_MAPIO_REQUEUE)
987 clear_mapinfo(m, map_context);
989 return r;
993 * Take a path out of use.
995 static int fail_path(struct pgpath *pgpath)
997 unsigned long flags;
998 struct multipath *m = pgpath->pg->m;
1000 spin_lock_irqsave(&m->lock, flags);
1002 if (!pgpath->is_active)
1003 goto out;
1005 DMWARN("Failing path %s.", pgpath->path.dev->name);
1007 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1008 pgpath->is_active = 0;
1009 pgpath->fail_count++;
1011 m->nr_valid_paths--;
1013 if (pgpath == m->current_pgpath)
1014 m->current_pgpath = NULL;
1016 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1017 pgpath->path.dev->name, m->nr_valid_paths);
1019 schedule_work(&m->trigger_event);
1021 out:
1022 spin_unlock_irqrestore(&m->lock, flags);
1024 return 0;
1028 * Reinstate a previously-failed path
1030 static int reinstate_path(struct pgpath *pgpath)
1032 int r = 0;
1033 unsigned long flags;
1034 struct multipath *m = pgpath->pg->m;
1036 spin_lock_irqsave(&m->lock, flags);
1038 if (pgpath->is_active)
1039 goto out;
1041 if (!pgpath->pg->ps.type->reinstate_path) {
1042 DMWARN("Reinstate path not supported by path selector %s",
1043 pgpath->pg->ps.type->name);
1044 r = -EINVAL;
1045 goto out;
1048 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1049 if (r)
1050 goto out;
1052 pgpath->is_active = 1;
1054 if (!m->nr_valid_paths++ && m->queue_size) {
1055 m->current_pgpath = NULL;
1056 queue_work(kmultipathd, &m->process_queued_ios);
1057 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1058 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1059 m->pg_init_in_progress++;
1062 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1063 pgpath->path.dev->name, m->nr_valid_paths);
1065 schedule_work(&m->trigger_event);
1067 out:
1068 spin_unlock_irqrestore(&m->lock, flags);
1070 return r;
1074 * Fail or reinstate all paths that match the provided struct dm_dev.
1076 static int action_dev(struct multipath *m, struct dm_dev *dev,
1077 action_fn action)
1079 int r = -EINVAL;
1080 struct pgpath *pgpath;
1081 struct priority_group *pg;
1083 list_for_each_entry(pg, &m->priority_groups, list) {
1084 list_for_each_entry(pgpath, &pg->pgpaths, list) {
1085 if (pgpath->path.dev == dev)
1086 r = action(pgpath);
1090 return r;
1094 * Temporarily try to avoid having to use the specified PG
1096 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1097 int bypassed)
1099 unsigned long flags;
1101 spin_lock_irqsave(&m->lock, flags);
1103 pg->bypassed = bypassed;
1104 m->current_pgpath = NULL;
1105 m->current_pg = NULL;
1107 spin_unlock_irqrestore(&m->lock, flags);
1109 schedule_work(&m->trigger_event);
1113 * Switch to using the specified PG from the next I/O that gets mapped
1115 static int switch_pg_num(struct multipath *m, const char *pgstr)
1117 struct priority_group *pg;
1118 unsigned pgnum;
1119 unsigned long flags;
1120 char dummy;
1122 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1123 (pgnum > m->nr_priority_groups)) {
1124 DMWARN("invalid PG number supplied to switch_pg_num");
1125 return -EINVAL;
1128 spin_lock_irqsave(&m->lock, flags);
1129 list_for_each_entry(pg, &m->priority_groups, list) {
1130 pg->bypassed = 0;
1131 if (--pgnum)
1132 continue;
1134 m->current_pgpath = NULL;
1135 m->current_pg = NULL;
1136 m->next_pg = pg;
1138 spin_unlock_irqrestore(&m->lock, flags);
1140 schedule_work(&m->trigger_event);
1141 return 0;
1145 * Set/clear bypassed status of a PG.
1146 * PGs are numbered upwards from 1 in the order they were declared.
1148 static int bypass_pg_num(struct multipath *m, const char *pgstr, int bypassed)
1150 struct priority_group *pg;
1151 unsigned pgnum;
1152 char dummy;
1154 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1155 (pgnum > m->nr_priority_groups)) {
1156 DMWARN("invalid PG number supplied to bypass_pg");
1157 return -EINVAL;
1160 list_for_each_entry(pg, &m->priority_groups, list) {
1161 if (!--pgnum)
1162 break;
1165 bypass_pg(m, pg, bypassed);
1166 return 0;
1170 * Should we retry pg_init immediately?
1172 static int pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1174 unsigned long flags;
1175 int limit_reached = 0;
1177 spin_lock_irqsave(&m->lock, flags);
1179 if (m->pg_init_count <= m->pg_init_retries && !m->pg_init_disabled)
1180 m->pg_init_required = 1;
1181 else
1182 limit_reached = 1;
1184 spin_unlock_irqrestore(&m->lock, flags);
1186 return limit_reached;
1189 static void pg_init_done(void *data, int errors)
1191 struct pgpath *pgpath = data;
1192 struct priority_group *pg = pgpath->pg;
1193 struct multipath *m = pg->m;
1194 unsigned long flags;
1195 unsigned delay_retry = 0;
1197 /* device or driver problems */
1198 switch (errors) {
1199 case SCSI_DH_OK:
1200 break;
1201 case SCSI_DH_NOSYS:
1202 if (!m->hw_handler_name) {
1203 errors = 0;
1204 break;
1206 DMERR("Could not failover the device: Handler scsi_dh_%s "
1207 "Error %d.", m->hw_handler_name, errors);
1209 * Fail path for now, so we do not ping pong
1211 fail_path(pgpath);
1212 break;
1213 case SCSI_DH_DEV_TEMP_BUSY:
1215 * Probably doing something like FW upgrade on the
1216 * controller so try the other pg.
1218 bypass_pg(m, pg, 1);
1219 break;
1220 case SCSI_DH_RETRY:
1221 /* Wait before retrying. */
1222 delay_retry = 1;
1223 case SCSI_DH_IMM_RETRY:
1224 case SCSI_DH_RES_TEMP_UNAVAIL:
1225 if (pg_init_limit_reached(m, pgpath))
1226 fail_path(pgpath);
1227 errors = 0;
1228 break;
1229 default:
1231 * We probably do not want to fail the path for a device
1232 * error, but this is what the old dm did. In future
1233 * patches we can do more advanced handling.
1235 fail_path(pgpath);
1238 spin_lock_irqsave(&m->lock, flags);
1239 if (errors) {
1240 if (pgpath == m->current_pgpath) {
1241 DMERR("Could not failover device. Error %d.", errors);
1242 m->current_pgpath = NULL;
1243 m->current_pg = NULL;
1245 } else if (!m->pg_init_required)
1246 pg->bypassed = 0;
1248 if (--m->pg_init_in_progress)
1249 /* Activations of other paths are still on going */
1250 goto out;
1252 if (!m->pg_init_required)
1253 m->queue_io = 0;
1255 m->pg_init_delay_retry = delay_retry;
1256 queue_work(kmultipathd, &m->process_queued_ios);
1259 * Wake up any thread waiting to suspend.
1261 wake_up(&m->pg_init_wait);
1263 out:
1264 spin_unlock_irqrestore(&m->lock, flags);
1267 static void activate_path(struct work_struct *work)
1269 struct pgpath *pgpath =
1270 container_of(work, struct pgpath, activate_path.work);
1272 scsi_dh_activate(bdev_get_queue(pgpath->path.dev->bdev),
1273 pg_init_done, pgpath);
1276 static int noretry_error(int error)
1278 switch (error) {
1279 case -EOPNOTSUPP:
1280 case -EREMOTEIO:
1281 case -EILSEQ:
1282 case -ENODATA:
1283 case -ENOSPC:
1284 return 1;
1287 /* Anything else could be a path failure, so should be retried */
1288 return 0;
1292 * end_io handling
1294 static int do_end_io(struct multipath *m, struct request *clone,
1295 int error, struct dm_mpath_io *mpio)
1298 * We don't queue any clone request inside the multipath target
1299 * during end I/O handling, since those clone requests don't have
1300 * bio clones. If we queue them inside the multipath target,
1301 * we need to make bio clones, that requires memory allocation.
1302 * (See drivers/md/dm.c:end_clone_bio() about why the clone requests
1303 * don't have bio clones.)
1304 * Instead of queueing the clone request here, we queue the original
1305 * request into dm core, which will remake a clone request and
1306 * clone bios for it and resubmit it later.
1308 int r = DM_ENDIO_REQUEUE;
1309 unsigned long flags;
1311 if (!error && !clone->errors)
1312 return 0; /* I/O complete */
1314 if (noretry_error(error)) {
1315 if ((clone->cmd_flags & REQ_WRITE_SAME) &&
1316 !clone->q->limits.max_write_same_sectors) {
1317 struct queue_limits *limits;
1319 /* device doesn't really support WRITE SAME, disable it */
1320 limits = dm_get_queue_limits(dm_table_get_md(m->ti->table));
1321 limits->max_write_same_sectors = 0;
1323 return error;
1326 if (mpio->pgpath)
1327 fail_path(mpio->pgpath);
1329 spin_lock_irqsave(&m->lock, flags);
1330 if (!m->nr_valid_paths) {
1331 if (!m->queue_if_no_path) {
1332 if (!__must_push_back(m))
1333 r = -EIO;
1334 } else {
1335 if (error == -EBADE)
1336 r = error;
1339 spin_unlock_irqrestore(&m->lock, flags);
1341 return r;
1344 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1345 int error, union map_info *map_context)
1347 struct multipath *m = ti->private;
1348 struct dm_mpath_io *mpio = map_context->ptr;
1349 struct pgpath *pgpath;
1350 struct path_selector *ps;
1351 int r;
1353 BUG_ON(!mpio);
1355 r = do_end_io(m, clone, error, mpio);
1356 pgpath = mpio->pgpath;
1357 if (pgpath) {
1358 ps = &pgpath->pg->ps;
1359 if (ps->type->end_io)
1360 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1362 clear_mapinfo(m, map_context);
1364 return r;
1368 * Suspend can't complete until all the I/O is processed so if
1369 * the last path fails we must error any remaining I/O.
1370 * Note that if the freeze_bdev fails while suspending, the
1371 * queue_if_no_path state is lost - userspace should reset it.
1373 static void multipath_presuspend(struct dm_target *ti)
1375 struct multipath *m = (struct multipath *) ti->private;
1377 queue_if_no_path(m, 0, 1);
1380 static void multipath_postsuspend(struct dm_target *ti)
1382 struct multipath *m = ti->private;
1384 mutex_lock(&m->work_mutex);
1385 flush_multipath_work(m);
1386 mutex_unlock(&m->work_mutex);
1390 * Restore the queue_if_no_path setting.
1392 static void multipath_resume(struct dm_target *ti)
1394 struct multipath *m = (struct multipath *) ti->private;
1395 unsigned long flags;
1397 spin_lock_irqsave(&m->lock, flags);
1398 m->queue_if_no_path = m->saved_queue_if_no_path;
1399 spin_unlock_irqrestore(&m->lock, flags);
1403 * Info output has the following format:
1404 * num_multipath_feature_args [multipath_feature_args]*
1405 * num_handler_status_args [handler_status_args]*
1406 * num_groups init_group_number
1407 * [A|D|E num_ps_status_args [ps_status_args]*
1408 * num_paths num_selector_args
1409 * [path_dev A|F fail_count [selector_args]* ]+ ]+
1411 * Table output has the following format (identical to the constructor string):
1412 * num_feature_args [features_args]*
1413 * num_handler_args hw_handler [hw_handler_args]*
1414 * num_groups init_group_number
1415 * [priority selector-name num_ps_args [ps_args]*
1416 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1418 static void multipath_status(struct dm_target *ti, status_type_t type,
1419 unsigned status_flags, char *result, unsigned maxlen)
1421 int sz = 0;
1422 unsigned long flags;
1423 struct multipath *m = (struct multipath *) ti->private;
1424 struct priority_group *pg;
1425 struct pgpath *p;
1426 unsigned pg_num;
1427 char state;
1429 spin_lock_irqsave(&m->lock, flags);
1431 /* Features */
1432 if (type == STATUSTYPE_INFO)
1433 DMEMIT("2 %u %u ", m->queue_size, m->pg_init_count);
1434 else {
1435 DMEMIT("%u ", m->queue_if_no_path +
1436 (m->pg_init_retries > 0) * 2 +
1437 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1438 m->retain_attached_hw_handler);
1439 if (m->queue_if_no_path)
1440 DMEMIT("queue_if_no_path ");
1441 if (m->pg_init_retries)
1442 DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1443 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1444 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1445 if (m->retain_attached_hw_handler)
1446 DMEMIT("retain_attached_hw_handler ");
1449 if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1450 DMEMIT("0 ");
1451 else
1452 DMEMIT("1 %s ", m->hw_handler_name);
1454 DMEMIT("%u ", m->nr_priority_groups);
1456 if (m->next_pg)
1457 pg_num = m->next_pg->pg_num;
1458 else if (m->current_pg)
1459 pg_num = m->current_pg->pg_num;
1460 else
1461 pg_num = (m->nr_priority_groups ? 1 : 0);
1463 DMEMIT("%u ", pg_num);
1465 switch (type) {
1466 case STATUSTYPE_INFO:
1467 list_for_each_entry(pg, &m->priority_groups, list) {
1468 if (pg->bypassed)
1469 state = 'D'; /* Disabled */
1470 else if (pg == m->current_pg)
1471 state = 'A'; /* Currently Active */
1472 else
1473 state = 'E'; /* Enabled */
1475 DMEMIT("%c ", state);
1477 if (pg->ps.type->status)
1478 sz += pg->ps.type->status(&pg->ps, NULL, type,
1479 result + sz,
1480 maxlen - sz);
1481 else
1482 DMEMIT("0 ");
1484 DMEMIT("%u %u ", pg->nr_pgpaths,
1485 pg->ps.type->info_args);
1487 list_for_each_entry(p, &pg->pgpaths, list) {
1488 DMEMIT("%s %s %u ", p->path.dev->name,
1489 p->is_active ? "A" : "F",
1490 p->fail_count);
1491 if (pg->ps.type->status)
1492 sz += pg->ps.type->status(&pg->ps,
1493 &p->path, type, result + sz,
1494 maxlen - sz);
1497 break;
1499 case STATUSTYPE_TABLE:
1500 list_for_each_entry(pg, &m->priority_groups, list) {
1501 DMEMIT("%s ", pg->ps.type->name);
1503 if (pg->ps.type->status)
1504 sz += pg->ps.type->status(&pg->ps, NULL, type,
1505 result + sz,
1506 maxlen - sz);
1507 else
1508 DMEMIT("0 ");
1510 DMEMIT("%u %u ", pg->nr_pgpaths,
1511 pg->ps.type->table_args);
1513 list_for_each_entry(p, &pg->pgpaths, list) {
1514 DMEMIT("%s ", p->path.dev->name);
1515 if (pg->ps.type->status)
1516 sz += pg->ps.type->status(&pg->ps,
1517 &p->path, type, result + sz,
1518 maxlen - sz);
1521 break;
1524 spin_unlock_irqrestore(&m->lock, flags);
1527 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
1529 int r = -EINVAL;
1530 struct dm_dev *dev;
1531 struct multipath *m = (struct multipath *) ti->private;
1532 action_fn action;
1534 mutex_lock(&m->work_mutex);
1536 if (dm_suspended(ti)) {
1537 r = -EBUSY;
1538 goto out;
1541 if (argc == 1) {
1542 if (!strcasecmp(argv[0], "queue_if_no_path")) {
1543 r = queue_if_no_path(m, 1, 0);
1544 goto out;
1545 } else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1546 r = queue_if_no_path(m, 0, 0);
1547 goto out;
1551 if (argc != 2) {
1552 DMWARN("Unrecognised multipath message received.");
1553 goto out;
1556 if (!strcasecmp(argv[0], "disable_group")) {
1557 r = bypass_pg_num(m, argv[1], 1);
1558 goto out;
1559 } else if (!strcasecmp(argv[0], "enable_group")) {
1560 r = bypass_pg_num(m, argv[1], 0);
1561 goto out;
1562 } else if (!strcasecmp(argv[0], "switch_group")) {
1563 r = switch_pg_num(m, argv[1]);
1564 goto out;
1565 } else if (!strcasecmp(argv[0], "reinstate_path"))
1566 action = reinstate_path;
1567 else if (!strcasecmp(argv[0], "fail_path"))
1568 action = fail_path;
1569 else {
1570 DMWARN("Unrecognised multipath message received.");
1571 goto out;
1574 r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1575 if (r) {
1576 DMWARN("message: error getting device %s",
1577 argv[1]);
1578 goto out;
1581 r = action_dev(m, dev, action);
1583 dm_put_device(ti, dev);
1585 out:
1586 mutex_unlock(&m->work_mutex);
1587 return r;
1590 static int multipath_ioctl(struct dm_target *ti, unsigned int cmd,
1591 unsigned long arg)
1593 struct multipath *m = ti->private;
1594 struct pgpath *pgpath;
1595 struct block_device *bdev;
1596 fmode_t mode;
1597 unsigned long flags;
1598 int r;
1600 bdev = NULL;
1601 mode = 0;
1602 r = 0;
1604 spin_lock_irqsave(&m->lock, flags);
1606 if (!m->current_pgpath)
1607 __choose_pgpath(m, 0);
1609 pgpath = m->current_pgpath;
1611 if (pgpath) {
1612 bdev = pgpath->path.dev->bdev;
1613 mode = pgpath->path.dev->mode;
1616 if ((pgpath && m->queue_io) || (!pgpath && m->queue_if_no_path))
1617 r = -ENOTCONN;
1618 else if (!bdev)
1619 r = -EIO;
1621 spin_unlock_irqrestore(&m->lock, flags);
1624 * Only pass ioctls through if the device sizes match exactly.
1626 if (!bdev || ti->len != i_size_read(bdev->bd_inode) >> SECTOR_SHIFT) {
1627 int err = scsi_verify_blk_ioctl(NULL, cmd);
1628 if (err)
1629 r = err;
1632 if (r == -ENOTCONN && !fatal_signal_pending(current))
1633 queue_work(kmultipathd, &m->process_queued_ios);
1635 return r ? : __blkdev_driver_ioctl(bdev, mode, cmd, arg);
1638 static int multipath_iterate_devices(struct dm_target *ti,
1639 iterate_devices_callout_fn fn, void *data)
1641 struct multipath *m = ti->private;
1642 struct priority_group *pg;
1643 struct pgpath *p;
1644 int ret = 0;
1646 list_for_each_entry(pg, &m->priority_groups, list) {
1647 list_for_each_entry(p, &pg->pgpaths, list) {
1648 ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1649 if (ret)
1650 goto out;
1654 out:
1655 return ret;
1658 static int __pgpath_busy(struct pgpath *pgpath)
1660 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1662 return dm_underlying_device_busy(q);
1666 * We return "busy", only when we can map I/Os but underlying devices
1667 * are busy (so even if we map I/Os now, the I/Os will wait on
1668 * the underlying queue).
1669 * In other words, if we want to kill I/Os or queue them inside us
1670 * due to map unavailability, we don't return "busy". Otherwise,
1671 * dm core won't give us the I/Os and we can't do what we want.
1673 static int multipath_busy(struct dm_target *ti)
1675 int busy = 0, has_active = 0;
1676 struct multipath *m = ti->private;
1677 struct priority_group *pg;
1678 struct pgpath *pgpath;
1679 unsigned long flags;
1681 spin_lock_irqsave(&m->lock, flags);
1683 /* Guess which priority_group will be used at next mapping time */
1684 if (unlikely(!m->current_pgpath && m->next_pg))
1685 pg = m->next_pg;
1686 else if (likely(m->current_pg))
1687 pg = m->current_pg;
1688 else
1690 * We don't know which pg will be used at next mapping time.
1691 * We don't call __choose_pgpath() here to avoid to trigger
1692 * pg_init just by busy checking.
1693 * So we don't know whether underlying devices we will be using
1694 * at next mapping time are busy or not. Just try mapping.
1696 goto out;
1699 * If there is one non-busy active path at least, the path selector
1700 * will be able to select it. So we consider such a pg as not busy.
1702 busy = 1;
1703 list_for_each_entry(pgpath, &pg->pgpaths, list)
1704 if (pgpath->is_active) {
1705 has_active = 1;
1707 if (!__pgpath_busy(pgpath)) {
1708 busy = 0;
1709 break;
1713 if (!has_active)
1715 * No active path in this pg, so this pg won't be used and
1716 * the current_pg will be changed at next mapping time.
1717 * We need to try mapping to determine it.
1719 busy = 0;
1721 out:
1722 spin_unlock_irqrestore(&m->lock, flags);
1724 return busy;
1727 /*-----------------------------------------------------------------
1728 * Module setup
1729 *---------------------------------------------------------------*/
1730 static struct target_type multipath_target = {
1731 .name = "multipath",
1732 .version = {1, 6, 0},
1733 .module = THIS_MODULE,
1734 .ctr = multipath_ctr,
1735 .dtr = multipath_dtr,
1736 .map_rq = multipath_map,
1737 .rq_end_io = multipath_end_io,
1738 .presuspend = multipath_presuspend,
1739 .postsuspend = multipath_postsuspend,
1740 .resume = multipath_resume,
1741 .status = multipath_status,
1742 .message = multipath_message,
1743 .ioctl = multipath_ioctl,
1744 .iterate_devices = multipath_iterate_devices,
1745 .busy = multipath_busy,
1748 static int __init dm_multipath_init(void)
1750 int r;
1752 /* allocate a slab for the dm_ios */
1753 _mpio_cache = KMEM_CACHE(dm_mpath_io, 0);
1754 if (!_mpio_cache)
1755 return -ENOMEM;
1757 r = dm_register_target(&multipath_target);
1758 if (r < 0) {
1759 DMERR("register failed %d", r);
1760 kmem_cache_destroy(_mpio_cache);
1761 return -EINVAL;
1764 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
1765 if (!kmultipathd) {
1766 DMERR("failed to create workqueue kmpathd");
1767 dm_unregister_target(&multipath_target);
1768 kmem_cache_destroy(_mpio_cache);
1769 return -ENOMEM;
1773 * A separate workqueue is used to handle the device handlers
1774 * to avoid overloading existing workqueue. Overloading the
1775 * old workqueue would also create a bottleneck in the
1776 * path of the storage hardware device activation.
1778 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
1779 WQ_MEM_RECLAIM);
1780 if (!kmpath_handlerd) {
1781 DMERR("failed to create workqueue kmpath_handlerd");
1782 destroy_workqueue(kmultipathd);
1783 dm_unregister_target(&multipath_target);
1784 kmem_cache_destroy(_mpio_cache);
1785 return -ENOMEM;
1788 DMINFO("version %u.%u.%u loaded",
1789 multipath_target.version[0], multipath_target.version[1],
1790 multipath_target.version[2]);
1792 return r;
1795 static void __exit dm_multipath_exit(void)
1797 destroy_workqueue(kmpath_handlerd);
1798 destroy_workqueue(kmultipathd);
1800 dm_unregister_target(&multipath_target);
1801 kmem_cache_destroy(_mpio_cache);
1804 module_init(dm_multipath_init);
1805 module_exit(dm_multipath_exit);
1807 MODULE_DESCRIPTION(DM_NAME " multipath target");
1808 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
1809 MODULE_LICENSE("GPL");