2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
59 #define IO_MADE_GOOD ((struct bio *)2)
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
67 static int max_queued_requests
= 1024;
69 static void allow_barrier(struct r1conf
*conf
);
70 static void lower_barrier(struct r1conf
*conf
);
72 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
74 struct pool_info
*pi
= data
;
75 int size
= offsetof(struct r1bio
, bios
[pi
->raid_disks
]);
77 /* allocate a r1bio with room for raid_disks entries in the bios array */
78 return kzalloc(size
, gfp_flags
);
81 static void r1bio_pool_free(void *r1_bio
, void *data
)
86 #define RESYNC_BLOCK_SIZE (64*1024)
87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 #define RESYNC_WINDOW (2048*1024)
92 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
94 struct pool_info
*pi
= data
;
100 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
105 * Allocate bios : 1 for reading, n-1 for writing
107 for (j
= pi
->raid_disks
; j
-- ; ) {
108 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
111 r1_bio
->bios
[j
] = bio
;
114 * Allocate RESYNC_PAGES data pages and attach them to
116 * If this is a user-requested check/repair, allocate
117 * RESYNC_PAGES for each bio.
119 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
120 need_pages
= pi
->raid_disks
;
123 for (j
= 0; j
< need_pages
; j
++) {
124 bio
= r1_bio
->bios
[j
];
125 bio
->bi_vcnt
= RESYNC_PAGES
;
127 if (bio_alloc_pages(bio
, gfp_flags
))
130 /* If not user-requests, copy the page pointers to all bios */
131 if (!test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
)) {
132 for (i
=0; i
<RESYNC_PAGES
; i
++)
133 for (j
=1; j
<pi
->raid_disks
; j
++)
134 r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
=
135 r1_bio
->bios
[0]->bi_io_vec
[i
].bv_page
;
138 r1_bio
->master_bio
= NULL
;
146 bio_for_each_segment_all(bv
, r1_bio
->bios
[j
], i
)
147 __free_page(bv
->bv_page
);
151 while (++j
< pi
->raid_disks
)
152 bio_put(r1_bio
->bios
[j
]);
153 r1bio_pool_free(r1_bio
, data
);
157 static void r1buf_pool_free(void *__r1_bio
, void *data
)
159 struct pool_info
*pi
= data
;
161 struct r1bio
*r1bio
= __r1_bio
;
163 for (i
= 0; i
< RESYNC_PAGES
; i
++)
164 for (j
= pi
->raid_disks
; j
-- ;) {
166 r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
!=
167 r1bio
->bios
[0]->bi_io_vec
[i
].bv_page
)
168 safe_put_page(r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
170 for (i
=0 ; i
< pi
->raid_disks
; i
++)
171 bio_put(r1bio
->bios
[i
]);
173 r1bio_pool_free(r1bio
, data
);
176 static void put_all_bios(struct r1conf
*conf
, struct r1bio
*r1_bio
)
180 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
181 struct bio
**bio
= r1_bio
->bios
+ i
;
182 if (!BIO_SPECIAL(*bio
))
188 static void free_r1bio(struct r1bio
*r1_bio
)
190 struct r1conf
*conf
= r1_bio
->mddev
->private;
192 put_all_bios(conf
, r1_bio
);
193 mempool_free(r1_bio
, conf
->r1bio_pool
);
196 static void put_buf(struct r1bio
*r1_bio
)
198 struct r1conf
*conf
= r1_bio
->mddev
->private;
201 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
202 struct bio
*bio
= r1_bio
->bios
[i
];
204 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
207 mempool_free(r1_bio
, conf
->r1buf_pool
);
212 static void reschedule_retry(struct r1bio
*r1_bio
)
215 struct mddev
*mddev
= r1_bio
->mddev
;
216 struct r1conf
*conf
= mddev
->private;
218 spin_lock_irqsave(&conf
->device_lock
, flags
);
219 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
221 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
223 wake_up(&conf
->wait_barrier
);
224 md_wakeup_thread(mddev
->thread
);
228 * raid_end_bio_io() is called when we have finished servicing a mirrored
229 * operation and are ready to return a success/failure code to the buffer
232 static void call_bio_endio(struct r1bio
*r1_bio
)
234 struct bio
*bio
= r1_bio
->master_bio
;
236 struct r1conf
*conf
= r1_bio
->mddev
->private;
238 if (bio
->bi_phys_segments
) {
240 spin_lock_irqsave(&conf
->device_lock
, flags
);
241 bio
->bi_phys_segments
--;
242 done
= (bio
->bi_phys_segments
== 0);
243 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
247 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
248 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
252 * Wake up any possible resync thread that waits for the device
259 static void raid_end_bio_io(struct r1bio
*r1_bio
)
261 struct bio
*bio
= r1_bio
->master_bio
;
263 /* if nobody has done the final endio yet, do it now */
264 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
265 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
266 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
267 (unsigned long long) bio
->bi_sector
,
268 (unsigned long long) bio
->bi_sector
+
269 bio_sectors(bio
) - 1);
271 call_bio_endio(r1_bio
);
277 * Update disk head position estimator based on IRQ completion info.
279 static inline void update_head_pos(int disk
, struct r1bio
*r1_bio
)
281 struct r1conf
*conf
= r1_bio
->mddev
->private;
283 conf
->mirrors
[disk
].head_position
=
284 r1_bio
->sector
+ (r1_bio
->sectors
);
288 * Find the disk number which triggered given bio
290 static int find_bio_disk(struct r1bio
*r1_bio
, struct bio
*bio
)
293 struct r1conf
*conf
= r1_bio
->mddev
->private;
294 int raid_disks
= conf
->raid_disks
;
296 for (mirror
= 0; mirror
< raid_disks
* 2; mirror
++)
297 if (r1_bio
->bios
[mirror
] == bio
)
300 BUG_ON(mirror
== raid_disks
* 2);
301 update_head_pos(mirror
, r1_bio
);
306 static void raid1_end_read_request(struct bio
*bio
, int error
)
308 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
309 struct r1bio
*r1_bio
= bio
->bi_private
;
311 struct r1conf
*conf
= r1_bio
->mddev
->private;
313 mirror
= r1_bio
->read_disk
;
315 * this branch is our 'one mirror IO has finished' event handler:
317 update_head_pos(mirror
, r1_bio
);
320 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
322 /* If all other devices have failed, we want to return
323 * the error upwards rather than fail the last device.
324 * Here we redefine "uptodate" to mean "Don't want to retry"
327 spin_lock_irqsave(&conf
->device_lock
, flags
);
328 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
329 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
330 !test_bit(Faulty
, &conf
->mirrors
[mirror
].rdev
->flags
)))
332 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
336 raid_end_bio_io(r1_bio
);
337 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, conf
->mddev
);
342 char b
[BDEVNAME_SIZE
];
344 KERN_ERR
"md/raid1:%s: %s: "
345 "rescheduling sector %llu\n",
347 bdevname(conf
->mirrors
[mirror
].rdev
->bdev
,
349 (unsigned long long)r1_bio
->sector
);
350 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
351 reschedule_retry(r1_bio
);
352 /* don't drop the reference on read_disk yet */
356 static void close_write(struct r1bio
*r1_bio
)
358 /* it really is the end of this request */
359 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
360 /* free extra copy of the data pages */
361 int i
= r1_bio
->behind_page_count
;
363 safe_put_page(r1_bio
->behind_bvecs
[i
].bv_page
);
364 kfree(r1_bio
->behind_bvecs
);
365 r1_bio
->behind_bvecs
= NULL
;
367 /* clear the bitmap if all writes complete successfully */
368 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
370 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
371 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
372 md_write_end(r1_bio
->mddev
);
375 static void r1_bio_write_done(struct r1bio
*r1_bio
)
377 if (!atomic_dec_and_test(&r1_bio
->remaining
))
380 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
381 reschedule_retry(r1_bio
);
384 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
385 reschedule_retry(r1_bio
);
387 raid_end_bio_io(r1_bio
);
391 static void raid1_end_write_request(struct bio
*bio
, int error
)
393 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
394 struct r1bio
*r1_bio
= bio
->bi_private
;
395 int mirror
, behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
396 struct r1conf
*conf
= r1_bio
->mddev
->private;
397 struct bio
*to_put
= NULL
;
399 mirror
= find_bio_disk(r1_bio
, bio
);
402 * 'one mirror IO has finished' event handler:
405 set_bit(WriteErrorSeen
,
406 &conf
->mirrors
[mirror
].rdev
->flags
);
407 if (!test_and_set_bit(WantReplacement
,
408 &conf
->mirrors
[mirror
].rdev
->flags
))
409 set_bit(MD_RECOVERY_NEEDED
, &
410 conf
->mddev
->recovery
);
412 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
415 * Set R1BIO_Uptodate in our master bio, so that we
416 * will return a good error code for to the higher
417 * levels even if IO on some other mirrored buffer
420 * The 'master' represents the composite IO operation
421 * to user-side. So if something waits for IO, then it
422 * will wait for the 'master' bio.
427 r1_bio
->bios
[mirror
] = NULL
;
430 * Do not set R1BIO_Uptodate if the current device is
431 * rebuilding or Faulty. This is because we cannot use
432 * such device for properly reading the data back (we could
433 * potentially use it, if the current write would have felt
434 * before rdev->recovery_offset, but for simplicity we don't
437 if (test_bit(In_sync
, &conf
->mirrors
[mirror
].rdev
->flags
) &&
438 !test_bit(Faulty
, &conf
->mirrors
[mirror
].rdev
->flags
))
439 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
441 /* Maybe we can clear some bad blocks. */
442 if (is_badblock(conf
->mirrors
[mirror
].rdev
,
443 r1_bio
->sector
, r1_bio
->sectors
,
444 &first_bad
, &bad_sectors
)) {
445 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
446 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
451 if (test_bit(WriteMostly
, &conf
->mirrors
[mirror
].rdev
->flags
))
452 atomic_dec(&r1_bio
->behind_remaining
);
455 * In behind mode, we ACK the master bio once the I/O
456 * has safely reached all non-writemostly
457 * disks. Setting the Returned bit ensures that this
458 * gets done only once -- we don't ever want to return
459 * -EIO here, instead we'll wait
461 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
462 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
463 /* Maybe we can return now */
464 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
465 struct bio
*mbio
= r1_bio
->master_bio
;
466 pr_debug("raid1: behind end write sectors"
468 (unsigned long long) mbio
->bi_sector
,
469 (unsigned long long) mbio
->bi_sector
+
470 bio_sectors(mbio
) - 1);
471 call_bio_endio(r1_bio
);
475 if (r1_bio
->bios
[mirror
] == NULL
)
476 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
,
480 * Let's see if all mirrored write operations have finished
483 r1_bio_write_done(r1_bio
);
491 * This routine returns the disk from which the requested read should
492 * be done. There is a per-array 'next expected sequential IO' sector
493 * number - if this matches on the next IO then we use the last disk.
494 * There is also a per-disk 'last know head position' sector that is
495 * maintained from IRQ contexts, both the normal and the resync IO
496 * completion handlers update this position correctly. If there is no
497 * perfect sequential match then we pick the disk whose head is closest.
499 * If there are 2 mirrors in the same 2 devices, performance degrades
500 * because position is mirror, not device based.
502 * The rdev for the device selected will have nr_pending incremented.
504 static int read_balance(struct r1conf
*conf
, struct r1bio
*r1_bio
, int *max_sectors
)
506 const sector_t this_sector
= r1_bio
->sector
;
508 int best_good_sectors
;
509 int best_disk
, best_dist_disk
, best_pending_disk
;
513 unsigned int min_pending
;
514 struct md_rdev
*rdev
;
516 int choose_next_idle
;
520 * Check if we can balance. We can balance on the whole
521 * device if no resync is going on, or below the resync window.
522 * We take the first readable disk when above the resync window.
525 sectors
= r1_bio
->sectors
;
528 best_dist
= MaxSector
;
529 best_pending_disk
= -1;
530 min_pending
= UINT_MAX
;
531 best_good_sectors
= 0;
533 choose_next_idle
= 0;
535 if (conf
->mddev
->recovery_cp
< MaxSector
&&
536 (this_sector
+ sectors
>= conf
->next_resync
))
541 for (disk
= 0 ; disk
< conf
->raid_disks
* 2 ; disk
++) {
545 unsigned int pending
;
548 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
549 if (r1_bio
->bios
[disk
] == IO_BLOCKED
551 || test_bit(Unmerged
, &rdev
->flags
)
552 || test_bit(Faulty
, &rdev
->flags
))
554 if (!test_bit(In_sync
, &rdev
->flags
) &&
555 rdev
->recovery_offset
< this_sector
+ sectors
)
557 if (test_bit(WriteMostly
, &rdev
->flags
)) {
558 /* Don't balance among write-mostly, just
559 * use the first as a last resort */
561 if (is_badblock(rdev
, this_sector
, sectors
,
562 &first_bad
, &bad_sectors
)) {
563 if (first_bad
< this_sector
)
564 /* Cannot use this */
566 best_good_sectors
= first_bad
- this_sector
;
568 best_good_sectors
= sectors
;
573 /* This is a reasonable device to use. It might
576 if (is_badblock(rdev
, this_sector
, sectors
,
577 &first_bad
, &bad_sectors
)) {
578 if (best_dist
< MaxSector
)
579 /* already have a better device */
581 if (first_bad
<= this_sector
) {
582 /* cannot read here. If this is the 'primary'
583 * device, then we must not read beyond
584 * bad_sectors from another device..
586 bad_sectors
-= (this_sector
- first_bad
);
587 if (choose_first
&& sectors
> bad_sectors
)
588 sectors
= bad_sectors
;
589 if (best_good_sectors
> sectors
)
590 best_good_sectors
= sectors
;
593 sector_t good_sectors
= first_bad
- this_sector
;
594 if (good_sectors
> best_good_sectors
) {
595 best_good_sectors
= good_sectors
;
603 best_good_sectors
= sectors
;
605 nonrot
= blk_queue_nonrot(bdev_get_queue(rdev
->bdev
));
606 has_nonrot_disk
|= nonrot
;
607 pending
= atomic_read(&rdev
->nr_pending
);
608 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
613 /* Don't change to another disk for sequential reads */
614 if (conf
->mirrors
[disk
].next_seq_sect
== this_sector
616 int opt_iosize
= bdev_io_opt(rdev
->bdev
) >> 9;
617 struct raid1_info
*mirror
= &conf
->mirrors
[disk
];
621 * If buffered sequential IO size exceeds optimal
622 * iosize, check if there is idle disk. If yes, choose
623 * the idle disk. read_balance could already choose an
624 * idle disk before noticing it's a sequential IO in
625 * this disk. This doesn't matter because this disk
626 * will idle, next time it will be utilized after the
627 * first disk has IO size exceeds optimal iosize. In
628 * this way, iosize of the first disk will be optimal
629 * iosize at least. iosize of the second disk might be
630 * small, but not a big deal since when the second disk
631 * starts IO, the first disk is likely still busy.
633 if (nonrot
&& opt_iosize
> 0 &&
634 mirror
->seq_start
!= MaxSector
&&
635 mirror
->next_seq_sect
> opt_iosize
&&
636 mirror
->next_seq_sect
- opt_iosize
>=
638 choose_next_idle
= 1;
643 /* If device is idle, use it */
649 if (choose_next_idle
)
652 if (min_pending
> pending
) {
653 min_pending
= pending
;
654 best_pending_disk
= disk
;
657 if (dist
< best_dist
) {
659 best_dist_disk
= disk
;
664 * If all disks are rotational, choose the closest disk. If any disk is
665 * non-rotational, choose the disk with less pending request even the
666 * disk is rotational, which might/might not be optimal for raids with
667 * mixed ratation/non-rotational disks depending on workload.
669 if (best_disk
== -1) {
671 best_disk
= best_pending_disk
;
673 best_disk
= best_dist_disk
;
676 if (best_disk
>= 0) {
677 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
680 atomic_inc(&rdev
->nr_pending
);
681 if (test_bit(Faulty
, &rdev
->flags
)) {
682 /* cannot risk returning a device that failed
683 * before we inc'ed nr_pending
685 rdev_dec_pending(rdev
, conf
->mddev
);
688 sectors
= best_good_sectors
;
690 if (conf
->mirrors
[best_disk
].next_seq_sect
!= this_sector
)
691 conf
->mirrors
[best_disk
].seq_start
= this_sector
;
693 conf
->mirrors
[best_disk
].next_seq_sect
= this_sector
+ sectors
;
696 *max_sectors
= sectors
;
701 static int raid1_mergeable_bvec(struct request_queue
*q
,
702 struct bvec_merge_data
*bvm
,
703 struct bio_vec
*biovec
)
705 struct mddev
*mddev
= q
->queuedata
;
706 struct r1conf
*conf
= mddev
->private;
707 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
708 int max
= biovec
->bv_len
;
710 if (mddev
->merge_check_needed
) {
713 for (disk
= 0; disk
< conf
->raid_disks
* 2; disk
++) {
714 struct md_rdev
*rdev
= rcu_dereference(
715 conf
->mirrors
[disk
].rdev
);
716 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
717 struct request_queue
*q
=
718 bdev_get_queue(rdev
->bdev
);
719 if (q
->merge_bvec_fn
) {
720 bvm
->bi_sector
= sector
+
722 bvm
->bi_bdev
= rdev
->bdev
;
723 max
= min(max
, q
->merge_bvec_fn(
734 int md_raid1_congested(struct mddev
*mddev
, int bits
)
736 struct r1conf
*conf
= mddev
->private;
739 if ((bits
& (1 << BDI_async_congested
)) &&
740 conf
->pending_count
>= max_queued_requests
)
744 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
745 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
746 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
747 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
751 /* Note the '|| 1' - when read_balance prefers
752 * non-congested targets, it can be removed
754 if ((bits
& (1<<BDI_async_congested
)) || 1)
755 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
757 ret
&= bdi_congested(&q
->backing_dev_info
, bits
);
763 EXPORT_SYMBOL_GPL(md_raid1_congested
);
765 static int raid1_congested(void *data
, int bits
)
767 struct mddev
*mddev
= data
;
769 return mddev_congested(mddev
, bits
) ||
770 md_raid1_congested(mddev
, bits
);
773 static void flush_pending_writes(struct r1conf
*conf
)
775 /* Any writes that have been queued but are awaiting
776 * bitmap updates get flushed here.
778 spin_lock_irq(&conf
->device_lock
);
780 if (conf
->pending_bio_list
.head
) {
782 bio
= bio_list_get(&conf
->pending_bio_list
);
783 conf
->pending_count
= 0;
784 spin_unlock_irq(&conf
->device_lock
);
785 /* flush any pending bitmap writes to
786 * disk before proceeding w/ I/O */
787 bitmap_unplug(conf
->mddev
->bitmap
);
788 wake_up(&conf
->wait_barrier
);
790 while (bio
) { /* submit pending writes */
791 struct bio
*next
= bio
->bi_next
;
793 if (unlikely((bio
->bi_rw
& REQ_DISCARD
) &&
794 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
798 generic_make_request(bio
);
802 spin_unlock_irq(&conf
->device_lock
);
806 * Sometimes we need to suspend IO while we do something else,
807 * either some resync/recovery, or reconfigure the array.
808 * To do this we raise a 'barrier'.
809 * The 'barrier' is a counter that can be raised multiple times
810 * to count how many activities are happening which preclude
812 * We can only raise the barrier if there is no pending IO.
813 * i.e. if nr_pending == 0.
814 * We choose only to raise the barrier if no-one is waiting for the
815 * barrier to go down. This means that as soon as an IO request
816 * is ready, no other operations which require a barrier will start
817 * until the IO request has had a chance.
819 * So: regular IO calls 'wait_barrier'. When that returns there
820 * is no backgroup IO happening, It must arrange to call
821 * allow_barrier when it has finished its IO.
822 * backgroup IO calls must call raise_barrier. Once that returns
823 * there is no normal IO happeing. It must arrange to call
824 * lower_barrier when the particular background IO completes.
826 #define RESYNC_DEPTH 32
828 static void raise_barrier(struct r1conf
*conf
)
830 spin_lock_irq(&conf
->resync_lock
);
832 /* Wait until no block IO is waiting */
833 wait_event_lock_irq(conf
->wait_barrier
, !conf
->nr_waiting
,
836 /* block any new IO from starting */
839 /* Now wait for all pending IO to complete */
840 wait_event_lock_irq(conf
->wait_barrier
,
841 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
844 spin_unlock_irq(&conf
->resync_lock
);
847 static void lower_barrier(struct r1conf
*conf
)
850 BUG_ON(conf
->barrier
<= 0);
851 spin_lock_irqsave(&conf
->resync_lock
, flags
);
853 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
854 wake_up(&conf
->wait_barrier
);
857 static void wait_barrier(struct r1conf
*conf
)
859 spin_lock_irq(&conf
->resync_lock
);
862 /* Wait for the barrier to drop.
863 * However if there are already pending
864 * requests (preventing the barrier from
865 * rising completely), and the
866 * pre-process bio queue isn't empty,
867 * then don't wait, as we need to empty
868 * that queue to get the nr_pending
871 wait_event_lock_irq(conf
->wait_barrier
,
875 !bio_list_empty(current
->bio_list
)),
880 spin_unlock_irq(&conf
->resync_lock
);
883 static void allow_barrier(struct r1conf
*conf
)
886 spin_lock_irqsave(&conf
->resync_lock
, flags
);
888 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
889 wake_up(&conf
->wait_barrier
);
892 static void freeze_array(struct r1conf
*conf
, int extra
)
894 /* stop syncio and normal IO and wait for everything to
896 * We increment barrier and nr_waiting, and then
897 * wait until nr_pending match nr_queued+extra
898 * This is called in the context of one normal IO request
899 * that has failed. Thus any sync request that might be pending
900 * will be blocked by nr_pending, and we need to wait for
901 * pending IO requests to complete or be queued for re-try.
902 * Thus the number queued (nr_queued) plus this request (extra)
903 * must match the number of pending IOs (nr_pending) before
906 spin_lock_irq(&conf
->resync_lock
);
909 wait_event_lock_irq_cmd(conf
->wait_barrier
,
910 conf
->nr_pending
== conf
->nr_queued
+extra
,
912 flush_pending_writes(conf
));
913 spin_unlock_irq(&conf
->resync_lock
);
915 static void unfreeze_array(struct r1conf
*conf
)
917 /* reverse the effect of the freeze */
918 spin_lock_irq(&conf
->resync_lock
);
921 wake_up(&conf
->wait_barrier
);
922 spin_unlock_irq(&conf
->resync_lock
);
926 /* duplicate the data pages for behind I/O
928 static void alloc_behind_pages(struct bio
*bio
, struct r1bio
*r1_bio
)
931 struct bio_vec
*bvec
;
932 struct bio_vec
*bvecs
= kzalloc(bio
->bi_vcnt
* sizeof(struct bio_vec
),
934 if (unlikely(!bvecs
))
937 bio_for_each_segment_all(bvec
, bio
, i
) {
939 bvecs
[i
].bv_page
= alloc_page(GFP_NOIO
);
940 if (unlikely(!bvecs
[i
].bv_page
))
942 memcpy(kmap(bvecs
[i
].bv_page
) + bvec
->bv_offset
,
943 kmap(bvec
->bv_page
) + bvec
->bv_offset
, bvec
->bv_len
);
944 kunmap(bvecs
[i
].bv_page
);
945 kunmap(bvec
->bv_page
);
947 r1_bio
->behind_bvecs
= bvecs
;
948 r1_bio
->behind_page_count
= bio
->bi_vcnt
;
949 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
953 for (i
= 0; i
< bio
->bi_vcnt
; i
++)
954 if (bvecs
[i
].bv_page
)
955 put_page(bvecs
[i
].bv_page
);
957 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio
->bi_size
);
960 struct raid1_plug_cb
{
961 struct blk_plug_cb cb
;
962 struct bio_list pending
;
966 static void raid1_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
968 struct raid1_plug_cb
*plug
= container_of(cb
, struct raid1_plug_cb
,
970 struct mddev
*mddev
= plug
->cb
.data
;
971 struct r1conf
*conf
= mddev
->private;
974 if (from_schedule
|| current
->bio_list
) {
975 spin_lock_irq(&conf
->device_lock
);
976 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
977 conf
->pending_count
+= plug
->pending_cnt
;
978 spin_unlock_irq(&conf
->device_lock
);
979 wake_up(&conf
->wait_barrier
);
980 md_wakeup_thread(mddev
->thread
);
985 /* we aren't scheduling, so we can do the write-out directly. */
986 bio
= bio_list_get(&plug
->pending
);
987 bitmap_unplug(mddev
->bitmap
);
988 wake_up(&conf
->wait_barrier
);
990 while (bio
) { /* submit pending writes */
991 struct bio
*next
= bio
->bi_next
;
993 if (unlikely((bio
->bi_rw
& REQ_DISCARD
) &&
994 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
998 generic_make_request(bio
);
1004 static void make_request(struct mddev
*mddev
, struct bio
* bio
)
1006 struct r1conf
*conf
= mddev
->private;
1007 struct raid1_info
*mirror
;
1008 struct r1bio
*r1_bio
;
1009 struct bio
*read_bio
;
1011 struct bitmap
*bitmap
;
1012 unsigned long flags
;
1013 const int rw
= bio_data_dir(bio
);
1014 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
1015 const unsigned long do_flush_fua
= (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
));
1016 const unsigned long do_discard
= (bio
->bi_rw
1017 & (REQ_DISCARD
| REQ_SECURE
));
1018 const unsigned long do_same
= (bio
->bi_rw
& REQ_WRITE_SAME
);
1019 struct md_rdev
*blocked_rdev
;
1020 struct blk_plug_cb
*cb
;
1021 struct raid1_plug_cb
*plug
= NULL
;
1023 int sectors_handled
;
1027 * Register the new request and wait if the reconstruction
1028 * thread has put up a bar for new requests.
1029 * Continue immediately if no resync is active currently.
1032 md_write_start(mddev
, bio
); /* wait on superblock update early */
1034 if (bio_data_dir(bio
) == WRITE
&&
1035 bio_end_sector(bio
) > mddev
->suspend_lo
&&
1036 bio
->bi_sector
< mddev
->suspend_hi
) {
1037 /* As the suspend_* range is controlled by
1038 * userspace, we want an interruptible
1043 flush_signals(current
);
1044 prepare_to_wait(&conf
->wait_barrier
,
1045 &w
, TASK_INTERRUPTIBLE
);
1046 if (bio_end_sector(bio
) <= mddev
->suspend_lo
||
1047 bio
->bi_sector
>= mddev
->suspend_hi
)
1051 finish_wait(&conf
->wait_barrier
, &w
);
1056 bitmap
= mddev
->bitmap
;
1059 * make_request() can abort the operation when READA is being
1060 * used and no empty request is available.
1063 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1065 r1_bio
->master_bio
= bio
;
1066 r1_bio
->sectors
= bio_sectors(bio
);
1068 r1_bio
->mddev
= mddev
;
1069 r1_bio
->sector
= bio
->bi_sector
;
1071 /* We might need to issue multiple reads to different
1072 * devices if there are bad blocks around, so we keep
1073 * track of the number of reads in bio->bi_phys_segments.
1074 * If this is 0, there is only one r1_bio and no locking
1075 * will be needed when requests complete. If it is
1076 * non-zero, then it is the number of not-completed requests.
1078 bio
->bi_phys_segments
= 0;
1079 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
1083 * read balancing logic:
1088 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
1091 /* couldn't find anywhere to read from */
1092 raid_end_bio_io(r1_bio
);
1095 mirror
= conf
->mirrors
+ rdisk
;
1097 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
1099 /* Reading from a write-mostly device must
1100 * take care not to over-take any writes
1103 wait_event(bitmap
->behind_wait
,
1104 atomic_read(&bitmap
->behind_writes
) == 0);
1106 r1_bio
->read_disk
= rdisk
;
1108 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1109 md_trim_bio(read_bio
, r1_bio
->sector
- bio
->bi_sector
,
1112 r1_bio
->bios
[rdisk
] = read_bio
;
1114 read_bio
->bi_sector
= r1_bio
->sector
+ mirror
->rdev
->data_offset
;
1115 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
1116 read_bio
->bi_end_io
= raid1_end_read_request
;
1117 read_bio
->bi_rw
= READ
| do_sync
;
1118 read_bio
->bi_private
= r1_bio
;
1120 if (max_sectors
< r1_bio
->sectors
) {
1121 /* could not read all from this device, so we will
1122 * need another r1_bio.
1125 sectors_handled
= (r1_bio
->sector
+ max_sectors
1127 r1_bio
->sectors
= max_sectors
;
1128 spin_lock_irq(&conf
->device_lock
);
1129 if (bio
->bi_phys_segments
== 0)
1130 bio
->bi_phys_segments
= 2;
1132 bio
->bi_phys_segments
++;
1133 spin_unlock_irq(&conf
->device_lock
);
1134 /* Cannot call generic_make_request directly
1135 * as that will be queued in __make_request
1136 * and subsequent mempool_alloc might block waiting
1137 * for it. So hand bio over to raid1d.
1139 reschedule_retry(r1_bio
);
1141 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1143 r1_bio
->master_bio
= bio
;
1144 r1_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1146 r1_bio
->mddev
= mddev
;
1147 r1_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1150 generic_make_request(read_bio
);
1157 if (conf
->pending_count
>= max_queued_requests
) {
1158 md_wakeup_thread(mddev
->thread
);
1159 wait_event(conf
->wait_barrier
,
1160 conf
->pending_count
< max_queued_requests
);
1162 /* first select target devices under rcu_lock and
1163 * inc refcount on their rdev. Record them by setting
1165 * If there are known/acknowledged bad blocks on any device on
1166 * which we have seen a write error, we want to avoid writing those
1168 * This potentially requires several writes to write around
1169 * the bad blocks. Each set of writes gets it's own r1bio
1170 * with a set of bios attached.
1173 disks
= conf
->raid_disks
* 2;
1175 blocked_rdev
= NULL
;
1177 max_sectors
= r1_bio
->sectors
;
1178 for (i
= 0; i
< disks
; i
++) {
1179 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1180 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1181 atomic_inc(&rdev
->nr_pending
);
1182 blocked_rdev
= rdev
;
1185 r1_bio
->bios
[i
] = NULL
;
1186 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)
1187 || test_bit(Unmerged
, &rdev
->flags
)) {
1188 if (i
< conf
->raid_disks
)
1189 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1193 atomic_inc(&rdev
->nr_pending
);
1194 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1199 is_bad
= is_badblock(rdev
, r1_bio
->sector
,
1201 &first_bad
, &bad_sectors
);
1203 /* mustn't write here until the bad block is
1205 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1206 blocked_rdev
= rdev
;
1209 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
1210 /* Cannot write here at all */
1211 bad_sectors
-= (r1_bio
->sector
- first_bad
);
1212 if (bad_sectors
< max_sectors
)
1213 /* mustn't write more than bad_sectors
1214 * to other devices yet
1216 max_sectors
= bad_sectors
;
1217 rdev_dec_pending(rdev
, mddev
);
1218 /* We don't set R1BIO_Degraded as that
1219 * only applies if the disk is
1220 * missing, so it might be re-added,
1221 * and we want to know to recover this
1223 * In this case the device is here,
1224 * and the fact that this chunk is not
1225 * in-sync is recorded in the bad
1231 int good_sectors
= first_bad
- r1_bio
->sector
;
1232 if (good_sectors
< max_sectors
)
1233 max_sectors
= good_sectors
;
1236 r1_bio
->bios
[i
] = bio
;
1240 if (unlikely(blocked_rdev
)) {
1241 /* Wait for this device to become unblocked */
1244 for (j
= 0; j
< i
; j
++)
1245 if (r1_bio
->bios
[j
])
1246 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1248 allow_barrier(conf
);
1249 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1254 if (max_sectors
< r1_bio
->sectors
) {
1255 /* We are splitting this write into multiple parts, so
1256 * we need to prepare for allocating another r1_bio.
1258 r1_bio
->sectors
= max_sectors
;
1259 spin_lock_irq(&conf
->device_lock
);
1260 if (bio
->bi_phys_segments
== 0)
1261 bio
->bi_phys_segments
= 2;
1263 bio
->bi_phys_segments
++;
1264 spin_unlock_irq(&conf
->device_lock
);
1266 sectors_handled
= r1_bio
->sector
+ max_sectors
- bio
->bi_sector
;
1268 atomic_set(&r1_bio
->remaining
, 1);
1269 atomic_set(&r1_bio
->behind_remaining
, 0);
1272 for (i
= 0; i
< disks
; i
++) {
1274 if (!r1_bio
->bios
[i
])
1277 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1278 md_trim_bio(mbio
, r1_bio
->sector
- bio
->bi_sector
, max_sectors
);
1282 * Not if there are too many, or cannot
1283 * allocate memory, or a reader on WriteMostly
1284 * is waiting for behind writes to flush */
1286 (atomic_read(&bitmap
->behind_writes
)
1287 < mddev
->bitmap_info
.max_write_behind
) &&
1288 !waitqueue_active(&bitmap
->behind_wait
))
1289 alloc_behind_pages(mbio
, r1_bio
);
1291 bitmap_startwrite(bitmap
, r1_bio
->sector
,
1293 test_bit(R1BIO_BehindIO
,
1297 if (r1_bio
->behind_bvecs
) {
1298 struct bio_vec
*bvec
;
1302 * We trimmed the bio, so _all is legit
1304 bio_for_each_segment_all(bvec
, mbio
, j
)
1305 bvec
->bv_page
= r1_bio
->behind_bvecs
[j
].bv_page
;
1306 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
1307 atomic_inc(&r1_bio
->behind_remaining
);
1310 r1_bio
->bios
[i
] = mbio
;
1312 mbio
->bi_sector
= (r1_bio
->sector
+
1313 conf
->mirrors
[i
].rdev
->data_offset
);
1314 mbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1315 mbio
->bi_end_io
= raid1_end_write_request
;
1317 WRITE
| do_flush_fua
| do_sync
| do_discard
| do_same
;
1318 mbio
->bi_private
= r1_bio
;
1320 atomic_inc(&r1_bio
->remaining
);
1322 cb
= blk_check_plugged(raid1_unplug
, mddev
, sizeof(*plug
));
1324 plug
= container_of(cb
, struct raid1_plug_cb
, cb
);
1327 spin_lock_irqsave(&conf
->device_lock
, flags
);
1329 bio_list_add(&plug
->pending
, mbio
);
1330 plug
->pending_cnt
++;
1332 bio_list_add(&conf
->pending_bio_list
, mbio
);
1333 conf
->pending_count
++;
1335 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1337 md_wakeup_thread(mddev
->thread
);
1339 /* Mustn't call r1_bio_write_done before this next test,
1340 * as it could result in the bio being freed.
1342 if (sectors_handled
< bio_sectors(bio
)) {
1343 r1_bio_write_done(r1_bio
);
1344 /* We need another r1_bio. It has already been counted
1345 * in bio->bi_phys_segments
1347 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1348 r1_bio
->master_bio
= bio
;
1349 r1_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1351 r1_bio
->mddev
= mddev
;
1352 r1_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1356 r1_bio_write_done(r1_bio
);
1358 /* In case raid1d snuck in to freeze_array */
1359 wake_up(&conf
->wait_barrier
);
1362 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
1364 struct r1conf
*conf
= mddev
->private;
1367 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1368 conf
->raid_disks
- mddev
->degraded
);
1370 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1371 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1372 seq_printf(seq
, "%s",
1373 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1376 seq_printf(seq
, "]");
1380 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1382 char b
[BDEVNAME_SIZE
];
1383 struct r1conf
*conf
= mddev
->private;
1386 * If it is not operational, then we have already marked it as dead
1387 * else if it is the last working disks, ignore the error, let the
1388 * next level up know.
1389 * else mark the drive as failed
1391 if (test_bit(In_sync
, &rdev
->flags
)
1392 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1394 * Don't fail the drive, act as though we were just a
1395 * normal single drive.
1396 * However don't try a recovery from this drive as
1397 * it is very likely to fail.
1399 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1402 set_bit(Blocked
, &rdev
->flags
);
1403 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1404 unsigned long flags
;
1405 spin_lock_irqsave(&conf
->device_lock
, flags
);
1407 set_bit(Faulty
, &rdev
->flags
);
1408 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1410 * if recovery is running, make sure it aborts.
1412 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1414 set_bit(Faulty
, &rdev
->flags
);
1415 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1417 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1418 "md/raid1:%s: Operation continuing on %d devices.\n",
1419 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1420 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1423 static void print_conf(struct r1conf
*conf
)
1427 printk(KERN_DEBUG
"RAID1 conf printout:\n");
1429 printk(KERN_DEBUG
"(!conf)\n");
1432 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1436 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1437 char b
[BDEVNAME_SIZE
];
1438 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1440 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1441 i
, !test_bit(In_sync
, &rdev
->flags
),
1442 !test_bit(Faulty
, &rdev
->flags
),
1443 bdevname(rdev
->bdev
,b
));
1448 static void close_sync(struct r1conf
*conf
)
1451 allow_barrier(conf
);
1453 mempool_destroy(conf
->r1buf_pool
);
1454 conf
->r1buf_pool
= NULL
;
1457 static int raid1_spare_active(struct mddev
*mddev
)
1460 struct r1conf
*conf
= mddev
->private;
1462 unsigned long flags
;
1465 * Find all failed disks within the RAID1 configuration
1466 * and mark them readable.
1467 * Called under mddev lock, so rcu protection not needed.
1469 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1470 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1471 struct md_rdev
*repl
= conf
->mirrors
[conf
->raid_disks
+ i
].rdev
;
1473 && repl
->recovery_offset
== MaxSector
1474 && !test_bit(Faulty
, &repl
->flags
)
1475 && !test_and_set_bit(In_sync
, &repl
->flags
)) {
1476 /* replacement has just become active */
1478 !test_and_clear_bit(In_sync
, &rdev
->flags
))
1481 /* Replaced device not technically
1482 * faulty, but we need to be sure
1483 * it gets removed and never re-added
1485 set_bit(Faulty
, &rdev
->flags
);
1486 sysfs_notify_dirent_safe(
1491 && rdev
->recovery_offset
== MaxSector
1492 && !test_bit(Faulty
, &rdev
->flags
)
1493 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1495 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1498 spin_lock_irqsave(&conf
->device_lock
, flags
);
1499 mddev
->degraded
-= count
;
1500 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1507 static int raid1_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1509 struct r1conf
*conf
= mddev
->private;
1512 struct raid1_info
*p
;
1514 int last
= conf
->raid_disks
- 1;
1515 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
1517 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1520 if (rdev
->raid_disk
>= 0)
1521 first
= last
= rdev
->raid_disk
;
1523 if (q
->merge_bvec_fn
) {
1524 set_bit(Unmerged
, &rdev
->flags
);
1525 mddev
->merge_check_needed
= 1;
1528 for (mirror
= first
; mirror
<= last
; mirror
++) {
1529 p
= conf
->mirrors
+mirror
;
1533 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1534 rdev
->data_offset
<< 9);
1536 p
->head_position
= 0;
1537 rdev
->raid_disk
= mirror
;
1539 /* As all devices are equivalent, we don't need a full recovery
1540 * if this was recently any drive of the array
1542 if (rdev
->saved_raid_disk
< 0)
1544 rcu_assign_pointer(p
->rdev
, rdev
);
1547 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
1548 p
[conf
->raid_disks
].rdev
== NULL
) {
1549 /* Add this device as a replacement */
1550 clear_bit(In_sync
, &rdev
->flags
);
1551 set_bit(Replacement
, &rdev
->flags
);
1552 rdev
->raid_disk
= mirror
;
1555 rcu_assign_pointer(p
[conf
->raid_disks
].rdev
, rdev
);
1559 if (err
== 0 && test_bit(Unmerged
, &rdev
->flags
)) {
1560 /* Some requests might not have seen this new
1561 * merge_bvec_fn. We must wait for them to complete
1562 * before merging the device fully.
1563 * First we make sure any code which has tested
1564 * our function has submitted the request, then
1565 * we wait for all outstanding requests to complete.
1567 synchronize_sched();
1568 freeze_array(conf
, 0);
1569 unfreeze_array(conf
);
1570 clear_bit(Unmerged
, &rdev
->flags
);
1572 md_integrity_add_rdev(rdev
, mddev
);
1573 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1574 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1579 static int raid1_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1581 struct r1conf
*conf
= mddev
->private;
1583 int number
= rdev
->raid_disk
;
1584 struct raid1_info
*p
= conf
->mirrors
+ number
;
1586 if (rdev
!= p
->rdev
)
1587 p
= conf
->mirrors
+ conf
->raid_disks
+ number
;
1590 if (rdev
== p
->rdev
) {
1591 if (test_bit(In_sync
, &rdev
->flags
) ||
1592 atomic_read(&rdev
->nr_pending
)) {
1596 /* Only remove non-faulty devices if recovery
1599 if (!test_bit(Faulty
, &rdev
->flags
) &&
1600 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1601 mddev
->degraded
< conf
->raid_disks
) {
1607 if (atomic_read(&rdev
->nr_pending
)) {
1608 /* lost the race, try later */
1612 } else if (conf
->mirrors
[conf
->raid_disks
+ number
].rdev
) {
1613 /* We just removed a device that is being replaced.
1614 * Move down the replacement. We drain all IO before
1615 * doing this to avoid confusion.
1617 struct md_rdev
*repl
=
1618 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
;
1619 freeze_array(conf
, 0);
1620 clear_bit(Replacement
, &repl
->flags
);
1622 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
= NULL
;
1623 unfreeze_array(conf
);
1624 clear_bit(WantReplacement
, &rdev
->flags
);
1626 clear_bit(WantReplacement
, &rdev
->flags
);
1627 err
= md_integrity_register(mddev
);
1636 static void end_sync_read(struct bio
*bio
, int error
)
1638 struct r1bio
*r1_bio
= bio
->bi_private
;
1640 update_head_pos(r1_bio
->read_disk
, r1_bio
);
1643 * we have read a block, now it needs to be re-written,
1644 * or re-read if the read failed.
1645 * We don't do much here, just schedule handling by raid1d
1647 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1648 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1650 if (atomic_dec_and_test(&r1_bio
->remaining
))
1651 reschedule_retry(r1_bio
);
1654 static void end_sync_write(struct bio
*bio
, int error
)
1656 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1657 struct r1bio
*r1_bio
= bio
->bi_private
;
1658 struct mddev
*mddev
= r1_bio
->mddev
;
1659 struct r1conf
*conf
= mddev
->private;
1664 mirror
= find_bio_disk(r1_bio
, bio
);
1667 sector_t sync_blocks
= 0;
1668 sector_t s
= r1_bio
->sector
;
1669 long sectors_to_go
= r1_bio
->sectors
;
1670 /* make sure these bits doesn't get cleared. */
1672 bitmap_end_sync(mddev
->bitmap
, s
,
1675 sectors_to_go
-= sync_blocks
;
1676 } while (sectors_to_go
> 0);
1677 set_bit(WriteErrorSeen
,
1678 &conf
->mirrors
[mirror
].rdev
->flags
);
1679 if (!test_and_set_bit(WantReplacement
,
1680 &conf
->mirrors
[mirror
].rdev
->flags
))
1681 set_bit(MD_RECOVERY_NEEDED
, &
1683 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1684 } else if (is_badblock(conf
->mirrors
[mirror
].rdev
,
1687 &first_bad
, &bad_sectors
) &&
1688 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1691 &first_bad
, &bad_sectors
)
1693 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1695 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1696 int s
= r1_bio
->sectors
;
1697 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1698 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1699 reschedule_retry(r1_bio
);
1702 md_done_sync(mddev
, s
, uptodate
);
1707 static int r1_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1708 int sectors
, struct page
*page
, int rw
)
1710 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
1714 set_bit(WriteErrorSeen
, &rdev
->flags
);
1715 if (!test_and_set_bit(WantReplacement
,
1717 set_bit(MD_RECOVERY_NEEDED
, &
1718 rdev
->mddev
->recovery
);
1720 /* need to record an error - either for the block or the device */
1721 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1722 md_error(rdev
->mddev
, rdev
);
1726 static int fix_sync_read_error(struct r1bio
*r1_bio
)
1728 /* Try some synchronous reads of other devices to get
1729 * good data, much like with normal read errors. Only
1730 * read into the pages we already have so we don't
1731 * need to re-issue the read request.
1732 * We don't need to freeze the array, because being in an
1733 * active sync request, there is no normal IO, and
1734 * no overlapping syncs.
1735 * We don't need to check is_badblock() again as we
1736 * made sure that anything with a bad block in range
1737 * will have bi_end_io clear.
1739 struct mddev
*mddev
= r1_bio
->mddev
;
1740 struct r1conf
*conf
= mddev
->private;
1741 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1742 sector_t sect
= r1_bio
->sector
;
1743 int sectors
= r1_bio
->sectors
;
1748 int d
= r1_bio
->read_disk
;
1750 struct md_rdev
*rdev
;
1753 if (s
> (PAGE_SIZE
>>9))
1756 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1757 /* No rcu protection needed here devices
1758 * can only be removed when no resync is
1759 * active, and resync is currently active
1761 rdev
= conf
->mirrors
[d
].rdev
;
1762 if (sync_page_io(rdev
, sect
, s
<<9,
1763 bio
->bi_io_vec
[idx
].bv_page
,
1770 if (d
== conf
->raid_disks
* 2)
1772 } while (!success
&& d
!= r1_bio
->read_disk
);
1775 char b
[BDEVNAME_SIZE
];
1777 /* Cannot read from anywhere, this block is lost.
1778 * Record a bad block on each device. If that doesn't
1779 * work just disable and interrupt the recovery.
1780 * Don't fail devices as that won't really help.
1782 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O read error"
1783 " for block %llu\n",
1785 bdevname(bio
->bi_bdev
, b
),
1786 (unsigned long long)r1_bio
->sector
);
1787 for (d
= 0; d
< conf
->raid_disks
* 2; d
++) {
1788 rdev
= conf
->mirrors
[d
].rdev
;
1789 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
1791 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1795 conf
->recovery_disabled
=
1796 mddev
->recovery_disabled
;
1797 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1798 md_done_sync(mddev
, r1_bio
->sectors
, 0);
1810 /* write it back and re-read */
1811 while (d
!= r1_bio
->read_disk
) {
1813 d
= conf
->raid_disks
* 2;
1815 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1817 rdev
= conf
->mirrors
[d
].rdev
;
1818 if (r1_sync_page_io(rdev
, sect
, s
,
1819 bio
->bi_io_vec
[idx
].bv_page
,
1821 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
1822 rdev_dec_pending(rdev
, mddev
);
1826 while (d
!= r1_bio
->read_disk
) {
1828 d
= conf
->raid_disks
* 2;
1830 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1832 rdev
= conf
->mirrors
[d
].rdev
;
1833 if (r1_sync_page_io(rdev
, sect
, s
,
1834 bio
->bi_io_vec
[idx
].bv_page
,
1836 atomic_add(s
, &rdev
->corrected_errors
);
1842 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1843 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1847 static int process_checks(struct r1bio
*r1_bio
)
1849 /* We have read all readable devices. If we haven't
1850 * got the block, then there is no hope left.
1851 * If we have, then we want to do a comparison
1852 * and skip the write if everything is the same.
1853 * If any blocks failed to read, then we need to
1854 * attempt an over-write
1856 struct mddev
*mddev
= r1_bio
->mddev
;
1857 struct r1conf
*conf
= mddev
->private;
1862 /* Fix variable parts of all bios */
1863 vcnt
= (r1_bio
->sectors
+ PAGE_SIZE
/ 512 - 1) >> (PAGE_SHIFT
- 9);
1864 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
1868 struct bio
*b
= r1_bio
->bios
[i
];
1869 if (b
->bi_end_io
!= end_sync_read
)
1871 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1872 uptodate
= test_bit(BIO_UPTODATE
, &b
->bi_flags
);
1875 clear_bit(BIO_UPTODATE
, &b
->bi_flags
);
1877 b
->bi_size
= r1_bio
->sectors
<< 9;
1878 b
->bi_sector
= r1_bio
->sector
+
1879 conf
->mirrors
[i
].rdev
->data_offset
;
1880 b
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1881 b
->bi_end_io
= end_sync_read
;
1882 b
->bi_private
= r1_bio
;
1885 for (j
= 0; j
< vcnt
; j
++) {
1887 bi
= &b
->bi_io_vec
[j
];
1889 if (size
> PAGE_SIZE
)
1890 bi
->bv_len
= PAGE_SIZE
;
1896 for (primary
= 0; primary
< conf
->raid_disks
* 2; primary
++)
1897 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
1898 test_bit(BIO_UPTODATE
, &r1_bio
->bios
[primary
]->bi_flags
)) {
1899 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
1900 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
1903 r1_bio
->read_disk
= primary
;
1904 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
1906 struct bio
*pbio
= r1_bio
->bios
[primary
];
1907 struct bio
*sbio
= r1_bio
->bios
[i
];
1908 int uptodate
= test_bit(BIO_UPTODATE
, &sbio
->bi_flags
);
1910 if (sbio
->bi_end_io
!= end_sync_read
)
1912 /* Now we can 'fixup' the BIO_UPTODATE flag */
1913 set_bit(BIO_UPTODATE
, &sbio
->bi_flags
);
1916 for (j
= vcnt
; j
-- ; ) {
1918 p
= pbio
->bi_io_vec
[j
].bv_page
;
1919 s
= sbio
->bi_io_vec
[j
].bv_page
;
1920 if (memcmp(page_address(p
),
1922 sbio
->bi_io_vec
[j
].bv_len
))
1928 atomic64_add(r1_bio
->sectors
, &mddev
->resync_mismatches
);
1929 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
1931 /* No need to write to this device. */
1932 sbio
->bi_end_io
= NULL
;
1933 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
1937 bio_copy_data(sbio
, pbio
);
1942 static void sync_request_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
1944 struct r1conf
*conf
= mddev
->private;
1946 int disks
= conf
->raid_disks
* 2;
1947 struct bio
*bio
, *wbio
;
1949 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1951 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
1952 /* ouch - failed to read all of that. */
1953 if (!fix_sync_read_error(r1_bio
))
1956 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
1957 if (process_checks(r1_bio
) < 0)
1962 atomic_set(&r1_bio
->remaining
, 1);
1963 for (i
= 0; i
< disks
; i
++) {
1964 wbio
= r1_bio
->bios
[i
];
1965 if (wbio
->bi_end_io
== NULL
||
1966 (wbio
->bi_end_io
== end_sync_read
&&
1967 (i
== r1_bio
->read_disk
||
1968 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
1971 wbio
->bi_rw
= WRITE
;
1972 wbio
->bi_end_io
= end_sync_write
;
1973 atomic_inc(&r1_bio
->remaining
);
1974 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, bio_sectors(wbio
));
1976 generic_make_request(wbio
);
1979 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1980 /* if we're here, all write(s) have completed, so clean up */
1981 int s
= r1_bio
->sectors
;
1982 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1983 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1984 reschedule_retry(r1_bio
);
1987 md_done_sync(mddev
, s
, 1);
1993 * This is a kernel thread which:
1995 * 1. Retries failed read operations on working mirrors.
1996 * 2. Updates the raid superblock when problems encounter.
1997 * 3. Performs writes following reads for array synchronising.
2000 static void fix_read_error(struct r1conf
*conf
, int read_disk
,
2001 sector_t sect
, int sectors
)
2003 struct mddev
*mddev
= conf
->mddev
;
2009 struct md_rdev
*rdev
;
2011 if (s
> (PAGE_SIZE
>>9))
2015 /* Note: no rcu protection needed here
2016 * as this is synchronous in the raid1d thread
2017 * which is the thread that might remove
2018 * a device. If raid1d ever becomes multi-threaded....
2023 rdev
= conf
->mirrors
[d
].rdev
;
2025 (test_bit(In_sync
, &rdev
->flags
) ||
2026 (!test_bit(Faulty
, &rdev
->flags
) &&
2027 rdev
->recovery_offset
>= sect
+ s
)) &&
2028 is_badblock(rdev
, sect
, s
,
2029 &first_bad
, &bad_sectors
) == 0 &&
2030 sync_page_io(rdev
, sect
, s
<<9,
2031 conf
->tmppage
, READ
, false))
2035 if (d
== conf
->raid_disks
* 2)
2038 } while (!success
&& d
!= read_disk
);
2041 /* Cannot read from anywhere - mark it bad */
2042 struct md_rdev
*rdev
= conf
->mirrors
[read_disk
].rdev
;
2043 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2044 md_error(mddev
, rdev
);
2047 /* write it back and re-read */
2049 while (d
!= read_disk
) {
2051 d
= conf
->raid_disks
* 2;
2053 rdev
= conf
->mirrors
[d
].rdev
;
2055 test_bit(In_sync
, &rdev
->flags
))
2056 r1_sync_page_io(rdev
, sect
, s
,
2057 conf
->tmppage
, WRITE
);
2060 while (d
!= read_disk
) {
2061 char b
[BDEVNAME_SIZE
];
2063 d
= conf
->raid_disks
* 2;
2065 rdev
= conf
->mirrors
[d
].rdev
;
2067 test_bit(In_sync
, &rdev
->flags
)) {
2068 if (r1_sync_page_io(rdev
, sect
, s
,
2069 conf
->tmppage
, READ
)) {
2070 atomic_add(s
, &rdev
->corrected_errors
);
2072 "md/raid1:%s: read error corrected "
2073 "(%d sectors at %llu on %s)\n",
2075 (unsigned long long)(sect
+
2077 bdevname(rdev
->bdev
, b
));
2086 static int narrow_write_error(struct r1bio
*r1_bio
, int i
)
2088 struct mddev
*mddev
= r1_bio
->mddev
;
2089 struct r1conf
*conf
= mddev
->private;
2090 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2092 /* bio has the data to be written to device 'i' where
2093 * we just recently had a write error.
2094 * We repeatedly clone the bio and trim down to one block,
2095 * then try the write. Where the write fails we record
2097 * It is conceivable that the bio doesn't exactly align with
2098 * blocks. We must handle this somehow.
2100 * We currently own a reference on the rdev.
2106 int sect_to_write
= r1_bio
->sectors
;
2109 if (rdev
->badblocks
.shift
< 0)
2112 block_sectors
= 1 << rdev
->badblocks
.shift
;
2113 sector
= r1_bio
->sector
;
2114 sectors
= ((sector
+ block_sectors
)
2115 & ~(sector_t
)(block_sectors
- 1))
2118 while (sect_to_write
) {
2120 if (sectors
> sect_to_write
)
2121 sectors
= sect_to_write
;
2122 /* Write at 'sector' for 'sectors'*/
2124 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
2125 unsigned vcnt
= r1_bio
->behind_page_count
;
2126 struct bio_vec
*vec
= r1_bio
->behind_bvecs
;
2128 while (!vec
->bv_page
) {
2133 wbio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, mddev
);
2134 memcpy(wbio
->bi_io_vec
, vec
, vcnt
* sizeof(struct bio_vec
));
2136 wbio
->bi_vcnt
= vcnt
;
2138 wbio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
2141 wbio
->bi_rw
= WRITE
;
2142 wbio
->bi_sector
= r1_bio
->sector
;
2143 wbio
->bi_size
= r1_bio
->sectors
<< 9;
2145 md_trim_bio(wbio
, sector
- r1_bio
->sector
, sectors
);
2146 wbio
->bi_sector
+= rdev
->data_offset
;
2147 wbio
->bi_bdev
= rdev
->bdev
;
2148 if (submit_bio_wait(WRITE
, wbio
) == 0)
2150 ok
= rdev_set_badblocks(rdev
, sector
,
2155 sect_to_write
-= sectors
;
2157 sectors
= block_sectors
;
2162 static void handle_sync_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2165 int s
= r1_bio
->sectors
;
2166 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++) {
2167 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2168 struct bio
*bio
= r1_bio
->bios
[m
];
2169 if (bio
->bi_end_io
== NULL
)
2171 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
2172 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
2173 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
, 0);
2175 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
2176 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
2177 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
2178 md_error(conf
->mddev
, rdev
);
2182 md_done_sync(conf
->mddev
, s
, 1);
2185 static void handle_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2188 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++)
2189 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
2190 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2191 rdev_clear_badblocks(rdev
,
2193 r1_bio
->sectors
, 0);
2194 rdev_dec_pending(rdev
, conf
->mddev
);
2195 } else if (r1_bio
->bios
[m
] != NULL
) {
2196 /* This drive got a write error. We need to
2197 * narrow down and record precise write
2200 if (!narrow_write_error(r1_bio
, m
)) {
2201 md_error(conf
->mddev
,
2202 conf
->mirrors
[m
].rdev
);
2203 /* an I/O failed, we can't clear the bitmap */
2204 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2206 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
2209 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2210 close_write(r1_bio
);
2211 raid_end_bio_io(r1_bio
);
2214 static void handle_read_error(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2218 struct mddev
*mddev
= conf
->mddev
;
2220 char b
[BDEVNAME_SIZE
];
2221 struct md_rdev
*rdev
;
2223 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
2224 /* we got a read error. Maybe the drive is bad. Maybe just
2225 * the block and we can fix it.
2226 * We freeze all other IO, and try reading the block from
2227 * other devices. When we find one, we re-write
2228 * and check it that fixes the read error.
2229 * This is all done synchronously while the array is
2232 if (mddev
->ro
== 0) {
2233 freeze_array(conf
, 1);
2234 fix_read_error(conf
, r1_bio
->read_disk
,
2235 r1_bio
->sector
, r1_bio
->sectors
);
2236 unfreeze_array(conf
);
2238 md_error(mddev
, conf
->mirrors
[r1_bio
->read_disk
].rdev
);
2239 rdev_dec_pending(conf
->mirrors
[r1_bio
->read_disk
].rdev
, conf
->mddev
);
2241 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2242 bdevname(bio
->bi_bdev
, b
);
2244 disk
= read_balance(conf
, r1_bio
, &max_sectors
);
2246 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O"
2247 " read error for block %llu\n",
2248 mdname(mddev
), b
, (unsigned long long)r1_bio
->sector
);
2249 raid_end_bio_io(r1_bio
);
2251 const unsigned long do_sync
2252 = r1_bio
->master_bio
->bi_rw
& REQ_SYNC
;
2254 r1_bio
->bios
[r1_bio
->read_disk
] =
2255 mddev
->ro
? IO_BLOCKED
: NULL
;
2258 r1_bio
->read_disk
= disk
;
2259 bio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
2260 md_trim_bio(bio
, r1_bio
->sector
- bio
->bi_sector
, max_sectors
);
2261 r1_bio
->bios
[r1_bio
->read_disk
] = bio
;
2262 rdev
= conf
->mirrors
[disk
].rdev
;
2263 printk_ratelimited(KERN_ERR
2264 "md/raid1:%s: redirecting sector %llu"
2265 " to other mirror: %s\n",
2267 (unsigned long long)r1_bio
->sector
,
2268 bdevname(rdev
->bdev
, b
));
2269 bio
->bi_sector
= r1_bio
->sector
+ rdev
->data_offset
;
2270 bio
->bi_bdev
= rdev
->bdev
;
2271 bio
->bi_end_io
= raid1_end_read_request
;
2272 bio
->bi_rw
= READ
| do_sync
;
2273 bio
->bi_private
= r1_bio
;
2274 if (max_sectors
< r1_bio
->sectors
) {
2275 /* Drat - have to split this up more */
2276 struct bio
*mbio
= r1_bio
->master_bio
;
2277 int sectors_handled
= (r1_bio
->sector
+ max_sectors
2279 r1_bio
->sectors
= max_sectors
;
2280 spin_lock_irq(&conf
->device_lock
);
2281 if (mbio
->bi_phys_segments
== 0)
2282 mbio
->bi_phys_segments
= 2;
2284 mbio
->bi_phys_segments
++;
2285 spin_unlock_irq(&conf
->device_lock
);
2286 generic_make_request(bio
);
2289 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
2291 r1_bio
->master_bio
= mbio
;
2292 r1_bio
->sectors
= bio_sectors(mbio
) - sectors_handled
;
2294 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
2295 r1_bio
->mddev
= mddev
;
2296 r1_bio
->sector
= mbio
->bi_sector
+ sectors_handled
;
2300 generic_make_request(bio
);
2304 static void raid1d(struct md_thread
*thread
)
2306 struct mddev
*mddev
= thread
->mddev
;
2307 struct r1bio
*r1_bio
;
2308 unsigned long flags
;
2309 struct r1conf
*conf
= mddev
->private;
2310 struct list_head
*head
= &conf
->retry_list
;
2311 struct blk_plug plug
;
2313 md_check_recovery(mddev
);
2315 blk_start_plug(&plug
);
2318 flush_pending_writes(conf
);
2320 spin_lock_irqsave(&conf
->device_lock
, flags
);
2321 if (list_empty(head
)) {
2322 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2325 r1_bio
= list_entry(head
->prev
, struct r1bio
, retry_list
);
2326 list_del(head
->prev
);
2328 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2330 mddev
= r1_bio
->mddev
;
2331 conf
= mddev
->private;
2332 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2333 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2334 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2335 handle_sync_write_finished(conf
, r1_bio
);
2337 sync_request_write(mddev
, r1_bio
);
2338 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2339 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2340 handle_write_finished(conf
, r1_bio
);
2341 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2342 handle_read_error(conf
, r1_bio
);
2344 /* just a partial read to be scheduled from separate
2347 generic_make_request(r1_bio
->bios
[r1_bio
->read_disk
]);
2350 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2351 md_check_recovery(mddev
);
2353 blk_finish_plug(&plug
);
2357 static int init_resync(struct r1conf
*conf
)
2361 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2362 BUG_ON(conf
->r1buf_pool
);
2363 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
2365 if (!conf
->r1buf_pool
)
2367 conf
->next_resync
= 0;
2372 * perform a "sync" on one "block"
2374 * We need to make sure that no normal I/O request - particularly write
2375 * requests - conflict with active sync requests.
2377 * This is achieved by tracking pending requests and a 'barrier' concept
2378 * that can be installed to exclude normal IO requests.
2381 static sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
2383 struct r1conf
*conf
= mddev
->private;
2384 struct r1bio
*r1_bio
;
2386 sector_t max_sector
, nr_sectors
;
2390 int write_targets
= 0, read_targets
= 0;
2391 sector_t sync_blocks
;
2392 int still_degraded
= 0;
2393 int good_sectors
= RESYNC_SECTORS
;
2394 int min_bad
= 0; /* number of sectors that are bad in all devices */
2396 if (!conf
->r1buf_pool
)
2397 if (init_resync(conf
))
2400 max_sector
= mddev
->dev_sectors
;
2401 if (sector_nr
>= max_sector
) {
2402 /* If we aborted, we need to abort the
2403 * sync on the 'current' bitmap chunk (there will
2404 * only be one in raid1 resync.
2405 * We can find the current addess in mddev->curr_resync
2407 if (mddev
->curr_resync
< max_sector
) /* aborted */
2408 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2410 else /* completed sync */
2413 bitmap_close_sync(mddev
->bitmap
);
2418 if (mddev
->bitmap
== NULL
&&
2419 mddev
->recovery_cp
== MaxSector
&&
2420 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2421 conf
->fullsync
== 0) {
2423 return max_sector
- sector_nr
;
2425 /* before building a request, check if we can skip these blocks..
2426 * This call the bitmap_start_sync doesn't actually record anything
2428 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2429 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2430 /* We can skip this block, and probably several more */
2435 * If there is non-resync activity waiting for a turn,
2436 * and resync is going fast enough,
2437 * then let it though before starting on this new sync request.
2439 if (!go_faster
&& conf
->nr_waiting
)
2440 msleep_interruptible(1000);
2442 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
2443 r1_bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
2444 raise_barrier(conf
);
2446 conf
->next_resync
= sector_nr
;
2450 * If we get a correctably read error during resync or recovery,
2451 * we might want to read from a different device. So we
2452 * flag all drives that could conceivably be read from for READ,
2453 * and any others (which will be non-In_sync devices) for WRITE.
2454 * If a read fails, we try reading from something else for which READ
2458 r1_bio
->mddev
= mddev
;
2459 r1_bio
->sector
= sector_nr
;
2461 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2463 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2464 struct md_rdev
*rdev
;
2465 bio
= r1_bio
->bios
[i
];
2468 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2470 test_bit(Faulty
, &rdev
->flags
)) {
2471 if (i
< conf
->raid_disks
)
2473 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2475 bio
->bi_end_io
= end_sync_write
;
2478 /* may need to read from here */
2479 sector_t first_bad
= MaxSector
;
2482 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2483 &first_bad
, &bad_sectors
)) {
2484 if (first_bad
> sector_nr
)
2485 good_sectors
= first_bad
- sector_nr
;
2487 bad_sectors
-= (sector_nr
- first_bad
);
2489 min_bad
> bad_sectors
)
2490 min_bad
= bad_sectors
;
2493 if (sector_nr
< first_bad
) {
2494 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2502 bio
->bi_end_io
= end_sync_read
;
2504 } else if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
2505 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2506 !test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)) {
2508 * The device is suitable for reading (InSync),
2509 * but has bad block(s) here. Let's try to correct them,
2510 * if we are doing resync or repair. Otherwise, leave
2511 * this device alone for this sync request.
2514 bio
->bi_end_io
= end_sync_write
;
2518 if (bio
->bi_end_io
) {
2519 atomic_inc(&rdev
->nr_pending
);
2520 bio
->bi_sector
= sector_nr
+ rdev
->data_offset
;
2521 bio
->bi_bdev
= rdev
->bdev
;
2522 bio
->bi_private
= r1_bio
;
2528 r1_bio
->read_disk
= disk
;
2530 if (read_targets
== 0 && min_bad
> 0) {
2531 /* These sectors are bad on all InSync devices, so we
2532 * need to mark them bad on all write targets
2535 for (i
= 0 ; i
< conf
->raid_disks
* 2 ; i
++)
2536 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2537 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2538 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2542 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2547 /* Cannot record the badblocks, so need to
2549 * If there are multiple read targets, could just
2550 * fail the really bad ones ???
2552 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2553 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2559 if (min_bad
> 0 && min_bad
< good_sectors
) {
2560 /* only resync enough to reach the next bad->good
2562 good_sectors
= min_bad
;
2565 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2566 /* extra read targets are also write targets */
2567 write_targets
+= read_targets
-1;
2569 if (write_targets
== 0 || read_targets
== 0) {
2570 /* There is nowhere to write, so all non-sync
2571 * drives must be failed - so we are finished
2575 max_sector
= sector_nr
+ min_bad
;
2576 rv
= max_sector
- sector_nr
;
2582 if (max_sector
> mddev
->resync_max
)
2583 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2584 if (max_sector
> sector_nr
+ good_sectors
)
2585 max_sector
= sector_nr
+ good_sectors
;
2590 int len
= PAGE_SIZE
;
2591 if (sector_nr
+ (len
>>9) > max_sector
)
2592 len
= (max_sector
- sector_nr
) << 9;
2595 if (sync_blocks
== 0) {
2596 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2597 &sync_blocks
, still_degraded
) &&
2599 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2601 BUG_ON(sync_blocks
< (PAGE_SIZE
>>9));
2602 if ((len
>> 9) > sync_blocks
)
2603 len
= sync_blocks
<<9;
2606 for (i
= 0 ; i
< conf
->raid_disks
* 2; i
++) {
2607 bio
= r1_bio
->bios
[i
];
2608 if (bio
->bi_end_io
) {
2609 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2610 if (bio_add_page(bio
, page
, len
, 0) == 0) {
2612 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2615 bio
= r1_bio
->bios
[i
];
2616 if (bio
->bi_end_io
==NULL
)
2618 /* remove last page from this bio */
2620 bio
->bi_size
-= len
;
2621 bio
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
2627 nr_sectors
+= len
>>9;
2628 sector_nr
+= len
>>9;
2629 sync_blocks
-= (len
>>9);
2630 } while (r1_bio
->bios
[disk
]->bi_vcnt
< RESYNC_PAGES
);
2632 r1_bio
->sectors
= nr_sectors
;
2634 /* For a user-requested sync, we read all readable devices and do a
2637 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2638 atomic_set(&r1_bio
->remaining
, read_targets
);
2639 for (i
= 0; i
< conf
->raid_disks
* 2 && read_targets
; i
++) {
2640 bio
= r1_bio
->bios
[i
];
2641 if (bio
->bi_end_io
== end_sync_read
) {
2643 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2644 generic_make_request(bio
);
2648 atomic_set(&r1_bio
->remaining
, 1);
2649 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2650 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2651 generic_make_request(bio
);
2657 static sector_t
raid1_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
2662 return mddev
->dev_sectors
;
2665 static struct r1conf
*setup_conf(struct mddev
*mddev
)
2667 struct r1conf
*conf
;
2669 struct raid1_info
*disk
;
2670 struct md_rdev
*rdev
;
2673 conf
= kzalloc(sizeof(struct r1conf
), GFP_KERNEL
);
2677 conf
->mirrors
= kzalloc(sizeof(struct raid1_info
)
2678 * mddev
->raid_disks
* 2,
2683 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2687 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2688 if (!conf
->poolinfo
)
2690 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
* 2;
2691 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2694 if (!conf
->r1bio_pool
)
2697 conf
->poolinfo
->mddev
= mddev
;
2700 spin_lock_init(&conf
->device_lock
);
2701 rdev_for_each(rdev
, mddev
) {
2702 struct request_queue
*q
;
2703 int disk_idx
= rdev
->raid_disk
;
2704 if (disk_idx
>= mddev
->raid_disks
2707 if (test_bit(Replacement
, &rdev
->flags
))
2708 disk
= conf
->mirrors
+ mddev
->raid_disks
+ disk_idx
;
2710 disk
= conf
->mirrors
+ disk_idx
;
2715 q
= bdev_get_queue(rdev
->bdev
);
2716 if (q
->merge_bvec_fn
)
2717 mddev
->merge_check_needed
= 1;
2719 disk
->head_position
= 0;
2720 disk
->seq_start
= MaxSector
;
2722 conf
->raid_disks
= mddev
->raid_disks
;
2723 conf
->mddev
= mddev
;
2724 INIT_LIST_HEAD(&conf
->retry_list
);
2726 spin_lock_init(&conf
->resync_lock
);
2727 init_waitqueue_head(&conf
->wait_barrier
);
2729 bio_list_init(&conf
->pending_bio_list
);
2730 conf
->pending_count
= 0;
2731 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
2734 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2736 disk
= conf
->mirrors
+ i
;
2738 if (i
< conf
->raid_disks
&&
2739 disk
[conf
->raid_disks
].rdev
) {
2740 /* This slot has a replacement. */
2742 /* No original, just make the replacement
2743 * a recovering spare
2746 disk
[conf
->raid_disks
].rdev
;
2747 disk
[conf
->raid_disks
].rdev
= NULL
;
2748 } else if (!test_bit(In_sync
, &disk
->rdev
->flags
))
2749 /* Original is not in_sync - bad */
2754 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2755 disk
->head_position
= 0;
2757 (disk
->rdev
->saved_raid_disk
< 0))
2763 conf
->thread
= md_register_thread(raid1d
, mddev
, "raid1");
2764 if (!conf
->thread
) {
2766 "md/raid1:%s: couldn't allocate thread\n",
2775 if (conf
->r1bio_pool
)
2776 mempool_destroy(conf
->r1bio_pool
);
2777 kfree(conf
->mirrors
);
2778 safe_put_page(conf
->tmppage
);
2779 kfree(conf
->poolinfo
);
2782 return ERR_PTR(err
);
2785 static int stop(struct mddev
*mddev
);
2786 static int run(struct mddev
*mddev
)
2788 struct r1conf
*conf
;
2790 struct md_rdev
*rdev
;
2792 bool discard_supported
= false;
2794 if (mddev
->level
!= 1) {
2795 printk(KERN_ERR
"md/raid1:%s: raid level not set to mirroring (%d)\n",
2796 mdname(mddev
), mddev
->level
);
2799 if (mddev
->reshape_position
!= MaxSector
) {
2800 printk(KERN_ERR
"md/raid1:%s: reshape_position set but not supported\n",
2805 * copy the already verified devices into our private RAID1
2806 * bookkeeping area. [whatever we allocate in run(),
2807 * should be freed in stop()]
2809 if (mddev
->private == NULL
)
2810 conf
= setup_conf(mddev
);
2812 conf
= mddev
->private;
2815 return PTR_ERR(conf
);
2818 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
2820 rdev_for_each(rdev
, mddev
) {
2821 if (!mddev
->gendisk
)
2823 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2824 rdev
->data_offset
<< 9);
2825 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
2826 discard_supported
= true;
2829 mddev
->degraded
= 0;
2830 for (i
=0; i
< conf
->raid_disks
; i
++)
2831 if (conf
->mirrors
[i
].rdev
== NULL
||
2832 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
2833 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
2836 if (conf
->raid_disks
- mddev
->degraded
== 1)
2837 mddev
->recovery_cp
= MaxSector
;
2839 if (mddev
->recovery_cp
!= MaxSector
)
2840 printk(KERN_NOTICE
"md/raid1:%s: not clean"
2841 " -- starting background reconstruction\n",
2844 "md/raid1:%s: active with %d out of %d mirrors\n",
2845 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2849 * Ok, everything is just fine now
2851 mddev
->thread
= conf
->thread
;
2852 conf
->thread
= NULL
;
2853 mddev
->private = conf
;
2855 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
2858 mddev
->queue
->backing_dev_info
.congested_fn
= raid1_congested
;
2859 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2860 blk_queue_merge_bvec(mddev
->queue
, raid1_mergeable_bvec
);
2862 if (discard_supported
)
2863 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
2866 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
2870 ret
= md_integrity_register(mddev
);
2876 static int stop(struct mddev
*mddev
)
2878 struct r1conf
*conf
= mddev
->private;
2879 struct bitmap
*bitmap
= mddev
->bitmap
;
2881 /* wait for behind writes to complete */
2882 if (bitmap
&& atomic_read(&bitmap
->behind_writes
) > 0) {
2883 printk(KERN_INFO
"md/raid1:%s: behind writes in progress - waiting to stop.\n",
2885 /* need to kick something here to make sure I/O goes? */
2886 wait_event(bitmap
->behind_wait
,
2887 atomic_read(&bitmap
->behind_writes
) == 0);
2890 raise_barrier(conf
);
2891 lower_barrier(conf
);
2893 md_unregister_thread(&mddev
->thread
);
2894 if (conf
->r1bio_pool
)
2895 mempool_destroy(conf
->r1bio_pool
);
2896 kfree(conf
->mirrors
);
2897 safe_put_page(conf
->tmppage
);
2898 kfree(conf
->poolinfo
);
2900 mddev
->private = NULL
;
2904 static int raid1_resize(struct mddev
*mddev
, sector_t sectors
)
2906 /* no resync is happening, and there is enough space
2907 * on all devices, so we can resize.
2908 * We need to make sure resync covers any new space.
2909 * If the array is shrinking we should possibly wait until
2910 * any io in the removed space completes, but it hardly seems
2913 sector_t newsize
= raid1_size(mddev
, sectors
, 0);
2914 if (mddev
->external_size
&&
2915 mddev
->array_sectors
> newsize
)
2917 if (mddev
->bitmap
) {
2918 int ret
= bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
2922 md_set_array_sectors(mddev
, newsize
);
2923 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
2924 revalidate_disk(mddev
->gendisk
);
2925 if (sectors
> mddev
->dev_sectors
&&
2926 mddev
->recovery_cp
> mddev
->dev_sectors
) {
2927 mddev
->recovery_cp
= mddev
->dev_sectors
;
2928 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2930 mddev
->dev_sectors
= sectors
;
2931 mddev
->resync_max_sectors
= sectors
;
2935 static int raid1_reshape(struct mddev
*mddev
)
2938 * 1/ resize the r1bio_pool
2939 * 2/ resize conf->mirrors
2941 * We allocate a new r1bio_pool if we can.
2942 * Then raise a device barrier and wait until all IO stops.
2943 * Then resize conf->mirrors and swap in the new r1bio pool.
2945 * At the same time, we "pack" the devices so that all the missing
2946 * devices have the higher raid_disk numbers.
2948 mempool_t
*newpool
, *oldpool
;
2949 struct pool_info
*newpoolinfo
;
2950 struct raid1_info
*newmirrors
;
2951 struct r1conf
*conf
= mddev
->private;
2952 int cnt
, raid_disks
;
2953 unsigned long flags
;
2956 /* Cannot change chunk_size, layout, or level */
2957 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
2958 mddev
->layout
!= mddev
->new_layout
||
2959 mddev
->level
!= mddev
->new_level
) {
2960 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
2961 mddev
->new_layout
= mddev
->layout
;
2962 mddev
->new_level
= mddev
->level
;
2966 err
= md_allow_write(mddev
);
2970 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
2972 if (raid_disks
< conf
->raid_disks
) {
2974 for (d
= 0; d
< conf
->raid_disks
; d
++)
2975 if (conf
->mirrors
[d
].rdev
)
2977 if (cnt
> raid_disks
)
2981 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
2984 newpoolinfo
->mddev
= mddev
;
2985 newpoolinfo
->raid_disks
= raid_disks
* 2;
2987 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2988 r1bio_pool_free
, newpoolinfo
);
2993 newmirrors
= kzalloc(sizeof(struct raid1_info
) * raid_disks
* 2,
2997 mempool_destroy(newpool
);
3001 freeze_array(conf
, 0);
3003 /* ok, everything is stopped */
3004 oldpool
= conf
->r1bio_pool
;
3005 conf
->r1bio_pool
= newpool
;
3007 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
3008 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
3009 if (rdev
&& rdev
->raid_disk
!= d2
) {
3010 sysfs_unlink_rdev(mddev
, rdev
);
3011 rdev
->raid_disk
= d2
;
3012 sysfs_unlink_rdev(mddev
, rdev
);
3013 if (sysfs_link_rdev(mddev
, rdev
))
3015 "md/raid1:%s: cannot register rd%d\n",
3016 mdname(mddev
), rdev
->raid_disk
);
3019 newmirrors
[d2
++].rdev
= rdev
;
3021 kfree(conf
->mirrors
);
3022 conf
->mirrors
= newmirrors
;
3023 kfree(conf
->poolinfo
);
3024 conf
->poolinfo
= newpoolinfo
;
3026 spin_lock_irqsave(&conf
->device_lock
, flags
);
3027 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
3028 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3029 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
3030 mddev
->delta_disks
= 0;
3032 unfreeze_array(conf
);
3034 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3035 md_wakeup_thread(mddev
->thread
);
3037 mempool_destroy(oldpool
);
3041 static void raid1_quiesce(struct mddev
*mddev
, int state
)
3043 struct r1conf
*conf
= mddev
->private;
3046 case 2: /* wake for suspend */
3047 wake_up(&conf
->wait_barrier
);
3050 raise_barrier(conf
);
3053 lower_barrier(conf
);
3058 static void *raid1_takeover(struct mddev
*mddev
)
3060 /* raid1 can take over:
3061 * raid5 with 2 devices, any layout or chunk size
3063 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
3064 struct r1conf
*conf
;
3065 mddev
->new_level
= 1;
3066 mddev
->new_layout
= 0;
3067 mddev
->new_chunk_sectors
= 0;
3068 conf
= setup_conf(mddev
);
3073 return ERR_PTR(-EINVAL
);
3076 static struct md_personality raid1_personality
=
3080 .owner
= THIS_MODULE
,
3081 .make_request
= make_request
,
3085 .error_handler
= error
,
3086 .hot_add_disk
= raid1_add_disk
,
3087 .hot_remove_disk
= raid1_remove_disk
,
3088 .spare_active
= raid1_spare_active
,
3089 .sync_request
= sync_request
,
3090 .resize
= raid1_resize
,
3092 .check_reshape
= raid1_reshape
,
3093 .quiesce
= raid1_quiesce
,
3094 .takeover
= raid1_takeover
,
3097 static int __init
raid_init(void)
3099 return register_md_personality(&raid1_personality
);
3102 static void raid_exit(void)
3104 unregister_md_personality(&raid1_personality
);
3107 module_init(raid_init
);
3108 module_exit(raid_exit
);
3109 MODULE_LICENSE("GPL");
3110 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3111 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3112 MODULE_ALIAS("md-raid1");
3113 MODULE_ALIAS("md-level-1");
3115 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);