x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / md / raid10.c
blob308575d23550b8753cf5e3a6260365c791fbd9d3
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * on a device):
64 * A B C D A B C D E
65 * ... ...
66 * D A B C E A B C D
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
74 * Number of guaranteed r10bios in case of extreme VM load:
76 #define NR_RAID10_BIOS 256
78 /* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
88 #define IO_MADE_GOOD ((struct bio *)2)
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92 /* When there are this many requests queued to be written by
93 * the raid10 thread, we become 'congested' to provide back-pressure
94 * for writeback.
96 static int max_queued_requests = 1024;
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
109 struct r10conf *conf = data;
110 int size = offsetof(struct r10bio, devs[conf->copies]);
112 /* allocate a r10bio with room for raid_disks entries in the
113 * bios array */
114 return kzalloc(size, gfp_flags);
117 static void r10bio_pool_free(void *r10_bio, void *data)
119 kfree(r10_bio);
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
139 struct r10conf *conf = data;
140 struct page *page;
141 struct r10bio *r10_bio;
142 struct bio *bio;
143 int i, j;
144 int nalloc;
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 if (!r10_bio)
148 return NULL;
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 nalloc = conf->copies; /* resync */
153 else
154 nalloc = 2; /* recovery */
157 * Allocate bios.
159 for (j = nalloc ; j-- ; ) {
160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 if (!bio)
162 goto out_free_bio;
163 r10_bio->devs[j].bio = bio;
164 if (!conf->have_replacement)
165 continue;
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 if (!bio)
168 goto out_free_bio;
169 r10_bio->devs[j].repl_bio = bio;
172 * Allocate RESYNC_PAGES data pages and attach them
173 * where needed.
175 for (j = 0 ; j < nalloc; j++) {
176 struct bio *rbio = r10_bio->devs[j].repl_bio;
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
182 * and reshape */
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
185 get_page(page);
186 } else
187 page = alloc_page(gfp_flags);
188 if (unlikely(!page))
189 goto out_free_pages;
191 bio->bi_io_vec[i].bv_page = page;
192 if (rbio)
193 rbio->bi_io_vec[i].bv_page = page;
197 return r10_bio;
199 out_free_pages:
200 for ( ; i > 0 ; i--)
201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 while (j--)
203 for (i = 0; i < RESYNC_PAGES ; i++)
204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 j = 0;
206 out_free_bio:
207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
213 r10bio_pool_free(r10_bio, conf);
214 return NULL;
217 static void r10buf_pool_free(void *__r10_bio, void *data)
219 int i;
220 struct r10conf *conf = data;
221 struct r10bio *r10bio = __r10_bio;
222 int j;
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
226 if (bio) {
227 for (i = 0; i < RESYNC_PAGES; i++) {
228 safe_put_page(bio->bi_io_vec[i].bv_page);
229 bio->bi_io_vec[i].bv_page = NULL;
231 bio_put(bio);
233 bio = r10bio->devs[j].repl_bio;
234 if (bio)
235 bio_put(bio);
237 r10bio_pool_free(r10bio, conf);
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
242 int i;
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
246 if (!BIO_SPECIAL(*bio))
247 bio_put(*bio);
248 *bio = NULL;
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 bio_put(*bio);
252 *bio = NULL;
256 static void free_r10bio(struct r10bio *r10_bio)
258 struct r10conf *conf = r10_bio->mddev->private;
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
264 static void put_buf(struct r10bio *r10_bio)
266 struct r10conf *conf = r10_bio->mddev->private;
268 mempool_free(r10_bio, conf->r10buf_pool);
270 lower_barrier(conf);
273 static void reschedule_retry(struct r10bio *r10_bio)
275 unsigned long flags;
276 struct mddev *mddev = r10_bio->mddev;
277 struct r10conf *conf = mddev->private;
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
281 conf->nr_queued ++;
282 spin_unlock_irqrestore(&conf->device_lock, flags);
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
287 md_wakeup_thread(mddev->thread);
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
293 * cache layer.
295 static void raid_end_bio_io(struct r10bio *r10_bio)
297 struct bio *bio = r10_bio->master_bio;
298 int done;
299 struct r10conf *conf = r10_bio->mddev->private;
301 if (bio->bi_phys_segments) {
302 unsigned long flags;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
307 } else
308 done = 1;
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 if (done) {
312 bio_endio(bio, 0);
314 * Wake up any possible resync thread that waits for the device
315 * to go idle.
317 allow_barrier(conf);
319 free_r10bio(r10_bio);
323 * Update disk head position estimator based on IRQ completion info.
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
327 struct r10conf *conf = r10_bio->mddev->private;
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
334 * Find the disk number which triggered given bio
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 struct bio *bio, int *slotp, int *replp)
339 int slot;
340 int repl = 0;
342 for (slot = 0; slot < conf->copies; slot++) {
343 if (r10_bio->devs[slot].bio == bio)
344 break;
345 if (r10_bio->devs[slot].repl_bio == bio) {
346 repl = 1;
347 break;
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
354 if (slotp)
355 *slotp = slot;
356 if (replp)
357 *replp = repl;
358 return r10_bio->devs[slot].devnum;
361 static void raid10_end_read_request(struct bio *bio, int error)
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 struct r10bio *r10_bio = bio->bi_private;
365 int slot, dev;
366 struct md_rdev *rdev;
367 struct r10conf *conf = r10_bio->mddev->private;
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
372 rdev = r10_bio->devs[slot].rdev;
374 * this branch is our 'one mirror IO has finished' event handler:
376 update_head_pos(slot, r10_bio);
378 if (uptodate) {
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 rdev->raid_disk))
397 uptodate = 1;
399 if (uptodate) {
400 raid_end_bio_io(r10_bio);
401 rdev_dec_pending(rdev, conf->mddev);
402 } else {
404 * oops, read error - keep the refcount on the rdev
406 char b[BDEVNAME_SIZE];
407 printk_ratelimited(KERN_ERR
408 "md/raid10:%s: %s: rescheduling sector %llu\n",
409 mdname(conf->mddev),
410 bdevname(rdev->bdev, b),
411 (unsigned long long)r10_bio->sector);
412 set_bit(R10BIO_ReadError, &r10_bio->state);
413 reschedule_retry(r10_bio);
417 static void close_write(struct r10bio *r10_bio)
419 /* clear the bitmap if all writes complete successfully */
420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 r10_bio->sectors,
422 !test_bit(R10BIO_Degraded, &r10_bio->state),
424 md_write_end(r10_bio->mddev);
427 static void one_write_done(struct r10bio *r10_bio)
429 if (atomic_dec_and_test(&r10_bio->remaining)) {
430 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 reschedule_retry(r10_bio);
432 else {
433 close_write(r10_bio);
434 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 reschedule_retry(r10_bio);
436 else
437 raid_end_bio_io(r10_bio);
442 static void raid10_end_write_request(struct bio *bio, int error)
444 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
445 struct r10bio *r10_bio = bio->bi_private;
446 int dev;
447 int dec_rdev = 1;
448 struct r10conf *conf = r10_bio->mddev->private;
449 int slot, repl;
450 struct md_rdev *rdev = NULL;
452 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
454 if (repl)
455 rdev = conf->mirrors[dev].replacement;
456 if (!rdev) {
457 smp_rmb();
458 repl = 0;
459 rdev = conf->mirrors[dev].rdev;
462 * this branch is our 'one mirror IO has finished' event handler:
464 if (!uptodate) {
465 if (repl)
466 /* Never record new bad blocks to replacement,
467 * just fail it.
469 md_error(rdev->mddev, rdev);
470 else {
471 set_bit(WriteErrorSeen, &rdev->flags);
472 if (!test_and_set_bit(WantReplacement, &rdev->flags))
473 set_bit(MD_RECOVERY_NEEDED,
474 &rdev->mddev->recovery);
475 set_bit(R10BIO_WriteError, &r10_bio->state);
476 dec_rdev = 0;
478 } else {
480 * Set R10BIO_Uptodate in our master bio, so that
481 * we will return a good error code for to the higher
482 * levels even if IO on some other mirrored buffer fails.
484 * The 'master' represents the composite IO operation to
485 * user-side. So if something waits for IO, then it will
486 * wait for the 'master' bio.
488 sector_t first_bad;
489 int bad_sectors;
492 * Do not set R10BIO_Uptodate if the current device is
493 * rebuilding or Faulty. This is because we cannot use
494 * such device for properly reading the data back (we could
495 * potentially use it, if the current write would have felt
496 * before rdev->recovery_offset, but for simplicity we don't
497 * check this here.
499 if (test_bit(In_sync, &rdev->flags) &&
500 !test_bit(Faulty, &rdev->flags))
501 set_bit(R10BIO_Uptodate, &r10_bio->state);
503 /* Maybe we can clear some bad blocks. */
504 if (is_badblock(rdev,
505 r10_bio->devs[slot].addr,
506 r10_bio->sectors,
507 &first_bad, &bad_sectors)) {
508 bio_put(bio);
509 if (repl)
510 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
511 else
512 r10_bio->devs[slot].bio = IO_MADE_GOOD;
513 dec_rdev = 0;
514 set_bit(R10BIO_MadeGood, &r10_bio->state);
520 * Let's see if all mirrored write operations have finished
521 * already.
523 one_write_done(r10_bio);
524 if (dec_rdev)
525 rdev_dec_pending(rdev, conf->mddev);
529 * RAID10 layout manager
530 * As well as the chunksize and raid_disks count, there are two
531 * parameters: near_copies and far_copies.
532 * near_copies * far_copies must be <= raid_disks.
533 * Normally one of these will be 1.
534 * If both are 1, we get raid0.
535 * If near_copies == raid_disks, we get raid1.
537 * Chunks are laid out in raid0 style with near_copies copies of the
538 * first chunk, followed by near_copies copies of the next chunk and
539 * so on.
540 * If far_copies > 1, then after 1/far_copies of the array has been assigned
541 * as described above, we start again with a device offset of near_copies.
542 * So we effectively have another copy of the whole array further down all
543 * the drives, but with blocks on different drives.
544 * With this layout, and block is never stored twice on the one device.
546 * raid10_find_phys finds the sector offset of a given virtual sector
547 * on each device that it is on.
549 * raid10_find_virt does the reverse mapping, from a device and a
550 * sector offset to a virtual address
553 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
555 int n,f;
556 sector_t sector;
557 sector_t chunk;
558 sector_t stripe;
559 int dev;
560 int slot = 0;
561 int last_far_set_start, last_far_set_size;
563 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
564 last_far_set_start *= geo->far_set_size;
566 last_far_set_size = geo->far_set_size;
567 last_far_set_size += (geo->raid_disks % geo->far_set_size);
569 /* now calculate first sector/dev */
570 chunk = r10bio->sector >> geo->chunk_shift;
571 sector = r10bio->sector & geo->chunk_mask;
573 chunk *= geo->near_copies;
574 stripe = chunk;
575 dev = sector_div(stripe, geo->raid_disks);
576 if (geo->far_offset)
577 stripe *= geo->far_copies;
579 sector += stripe << geo->chunk_shift;
581 /* and calculate all the others */
582 for (n = 0; n < geo->near_copies; n++) {
583 int d = dev;
584 int set;
585 sector_t s = sector;
586 r10bio->devs[slot].devnum = d;
587 r10bio->devs[slot].addr = s;
588 slot++;
590 for (f = 1; f < geo->far_copies; f++) {
591 set = d / geo->far_set_size;
592 d += geo->near_copies;
594 if ((geo->raid_disks % geo->far_set_size) &&
595 (d > last_far_set_start)) {
596 d -= last_far_set_start;
597 d %= last_far_set_size;
598 d += last_far_set_start;
599 } else {
600 d %= geo->far_set_size;
601 d += geo->far_set_size * set;
603 s += geo->stride;
604 r10bio->devs[slot].devnum = d;
605 r10bio->devs[slot].addr = s;
606 slot++;
608 dev++;
609 if (dev >= geo->raid_disks) {
610 dev = 0;
611 sector += (geo->chunk_mask + 1);
616 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
618 struct geom *geo = &conf->geo;
620 if (conf->reshape_progress != MaxSector &&
621 ((r10bio->sector >= conf->reshape_progress) !=
622 conf->mddev->reshape_backwards)) {
623 set_bit(R10BIO_Previous, &r10bio->state);
624 geo = &conf->prev;
625 } else
626 clear_bit(R10BIO_Previous, &r10bio->state);
628 __raid10_find_phys(geo, r10bio);
631 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
633 sector_t offset, chunk, vchunk;
634 /* Never use conf->prev as this is only called during resync
635 * or recovery, so reshape isn't happening
637 struct geom *geo = &conf->geo;
638 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
639 int far_set_size = geo->far_set_size;
640 int last_far_set_start;
642 if (geo->raid_disks % geo->far_set_size) {
643 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
644 last_far_set_start *= geo->far_set_size;
646 if (dev >= last_far_set_start) {
647 far_set_size = geo->far_set_size;
648 far_set_size += (geo->raid_disks % geo->far_set_size);
649 far_set_start = last_far_set_start;
653 offset = sector & geo->chunk_mask;
654 if (geo->far_offset) {
655 int fc;
656 chunk = sector >> geo->chunk_shift;
657 fc = sector_div(chunk, geo->far_copies);
658 dev -= fc * geo->near_copies;
659 if (dev < far_set_start)
660 dev += far_set_size;
661 } else {
662 while (sector >= geo->stride) {
663 sector -= geo->stride;
664 if (dev < (geo->near_copies + far_set_start))
665 dev += far_set_size - geo->near_copies;
666 else
667 dev -= geo->near_copies;
669 chunk = sector >> geo->chunk_shift;
671 vchunk = chunk * geo->raid_disks + dev;
672 sector_div(vchunk, geo->near_copies);
673 return (vchunk << geo->chunk_shift) + offset;
677 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
678 * @q: request queue
679 * @bvm: properties of new bio
680 * @biovec: the request that could be merged to it.
682 * Return amount of bytes we can accept at this offset
683 * This requires checking for end-of-chunk if near_copies != raid_disks,
684 * and for subordinate merge_bvec_fns if merge_check_needed.
686 static int raid10_mergeable_bvec(struct request_queue *q,
687 struct bvec_merge_data *bvm,
688 struct bio_vec *biovec)
690 struct mddev *mddev = q->queuedata;
691 struct r10conf *conf = mddev->private;
692 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
693 int max;
694 unsigned int chunk_sectors;
695 unsigned int bio_sectors = bvm->bi_size >> 9;
696 struct geom *geo = &conf->geo;
698 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
699 if (conf->reshape_progress != MaxSector &&
700 ((sector >= conf->reshape_progress) !=
701 conf->mddev->reshape_backwards))
702 geo = &conf->prev;
704 if (geo->near_copies < geo->raid_disks) {
705 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
706 + bio_sectors)) << 9;
707 if (max < 0)
708 /* bio_add cannot handle a negative return */
709 max = 0;
710 if (max <= biovec->bv_len && bio_sectors == 0)
711 return biovec->bv_len;
712 } else
713 max = biovec->bv_len;
715 if (mddev->merge_check_needed) {
716 struct {
717 struct r10bio r10_bio;
718 struct r10dev devs[conf->copies];
719 } on_stack;
720 struct r10bio *r10_bio = &on_stack.r10_bio;
721 int s;
722 if (conf->reshape_progress != MaxSector) {
723 /* Cannot give any guidance during reshape */
724 if (max <= biovec->bv_len && bio_sectors == 0)
725 return biovec->bv_len;
726 return 0;
728 r10_bio->sector = sector;
729 raid10_find_phys(conf, r10_bio);
730 rcu_read_lock();
731 for (s = 0; s < conf->copies; s++) {
732 int disk = r10_bio->devs[s].devnum;
733 struct md_rdev *rdev = rcu_dereference(
734 conf->mirrors[disk].rdev);
735 if (rdev && !test_bit(Faulty, &rdev->flags)) {
736 struct request_queue *q =
737 bdev_get_queue(rdev->bdev);
738 if (q->merge_bvec_fn) {
739 bvm->bi_sector = r10_bio->devs[s].addr
740 + rdev->data_offset;
741 bvm->bi_bdev = rdev->bdev;
742 max = min(max, q->merge_bvec_fn(
743 q, bvm, biovec));
746 rdev = rcu_dereference(conf->mirrors[disk].replacement);
747 if (rdev && !test_bit(Faulty, &rdev->flags)) {
748 struct request_queue *q =
749 bdev_get_queue(rdev->bdev);
750 if (q->merge_bvec_fn) {
751 bvm->bi_sector = r10_bio->devs[s].addr
752 + rdev->data_offset;
753 bvm->bi_bdev = rdev->bdev;
754 max = min(max, q->merge_bvec_fn(
755 q, bvm, biovec));
759 rcu_read_unlock();
761 return max;
765 * This routine returns the disk from which the requested read should
766 * be done. There is a per-array 'next expected sequential IO' sector
767 * number - if this matches on the next IO then we use the last disk.
768 * There is also a per-disk 'last know head position' sector that is
769 * maintained from IRQ contexts, both the normal and the resync IO
770 * completion handlers update this position correctly. If there is no
771 * perfect sequential match then we pick the disk whose head is closest.
773 * If there are 2 mirrors in the same 2 devices, performance degrades
774 * because position is mirror, not device based.
776 * The rdev for the device selected will have nr_pending incremented.
780 * FIXME: possibly should rethink readbalancing and do it differently
781 * depending on near_copies / far_copies geometry.
783 static struct md_rdev *read_balance(struct r10conf *conf,
784 struct r10bio *r10_bio,
785 int *max_sectors)
787 const sector_t this_sector = r10_bio->sector;
788 int disk, slot;
789 int sectors = r10_bio->sectors;
790 int best_good_sectors;
791 sector_t new_distance, best_dist;
792 struct md_rdev *best_rdev, *rdev = NULL;
793 int do_balance;
794 int best_slot;
795 struct geom *geo = &conf->geo;
797 raid10_find_phys(conf, r10_bio);
798 rcu_read_lock();
799 retry:
800 sectors = r10_bio->sectors;
801 best_slot = -1;
802 best_rdev = NULL;
803 best_dist = MaxSector;
804 best_good_sectors = 0;
805 do_balance = 1;
807 * Check if we can balance. We can balance on the whole
808 * device if no resync is going on (recovery is ok), or below
809 * the resync window. We take the first readable disk when
810 * above the resync window.
812 if (conf->mddev->recovery_cp < MaxSector
813 && (this_sector + sectors >= conf->next_resync))
814 do_balance = 0;
816 for (slot = 0; slot < conf->copies ; slot++) {
817 sector_t first_bad;
818 int bad_sectors;
819 sector_t dev_sector;
821 if (r10_bio->devs[slot].bio == IO_BLOCKED)
822 continue;
823 disk = r10_bio->devs[slot].devnum;
824 rdev = rcu_dereference(conf->mirrors[disk].replacement);
825 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
826 test_bit(Unmerged, &rdev->flags) ||
827 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
828 rdev = rcu_dereference(conf->mirrors[disk].rdev);
829 if (rdev == NULL ||
830 test_bit(Faulty, &rdev->flags) ||
831 test_bit(Unmerged, &rdev->flags))
832 continue;
833 if (!test_bit(In_sync, &rdev->flags) &&
834 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
835 continue;
837 dev_sector = r10_bio->devs[slot].addr;
838 if (is_badblock(rdev, dev_sector, sectors,
839 &first_bad, &bad_sectors)) {
840 if (best_dist < MaxSector)
841 /* Already have a better slot */
842 continue;
843 if (first_bad <= dev_sector) {
844 /* Cannot read here. If this is the
845 * 'primary' device, then we must not read
846 * beyond 'bad_sectors' from another device.
848 bad_sectors -= (dev_sector - first_bad);
849 if (!do_balance && sectors > bad_sectors)
850 sectors = bad_sectors;
851 if (best_good_sectors > sectors)
852 best_good_sectors = sectors;
853 } else {
854 sector_t good_sectors =
855 first_bad - dev_sector;
856 if (good_sectors > best_good_sectors) {
857 best_good_sectors = good_sectors;
858 best_slot = slot;
859 best_rdev = rdev;
861 if (!do_balance)
862 /* Must read from here */
863 break;
865 continue;
866 } else
867 best_good_sectors = sectors;
869 if (!do_balance)
870 break;
872 /* This optimisation is debatable, and completely destroys
873 * sequential read speed for 'far copies' arrays. So only
874 * keep it for 'near' arrays, and review those later.
876 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
877 break;
879 /* for far > 1 always use the lowest address */
880 if (geo->far_copies > 1)
881 new_distance = r10_bio->devs[slot].addr;
882 else
883 new_distance = abs(r10_bio->devs[slot].addr -
884 conf->mirrors[disk].head_position);
885 if (new_distance < best_dist) {
886 best_dist = new_distance;
887 best_slot = slot;
888 best_rdev = rdev;
891 if (slot >= conf->copies) {
892 slot = best_slot;
893 rdev = best_rdev;
896 if (slot >= 0) {
897 atomic_inc(&rdev->nr_pending);
898 if (test_bit(Faulty, &rdev->flags)) {
899 /* Cannot risk returning a device that failed
900 * before we inc'ed nr_pending
902 rdev_dec_pending(rdev, conf->mddev);
903 goto retry;
905 r10_bio->read_slot = slot;
906 } else
907 rdev = NULL;
908 rcu_read_unlock();
909 *max_sectors = best_good_sectors;
911 return rdev;
914 int md_raid10_congested(struct mddev *mddev, int bits)
916 struct r10conf *conf = mddev->private;
917 int i, ret = 0;
919 if ((bits & (1 << BDI_async_congested)) &&
920 conf->pending_count >= max_queued_requests)
921 return 1;
923 rcu_read_lock();
924 for (i = 0;
925 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
926 && ret == 0;
927 i++) {
928 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
929 if (rdev && !test_bit(Faulty, &rdev->flags)) {
930 struct request_queue *q = bdev_get_queue(rdev->bdev);
932 ret |= bdi_congested(&q->backing_dev_info, bits);
935 rcu_read_unlock();
936 return ret;
938 EXPORT_SYMBOL_GPL(md_raid10_congested);
940 static int raid10_congested(void *data, int bits)
942 struct mddev *mddev = data;
944 return mddev_congested(mddev, bits) ||
945 md_raid10_congested(mddev, bits);
948 static void flush_pending_writes(struct r10conf *conf)
950 /* Any writes that have been queued but are awaiting
951 * bitmap updates get flushed here.
953 spin_lock_irq(&conf->device_lock);
955 if (conf->pending_bio_list.head) {
956 struct bio *bio;
957 bio = bio_list_get(&conf->pending_bio_list);
958 conf->pending_count = 0;
959 spin_unlock_irq(&conf->device_lock);
960 /* flush any pending bitmap writes to disk
961 * before proceeding w/ I/O */
962 bitmap_unplug(conf->mddev->bitmap);
963 wake_up(&conf->wait_barrier);
965 while (bio) { /* submit pending writes */
966 struct bio *next = bio->bi_next;
967 bio->bi_next = NULL;
968 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
969 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
970 /* Just ignore it */
971 bio_endio(bio, 0);
972 else
973 generic_make_request(bio);
974 bio = next;
976 } else
977 spin_unlock_irq(&conf->device_lock);
980 /* Barriers....
981 * Sometimes we need to suspend IO while we do something else,
982 * either some resync/recovery, or reconfigure the array.
983 * To do this we raise a 'barrier'.
984 * The 'barrier' is a counter that can be raised multiple times
985 * to count how many activities are happening which preclude
986 * normal IO.
987 * We can only raise the barrier if there is no pending IO.
988 * i.e. if nr_pending == 0.
989 * We choose only to raise the barrier if no-one is waiting for the
990 * barrier to go down. This means that as soon as an IO request
991 * is ready, no other operations which require a barrier will start
992 * until the IO request has had a chance.
994 * So: regular IO calls 'wait_barrier'. When that returns there
995 * is no backgroup IO happening, It must arrange to call
996 * allow_barrier when it has finished its IO.
997 * backgroup IO calls must call raise_barrier. Once that returns
998 * there is no normal IO happeing. It must arrange to call
999 * lower_barrier when the particular background IO completes.
1002 static void raise_barrier(struct r10conf *conf, int force)
1004 BUG_ON(force && !conf->barrier);
1005 spin_lock_irq(&conf->resync_lock);
1007 /* Wait until no block IO is waiting (unless 'force') */
1008 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1009 conf->resync_lock);
1011 /* block any new IO from starting */
1012 conf->barrier++;
1014 /* Now wait for all pending IO to complete */
1015 wait_event_lock_irq(conf->wait_barrier,
1016 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1017 conf->resync_lock);
1019 spin_unlock_irq(&conf->resync_lock);
1022 static void lower_barrier(struct r10conf *conf)
1024 unsigned long flags;
1025 spin_lock_irqsave(&conf->resync_lock, flags);
1026 conf->barrier--;
1027 spin_unlock_irqrestore(&conf->resync_lock, flags);
1028 wake_up(&conf->wait_barrier);
1031 static void wait_barrier(struct r10conf *conf)
1033 spin_lock_irq(&conf->resync_lock);
1034 if (conf->barrier) {
1035 conf->nr_waiting++;
1036 /* Wait for the barrier to drop.
1037 * However if there are already pending
1038 * requests (preventing the barrier from
1039 * rising completely), and the
1040 * pre-process bio queue isn't empty,
1041 * then don't wait, as we need to empty
1042 * that queue to get the nr_pending
1043 * count down.
1045 wait_event_lock_irq(conf->wait_barrier,
1046 !conf->barrier ||
1047 (conf->nr_pending &&
1048 current->bio_list &&
1049 !bio_list_empty(current->bio_list)),
1050 conf->resync_lock);
1051 conf->nr_waiting--;
1053 conf->nr_pending++;
1054 spin_unlock_irq(&conf->resync_lock);
1057 static void allow_barrier(struct r10conf *conf)
1059 unsigned long flags;
1060 spin_lock_irqsave(&conf->resync_lock, flags);
1061 conf->nr_pending--;
1062 spin_unlock_irqrestore(&conf->resync_lock, flags);
1063 wake_up(&conf->wait_barrier);
1066 static void freeze_array(struct r10conf *conf, int extra)
1068 /* stop syncio and normal IO and wait for everything to
1069 * go quiet.
1070 * We increment barrier and nr_waiting, and then
1071 * wait until nr_pending match nr_queued+extra
1072 * This is called in the context of one normal IO request
1073 * that has failed. Thus any sync request that might be pending
1074 * will be blocked by nr_pending, and we need to wait for
1075 * pending IO requests to complete or be queued for re-try.
1076 * Thus the number queued (nr_queued) plus this request (extra)
1077 * must match the number of pending IOs (nr_pending) before
1078 * we continue.
1080 spin_lock_irq(&conf->resync_lock);
1081 conf->barrier++;
1082 conf->nr_waiting++;
1083 wait_event_lock_irq_cmd(conf->wait_barrier,
1084 conf->nr_pending == conf->nr_queued+extra,
1085 conf->resync_lock,
1086 flush_pending_writes(conf));
1088 spin_unlock_irq(&conf->resync_lock);
1091 static void unfreeze_array(struct r10conf *conf)
1093 /* reverse the effect of the freeze */
1094 spin_lock_irq(&conf->resync_lock);
1095 conf->barrier--;
1096 conf->nr_waiting--;
1097 wake_up(&conf->wait_barrier);
1098 spin_unlock_irq(&conf->resync_lock);
1101 static sector_t choose_data_offset(struct r10bio *r10_bio,
1102 struct md_rdev *rdev)
1104 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1105 test_bit(R10BIO_Previous, &r10_bio->state))
1106 return rdev->data_offset;
1107 else
1108 return rdev->new_data_offset;
1111 struct raid10_plug_cb {
1112 struct blk_plug_cb cb;
1113 struct bio_list pending;
1114 int pending_cnt;
1117 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1119 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1120 cb);
1121 struct mddev *mddev = plug->cb.data;
1122 struct r10conf *conf = mddev->private;
1123 struct bio *bio;
1125 if (from_schedule || current->bio_list) {
1126 spin_lock_irq(&conf->device_lock);
1127 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1128 conf->pending_count += plug->pending_cnt;
1129 spin_unlock_irq(&conf->device_lock);
1130 wake_up(&conf->wait_barrier);
1131 md_wakeup_thread(mddev->thread);
1132 kfree(plug);
1133 return;
1136 /* we aren't scheduling, so we can do the write-out directly. */
1137 bio = bio_list_get(&plug->pending);
1138 bitmap_unplug(mddev->bitmap);
1139 wake_up(&conf->wait_barrier);
1141 while (bio) { /* submit pending writes */
1142 struct bio *next = bio->bi_next;
1143 bio->bi_next = NULL;
1144 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1145 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146 /* Just ignore it */
1147 bio_endio(bio, 0);
1148 else
1149 generic_make_request(bio);
1150 bio = next;
1152 kfree(plug);
1155 static void make_request(struct mddev *mddev, struct bio * bio)
1157 struct r10conf *conf = mddev->private;
1158 struct r10bio *r10_bio;
1159 struct bio *read_bio;
1160 int i;
1161 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1162 int chunk_sects = chunk_mask + 1;
1163 const int rw = bio_data_dir(bio);
1164 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1165 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1166 const unsigned long do_discard = (bio->bi_rw
1167 & (REQ_DISCARD | REQ_SECURE));
1168 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1169 unsigned long flags;
1170 struct md_rdev *blocked_rdev;
1171 struct blk_plug_cb *cb;
1172 struct raid10_plug_cb *plug = NULL;
1173 int sectors_handled;
1174 int max_sectors;
1175 int sectors;
1177 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1178 md_flush_request(mddev, bio);
1179 return;
1182 /* If this request crosses a chunk boundary, we need to
1183 * split it. This will only happen for 1 PAGE (or less) requests.
1185 if (unlikely((bio->bi_sector & chunk_mask) + bio_sectors(bio)
1186 > chunk_sects
1187 && (conf->geo.near_copies < conf->geo.raid_disks
1188 || conf->prev.near_copies < conf->prev.raid_disks))) {
1189 struct bio_pair *bp;
1190 /* Sanity check -- queue functions should prevent this happening */
1191 if (bio_segments(bio) > 1)
1192 goto bad_map;
1193 /* This is a one page bio that upper layers
1194 * refuse to split for us, so we need to split it.
1196 bp = bio_split(bio,
1197 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1199 /* Each of these 'make_request' calls will call 'wait_barrier'.
1200 * If the first succeeds but the second blocks due to the resync
1201 * thread raising the barrier, we will deadlock because the
1202 * IO to the underlying device will be queued in generic_make_request
1203 * and will never complete, so will never reduce nr_pending.
1204 * So increment nr_waiting here so no new raise_barriers will
1205 * succeed, and so the second wait_barrier cannot block.
1207 spin_lock_irq(&conf->resync_lock);
1208 conf->nr_waiting++;
1209 spin_unlock_irq(&conf->resync_lock);
1211 make_request(mddev, &bp->bio1);
1212 make_request(mddev, &bp->bio2);
1214 spin_lock_irq(&conf->resync_lock);
1215 conf->nr_waiting--;
1216 wake_up(&conf->wait_barrier);
1217 spin_unlock_irq(&conf->resync_lock);
1219 bio_pair_release(bp);
1220 return;
1221 bad_map:
1222 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1223 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1224 (unsigned long long)bio->bi_sector, bio_sectors(bio) / 2);
1226 bio_io_error(bio);
1227 return;
1230 md_write_start(mddev, bio);
1233 * Register the new request and wait if the reconstruction
1234 * thread has put up a bar for new requests.
1235 * Continue immediately if no resync is active currently.
1237 wait_barrier(conf);
1239 sectors = bio_sectors(bio);
1240 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1241 bio->bi_sector < conf->reshape_progress &&
1242 bio->bi_sector + sectors > conf->reshape_progress) {
1243 /* IO spans the reshape position. Need to wait for
1244 * reshape to pass
1246 allow_barrier(conf);
1247 wait_event(conf->wait_barrier,
1248 conf->reshape_progress <= bio->bi_sector ||
1249 conf->reshape_progress >= bio->bi_sector + sectors);
1250 wait_barrier(conf);
1252 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1253 bio_data_dir(bio) == WRITE &&
1254 (mddev->reshape_backwards
1255 ? (bio->bi_sector < conf->reshape_safe &&
1256 bio->bi_sector + sectors > conf->reshape_progress)
1257 : (bio->bi_sector + sectors > conf->reshape_safe &&
1258 bio->bi_sector < conf->reshape_progress))) {
1259 /* Need to update reshape_position in metadata */
1260 mddev->reshape_position = conf->reshape_progress;
1261 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1262 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1263 md_wakeup_thread(mddev->thread);
1264 wait_event(mddev->sb_wait,
1265 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1267 conf->reshape_safe = mddev->reshape_position;
1270 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1272 r10_bio->master_bio = bio;
1273 r10_bio->sectors = sectors;
1275 r10_bio->mddev = mddev;
1276 r10_bio->sector = bio->bi_sector;
1277 r10_bio->state = 0;
1279 /* We might need to issue multiple reads to different
1280 * devices if there are bad blocks around, so we keep
1281 * track of the number of reads in bio->bi_phys_segments.
1282 * If this is 0, there is only one r10_bio and no locking
1283 * will be needed when the request completes. If it is
1284 * non-zero, then it is the number of not-completed requests.
1286 bio->bi_phys_segments = 0;
1287 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1289 if (rw == READ) {
1291 * read balancing logic:
1293 struct md_rdev *rdev;
1294 int slot;
1296 read_again:
1297 rdev = read_balance(conf, r10_bio, &max_sectors);
1298 if (!rdev) {
1299 raid_end_bio_io(r10_bio);
1300 return;
1302 slot = r10_bio->read_slot;
1304 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1305 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1306 max_sectors);
1308 r10_bio->devs[slot].bio = read_bio;
1309 r10_bio->devs[slot].rdev = rdev;
1311 read_bio->bi_sector = r10_bio->devs[slot].addr +
1312 choose_data_offset(r10_bio, rdev);
1313 read_bio->bi_bdev = rdev->bdev;
1314 read_bio->bi_end_io = raid10_end_read_request;
1315 read_bio->bi_rw = READ | do_sync;
1316 read_bio->bi_private = r10_bio;
1318 if (max_sectors < r10_bio->sectors) {
1319 /* Could not read all from this device, so we will
1320 * need another r10_bio.
1322 sectors_handled = (r10_bio->sector + max_sectors
1323 - bio->bi_sector);
1324 r10_bio->sectors = max_sectors;
1325 spin_lock_irq(&conf->device_lock);
1326 if (bio->bi_phys_segments == 0)
1327 bio->bi_phys_segments = 2;
1328 else
1329 bio->bi_phys_segments++;
1330 spin_unlock_irq(&conf->device_lock);
1331 /* Cannot call generic_make_request directly
1332 * as that will be queued in __generic_make_request
1333 * and subsequent mempool_alloc might block
1334 * waiting for it. so hand bio over to raid10d.
1336 reschedule_retry(r10_bio);
1338 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1340 r10_bio->master_bio = bio;
1341 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1342 r10_bio->state = 0;
1343 r10_bio->mddev = mddev;
1344 r10_bio->sector = bio->bi_sector + sectors_handled;
1345 goto read_again;
1346 } else
1347 generic_make_request(read_bio);
1348 return;
1352 * WRITE:
1354 if (conf->pending_count >= max_queued_requests) {
1355 md_wakeup_thread(mddev->thread);
1356 wait_event(conf->wait_barrier,
1357 conf->pending_count < max_queued_requests);
1359 /* first select target devices under rcu_lock and
1360 * inc refcount on their rdev. Record them by setting
1361 * bios[x] to bio
1362 * If there are known/acknowledged bad blocks on any device
1363 * on which we have seen a write error, we want to avoid
1364 * writing to those blocks. This potentially requires several
1365 * writes to write around the bad blocks. Each set of writes
1366 * gets its own r10_bio with a set of bios attached. The number
1367 * of r10_bios is recored in bio->bi_phys_segments just as with
1368 * the read case.
1371 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1372 raid10_find_phys(conf, r10_bio);
1373 retry_write:
1374 blocked_rdev = NULL;
1375 rcu_read_lock();
1376 max_sectors = r10_bio->sectors;
1378 for (i = 0; i < conf->copies; i++) {
1379 int d = r10_bio->devs[i].devnum;
1380 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1381 struct md_rdev *rrdev = rcu_dereference(
1382 conf->mirrors[d].replacement);
1383 if (rdev == rrdev)
1384 rrdev = NULL;
1385 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1386 atomic_inc(&rdev->nr_pending);
1387 blocked_rdev = rdev;
1388 break;
1390 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1391 atomic_inc(&rrdev->nr_pending);
1392 blocked_rdev = rrdev;
1393 break;
1395 if (rdev && (test_bit(Faulty, &rdev->flags)
1396 || test_bit(Unmerged, &rdev->flags)))
1397 rdev = NULL;
1398 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1399 || test_bit(Unmerged, &rrdev->flags)))
1400 rrdev = NULL;
1402 r10_bio->devs[i].bio = NULL;
1403 r10_bio->devs[i].repl_bio = NULL;
1405 if (!rdev && !rrdev) {
1406 set_bit(R10BIO_Degraded, &r10_bio->state);
1407 continue;
1409 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1410 sector_t first_bad;
1411 sector_t dev_sector = r10_bio->devs[i].addr;
1412 int bad_sectors;
1413 int is_bad;
1415 is_bad = is_badblock(rdev, dev_sector,
1416 max_sectors,
1417 &first_bad, &bad_sectors);
1418 if (is_bad < 0) {
1419 /* Mustn't write here until the bad block
1420 * is acknowledged
1422 atomic_inc(&rdev->nr_pending);
1423 set_bit(BlockedBadBlocks, &rdev->flags);
1424 blocked_rdev = rdev;
1425 break;
1427 if (is_bad && first_bad <= dev_sector) {
1428 /* Cannot write here at all */
1429 bad_sectors -= (dev_sector - first_bad);
1430 if (bad_sectors < max_sectors)
1431 /* Mustn't write more than bad_sectors
1432 * to other devices yet
1434 max_sectors = bad_sectors;
1435 /* We don't set R10BIO_Degraded as that
1436 * only applies if the disk is missing,
1437 * so it might be re-added, and we want to
1438 * know to recover this chunk.
1439 * In this case the device is here, and the
1440 * fact that this chunk is not in-sync is
1441 * recorded in the bad block log.
1443 continue;
1445 if (is_bad) {
1446 int good_sectors = first_bad - dev_sector;
1447 if (good_sectors < max_sectors)
1448 max_sectors = good_sectors;
1451 if (rdev) {
1452 r10_bio->devs[i].bio = bio;
1453 atomic_inc(&rdev->nr_pending);
1455 if (rrdev) {
1456 r10_bio->devs[i].repl_bio = bio;
1457 atomic_inc(&rrdev->nr_pending);
1460 rcu_read_unlock();
1462 if (unlikely(blocked_rdev)) {
1463 /* Have to wait for this device to get unblocked, then retry */
1464 int j;
1465 int d;
1467 for (j = 0; j < i; j++) {
1468 if (r10_bio->devs[j].bio) {
1469 d = r10_bio->devs[j].devnum;
1470 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1472 if (r10_bio->devs[j].repl_bio) {
1473 struct md_rdev *rdev;
1474 d = r10_bio->devs[j].devnum;
1475 rdev = conf->mirrors[d].replacement;
1476 if (!rdev) {
1477 /* Race with remove_disk */
1478 smp_mb();
1479 rdev = conf->mirrors[d].rdev;
1481 rdev_dec_pending(rdev, mddev);
1484 allow_barrier(conf);
1485 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1486 wait_barrier(conf);
1487 goto retry_write;
1490 if (max_sectors < r10_bio->sectors) {
1491 /* We are splitting this into multiple parts, so
1492 * we need to prepare for allocating another r10_bio.
1494 r10_bio->sectors = max_sectors;
1495 spin_lock_irq(&conf->device_lock);
1496 if (bio->bi_phys_segments == 0)
1497 bio->bi_phys_segments = 2;
1498 else
1499 bio->bi_phys_segments++;
1500 spin_unlock_irq(&conf->device_lock);
1502 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1504 atomic_set(&r10_bio->remaining, 1);
1505 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1507 for (i = 0; i < conf->copies; i++) {
1508 struct bio *mbio;
1509 int d = r10_bio->devs[i].devnum;
1510 if (r10_bio->devs[i].bio) {
1511 struct md_rdev *rdev = conf->mirrors[d].rdev;
1512 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1513 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1514 max_sectors);
1515 r10_bio->devs[i].bio = mbio;
1517 mbio->bi_sector = (r10_bio->devs[i].addr+
1518 choose_data_offset(r10_bio,
1519 rdev));
1520 mbio->bi_bdev = rdev->bdev;
1521 mbio->bi_end_io = raid10_end_write_request;
1522 mbio->bi_rw =
1523 WRITE | do_sync | do_fua | do_discard | do_same;
1524 mbio->bi_private = r10_bio;
1526 atomic_inc(&r10_bio->remaining);
1528 cb = blk_check_plugged(raid10_unplug, mddev,
1529 sizeof(*plug));
1530 if (cb)
1531 plug = container_of(cb, struct raid10_plug_cb,
1532 cb);
1533 else
1534 plug = NULL;
1535 spin_lock_irqsave(&conf->device_lock, flags);
1536 if (plug) {
1537 bio_list_add(&plug->pending, mbio);
1538 plug->pending_cnt++;
1539 } else {
1540 bio_list_add(&conf->pending_bio_list, mbio);
1541 conf->pending_count++;
1543 spin_unlock_irqrestore(&conf->device_lock, flags);
1544 if (!plug)
1545 md_wakeup_thread(mddev->thread);
1548 if (r10_bio->devs[i].repl_bio) {
1549 struct md_rdev *rdev = conf->mirrors[d].replacement;
1550 if (rdev == NULL) {
1551 /* Replacement just got moved to main 'rdev' */
1552 smp_mb();
1553 rdev = conf->mirrors[d].rdev;
1555 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1556 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1557 max_sectors);
1558 r10_bio->devs[i].repl_bio = mbio;
1560 mbio->bi_sector = (r10_bio->devs[i].addr +
1561 choose_data_offset(
1562 r10_bio, rdev));
1563 mbio->bi_bdev = rdev->bdev;
1564 mbio->bi_end_io = raid10_end_write_request;
1565 mbio->bi_rw =
1566 WRITE | do_sync | do_fua | do_discard | do_same;
1567 mbio->bi_private = r10_bio;
1569 atomic_inc(&r10_bio->remaining);
1570 spin_lock_irqsave(&conf->device_lock, flags);
1571 bio_list_add(&conf->pending_bio_list, mbio);
1572 conf->pending_count++;
1573 spin_unlock_irqrestore(&conf->device_lock, flags);
1574 if (!mddev_check_plugged(mddev))
1575 md_wakeup_thread(mddev->thread);
1579 /* Don't remove the bias on 'remaining' (one_write_done) until
1580 * after checking if we need to go around again.
1583 if (sectors_handled < bio_sectors(bio)) {
1584 one_write_done(r10_bio);
1585 /* We need another r10_bio. It has already been counted
1586 * in bio->bi_phys_segments.
1588 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1590 r10_bio->master_bio = bio;
1591 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1593 r10_bio->mddev = mddev;
1594 r10_bio->sector = bio->bi_sector + sectors_handled;
1595 r10_bio->state = 0;
1596 goto retry_write;
1598 one_write_done(r10_bio);
1600 /* In case raid10d snuck in to freeze_array */
1601 wake_up(&conf->wait_barrier);
1604 static void status(struct seq_file *seq, struct mddev *mddev)
1606 struct r10conf *conf = mddev->private;
1607 int i;
1609 if (conf->geo.near_copies < conf->geo.raid_disks)
1610 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1611 if (conf->geo.near_copies > 1)
1612 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1613 if (conf->geo.far_copies > 1) {
1614 if (conf->geo.far_offset)
1615 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1616 else
1617 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1619 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1620 conf->geo.raid_disks - mddev->degraded);
1621 for (i = 0; i < conf->geo.raid_disks; i++)
1622 seq_printf(seq, "%s",
1623 conf->mirrors[i].rdev &&
1624 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1625 seq_printf(seq, "]");
1628 /* check if there are enough drives for
1629 * every block to appear on atleast one.
1630 * Don't consider the device numbered 'ignore'
1631 * as we might be about to remove it.
1633 static int _enough(struct r10conf *conf, int previous, int ignore)
1635 int first = 0;
1636 int has_enough = 0;
1637 int disks, ncopies;
1638 if (previous) {
1639 disks = conf->prev.raid_disks;
1640 ncopies = conf->prev.near_copies;
1641 } else {
1642 disks = conf->geo.raid_disks;
1643 ncopies = conf->geo.near_copies;
1646 rcu_read_lock();
1647 do {
1648 int n = conf->copies;
1649 int cnt = 0;
1650 int this = first;
1651 while (n--) {
1652 struct md_rdev *rdev;
1653 if (this != ignore &&
1654 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1655 test_bit(In_sync, &rdev->flags))
1656 cnt++;
1657 this = (this+1) % disks;
1659 if (cnt == 0)
1660 goto out;
1661 first = (first + ncopies) % disks;
1662 } while (first != 0);
1663 has_enough = 1;
1664 out:
1665 rcu_read_unlock();
1666 return has_enough;
1669 static int enough(struct r10conf *conf, int ignore)
1671 /* when calling 'enough', both 'prev' and 'geo' must
1672 * be stable.
1673 * This is ensured if ->reconfig_mutex or ->device_lock
1674 * is held.
1676 return _enough(conf, 0, ignore) &&
1677 _enough(conf, 1, ignore);
1680 static void error(struct mddev *mddev, struct md_rdev *rdev)
1682 char b[BDEVNAME_SIZE];
1683 struct r10conf *conf = mddev->private;
1684 unsigned long flags;
1687 * If it is not operational, then we have already marked it as dead
1688 * else if it is the last working disks, ignore the error, let the
1689 * next level up know.
1690 * else mark the drive as failed
1692 spin_lock_irqsave(&conf->device_lock, flags);
1693 if (test_bit(In_sync, &rdev->flags)
1694 && !enough(conf, rdev->raid_disk)) {
1696 * Don't fail the drive, just return an IO error.
1698 spin_unlock_irqrestore(&conf->device_lock, flags);
1699 return;
1701 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1702 mddev->degraded++;
1704 * if recovery is running, make sure it aborts.
1706 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1708 set_bit(Blocked, &rdev->flags);
1709 set_bit(Faulty, &rdev->flags);
1710 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1711 spin_unlock_irqrestore(&conf->device_lock, flags);
1712 printk(KERN_ALERT
1713 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1714 "md/raid10:%s: Operation continuing on %d devices.\n",
1715 mdname(mddev), bdevname(rdev->bdev, b),
1716 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1719 static void print_conf(struct r10conf *conf)
1721 int i;
1722 struct raid10_info *tmp;
1724 printk(KERN_DEBUG "RAID10 conf printout:\n");
1725 if (!conf) {
1726 printk(KERN_DEBUG "(!conf)\n");
1727 return;
1729 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1730 conf->geo.raid_disks);
1732 for (i = 0; i < conf->geo.raid_disks; i++) {
1733 char b[BDEVNAME_SIZE];
1734 tmp = conf->mirrors + i;
1735 if (tmp->rdev)
1736 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1737 i, !test_bit(In_sync, &tmp->rdev->flags),
1738 !test_bit(Faulty, &tmp->rdev->flags),
1739 bdevname(tmp->rdev->bdev,b));
1743 static void close_sync(struct r10conf *conf)
1745 wait_barrier(conf);
1746 allow_barrier(conf);
1748 mempool_destroy(conf->r10buf_pool);
1749 conf->r10buf_pool = NULL;
1752 static int raid10_spare_active(struct mddev *mddev)
1754 int i;
1755 struct r10conf *conf = mddev->private;
1756 struct raid10_info *tmp;
1757 int count = 0;
1758 unsigned long flags;
1761 * Find all non-in_sync disks within the RAID10 configuration
1762 * and mark them in_sync
1764 for (i = 0; i < conf->geo.raid_disks; i++) {
1765 tmp = conf->mirrors + i;
1766 if (tmp->replacement
1767 && tmp->replacement->recovery_offset == MaxSector
1768 && !test_bit(Faulty, &tmp->replacement->flags)
1769 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1770 /* Replacement has just become active */
1771 if (!tmp->rdev
1772 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1773 count++;
1774 if (tmp->rdev) {
1775 /* Replaced device not technically faulty,
1776 * but we need to be sure it gets removed
1777 * and never re-added.
1779 set_bit(Faulty, &tmp->rdev->flags);
1780 sysfs_notify_dirent_safe(
1781 tmp->rdev->sysfs_state);
1783 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1784 } else if (tmp->rdev
1785 && tmp->rdev->recovery_offset == MaxSector
1786 && !test_bit(Faulty, &tmp->rdev->flags)
1787 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1788 count++;
1789 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1792 spin_lock_irqsave(&conf->device_lock, flags);
1793 mddev->degraded -= count;
1794 spin_unlock_irqrestore(&conf->device_lock, flags);
1796 print_conf(conf);
1797 return count;
1801 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1803 struct r10conf *conf = mddev->private;
1804 int err = -EEXIST;
1805 int mirror;
1806 int first = 0;
1807 int last = conf->geo.raid_disks - 1;
1808 struct request_queue *q = bdev_get_queue(rdev->bdev);
1810 if (mddev->recovery_cp < MaxSector)
1811 /* only hot-add to in-sync arrays, as recovery is
1812 * very different from resync
1814 return -EBUSY;
1815 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1816 return -EINVAL;
1818 if (rdev->raid_disk >= 0)
1819 first = last = rdev->raid_disk;
1821 if (q->merge_bvec_fn) {
1822 set_bit(Unmerged, &rdev->flags);
1823 mddev->merge_check_needed = 1;
1826 if (rdev->saved_raid_disk >= first &&
1827 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1828 mirror = rdev->saved_raid_disk;
1829 else
1830 mirror = first;
1831 for ( ; mirror <= last ; mirror++) {
1832 struct raid10_info *p = &conf->mirrors[mirror];
1833 if (p->recovery_disabled == mddev->recovery_disabled)
1834 continue;
1835 if (p->rdev) {
1836 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1837 p->replacement != NULL)
1838 continue;
1839 clear_bit(In_sync, &rdev->flags);
1840 set_bit(Replacement, &rdev->flags);
1841 rdev->raid_disk = mirror;
1842 err = 0;
1843 if (mddev->gendisk)
1844 disk_stack_limits(mddev->gendisk, rdev->bdev,
1845 rdev->data_offset << 9);
1846 conf->fullsync = 1;
1847 rcu_assign_pointer(p->replacement, rdev);
1848 break;
1851 if (mddev->gendisk)
1852 disk_stack_limits(mddev->gendisk, rdev->bdev,
1853 rdev->data_offset << 9);
1855 p->head_position = 0;
1856 p->recovery_disabled = mddev->recovery_disabled - 1;
1857 rdev->raid_disk = mirror;
1858 err = 0;
1859 if (rdev->saved_raid_disk != mirror)
1860 conf->fullsync = 1;
1861 rcu_assign_pointer(p->rdev, rdev);
1862 break;
1864 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1865 /* Some requests might not have seen this new
1866 * merge_bvec_fn. We must wait for them to complete
1867 * before merging the device fully.
1868 * First we make sure any code which has tested
1869 * our function has submitted the request, then
1870 * we wait for all outstanding requests to complete.
1872 synchronize_sched();
1873 freeze_array(conf, 0);
1874 unfreeze_array(conf);
1875 clear_bit(Unmerged, &rdev->flags);
1877 md_integrity_add_rdev(rdev, mddev);
1878 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1879 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1881 print_conf(conf);
1882 return err;
1885 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1887 struct r10conf *conf = mddev->private;
1888 int err = 0;
1889 int number = rdev->raid_disk;
1890 struct md_rdev **rdevp;
1891 struct raid10_info *p = conf->mirrors + number;
1893 print_conf(conf);
1894 if (rdev == p->rdev)
1895 rdevp = &p->rdev;
1896 else if (rdev == p->replacement)
1897 rdevp = &p->replacement;
1898 else
1899 return 0;
1901 if (test_bit(In_sync, &rdev->flags) ||
1902 atomic_read(&rdev->nr_pending)) {
1903 err = -EBUSY;
1904 goto abort;
1906 /* Only remove faulty devices if recovery
1907 * is not possible.
1909 if (!test_bit(Faulty, &rdev->flags) &&
1910 mddev->recovery_disabled != p->recovery_disabled &&
1911 (!p->replacement || p->replacement == rdev) &&
1912 number < conf->geo.raid_disks &&
1913 enough(conf, -1)) {
1914 err = -EBUSY;
1915 goto abort;
1917 *rdevp = NULL;
1918 synchronize_rcu();
1919 if (atomic_read(&rdev->nr_pending)) {
1920 /* lost the race, try later */
1921 err = -EBUSY;
1922 *rdevp = rdev;
1923 goto abort;
1924 } else if (p->replacement) {
1925 /* We must have just cleared 'rdev' */
1926 p->rdev = p->replacement;
1927 clear_bit(Replacement, &p->replacement->flags);
1928 smp_mb(); /* Make sure other CPUs may see both as identical
1929 * but will never see neither -- if they are careful.
1931 p->replacement = NULL;
1932 clear_bit(WantReplacement, &rdev->flags);
1933 } else
1934 /* We might have just remove the Replacement as faulty
1935 * Clear the flag just in case
1937 clear_bit(WantReplacement, &rdev->flags);
1939 err = md_integrity_register(mddev);
1941 abort:
1943 print_conf(conf);
1944 return err;
1948 static void end_sync_read(struct bio *bio, int error)
1950 struct r10bio *r10_bio = bio->bi_private;
1951 struct r10conf *conf = r10_bio->mddev->private;
1952 int d;
1954 if (bio == r10_bio->master_bio) {
1955 /* this is a reshape read */
1956 d = r10_bio->read_slot; /* really the read dev */
1957 } else
1958 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1960 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1961 set_bit(R10BIO_Uptodate, &r10_bio->state);
1962 else
1963 /* The write handler will notice the lack of
1964 * R10BIO_Uptodate and record any errors etc
1966 atomic_add(r10_bio->sectors,
1967 &conf->mirrors[d].rdev->corrected_errors);
1969 /* for reconstruct, we always reschedule after a read.
1970 * for resync, only after all reads
1972 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1973 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1974 atomic_dec_and_test(&r10_bio->remaining)) {
1975 /* we have read all the blocks,
1976 * do the comparison in process context in raid10d
1978 reschedule_retry(r10_bio);
1982 static void end_sync_request(struct r10bio *r10_bio)
1984 struct mddev *mddev = r10_bio->mddev;
1986 while (atomic_dec_and_test(&r10_bio->remaining)) {
1987 if (r10_bio->master_bio == NULL) {
1988 /* the primary of several recovery bios */
1989 sector_t s = r10_bio->sectors;
1990 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1991 test_bit(R10BIO_WriteError, &r10_bio->state))
1992 reschedule_retry(r10_bio);
1993 else
1994 put_buf(r10_bio);
1995 md_done_sync(mddev, s, 1);
1996 break;
1997 } else {
1998 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1999 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2000 test_bit(R10BIO_WriteError, &r10_bio->state))
2001 reschedule_retry(r10_bio);
2002 else
2003 put_buf(r10_bio);
2004 r10_bio = r10_bio2;
2009 static void end_sync_write(struct bio *bio, int error)
2011 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2012 struct r10bio *r10_bio = bio->bi_private;
2013 struct mddev *mddev = r10_bio->mddev;
2014 struct r10conf *conf = mddev->private;
2015 int d;
2016 sector_t first_bad;
2017 int bad_sectors;
2018 int slot;
2019 int repl;
2020 struct md_rdev *rdev = NULL;
2022 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2023 if (repl)
2024 rdev = conf->mirrors[d].replacement;
2025 else
2026 rdev = conf->mirrors[d].rdev;
2028 if (!uptodate) {
2029 if (repl)
2030 md_error(mddev, rdev);
2031 else {
2032 set_bit(WriteErrorSeen, &rdev->flags);
2033 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2034 set_bit(MD_RECOVERY_NEEDED,
2035 &rdev->mddev->recovery);
2036 set_bit(R10BIO_WriteError, &r10_bio->state);
2038 } else if (is_badblock(rdev,
2039 r10_bio->devs[slot].addr,
2040 r10_bio->sectors,
2041 &first_bad, &bad_sectors))
2042 set_bit(R10BIO_MadeGood, &r10_bio->state);
2044 rdev_dec_pending(rdev, mddev);
2046 end_sync_request(r10_bio);
2050 * Note: sync and recover and handled very differently for raid10
2051 * This code is for resync.
2052 * For resync, we read through virtual addresses and read all blocks.
2053 * If there is any error, we schedule a write. The lowest numbered
2054 * drive is authoritative.
2055 * However requests come for physical address, so we need to map.
2056 * For every physical address there are raid_disks/copies virtual addresses,
2057 * which is always are least one, but is not necessarly an integer.
2058 * This means that a physical address can span multiple chunks, so we may
2059 * have to submit multiple io requests for a single sync request.
2062 * We check if all blocks are in-sync and only write to blocks that
2063 * aren't in sync
2065 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2067 struct r10conf *conf = mddev->private;
2068 int i, first;
2069 struct bio *tbio, *fbio;
2070 int vcnt;
2072 atomic_set(&r10_bio->remaining, 1);
2074 /* find the first device with a block */
2075 for (i=0; i<conf->copies; i++)
2076 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2077 break;
2079 if (i == conf->copies)
2080 goto done;
2082 first = i;
2083 fbio = r10_bio->devs[i].bio;
2085 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2086 /* now find blocks with errors */
2087 for (i=0 ; i < conf->copies ; i++) {
2088 int j, d;
2090 tbio = r10_bio->devs[i].bio;
2092 if (tbio->bi_end_io != end_sync_read)
2093 continue;
2094 if (i == first)
2095 continue;
2096 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2097 /* We know that the bi_io_vec layout is the same for
2098 * both 'first' and 'i', so we just compare them.
2099 * All vec entries are PAGE_SIZE;
2101 int sectors = r10_bio->sectors;
2102 for (j = 0; j < vcnt; j++) {
2103 int len = PAGE_SIZE;
2104 if (sectors < (len / 512))
2105 len = sectors * 512;
2106 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2107 page_address(tbio->bi_io_vec[j].bv_page),
2108 len))
2109 break;
2110 sectors -= len/512;
2112 if (j == vcnt)
2113 continue;
2114 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2115 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2116 /* Don't fix anything. */
2117 continue;
2119 /* Ok, we need to write this bio, either to correct an
2120 * inconsistency or to correct an unreadable block.
2121 * First we need to fixup bv_offset, bv_len and
2122 * bi_vecs, as the read request might have corrupted these
2124 bio_reset(tbio);
2126 tbio->bi_vcnt = vcnt;
2127 tbio->bi_size = r10_bio->sectors << 9;
2128 tbio->bi_rw = WRITE;
2129 tbio->bi_private = r10_bio;
2130 tbio->bi_sector = r10_bio->devs[i].addr;
2132 for (j=0; j < vcnt ; j++) {
2133 tbio->bi_io_vec[j].bv_offset = 0;
2134 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2136 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2137 page_address(fbio->bi_io_vec[j].bv_page),
2138 PAGE_SIZE);
2140 tbio->bi_end_io = end_sync_write;
2142 d = r10_bio->devs[i].devnum;
2143 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2144 atomic_inc(&r10_bio->remaining);
2145 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2147 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2148 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2149 generic_make_request(tbio);
2152 /* Now write out to any replacement devices
2153 * that are active
2155 for (i = 0; i < conf->copies; i++) {
2156 int j, d;
2158 tbio = r10_bio->devs[i].repl_bio;
2159 if (!tbio || !tbio->bi_end_io)
2160 continue;
2161 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2162 && r10_bio->devs[i].bio != fbio)
2163 for (j = 0; j < vcnt; j++)
2164 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2165 page_address(fbio->bi_io_vec[j].bv_page),
2166 PAGE_SIZE);
2167 d = r10_bio->devs[i].devnum;
2168 atomic_inc(&r10_bio->remaining);
2169 md_sync_acct(conf->mirrors[d].replacement->bdev,
2170 bio_sectors(tbio));
2171 generic_make_request(tbio);
2174 done:
2175 if (atomic_dec_and_test(&r10_bio->remaining)) {
2176 md_done_sync(mddev, r10_bio->sectors, 1);
2177 put_buf(r10_bio);
2182 * Now for the recovery code.
2183 * Recovery happens across physical sectors.
2184 * We recover all non-is_sync drives by finding the virtual address of
2185 * each, and then choose a working drive that also has that virt address.
2186 * There is a separate r10_bio for each non-in_sync drive.
2187 * Only the first two slots are in use. The first for reading,
2188 * The second for writing.
2191 static void fix_recovery_read_error(struct r10bio *r10_bio)
2193 /* We got a read error during recovery.
2194 * We repeat the read in smaller page-sized sections.
2195 * If a read succeeds, write it to the new device or record
2196 * a bad block if we cannot.
2197 * If a read fails, record a bad block on both old and
2198 * new devices.
2200 struct mddev *mddev = r10_bio->mddev;
2201 struct r10conf *conf = mddev->private;
2202 struct bio *bio = r10_bio->devs[0].bio;
2203 sector_t sect = 0;
2204 int sectors = r10_bio->sectors;
2205 int idx = 0;
2206 int dr = r10_bio->devs[0].devnum;
2207 int dw = r10_bio->devs[1].devnum;
2209 while (sectors) {
2210 int s = sectors;
2211 struct md_rdev *rdev;
2212 sector_t addr;
2213 int ok;
2215 if (s > (PAGE_SIZE>>9))
2216 s = PAGE_SIZE >> 9;
2218 rdev = conf->mirrors[dr].rdev;
2219 addr = r10_bio->devs[0].addr + sect,
2220 ok = sync_page_io(rdev,
2221 addr,
2222 s << 9,
2223 bio->bi_io_vec[idx].bv_page,
2224 READ, false);
2225 if (ok) {
2226 rdev = conf->mirrors[dw].rdev;
2227 addr = r10_bio->devs[1].addr + sect;
2228 ok = sync_page_io(rdev,
2229 addr,
2230 s << 9,
2231 bio->bi_io_vec[idx].bv_page,
2232 WRITE, false);
2233 if (!ok) {
2234 set_bit(WriteErrorSeen, &rdev->flags);
2235 if (!test_and_set_bit(WantReplacement,
2236 &rdev->flags))
2237 set_bit(MD_RECOVERY_NEEDED,
2238 &rdev->mddev->recovery);
2241 if (!ok) {
2242 /* We don't worry if we cannot set a bad block -
2243 * it really is bad so there is no loss in not
2244 * recording it yet
2246 rdev_set_badblocks(rdev, addr, s, 0);
2248 if (rdev != conf->mirrors[dw].rdev) {
2249 /* need bad block on destination too */
2250 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2251 addr = r10_bio->devs[1].addr + sect;
2252 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2253 if (!ok) {
2254 /* just abort the recovery */
2255 printk(KERN_NOTICE
2256 "md/raid10:%s: recovery aborted"
2257 " due to read error\n",
2258 mdname(mddev));
2260 conf->mirrors[dw].recovery_disabled
2261 = mddev->recovery_disabled;
2262 set_bit(MD_RECOVERY_INTR,
2263 &mddev->recovery);
2264 break;
2269 sectors -= s;
2270 sect += s;
2271 idx++;
2275 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2277 struct r10conf *conf = mddev->private;
2278 int d;
2279 struct bio *wbio, *wbio2;
2281 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2282 fix_recovery_read_error(r10_bio);
2283 end_sync_request(r10_bio);
2284 return;
2288 * share the pages with the first bio
2289 * and submit the write request
2291 d = r10_bio->devs[1].devnum;
2292 wbio = r10_bio->devs[1].bio;
2293 wbio2 = r10_bio->devs[1].repl_bio;
2294 /* Need to test wbio2->bi_end_io before we call
2295 * generic_make_request as if the former is NULL,
2296 * the latter is free to free wbio2.
2298 if (wbio2 && !wbio2->bi_end_io)
2299 wbio2 = NULL;
2300 if (wbio->bi_end_io) {
2301 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2302 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2303 generic_make_request(wbio);
2305 if (wbio2) {
2306 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2307 md_sync_acct(conf->mirrors[d].replacement->bdev,
2308 bio_sectors(wbio2));
2309 generic_make_request(wbio2);
2315 * Used by fix_read_error() to decay the per rdev read_errors.
2316 * We halve the read error count for every hour that has elapsed
2317 * since the last recorded read error.
2320 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2322 struct timespec cur_time_mon;
2323 unsigned long hours_since_last;
2324 unsigned int read_errors = atomic_read(&rdev->read_errors);
2326 ktime_get_ts(&cur_time_mon);
2328 if (rdev->last_read_error.tv_sec == 0 &&
2329 rdev->last_read_error.tv_nsec == 0) {
2330 /* first time we've seen a read error */
2331 rdev->last_read_error = cur_time_mon;
2332 return;
2335 hours_since_last = (cur_time_mon.tv_sec -
2336 rdev->last_read_error.tv_sec) / 3600;
2338 rdev->last_read_error = cur_time_mon;
2341 * if hours_since_last is > the number of bits in read_errors
2342 * just set read errors to 0. We do this to avoid
2343 * overflowing the shift of read_errors by hours_since_last.
2345 if (hours_since_last >= 8 * sizeof(read_errors))
2346 atomic_set(&rdev->read_errors, 0);
2347 else
2348 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2351 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2352 int sectors, struct page *page, int rw)
2354 sector_t first_bad;
2355 int bad_sectors;
2357 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2358 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2359 return -1;
2360 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2361 /* success */
2362 return 1;
2363 if (rw == WRITE) {
2364 set_bit(WriteErrorSeen, &rdev->flags);
2365 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2366 set_bit(MD_RECOVERY_NEEDED,
2367 &rdev->mddev->recovery);
2369 /* need to record an error - either for the block or the device */
2370 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2371 md_error(rdev->mddev, rdev);
2372 return 0;
2376 * This is a kernel thread which:
2378 * 1. Retries failed read operations on working mirrors.
2379 * 2. Updates the raid superblock when problems encounter.
2380 * 3. Performs writes following reads for array synchronising.
2383 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2385 int sect = 0; /* Offset from r10_bio->sector */
2386 int sectors = r10_bio->sectors;
2387 struct md_rdev*rdev;
2388 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2389 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2391 /* still own a reference to this rdev, so it cannot
2392 * have been cleared recently.
2394 rdev = conf->mirrors[d].rdev;
2396 if (test_bit(Faulty, &rdev->flags))
2397 /* drive has already been failed, just ignore any
2398 more fix_read_error() attempts */
2399 return;
2401 check_decay_read_errors(mddev, rdev);
2402 atomic_inc(&rdev->read_errors);
2403 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2404 char b[BDEVNAME_SIZE];
2405 bdevname(rdev->bdev, b);
2407 printk(KERN_NOTICE
2408 "md/raid10:%s: %s: Raid device exceeded "
2409 "read_error threshold [cur %d:max %d]\n",
2410 mdname(mddev), b,
2411 atomic_read(&rdev->read_errors), max_read_errors);
2412 printk(KERN_NOTICE
2413 "md/raid10:%s: %s: Failing raid device\n",
2414 mdname(mddev), b);
2415 md_error(mddev, conf->mirrors[d].rdev);
2416 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2417 return;
2420 while(sectors) {
2421 int s = sectors;
2422 int sl = r10_bio->read_slot;
2423 int success = 0;
2424 int start;
2426 if (s > (PAGE_SIZE>>9))
2427 s = PAGE_SIZE >> 9;
2429 rcu_read_lock();
2430 do {
2431 sector_t first_bad;
2432 int bad_sectors;
2434 d = r10_bio->devs[sl].devnum;
2435 rdev = rcu_dereference(conf->mirrors[d].rdev);
2436 if (rdev &&
2437 !test_bit(Unmerged, &rdev->flags) &&
2438 test_bit(In_sync, &rdev->flags) &&
2439 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2440 &first_bad, &bad_sectors) == 0) {
2441 atomic_inc(&rdev->nr_pending);
2442 rcu_read_unlock();
2443 success = sync_page_io(rdev,
2444 r10_bio->devs[sl].addr +
2445 sect,
2446 s<<9,
2447 conf->tmppage, READ, false);
2448 rdev_dec_pending(rdev, mddev);
2449 rcu_read_lock();
2450 if (success)
2451 break;
2453 sl++;
2454 if (sl == conf->copies)
2455 sl = 0;
2456 } while (!success && sl != r10_bio->read_slot);
2457 rcu_read_unlock();
2459 if (!success) {
2460 /* Cannot read from anywhere, just mark the block
2461 * as bad on the first device to discourage future
2462 * reads.
2464 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2465 rdev = conf->mirrors[dn].rdev;
2467 if (!rdev_set_badblocks(
2468 rdev,
2469 r10_bio->devs[r10_bio->read_slot].addr
2470 + sect,
2471 s, 0)) {
2472 md_error(mddev, rdev);
2473 r10_bio->devs[r10_bio->read_slot].bio
2474 = IO_BLOCKED;
2476 break;
2479 start = sl;
2480 /* write it back and re-read */
2481 rcu_read_lock();
2482 while (sl != r10_bio->read_slot) {
2483 char b[BDEVNAME_SIZE];
2485 if (sl==0)
2486 sl = conf->copies;
2487 sl--;
2488 d = r10_bio->devs[sl].devnum;
2489 rdev = rcu_dereference(conf->mirrors[d].rdev);
2490 if (!rdev ||
2491 test_bit(Unmerged, &rdev->flags) ||
2492 !test_bit(In_sync, &rdev->flags))
2493 continue;
2495 atomic_inc(&rdev->nr_pending);
2496 rcu_read_unlock();
2497 if (r10_sync_page_io(rdev,
2498 r10_bio->devs[sl].addr +
2499 sect,
2500 s, conf->tmppage, WRITE)
2501 == 0) {
2502 /* Well, this device is dead */
2503 printk(KERN_NOTICE
2504 "md/raid10:%s: read correction "
2505 "write failed"
2506 " (%d sectors at %llu on %s)\n",
2507 mdname(mddev), s,
2508 (unsigned long long)(
2509 sect +
2510 choose_data_offset(r10_bio,
2511 rdev)),
2512 bdevname(rdev->bdev, b));
2513 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2514 "drive\n",
2515 mdname(mddev),
2516 bdevname(rdev->bdev, b));
2518 rdev_dec_pending(rdev, mddev);
2519 rcu_read_lock();
2521 sl = start;
2522 while (sl != r10_bio->read_slot) {
2523 char b[BDEVNAME_SIZE];
2525 if (sl==0)
2526 sl = conf->copies;
2527 sl--;
2528 d = r10_bio->devs[sl].devnum;
2529 rdev = rcu_dereference(conf->mirrors[d].rdev);
2530 if (!rdev ||
2531 !test_bit(In_sync, &rdev->flags))
2532 continue;
2534 atomic_inc(&rdev->nr_pending);
2535 rcu_read_unlock();
2536 switch (r10_sync_page_io(rdev,
2537 r10_bio->devs[sl].addr +
2538 sect,
2539 s, conf->tmppage,
2540 READ)) {
2541 case 0:
2542 /* Well, this device is dead */
2543 printk(KERN_NOTICE
2544 "md/raid10:%s: unable to read back "
2545 "corrected sectors"
2546 " (%d sectors at %llu on %s)\n",
2547 mdname(mddev), s,
2548 (unsigned long long)(
2549 sect +
2550 choose_data_offset(r10_bio, rdev)),
2551 bdevname(rdev->bdev, b));
2552 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2553 "drive\n",
2554 mdname(mddev),
2555 bdevname(rdev->bdev, b));
2556 break;
2557 case 1:
2558 printk(KERN_INFO
2559 "md/raid10:%s: read error corrected"
2560 " (%d sectors at %llu on %s)\n",
2561 mdname(mddev), s,
2562 (unsigned long long)(
2563 sect +
2564 choose_data_offset(r10_bio, rdev)),
2565 bdevname(rdev->bdev, b));
2566 atomic_add(s, &rdev->corrected_errors);
2569 rdev_dec_pending(rdev, mddev);
2570 rcu_read_lock();
2572 rcu_read_unlock();
2574 sectors -= s;
2575 sect += s;
2579 static int narrow_write_error(struct r10bio *r10_bio, int i)
2581 struct bio *bio = r10_bio->master_bio;
2582 struct mddev *mddev = r10_bio->mddev;
2583 struct r10conf *conf = mddev->private;
2584 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2585 /* bio has the data to be written to slot 'i' where
2586 * we just recently had a write error.
2587 * We repeatedly clone the bio and trim down to one block,
2588 * then try the write. Where the write fails we record
2589 * a bad block.
2590 * It is conceivable that the bio doesn't exactly align with
2591 * blocks. We must handle this.
2593 * We currently own a reference to the rdev.
2596 int block_sectors;
2597 sector_t sector;
2598 int sectors;
2599 int sect_to_write = r10_bio->sectors;
2600 int ok = 1;
2602 if (rdev->badblocks.shift < 0)
2603 return 0;
2605 block_sectors = 1 << rdev->badblocks.shift;
2606 sector = r10_bio->sector;
2607 sectors = ((r10_bio->sector + block_sectors)
2608 & ~(sector_t)(block_sectors - 1))
2609 - sector;
2611 while (sect_to_write) {
2612 struct bio *wbio;
2613 if (sectors > sect_to_write)
2614 sectors = sect_to_write;
2615 /* Write at 'sector' for 'sectors' */
2616 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2617 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2618 wbio->bi_sector = (r10_bio->devs[i].addr+
2619 choose_data_offset(r10_bio, rdev) +
2620 (sector - r10_bio->sector));
2621 wbio->bi_bdev = rdev->bdev;
2622 if (submit_bio_wait(WRITE, wbio) == 0)
2623 /* Failure! */
2624 ok = rdev_set_badblocks(rdev, sector,
2625 sectors, 0)
2626 && ok;
2628 bio_put(wbio);
2629 sect_to_write -= sectors;
2630 sector += sectors;
2631 sectors = block_sectors;
2633 return ok;
2636 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2638 int slot = r10_bio->read_slot;
2639 struct bio *bio;
2640 struct r10conf *conf = mddev->private;
2641 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2642 char b[BDEVNAME_SIZE];
2643 unsigned long do_sync;
2644 int max_sectors;
2646 /* we got a read error. Maybe the drive is bad. Maybe just
2647 * the block and we can fix it.
2648 * We freeze all other IO, and try reading the block from
2649 * other devices. When we find one, we re-write
2650 * and check it that fixes the read error.
2651 * This is all done synchronously while the array is
2652 * frozen.
2654 bio = r10_bio->devs[slot].bio;
2655 bdevname(bio->bi_bdev, b);
2656 bio_put(bio);
2657 r10_bio->devs[slot].bio = NULL;
2659 if (mddev->ro == 0) {
2660 freeze_array(conf, 1);
2661 fix_read_error(conf, mddev, r10_bio);
2662 unfreeze_array(conf);
2663 } else
2664 r10_bio->devs[slot].bio = IO_BLOCKED;
2666 rdev_dec_pending(rdev, mddev);
2668 read_more:
2669 rdev = read_balance(conf, r10_bio, &max_sectors);
2670 if (rdev == NULL) {
2671 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2672 " read error for block %llu\n",
2673 mdname(mddev), b,
2674 (unsigned long long)r10_bio->sector);
2675 raid_end_bio_io(r10_bio);
2676 return;
2679 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2680 slot = r10_bio->read_slot;
2681 printk_ratelimited(
2682 KERN_ERR
2683 "md/raid10:%s: %s: redirecting "
2684 "sector %llu to another mirror\n",
2685 mdname(mddev),
2686 bdevname(rdev->bdev, b),
2687 (unsigned long long)r10_bio->sector);
2688 bio = bio_clone_mddev(r10_bio->master_bio,
2689 GFP_NOIO, mddev);
2690 md_trim_bio(bio,
2691 r10_bio->sector - bio->bi_sector,
2692 max_sectors);
2693 r10_bio->devs[slot].bio = bio;
2694 r10_bio->devs[slot].rdev = rdev;
2695 bio->bi_sector = r10_bio->devs[slot].addr
2696 + choose_data_offset(r10_bio, rdev);
2697 bio->bi_bdev = rdev->bdev;
2698 bio->bi_rw = READ | do_sync;
2699 bio->bi_private = r10_bio;
2700 bio->bi_end_io = raid10_end_read_request;
2701 if (max_sectors < r10_bio->sectors) {
2702 /* Drat - have to split this up more */
2703 struct bio *mbio = r10_bio->master_bio;
2704 int sectors_handled =
2705 r10_bio->sector + max_sectors
2706 - mbio->bi_sector;
2707 r10_bio->sectors = max_sectors;
2708 spin_lock_irq(&conf->device_lock);
2709 if (mbio->bi_phys_segments == 0)
2710 mbio->bi_phys_segments = 2;
2711 else
2712 mbio->bi_phys_segments++;
2713 spin_unlock_irq(&conf->device_lock);
2714 generic_make_request(bio);
2716 r10_bio = mempool_alloc(conf->r10bio_pool,
2717 GFP_NOIO);
2718 r10_bio->master_bio = mbio;
2719 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2720 r10_bio->state = 0;
2721 set_bit(R10BIO_ReadError,
2722 &r10_bio->state);
2723 r10_bio->mddev = mddev;
2724 r10_bio->sector = mbio->bi_sector
2725 + sectors_handled;
2727 goto read_more;
2728 } else
2729 generic_make_request(bio);
2732 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2734 /* Some sort of write request has finished and it
2735 * succeeded in writing where we thought there was a
2736 * bad block. So forget the bad block.
2737 * Or possibly if failed and we need to record
2738 * a bad block.
2740 int m;
2741 struct md_rdev *rdev;
2743 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2744 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2745 for (m = 0; m < conf->copies; m++) {
2746 int dev = r10_bio->devs[m].devnum;
2747 rdev = conf->mirrors[dev].rdev;
2748 if (r10_bio->devs[m].bio == NULL)
2749 continue;
2750 if (test_bit(BIO_UPTODATE,
2751 &r10_bio->devs[m].bio->bi_flags)) {
2752 rdev_clear_badblocks(
2753 rdev,
2754 r10_bio->devs[m].addr,
2755 r10_bio->sectors, 0);
2756 } else {
2757 if (!rdev_set_badblocks(
2758 rdev,
2759 r10_bio->devs[m].addr,
2760 r10_bio->sectors, 0))
2761 md_error(conf->mddev, rdev);
2763 rdev = conf->mirrors[dev].replacement;
2764 if (r10_bio->devs[m].repl_bio == NULL)
2765 continue;
2766 if (test_bit(BIO_UPTODATE,
2767 &r10_bio->devs[m].repl_bio->bi_flags)) {
2768 rdev_clear_badblocks(
2769 rdev,
2770 r10_bio->devs[m].addr,
2771 r10_bio->sectors, 0);
2772 } else {
2773 if (!rdev_set_badblocks(
2774 rdev,
2775 r10_bio->devs[m].addr,
2776 r10_bio->sectors, 0))
2777 md_error(conf->mddev, rdev);
2780 put_buf(r10_bio);
2781 } else {
2782 for (m = 0; m < conf->copies; m++) {
2783 int dev = r10_bio->devs[m].devnum;
2784 struct bio *bio = r10_bio->devs[m].bio;
2785 rdev = conf->mirrors[dev].rdev;
2786 if (bio == IO_MADE_GOOD) {
2787 rdev_clear_badblocks(
2788 rdev,
2789 r10_bio->devs[m].addr,
2790 r10_bio->sectors, 0);
2791 rdev_dec_pending(rdev, conf->mddev);
2792 } else if (bio != NULL &&
2793 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2794 if (!narrow_write_error(r10_bio, m)) {
2795 md_error(conf->mddev, rdev);
2796 set_bit(R10BIO_Degraded,
2797 &r10_bio->state);
2799 rdev_dec_pending(rdev, conf->mddev);
2801 bio = r10_bio->devs[m].repl_bio;
2802 rdev = conf->mirrors[dev].replacement;
2803 if (rdev && bio == IO_MADE_GOOD) {
2804 rdev_clear_badblocks(
2805 rdev,
2806 r10_bio->devs[m].addr,
2807 r10_bio->sectors, 0);
2808 rdev_dec_pending(rdev, conf->mddev);
2811 if (test_bit(R10BIO_WriteError,
2812 &r10_bio->state))
2813 close_write(r10_bio);
2814 raid_end_bio_io(r10_bio);
2818 static void raid10d(struct md_thread *thread)
2820 struct mddev *mddev = thread->mddev;
2821 struct r10bio *r10_bio;
2822 unsigned long flags;
2823 struct r10conf *conf = mddev->private;
2824 struct list_head *head = &conf->retry_list;
2825 struct blk_plug plug;
2827 md_check_recovery(mddev);
2829 blk_start_plug(&plug);
2830 for (;;) {
2832 flush_pending_writes(conf);
2834 spin_lock_irqsave(&conf->device_lock, flags);
2835 if (list_empty(head)) {
2836 spin_unlock_irqrestore(&conf->device_lock, flags);
2837 break;
2839 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2840 list_del(head->prev);
2841 conf->nr_queued--;
2842 spin_unlock_irqrestore(&conf->device_lock, flags);
2844 mddev = r10_bio->mddev;
2845 conf = mddev->private;
2846 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2847 test_bit(R10BIO_WriteError, &r10_bio->state))
2848 handle_write_completed(conf, r10_bio);
2849 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2850 reshape_request_write(mddev, r10_bio);
2851 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2852 sync_request_write(mddev, r10_bio);
2853 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2854 recovery_request_write(mddev, r10_bio);
2855 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2856 handle_read_error(mddev, r10_bio);
2857 else {
2858 /* just a partial read to be scheduled from a
2859 * separate context
2861 int slot = r10_bio->read_slot;
2862 generic_make_request(r10_bio->devs[slot].bio);
2865 cond_resched();
2866 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2867 md_check_recovery(mddev);
2869 blk_finish_plug(&plug);
2873 static int init_resync(struct r10conf *conf)
2875 int buffs;
2876 int i;
2878 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2879 BUG_ON(conf->r10buf_pool);
2880 conf->have_replacement = 0;
2881 for (i = 0; i < conf->geo.raid_disks; i++)
2882 if (conf->mirrors[i].replacement)
2883 conf->have_replacement = 1;
2884 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2885 if (!conf->r10buf_pool)
2886 return -ENOMEM;
2887 conf->next_resync = 0;
2888 return 0;
2892 * perform a "sync" on one "block"
2894 * We need to make sure that no normal I/O request - particularly write
2895 * requests - conflict with active sync requests.
2897 * This is achieved by tracking pending requests and a 'barrier' concept
2898 * that can be installed to exclude normal IO requests.
2900 * Resync and recovery are handled very differently.
2901 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2903 * For resync, we iterate over virtual addresses, read all copies,
2904 * and update if there are differences. If only one copy is live,
2905 * skip it.
2906 * For recovery, we iterate over physical addresses, read a good
2907 * value for each non-in_sync drive, and over-write.
2909 * So, for recovery we may have several outstanding complex requests for a
2910 * given address, one for each out-of-sync device. We model this by allocating
2911 * a number of r10_bio structures, one for each out-of-sync device.
2912 * As we setup these structures, we collect all bio's together into a list
2913 * which we then process collectively to add pages, and then process again
2914 * to pass to generic_make_request.
2916 * The r10_bio structures are linked using a borrowed master_bio pointer.
2917 * This link is counted in ->remaining. When the r10_bio that points to NULL
2918 * has its remaining count decremented to 0, the whole complex operation
2919 * is complete.
2923 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2924 int *skipped, int go_faster)
2926 struct r10conf *conf = mddev->private;
2927 struct r10bio *r10_bio;
2928 struct bio *biolist = NULL, *bio;
2929 sector_t max_sector, nr_sectors;
2930 int i;
2931 int max_sync;
2932 sector_t sync_blocks;
2933 sector_t sectors_skipped = 0;
2934 int chunks_skipped = 0;
2935 sector_t chunk_mask = conf->geo.chunk_mask;
2937 if (!conf->r10buf_pool)
2938 if (init_resync(conf))
2939 return 0;
2942 * Allow skipping a full rebuild for incremental assembly
2943 * of a clean array, like RAID1 does.
2945 if (mddev->bitmap == NULL &&
2946 mddev->recovery_cp == MaxSector &&
2947 mddev->reshape_position == MaxSector &&
2948 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2949 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2950 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2951 conf->fullsync == 0) {
2952 *skipped = 1;
2953 return mddev->dev_sectors - sector_nr;
2956 skipped:
2957 max_sector = mddev->dev_sectors;
2958 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2959 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2960 max_sector = mddev->resync_max_sectors;
2961 if (sector_nr >= max_sector) {
2962 /* If we aborted, we need to abort the
2963 * sync on the 'current' bitmap chucks (there can
2964 * be several when recovering multiple devices).
2965 * as we may have started syncing it but not finished.
2966 * We can find the current address in
2967 * mddev->curr_resync, but for recovery,
2968 * we need to convert that to several
2969 * virtual addresses.
2971 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2972 end_reshape(conf);
2973 return 0;
2976 if (mddev->curr_resync < max_sector) { /* aborted */
2977 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2978 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2979 &sync_blocks, 1);
2980 else for (i = 0; i < conf->geo.raid_disks; i++) {
2981 sector_t sect =
2982 raid10_find_virt(conf, mddev->curr_resync, i);
2983 bitmap_end_sync(mddev->bitmap, sect,
2984 &sync_blocks, 1);
2986 } else {
2987 /* completed sync */
2988 if ((!mddev->bitmap || conf->fullsync)
2989 && conf->have_replacement
2990 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2991 /* Completed a full sync so the replacements
2992 * are now fully recovered.
2994 for (i = 0; i < conf->geo.raid_disks; i++)
2995 if (conf->mirrors[i].replacement)
2996 conf->mirrors[i].replacement
2997 ->recovery_offset
2998 = MaxSector;
3000 conf->fullsync = 0;
3002 bitmap_close_sync(mddev->bitmap);
3003 close_sync(conf);
3004 *skipped = 1;
3005 return sectors_skipped;
3008 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3009 return reshape_request(mddev, sector_nr, skipped);
3011 if (chunks_skipped >= conf->geo.raid_disks) {
3012 /* if there has been nothing to do on any drive,
3013 * then there is nothing to do at all..
3015 *skipped = 1;
3016 return (max_sector - sector_nr) + sectors_skipped;
3019 if (max_sector > mddev->resync_max)
3020 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3022 /* make sure whole request will fit in a chunk - if chunks
3023 * are meaningful
3025 if (conf->geo.near_copies < conf->geo.raid_disks &&
3026 max_sector > (sector_nr | chunk_mask))
3027 max_sector = (sector_nr | chunk_mask) + 1;
3029 * If there is non-resync activity waiting for us then
3030 * put in a delay to throttle resync.
3032 if (!go_faster && conf->nr_waiting)
3033 msleep_interruptible(1000);
3035 /* Again, very different code for resync and recovery.
3036 * Both must result in an r10bio with a list of bios that
3037 * have bi_end_io, bi_sector, bi_bdev set,
3038 * and bi_private set to the r10bio.
3039 * For recovery, we may actually create several r10bios
3040 * with 2 bios in each, that correspond to the bios in the main one.
3041 * In this case, the subordinate r10bios link back through a
3042 * borrowed master_bio pointer, and the counter in the master
3043 * includes a ref from each subordinate.
3045 /* First, we decide what to do and set ->bi_end_io
3046 * To end_sync_read if we want to read, and
3047 * end_sync_write if we will want to write.
3050 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3051 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3052 /* recovery... the complicated one */
3053 int j;
3054 r10_bio = NULL;
3056 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3057 int still_degraded;
3058 struct r10bio *rb2;
3059 sector_t sect;
3060 int must_sync;
3061 int any_working;
3062 struct raid10_info *mirror = &conf->mirrors[i];
3064 if ((mirror->rdev == NULL ||
3065 test_bit(In_sync, &mirror->rdev->flags))
3067 (mirror->replacement == NULL ||
3068 test_bit(Faulty,
3069 &mirror->replacement->flags)))
3070 continue;
3072 still_degraded = 0;
3073 /* want to reconstruct this device */
3074 rb2 = r10_bio;
3075 sect = raid10_find_virt(conf, sector_nr, i);
3076 if (sect >= mddev->resync_max_sectors) {
3077 /* last stripe is not complete - don't
3078 * try to recover this sector.
3080 continue;
3082 /* Unless we are doing a full sync, or a replacement
3083 * we only need to recover the block if it is set in
3084 * the bitmap
3086 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3087 &sync_blocks, 1);
3088 if (sync_blocks < max_sync)
3089 max_sync = sync_blocks;
3090 if (!must_sync &&
3091 mirror->replacement == NULL &&
3092 !conf->fullsync) {
3093 /* yep, skip the sync_blocks here, but don't assume
3094 * that there will never be anything to do here
3096 chunks_skipped = -1;
3097 continue;
3100 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3101 raise_barrier(conf, rb2 != NULL);
3102 atomic_set(&r10_bio->remaining, 0);
3104 r10_bio->master_bio = (struct bio*)rb2;
3105 if (rb2)
3106 atomic_inc(&rb2->remaining);
3107 r10_bio->mddev = mddev;
3108 set_bit(R10BIO_IsRecover, &r10_bio->state);
3109 r10_bio->sector = sect;
3111 raid10_find_phys(conf, r10_bio);
3113 /* Need to check if the array will still be
3114 * degraded
3116 for (j = 0; j < conf->geo.raid_disks; j++)
3117 if (conf->mirrors[j].rdev == NULL ||
3118 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3119 still_degraded = 1;
3120 break;
3123 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3124 &sync_blocks, still_degraded);
3126 any_working = 0;
3127 for (j=0; j<conf->copies;j++) {
3128 int k;
3129 int d = r10_bio->devs[j].devnum;
3130 sector_t from_addr, to_addr;
3131 struct md_rdev *rdev;
3132 sector_t sector, first_bad;
3133 int bad_sectors;
3134 if (!conf->mirrors[d].rdev ||
3135 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3136 continue;
3137 /* This is where we read from */
3138 any_working = 1;
3139 rdev = conf->mirrors[d].rdev;
3140 sector = r10_bio->devs[j].addr;
3142 if (is_badblock(rdev, sector, max_sync,
3143 &first_bad, &bad_sectors)) {
3144 if (first_bad > sector)
3145 max_sync = first_bad - sector;
3146 else {
3147 bad_sectors -= (sector
3148 - first_bad);
3149 if (max_sync > bad_sectors)
3150 max_sync = bad_sectors;
3151 continue;
3154 bio = r10_bio->devs[0].bio;
3155 bio_reset(bio);
3156 bio->bi_next = biolist;
3157 biolist = bio;
3158 bio->bi_private = r10_bio;
3159 bio->bi_end_io = end_sync_read;
3160 bio->bi_rw = READ;
3161 from_addr = r10_bio->devs[j].addr;
3162 bio->bi_sector = from_addr + rdev->data_offset;
3163 bio->bi_bdev = rdev->bdev;
3164 atomic_inc(&rdev->nr_pending);
3165 /* and we write to 'i' (if not in_sync) */
3167 for (k=0; k<conf->copies; k++)
3168 if (r10_bio->devs[k].devnum == i)
3169 break;
3170 BUG_ON(k == conf->copies);
3171 to_addr = r10_bio->devs[k].addr;
3172 r10_bio->devs[0].devnum = d;
3173 r10_bio->devs[0].addr = from_addr;
3174 r10_bio->devs[1].devnum = i;
3175 r10_bio->devs[1].addr = to_addr;
3177 rdev = mirror->rdev;
3178 if (!test_bit(In_sync, &rdev->flags)) {
3179 bio = r10_bio->devs[1].bio;
3180 bio_reset(bio);
3181 bio->bi_next = biolist;
3182 biolist = bio;
3183 bio->bi_private = r10_bio;
3184 bio->bi_end_io = end_sync_write;
3185 bio->bi_rw = WRITE;
3186 bio->bi_sector = to_addr
3187 + rdev->data_offset;
3188 bio->bi_bdev = rdev->bdev;
3189 atomic_inc(&r10_bio->remaining);
3190 } else
3191 r10_bio->devs[1].bio->bi_end_io = NULL;
3193 /* and maybe write to replacement */
3194 bio = r10_bio->devs[1].repl_bio;
3195 if (bio)
3196 bio->bi_end_io = NULL;
3197 rdev = mirror->replacement;
3198 /* Note: if rdev != NULL, then bio
3199 * cannot be NULL as r10buf_pool_alloc will
3200 * have allocated it.
3201 * So the second test here is pointless.
3202 * But it keeps semantic-checkers happy, and
3203 * this comment keeps human reviewers
3204 * happy.
3206 if (rdev == NULL || bio == NULL ||
3207 test_bit(Faulty, &rdev->flags))
3208 break;
3209 bio_reset(bio);
3210 bio->bi_next = biolist;
3211 biolist = bio;
3212 bio->bi_private = r10_bio;
3213 bio->bi_end_io = end_sync_write;
3214 bio->bi_rw = WRITE;
3215 bio->bi_sector = to_addr + rdev->data_offset;
3216 bio->bi_bdev = rdev->bdev;
3217 atomic_inc(&r10_bio->remaining);
3218 break;
3220 if (j == conf->copies) {
3221 /* Cannot recover, so abort the recovery or
3222 * record a bad block */
3223 if (any_working) {
3224 /* problem is that there are bad blocks
3225 * on other device(s)
3227 int k;
3228 for (k = 0; k < conf->copies; k++)
3229 if (r10_bio->devs[k].devnum == i)
3230 break;
3231 if (!test_bit(In_sync,
3232 &mirror->rdev->flags)
3233 && !rdev_set_badblocks(
3234 mirror->rdev,
3235 r10_bio->devs[k].addr,
3236 max_sync, 0))
3237 any_working = 0;
3238 if (mirror->replacement &&
3239 !rdev_set_badblocks(
3240 mirror->replacement,
3241 r10_bio->devs[k].addr,
3242 max_sync, 0))
3243 any_working = 0;
3245 if (!any_working) {
3246 if (!test_and_set_bit(MD_RECOVERY_INTR,
3247 &mddev->recovery))
3248 printk(KERN_INFO "md/raid10:%s: insufficient "
3249 "working devices for recovery.\n",
3250 mdname(mddev));
3251 mirror->recovery_disabled
3252 = mddev->recovery_disabled;
3254 put_buf(r10_bio);
3255 if (rb2)
3256 atomic_dec(&rb2->remaining);
3257 r10_bio = rb2;
3258 break;
3261 if (biolist == NULL) {
3262 while (r10_bio) {
3263 struct r10bio *rb2 = r10_bio;
3264 r10_bio = (struct r10bio*) rb2->master_bio;
3265 rb2->master_bio = NULL;
3266 put_buf(rb2);
3268 goto giveup;
3270 } else {
3271 /* resync. Schedule a read for every block at this virt offset */
3272 int count = 0;
3274 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3276 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3277 &sync_blocks, mddev->degraded) &&
3278 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3279 &mddev->recovery)) {
3280 /* We can skip this block */
3281 *skipped = 1;
3282 return sync_blocks + sectors_skipped;
3284 if (sync_blocks < max_sync)
3285 max_sync = sync_blocks;
3286 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3288 r10_bio->mddev = mddev;
3289 atomic_set(&r10_bio->remaining, 0);
3290 raise_barrier(conf, 0);
3291 conf->next_resync = sector_nr;
3293 r10_bio->master_bio = NULL;
3294 r10_bio->sector = sector_nr;
3295 set_bit(R10BIO_IsSync, &r10_bio->state);
3296 raid10_find_phys(conf, r10_bio);
3297 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3299 for (i = 0; i < conf->copies; i++) {
3300 int d = r10_bio->devs[i].devnum;
3301 sector_t first_bad, sector;
3302 int bad_sectors;
3304 if (r10_bio->devs[i].repl_bio)
3305 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3307 bio = r10_bio->devs[i].bio;
3308 bio_reset(bio);
3309 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3310 if (conf->mirrors[d].rdev == NULL ||
3311 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3312 continue;
3313 sector = r10_bio->devs[i].addr;
3314 if (is_badblock(conf->mirrors[d].rdev,
3315 sector, max_sync,
3316 &first_bad, &bad_sectors)) {
3317 if (first_bad > sector)
3318 max_sync = first_bad - sector;
3319 else {
3320 bad_sectors -= (sector - first_bad);
3321 if (max_sync > bad_sectors)
3322 max_sync = bad_sectors;
3323 continue;
3326 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3327 atomic_inc(&r10_bio->remaining);
3328 bio->bi_next = biolist;
3329 biolist = bio;
3330 bio->bi_private = r10_bio;
3331 bio->bi_end_io = end_sync_read;
3332 bio->bi_rw = READ;
3333 bio->bi_sector = sector +
3334 conf->mirrors[d].rdev->data_offset;
3335 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3336 count++;
3338 if (conf->mirrors[d].replacement == NULL ||
3339 test_bit(Faulty,
3340 &conf->mirrors[d].replacement->flags))
3341 continue;
3343 /* Need to set up for writing to the replacement */
3344 bio = r10_bio->devs[i].repl_bio;
3345 bio_reset(bio);
3346 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3348 sector = r10_bio->devs[i].addr;
3349 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3350 bio->bi_next = biolist;
3351 biolist = bio;
3352 bio->bi_private = r10_bio;
3353 bio->bi_end_io = end_sync_write;
3354 bio->bi_rw = WRITE;
3355 bio->bi_sector = sector +
3356 conf->mirrors[d].replacement->data_offset;
3357 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3358 count++;
3361 if (count < 2) {
3362 for (i=0; i<conf->copies; i++) {
3363 int d = r10_bio->devs[i].devnum;
3364 if (r10_bio->devs[i].bio->bi_end_io)
3365 rdev_dec_pending(conf->mirrors[d].rdev,
3366 mddev);
3367 if (r10_bio->devs[i].repl_bio &&
3368 r10_bio->devs[i].repl_bio->bi_end_io)
3369 rdev_dec_pending(
3370 conf->mirrors[d].replacement,
3371 mddev);
3373 put_buf(r10_bio);
3374 biolist = NULL;
3375 goto giveup;
3379 nr_sectors = 0;
3380 if (sector_nr + max_sync < max_sector)
3381 max_sector = sector_nr + max_sync;
3382 do {
3383 struct page *page;
3384 int len = PAGE_SIZE;
3385 if (sector_nr + (len>>9) > max_sector)
3386 len = (max_sector - sector_nr) << 9;
3387 if (len == 0)
3388 break;
3389 for (bio= biolist ; bio ; bio=bio->bi_next) {
3390 struct bio *bio2;
3391 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3392 if (bio_add_page(bio, page, len, 0))
3393 continue;
3395 /* stop here */
3396 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3397 for (bio2 = biolist;
3398 bio2 && bio2 != bio;
3399 bio2 = bio2->bi_next) {
3400 /* remove last page from this bio */
3401 bio2->bi_vcnt--;
3402 bio2->bi_size -= len;
3403 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3405 goto bio_full;
3407 nr_sectors += len>>9;
3408 sector_nr += len>>9;
3409 } while (biolist->bi_vcnt < RESYNC_PAGES);
3410 bio_full:
3411 r10_bio->sectors = nr_sectors;
3413 while (biolist) {
3414 bio = biolist;
3415 biolist = biolist->bi_next;
3417 bio->bi_next = NULL;
3418 r10_bio = bio->bi_private;
3419 r10_bio->sectors = nr_sectors;
3421 if (bio->bi_end_io == end_sync_read) {
3422 md_sync_acct(bio->bi_bdev, nr_sectors);
3423 set_bit(BIO_UPTODATE, &bio->bi_flags);
3424 generic_make_request(bio);
3428 if (sectors_skipped)
3429 /* pretend they weren't skipped, it makes
3430 * no important difference in this case
3432 md_done_sync(mddev, sectors_skipped, 1);
3434 return sectors_skipped + nr_sectors;
3435 giveup:
3436 /* There is nowhere to write, so all non-sync
3437 * drives must be failed or in resync, all drives
3438 * have a bad block, so try the next chunk...
3440 if (sector_nr + max_sync < max_sector)
3441 max_sector = sector_nr + max_sync;
3443 sectors_skipped += (max_sector - sector_nr);
3444 chunks_skipped ++;
3445 sector_nr = max_sector;
3446 goto skipped;
3449 static sector_t
3450 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3452 sector_t size;
3453 struct r10conf *conf = mddev->private;
3455 if (!raid_disks)
3456 raid_disks = min(conf->geo.raid_disks,
3457 conf->prev.raid_disks);
3458 if (!sectors)
3459 sectors = conf->dev_sectors;
3461 size = sectors >> conf->geo.chunk_shift;
3462 sector_div(size, conf->geo.far_copies);
3463 size = size * raid_disks;
3464 sector_div(size, conf->geo.near_copies);
3466 return size << conf->geo.chunk_shift;
3469 static void calc_sectors(struct r10conf *conf, sector_t size)
3471 /* Calculate the number of sectors-per-device that will
3472 * actually be used, and set conf->dev_sectors and
3473 * conf->stride
3476 size = size >> conf->geo.chunk_shift;
3477 sector_div(size, conf->geo.far_copies);
3478 size = size * conf->geo.raid_disks;
3479 sector_div(size, conf->geo.near_copies);
3480 /* 'size' is now the number of chunks in the array */
3481 /* calculate "used chunks per device" */
3482 size = size * conf->copies;
3484 /* We need to round up when dividing by raid_disks to
3485 * get the stride size.
3487 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3489 conf->dev_sectors = size << conf->geo.chunk_shift;
3491 if (conf->geo.far_offset)
3492 conf->geo.stride = 1 << conf->geo.chunk_shift;
3493 else {
3494 sector_div(size, conf->geo.far_copies);
3495 conf->geo.stride = size << conf->geo.chunk_shift;
3499 enum geo_type {geo_new, geo_old, geo_start};
3500 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3502 int nc, fc, fo;
3503 int layout, chunk, disks;
3504 switch (new) {
3505 case geo_old:
3506 layout = mddev->layout;
3507 chunk = mddev->chunk_sectors;
3508 disks = mddev->raid_disks - mddev->delta_disks;
3509 break;
3510 case geo_new:
3511 layout = mddev->new_layout;
3512 chunk = mddev->new_chunk_sectors;
3513 disks = mddev->raid_disks;
3514 break;
3515 default: /* avoid 'may be unused' warnings */
3516 case geo_start: /* new when starting reshape - raid_disks not
3517 * updated yet. */
3518 layout = mddev->new_layout;
3519 chunk = mddev->new_chunk_sectors;
3520 disks = mddev->raid_disks + mddev->delta_disks;
3521 break;
3523 if (layout >> 18)
3524 return -1;
3525 if (chunk < (PAGE_SIZE >> 9) ||
3526 !is_power_of_2(chunk))
3527 return -2;
3528 nc = layout & 255;
3529 fc = (layout >> 8) & 255;
3530 fo = layout & (1<<16);
3531 geo->raid_disks = disks;
3532 geo->near_copies = nc;
3533 geo->far_copies = fc;
3534 geo->far_offset = fo;
3535 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3536 geo->chunk_mask = chunk - 1;
3537 geo->chunk_shift = ffz(~chunk);
3538 return nc*fc;
3541 static struct r10conf *setup_conf(struct mddev *mddev)
3543 struct r10conf *conf = NULL;
3544 int err = -EINVAL;
3545 struct geom geo;
3546 int copies;
3548 copies = setup_geo(&geo, mddev, geo_new);
3550 if (copies == -2) {
3551 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3552 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3553 mdname(mddev), PAGE_SIZE);
3554 goto out;
3557 if (copies < 2 || copies > mddev->raid_disks) {
3558 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3559 mdname(mddev), mddev->new_layout);
3560 goto out;
3563 err = -ENOMEM;
3564 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3565 if (!conf)
3566 goto out;
3568 /* FIXME calc properly */
3569 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3570 max(0,-mddev->delta_disks)),
3571 GFP_KERNEL);
3572 if (!conf->mirrors)
3573 goto out;
3575 conf->tmppage = alloc_page(GFP_KERNEL);
3576 if (!conf->tmppage)
3577 goto out;
3579 conf->geo = geo;
3580 conf->copies = copies;
3581 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3582 r10bio_pool_free, conf);
3583 if (!conf->r10bio_pool)
3584 goto out;
3586 calc_sectors(conf, mddev->dev_sectors);
3587 if (mddev->reshape_position == MaxSector) {
3588 conf->prev = conf->geo;
3589 conf->reshape_progress = MaxSector;
3590 } else {
3591 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3592 err = -EINVAL;
3593 goto out;
3595 conf->reshape_progress = mddev->reshape_position;
3596 if (conf->prev.far_offset)
3597 conf->prev.stride = 1 << conf->prev.chunk_shift;
3598 else
3599 /* far_copies must be 1 */
3600 conf->prev.stride = conf->dev_sectors;
3602 spin_lock_init(&conf->device_lock);
3603 INIT_LIST_HEAD(&conf->retry_list);
3605 spin_lock_init(&conf->resync_lock);
3606 init_waitqueue_head(&conf->wait_barrier);
3608 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3609 if (!conf->thread)
3610 goto out;
3612 conf->mddev = mddev;
3613 return conf;
3615 out:
3616 if (err == -ENOMEM)
3617 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3618 mdname(mddev));
3619 if (conf) {
3620 if (conf->r10bio_pool)
3621 mempool_destroy(conf->r10bio_pool);
3622 kfree(conf->mirrors);
3623 safe_put_page(conf->tmppage);
3624 kfree(conf);
3626 return ERR_PTR(err);
3629 static int run(struct mddev *mddev)
3631 struct r10conf *conf;
3632 int i, disk_idx, chunk_size;
3633 struct raid10_info *disk;
3634 struct md_rdev *rdev;
3635 sector_t size;
3636 sector_t min_offset_diff = 0;
3637 int first = 1;
3638 bool discard_supported = false;
3640 if (mddev->private == NULL) {
3641 conf = setup_conf(mddev);
3642 if (IS_ERR(conf))
3643 return PTR_ERR(conf);
3644 mddev->private = conf;
3646 conf = mddev->private;
3647 if (!conf)
3648 goto out;
3650 mddev->thread = conf->thread;
3651 conf->thread = NULL;
3653 chunk_size = mddev->chunk_sectors << 9;
3654 if (mddev->queue) {
3655 blk_queue_max_discard_sectors(mddev->queue,
3656 mddev->chunk_sectors);
3657 blk_queue_max_write_same_sectors(mddev->queue, 0);
3658 blk_queue_io_min(mddev->queue, chunk_size);
3659 if (conf->geo.raid_disks % conf->geo.near_copies)
3660 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3661 else
3662 blk_queue_io_opt(mddev->queue, chunk_size *
3663 (conf->geo.raid_disks / conf->geo.near_copies));
3666 rdev_for_each(rdev, mddev) {
3667 long long diff;
3668 struct request_queue *q;
3670 disk_idx = rdev->raid_disk;
3671 if (disk_idx < 0)
3672 continue;
3673 if (disk_idx >= conf->geo.raid_disks &&
3674 disk_idx >= conf->prev.raid_disks)
3675 continue;
3676 disk = conf->mirrors + disk_idx;
3678 if (test_bit(Replacement, &rdev->flags)) {
3679 if (disk->replacement)
3680 goto out_free_conf;
3681 disk->replacement = rdev;
3682 } else {
3683 if (disk->rdev)
3684 goto out_free_conf;
3685 disk->rdev = rdev;
3687 q = bdev_get_queue(rdev->bdev);
3688 if (q->merge_bvec_fn)
3689 mddev->merge_check_needed = 1;
3690 diff = (rdev->new_data_offset - rdev->data_offset);
3691 if (!mddev->reshape_backwards)
3692 diff = -diff;
3693 if (diff < 0)
3694 diff = 0;
3695 if (first || diff < min_offset_diff)
3696 min_offset_diff = diff;
3698 if (mddev->gendisk)
3699 disk_stack_limits(mddev->gendisk, rdev->bdev,
3700 rdev->data_offset << 9);
3702 disk->head_position = 0;
3704 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3705 discard_supported = true;
3708 if (mddev->queue) {
3709 if (discard_supported)
3710 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3711 mddev->queue);
3712 else
3713 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3714 mddev->queue);
3716 /* need to check that every block has at least one working mirror */
3717 if (!enough(conf, -1)) {
3718 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3719 mdname(mddev));
3720 goto out_free_conf;
3723 if (conf->reshape_progress != MaxSector) {
3724 /* must ensure that shape change is supported */
3725 if (conf->geo.far_copies != 1 &&
3726 conf->geo.far_offset == 0)
3727 goto out_free_conf;
3728 if (conf->prev.far_copies != 1 &&
3729 conf->prev.far_offset == 0)
3730 goto out_free_conf;
3733 mddev->degraded = 0;
3734 for (i = 0;
3735 i < conf->geo.raid_disks
3736 || i < conf->prev.raid_disks;
3737 i++) {
3739 disk = conf->mirrors + i;
3741 if (!disk->rdev && disk->replacement) {
3742 /* The replacement is all we have - use it */
3743 disk->rdev = disk->replacement;
3744 disk->replacement = NULL;
3745 clear_bit(Replacement, &disk->rdev->flags);
3748 if (!disk->rdev ||
3749 !test_bit(In_sync, &disk->rdev->flags)) {
3750 disk->head_position = 0;
3751 mddev->degraded++;
3752 if (disk->rdev)
3753 conf->fullsync = 1;
3755 disk->recovery_disabled = mddev->recovery_disabled - 1;
3758 if (mddev->recovery_cp != MaxSector)
3759 printk(KERN_NOTICE "md/raid10:%s: not clean"
3760 " -- starting background reconstruction\n",
3761 mdname(mddev));
3762 printk(KERN_INFO
3763 "md/raid10:%s: active with %d out of %d devices\n",
3764 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3765 conf->geo.raid_disks);
3767 * Ok, everything is just fine now
3769 mddev->dev_sectors = conf->dev_sectors;
3770 size = raid10_size(mddev, 0, 0);
3771 md_set_array_sectors(mddev, size);
3772 mddev->resync_max_sectors = size;
3774 if (mddev->queue) {
3775 int stripe = conf->geo.raid_disks *
3776 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3777 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3778 mddev->queue->backing_dev_info.congested_data = mddev;
3780 /* Calculate max read-ahead size.
3781 * We need to readahead at least twice a whole stripe....
3782 * maybe...
3784 stripe /= conf->geo.near_copies;
3785 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3786 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3787 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3791 if (md_integrity_register(mddev))
3792 goto out_free_conf;
3794 if (conf->reshape_progress != MaxSector) {
3795 unsigned long before_length, after_length;
3797 before_length = ((1 << conf->prev.chunk_shift) *
3798 conf->prev.far_copies);
3799 after_length = ((1 << conf->geo.chunk_shift) *
3800 conf->geo.far_copies);
3802 if (max(before_length, after_length) > min_offset_diff) {
3803 /* This cannot work */
3804 printk("md/raid10: offset difference not enough to continue reshape\n");
3805 goto out_free_conf;
3807 conf->offset_diff = min_offset_diff;
3809 conf->reshape_safe = conf->reshape_progress;
3810 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3811 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3812 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3813 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3814 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3815 "reshape");
3818 return 0;
3820 out_free_conf:
3821 md_unregister_thread(&mddev->thread);
3822 if (conf->r10bio_pool)
3823 mempool_destroy(conf->r10bio_pool);
3824 safe_put_page(conf->tmppage);
3825 kfree(conf->mirrors);
3826 kfree(conf);
3827 mddev->private = NULL;
3828 out:
3829 return -EIO;
3832 static int stop(struct mddev *mddev)
3834 struct r10conf *conf = mddev->private;
3836 raise_barrier(conf, 0);
3837 lower_barrier(conf);
3839 md_unregister_thread(&mddev->thread);
3840 if (mddev->queue)
3841 /* the unplug fn references 'conf'*/
3842 blk_sync_queue(mddev->queue);
3844 if (conf->r10bio_pool)
3845 mempool_destroy(conf->r10bio_pool);
3846 safe_put_page(conf->tmppage);
3847 kfree(conf->mirrors);
3848 kfree(conf);
3849 mddev->private = NULL;
3850 return 0;
3853 static void raid10_quiesce(struct mddev *mddev, int state)
3855 struct r10conf *conf = mddev->private;
3857 switch(state) {
3858 case 1:
3859 raise_barrier(conf, 0);
3860 break;
3861 case 0:
3862 lower_barrier(conf);
3863 break;
3867 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3869 /* Resize of 'far' arrays is not supported.
3870 * For 'near' and 'offset' arrays we can set the
3871 * number of sectors used to be an appropriate multiple
3872 * of the chunk size.
3873 * For 'offset', this is far_copies*chunksize.
3874 * For 'near' the multiplier is the LCM of
3875 * near_copies and raid_disks.
3876 * So if far_copies > 1 && !far_offset, fail.
3877 * Else find LCM(raid_disks, near_copy)*far_copies and
3878 * multiply by chunk_size. Then round to this number.
3879 * This is mostly done by raid10_size()
3881 struct r10conf *conf = mddev->private;
3882 sector_t oldsize, size;
3884 if (mddev->reshape_position != MaxSector)
3885 return -EBUSY;
3887 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3888 return -EINVAL;
3890 oldsize = raid10_size(mddev, 0, 0);
3891 size = raid10_size(mddev, sectors, 0);
3892 if (mddev->external_size &&
3893 mddev->array_sectors > size)
3894 return -EINVAL;
3895 if (mddev->bitmap) {
3896 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3897 if (ret)
3898 return ret;
3900 md_set_array_sectors(mddev, size);
3901 set_capacity(mddev->gendisk, mddev->array_sectors);
3902 revalidate_disk(mddev->gendisk);
3903 if (sectors > mddev->dev_sectors &&
3904 mddev->recovery_cp > oldsize) {
3905 mddev->recovery_cp = oldsize;
3906 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3908 calc_sectors(conf, sectors);
3909 mddev->dev_sectors = conf->dev_sectors;
3910 mddev->resync_max_sectors = size;
3911 return 0;
3914 static void *raid10_takeover_raid0(struct mddev *mddev)
3916 struct md_rdev *rdev;
3917 struct r10conf *conf;
3919 if (mddev->degraded > 0) {
3920 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3921 mdname(mddev));
3922 return ERR_PTR(-EINVAL);
3925 /* Set new parameters */
3926 mddev->new_level = 10;
3927 /* new layout: far_copies = 1, near_copies = 2 */
3928 mddev->new_layout = (1<<8) + 2;
3929 mddev->new_chunk_sectors = mddev->chunk_sectors;
3930 mddev->delta_disks = mddev->raid_disks;
3931 mddev->raid_disks *= 2;
3932 /* make sure it will be not marked as dirty */
3933 mddev->recovery_cp = MaxSector;
3935 conf = setup_conf(mddev);
3936 if (!IS_ERR(conf)) {
3937 rdev_for_each(rdev, mddev)
3938 if (rdev->raid_disk >= 0)
3939 rdev->new_raid_disk = rdev->raid_disk * 2;
3940 conf->barrier = 1;
3943 return conf;
3946 static void *raid10_takeover(struct mddev *mddev)
3948 struct r0conf *raid0_conf;
3950 /* raid10 can take over:
3951 * raid0 - providing it has only two drives
3953 if (mddev->level == 0) {
3954 /* for raid0 takeover only one zone is supported */
3955 raid0_conf = mddev->private;
3956 if (raid0_conf->nr_strip_zones > 1) {
3957 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3958 " with more than one zone.\n",
3959 mdname(mddev));
3960 return ERR_PTR(-EINVAL);
3962 return raid10_takeover_raid0(mddev);
3964 return ERR_PTR(-EINVAL);
3967 static int raid10_check_reshape(struct mddev *mddev)
3969 /* Called when there is a request to change
3970 * - layout (to ->new_layout)
3971 * - chunk size (to ->new_chunk_sectors)
3972 * - raid_disks (by delta_disks)
3973 * or when trying to restart a reshape that was ongoing.
3975 * We need to validate the request and possibly allocate
3976 * space if that might be an issue later.
3978 * Currently we reject any reshape of a 'far' mode array,
3979 * allow chunk size to change if new is generally acceptable,
3980 * allow raid_disks to increase, and allow
3981 * a switch between 'near' mode and 'offset' mode.
3983 struct r10conf *conf = mddev->private;
3984 struct geom geo;
3986 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3987 return -EINVAL;
3989 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3990 /* mustn't change number of copies */
3991 return -EINVAL;
3992 if (geo.far_copies > 1 && !geo.far_offset)
3993 /* Cannot switch to 'far' mode */
3994 return -EINVAL;
3996 if (mddev->array_sectors & geo.chunk_mask)
3997 /* not factor of array size */
3998 return -EINVAL;
4000 if (!enough(conf, -1))
4001 return -EINVAL;
4003 kfree(conf->mirrors_new);
4004 conf->mirrors_new = NULL;
4005 if (mddev->delta_disks > 0) {
4006 /* allocate new 'mirrors' list */
4007 conf->mirrors_new = kzalloc(
4008 sizeof(struct raid10_info)
4009 *(mddev->raid_disks +
4010 mddev->delta_disks),
4011 GFP_KERNEL);
4012 if (!conf->mirrors_new)
4013 return -ENOMEM;
4015 return 0;
4019 * Need to check if array has failed when deciding whether to:
4020 * - start an array
4021 * - remove non-faulty devices
4022 * - add a spare
4023 * - allow a reshape
4024 * This determination is simple when no reshape is happening.
4025 * However if there is a reshape, we need to carefully check
4026 * both the before and after sections.
4027 * This is because some failed devices may only affect one
4028 * of the two sections, and some non-in_sync devices may
4029 * be insync in the section most affected by failed devices.
4031 static int calc_degraded(struct r10conf *conf)
4033 int degraded, degraded2;
4034 int i;
4036 rcu_read_lock();
4037 degraded = 0;
4038 /* 'prev' section first */
4039 for (i = 0; i < conf->prev.raid_disks; i++) {
4040 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4041 if (!rdev || test_bit(Faulty, &rdev->flags))
4042 degraded++;
4043 else if (!test_bit(In_sync, &rdev->flags))
4044 /* When we can reduce the number of devices in
4045 * an array, this might not contribute to
4046 * 'degraded'. It does now.
4048 degraded++;
4050 rcu_read_unlock();
4051 if (conf->geo.raid_disks == conf->prev.raid_disks)
4052 return degraded;
4053 rcu_read_lock();
4054 degraded2 = 0;
4055 for (i = 0; i < conf->geo.raid_disks; i++) {
4056 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4057 if (!rdev || test_bit(Faulty, &rdev->flags))
4058 degraded2++;
4059 else if (!test_bit(In_sync, &rdev->flags)) {
4060 /* If reshape is increasing the number of devices,
4061 * this section has already been recovered, so
4062 * it doesn't contribute to degraded.
4063 * else it does.
4065 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4066 degraded2++;
4069 rcu_read_unlock();
4070 if (degraded2 > degraded)
4071 return degraded2;
4072 return degraded;
4075 static int raid10_start_reshape(struct mddev *mddev)
4077 /* A 'reshape' has been requested. This commits
4078 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4079 * This also checks if there are enough spares and adds them
4080 * to the array.
4081 * We currently require enough spares to make the final
4082 * array non-degraded. We also require that the difference
4083 * between old and new data_offset - on each device - is
4084 * enough that we never risk over-writing.
4087 unsigned long before_length, after_length;
4088 sector_t min_offset_diff = 0;
4089 int first = 1;
4090 struct geom new;
4091 struct r10conf *conf = mddev->private;
4092 struct md_rdev *rdev;
4093 int spares = 0;
4094 int ret;
4096 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4097 return -EBUSY;
4099 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4100 return -EINVAL;
4102 before_length = ((1 << conf->prev.chunk_shift) *
4103 conf->prev.far_copies);
4104 after_length = ((1 << conf->geo.chunk_shift) *
4105 conf->geo.far_copies);
4107 rdev_for_each(rdev, mddev) {
4108 if (!test_bit(In_sync, &rdev->flags)
4109 && !test_bit(Faulty, &rdev->flags))
4110 spares++;
4111 if (rdev->raid_disk >= 0) {
4112 long long diff = (rdev->new_data_offset
4113 - rdev->data_offset);
4114 if (!mddev->reshape_backwards)
4115 diff = -diff;
4116 if (diff < 0)
4117 diff = 0;
4118 if (first || diff < min_offset_diff)
4119 min_offset_diff = diff;
4123 if (max(before_length, after_length) > min_offset_diff)
4124 return -EINVAL;
4126 if (spares < mddev->delta_disks)
4127 return -EINVAL;
4129 conf->offset_diff = min_offset_diff;
4130 spin_lock_irq(&conf->device_lock);
4131 if (conf->mirrors_new) {
4132 memcpy(conf->mirrors_new, conf->mirrors,
4133 sizeof(struct raid10_info)*conf->prev.raid_disks);
4134 smp_mb();
4135 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4136 conf->mirrors_old = conf->mirrors;
4137 conf->mirrors = conf->mirrors_new;
4138 conf->mirrors_new = NULL;
4140 setup_geo(&conf->geo, mddev, geo_start);
4141 smp_mb();
4142 if (mddev->reshape_backwards) {
4143 sector_t size = raid10_size(mddev, 0, 0);
4144 if (size < mddev->array_sectors) {
4145 spin_unlock_irq(&conf->device_lock);
4146 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4147 mdname(mddev));
4148 return -EINVAL;
4150 mddev->resync_max_sectors = size;
4151 conf->reshape_progress = size;
4152 } else
4153 conf->reshape_progress = 0;
4154 spin_unlock_irq(&conf->device_lock);
4156 if (mddev->delta_disks && mddev->bitmap) {
4157 ret = bitmap_resize(mddev->bitmap,
4158 raid10_size(mddev, 0,
4159 conf->geo.raid_disks),
4160 0, 0);
4161 if (ret)
4162 goto abort;
4164 if (mddev->delta_disks > 0) {
4165 rdev_for_each(rdev, mddev)
4166 if (rdev->raid_disk < 0 &&
4167 !test_bit(Faulty, &rdev->flags)) {
4168 if (raid10_add_disk(mddev, rdev) == 0) {
4169 if (rdev->raid_disk >=
4170 conf->prev.raid_disks)
4171 set_bit(In_sync, &rdev->flags);
4172 else
4173 rdev->recovery_offset = 0;
4175 if (sysfs_link_rdev(mddev, rdev))
4176 /* Failure here is OK */;
4178 } else if (rdev->raid_disk >= conf->prev.raid_disks
4179 && !test_bit(Faulty, &rdev->flags)) {
4180 /* This is a spare that was manually added */
4181 set_bit(In_sync, &rdev->flags);
4184 /* When a reshape changes the number of devices,
4185 * ->degraded is measured against the larger of the
4186 * pre and post numbers.
4188 spin_lock_irq(&conf->device_lock);
4189 mddev->degraded = calc_degraded(conf);
4190 spin_unlock_irq(&conf->device_lock);
4191 mddev->raid_disks = conf->geo.raid_disks;
4192 mddev->reshape_position = conf->reshape_progress;
4193 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4195 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4196 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4197 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4198 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4200 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4201 "reshape");
4202 if (!mddev->sync_thread) {
4203 ret = -EAGAIN;
4204 goto abort;
4206 conf->reshape_checkpoint = jiffies;
4207 md_wakeup_thread(mddev->sync_thread);
4208 md_new_event(mddev);
4209 return 0;
4211 abort:
4212 mddev->recovery = 0;
4213 spin_lock_irq(&conf->device_lock);
4214 conf->geo = conf->prev;
4215 mddev->raid_disks = conf->geo.raid_disks;
4216 rdev_for_each(rdev, mddev)
4217 rdev->new_data_offset = rdev->data_offset;
4218 smp_wmb();
4219 conf->reshape_progress = MaxSector;
4220 mddev->reshape_position = MaxSector;
4221 spin_unlock_irq(&conf->device_lock);
4222 return ret;
4225 /* Calculate the last device-address that could contain
4226 * any block from the chunk that includes the array-address 's'
4227 * and report the next address.
4228 * i.e. the address returned will be chunk-aligned and after
4229 * any data that is in the chunk containing 's'.
4231 static sector_t last_dev_address(sector_t s, struct geom *geo)
4233 s = (s | geo->chunk_mask) + 1;
4234 s >>= geo->chunk_shift;
4235 s *= geo->near_copies;
4236 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4237 s *= geo->far_copies;
4238 s <<= geo->chunk_shift;
4239 return s;
4242 /* Calculate the first device-address that could contain
4243 * any block from the chunk that includes the array-address 's'.
4244 * This too will be the start of a chunk
4246 static sector_t first_dev_address(sector_t s, struct geom *geo)
4248 s >>= geo->chunk_shift;
4249 s *= geo->near_copies;
4250 sector_div(s, geo->raid_disks);
4251 s *= geo->far_copies;
4252 s <<= geo->chunk_shift;
4253 return s;
4256 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4257 int *skipped)
4259 /* We simply copy at most one chunk (smallest of old and new)
4260 * at a time, possibly less if that exceeds RESYNC_PAGES,
4261 * or we hit a bad block or something.
4262 * This might mean we pause for normal IO in the middle of
4263 * a chunk, but that is not a problem was mddev->reshape_position
4264 * can record any location.
4266 * If we will want to write to a location that isn't
4267 * yet recorded as 'safe' (i.e. in metadata on disk) then
4268 * we need to flush all reshape requests and update the metadata.
4270 * When reshaping forwards (e.g. to more devices), we interpret
4271 * 'safe' as the earliest block which might not have been copied
4272 * down yet. We divide this by previous stripe size and multiply
4273 * by previous stripe length to get lowest device offset that we
4274 * cannot write to yet.
4275 * We interpret 'sector_nr' as an address that we want to write to.
4276 * From this we use last_device_address() to find where we might
4277 * write to, and first_device_address on the 'safe' position.
4278 * If this 'next' write position is after the 'safe' position,
4279 * we must update the metadata to increase the 'safe' position.
4281 * When reshaping backwards, we round in the opposite direction
4282 * and perform the reverse test: next write position must not be
4283 * less than current safe position.
4285 * In all this the minimum difference in data offsets
4286 * (conf->offset_diff - always positive) allows a bit of slack,
4287 * so next can be after 'safe', but not by more than offset_disk
4289 * We need to prepare all the bios here before we start any IO
4290 * to ensure the size we choose is acceptable to all devices.
4291 * The means one for each copy for write-out and an extra one for
4292 * read-in.
4293 * We store the read-in bio in ->master_bio and the others in
4294 * ->devs[x].bio and ->devs[x].repl_bio.
4296 struct r10conf *conf = mddev->private;
4297 struct r10bio *r10_bio;
4298 sector_t next, safe, last;
4299 int max_sectors;
4300 int nr_sectors;
4301 int s;
4302 struct md_rdev *rdev;
4303 int need_flush = 0;
4304 struct bio *blist;
4305 struct bio *bio, *read_bio;
4306 int sectors_done = 0;
4308 if (sector_nr == 0) {
4309 /* If restarting in the middle, skip the initial sectors */
4310 if (mddev->reshape_backwards &&
4311 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4312 sector_nr = (raid10_size(mddev, 0, 0)
4313 - conf->reshape_progress);
4314 } else if (!mddev->reshape_backwards &&
4315 conf->reshape_progress > 0)
4316 sector_nr = conf->reshape_progress;
4317 if (sector_nr) {
4318 mddev->curr_resync_completed = sector_nr;
4319 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4320 *skipped = 1;
4321 return sector_nr;
4325 /* We don't use sector_nr to track where we are up to
4326 * as that doesn't work well for ->reshape_backwards.
4327 * So just use ->reshape_progress.
4329 if (mddev->reshape_backwards) {
4330 /* 'next' is the earliest device address that we might
4331 * write to for this chunk in the new layout
4333 next = first_dev_address(conf->reshape_progress - 1,
4334 &conf->geo);
4336 /* 'safe' is the last device address that we might read from
4337 * in the old layout after a restart
4339 safe = last_dev_address(conf->reshape_safe - 1,
4340 &conf->prev);
4342 if (next + conf->offset_diff < safe)
4343 need_flush = 1;
4345 last = conf->reshape_progress - 1;
4346 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4347 & conf->prev.chunk_mask);
4348 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4349 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4350 } else {
4351 /* 'next' is after the last device address that we
4352 * might write to for this chunk in the new layout
4354 next = last_dev_address(conf->reshape_progress, &conf->geo);
4356 /* 'safe' is the earliest device address that we might
4357 * read from in the old layout after a restart
4359 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4361 /* Need to update metadata if 'next' might be beyond 'safe'
4362 * as that would possibly corrupt data
4364 if (next > safe + conf->offset_diff)
4365 need_flush = 1;
4367 sector_nr = conf->reshape_progress;
4368 last = sector_nr | (conf->geo.chunk_mask
4369 & conf->prev.chunk_mask);
4371 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4372 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4375 if (need_flush ||
4376 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4377 /* Need to update reshape_position in metadata */
4378 wait_barrier(conf);
4379 mddev->reshape_position = conf->reshape_progress;
4380 if (mddev->reshape_backwards)
4381 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4382 - conf->reshape_progress;
4383 else
4384 mddev->curr_resync_completed = conf->reshape_progress;
4385 conf->reshape_checkpoint = jiffies;
4386 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4387 md_wakeup_thread(mddev->thread);
4388 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4389 kthread_should_stop());
4390 conf->reshape_safe = mddev->reshape_position;
4391 allow_barrier(conf);
4394 read_more:
4395 /* Now schedule reads for blocks from sector_nr to last */
4396 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4397 raise_barrier(conf, sectors_done != 0);
4398 atomic_set(&r10_bio->remaining, 0);
4399 r10_bio->mddev = mddev;
4400 r10_bio->sector = sector_nr;
4401 set_bit(R10BIO_IsReshape, &r10_bio->state);
4402 r10_bio->sectors = last - sector_nr + 1;
4403 rdev = read_balance(conf, r10_bio, &max_sectors);
4404 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4406 if (!rdev) {
4407 /* Cannot read from here, so need to record bad blocks
4408 * on all the target devices.
4410 // FIXME
4411 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4412 return sectors_done;
4415 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4417 read_bio->bi_bdev = rdev->bdev;
4418 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4419 + rdev->data_offset);
4420 read_bio->bi_private = r10_bio;
4421 read_bio->bi_end_io = end_sync_read;
4422 read_bio->bi_rw = READ;
4423 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4424 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4425 read_bio->bi_vcnt = 0;
4426 read_bio->bi_size = 0;
4427 r10_bio->master_bio = read_bio;
4428 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4430 /* Now find the locations in the new layout */
4431 __raid10_find_phys(&conf->geo, r10_bio);
4433 blist = read_bio;
4434 read_bio->bi_next = NULL;
4436 for (s = 0; s < conf->copies*2; s++) {
4437 struct bio *b;
4438 int d = r10_bio->devs[s/2].devnum;
4439 struct md_rdev *rdev2;
4440 if (s&1) {
4441 rdev2 = conf->mirrors[d].replacement;
4442 b = r10_bio->devs[s/2].repl_bio;
4443 } else {
4444 rdev2 = conf->mirrors[d].rdev;
4445 b = r10_bio->devs[s/2].bio;
4447 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4448 continue;
4450 bio_reset(b);
4451 b->bi_bdev = rdev2->bdev;
4452 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4453 b->bi_private = r10_bio;
4454 b->bi_end_io = end_reshape_write;
4455 b->bi_rw = WRITE;
4456 b->bi_next = blist;
4457 blist = b;
4460 /* Now add as many pages as possible to all of these bios. */
4462 nr_sectors = 0;
4463 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4464 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4465 int len = (max_sectors - s) << 9;
4466 if (len > PAGE_SIZE)
4467 len = PAGE_SIZE;
4468 for (bio = blist; bio ; bio = bio->bi_next) {
4469 struct bio *bio2;
4470 if (bio_add_page(bio, page, len, 0))
4471 continue;
4473 /* Didn't fit, must stop */
4474 for (bio2 = blist;
4475 bio2 && bio2 != bio;
4476 bio2 = bio2->bi_next) {
4477 /* Remove last page from this bio */
4478 bio2->bi_vcnt--;
4479 bio2->bi_size -= len;
4480 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4482 goto bio_full;
4484 sector_nr += len >> 9;
4485 nr_sectors += len >> 9;
4487 bio_full:
4488 r10_bio->sectors = nr_sectors;
4490 /* Now submit the read */
4491 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4492 atomic_inc(&r10_bio->remaining);
4493 read_bio->bi_next = NULL;
4494 generic_make_request(read_bio);
4495 sector_nr += nr_sectors;
4496 sectors_done += nr_sectors;
4497 if (sector_nr <= last)
4498 goto read_more;
4500 /* Now that we have done the whole section we can
4501 * update reshape_progress
4503 if (mddev->reshape_backwards)
4504 conf->reshape_progress -= sectors_done;
4505 else
4506 conf->reshape_progress += sectors_done;
4508 return sectors_done;
4511 static void end_reshape_request(struct r10bio *r10_bio);
4512 static int handle_reshape_read_error(struct mddev *mddev,
4513 struct r10bio *r10_bio);
4514 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4516 /* Reshape read completed. Hopefully we have a block
4517 * to write out.
4518 * If we got a read error then we do sync 1-page reads from
4519 * elsewhere until we find the data - or give up.
4521 struct r10conf *conf = mddev->private;
4522 int s;
4524 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4525 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4526 /* Reshape has been aborted */
4527 md_done_sync(mddev, r10_bio->sectors, 0);
4528 return;
4531 /* We definitely have the data in the pages, schedule the
4532 * writes.
4534 atomic_set(&r10_bio->remaining, 1);
4535 for (s = 0; s < conf->copies*2; s++) {
4536 struct bio *b;
4537 int d = r10_bio->devs[s/2].devnum;
4538 struct md_rdev *rdev;
4539 if (s&1) {
4540 rdev = conf->mirrors[d].replacement;
4541 b = r10_bio->devs[s/2].repl_bio;
4542 } else {
4543 rdev = conf->mirrors[d].rdev;
4544 b = r10_bio->devs[s/2].bio;
4546 if (!rdev || test_bit(Faulty, &rdev->flags))
4547 continue;
4548 atomic_inc(&rdev->nr_pending);
4549 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4550 atomic_inc(&r10_bio->remaining);
4551 b->bi_next = NULL;
4552 generic_make_request(b);
4554 end_reshape_request(r10_bio);
4557 static void end_reshape(struct r10conf *conf)
4559 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4560 return;
4562 spin_lock_irq(&conf->device_lock);
4563 conf->prev = conf->geo;
4564 md_finish_reshape(conf->mddev);
4565 smp_wmb();
4566 conf->reshape_progress = MaxSector;
4567 spin_unlock_irq(&conf->device_lock);
4569 /* read-ahead size must cover two whole stripes, which is
4570 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4572 if (conf->mddev->queue) {
4573 int stripe = conf->geo.raid_disks *
4574 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4575 stripe /= conf->geo.near_copies;
4576 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4577 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4579 conf->fullsync = 0;
4583 static int handle_reshape_read_error(struct mddev *mddev,
4584 struct r10bio *r10_bio)
4586 /* Use sync reads to get the blocks from somewhere else */
4587 int sectors = r10_bio->sectors;
4588 struct r10conf *conf = mddev->private;
4589 struct {
4590 struct r10bio r10_bio;
4591 struct r10dev devs[conf->copies];
4592 } on_stack;
4593 struct r10bio *r10b = &on_stack.r10_bio;
4594 int slot = 0;
4595 int idx = 0;
4596 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4598 r10b->sector = r10_bio->sector;
4599 __raid10_find_phys(&conf->prev, r10b);
4601 while (sectors) {
4602 int s = sectors;
4603 int success = 0;
4604 int first_slot = slot;
4606 if (s > (PAGE_SIZE >> 9))
4607 s = PAGE_SIZE >> 9;
4609 while (!success) {
4610 int d = r10b->devs[slot].devnum;
4611 struct md_rdev *rdev = conf->mirrors[d].rdev;
4612 sector_t addr;
4613 if (rdev == NULL ||
4614 test_bit(Faulty, &rdev->flags) ||
4615 !test_bit(In_sync, &rdev->flags))
4616 goto failed;
4618 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4619 success = sync_page_io(rdev,
4620 addr,
4621 s << 9,
4622 bvec[idx].bv_page,
4623 READ, false);
4624 if (success)
4625 break;
4626 failed:
4627 slot++;
4628 if (slot >= conf->copies)
4629 slot = 0;
4630 if (slot == first_slot)
4631 break;
4633 if (!success) {
4634 /* couldn't read this block, must give up */
4635 set_bit(MD_RECOVERY_INTR,
4636 &mddev->recovery);
4637 return -EIO;
4639 sectors -= s;
4640 idx++;
4642 return 0;
4645 static void end_reshape_write(struct bio *bio, int error)
4647 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4648 struct r10bio *r10_bio = bio->bi_private;
4649 struct mddev *mddev = r10_bio->mddev;
4650 struct r10conf *conf = mddev->private;
4651 int d;
4652 int slot;
4653 int repl;
4654 struct md_rdev *rdev = NULL;
4656 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4657 if (repl)
4658 rdev = conf->mirrors[d].replacement;
4659 if (!rdev) {
4660 smp_mb();
4661 rdev = conf->mirrors[d].rdev;
4664 if (!uptodate) {
4665 /* FIXME should record badblock */
4666 md_error(mddev, rdev);
4669 rdev_dec_pending(rdev, mddev);
4670 end_reshape_request(r10_bio);
4673 static void end_reshape_request(struct r10bio *r10_bio)
4675 if (!atomic_dec_and_test(&r10_bio->remaining))
4676 return;
4677 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4678 bio_put(r10_bio->master_bio);
4679 put_buf(r10_bio);
4682 static void raid10_finish_reshape(struct mddev *mddev)
4684 struct r10conf *conf = mddev->private;
4686 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4687 return;
4689 if (mddev->delta_disks > 0) {
4690 sector_t size = raid10_size(mddev, 0, 0);
4691 md_set_array_sectors(mddev, size);
4692 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4693 mddev->recovery_cp = mddev->resync_max_sectors;
4694 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4696 mddev->resync_max_sectors = size;
4697 set_capacity(mddev->gendisk, mddev->array_sectors);
4698 revalidate_disk(mddev->gendisk);
4699 } else {
4700 int d;
4701 for (d = conf->geo.raid_disks ;
4702 d < conf->geo.raid_disks - mddev->delta_disks;
4703 d++) {
4704 struct md_rdev *rdev = conf->mirrors[d].rdev;
4705 if (rdev)
4706 clear_bit(In_sync, &rdev->flags);
4707 rdev = conf->mirrors[d].replacement;
4708 if (rdev)
4709 clear_bit(In_sync, &rdev->flags);
4712 mddev->layout = mddev->new_layout;
4713 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4714 mddev->reshape_position = MaxSector;
4715 mddev->delta_disks = 0;
4716 mddev->reshape_backwards = 0;
4719 static struct md_personality raid10_personality =
4721 .name = "raid10",
4722 .level = 10,
4723 .owner = THIS_MODULE,
4724 .make_request = make_request,
4725 .run = run,
4726 .stop = stop,
4727 .status = status,
4728 .error_handler = error,
4729 .hot_add_disk = raid10_add_disk,
4730 .hot_remove_disk= raid10_remove_disk,
4731 .spare_active = raid10_spare_active,
4732 .sync_request = sync_request,
4733 .quiesce = raid10_quiesce,
4734 .size = raid10_size,
4735 .resize = raid10_resize,
4736 .takeover = raid10_takeover,
4737 .check_reshape = raid10_check_reshape,
4738 .start_reshape = raid10_start_reshape,
4739 .finish_reshape = raid10_finish_reshape,
4742 static int __init raid_init(void)
4744 return register_md_personality(&raid10_personality);
4747 static void raid_exit(void)
4749 unregister_md_personality(&raid10_personality);
4752 module_init(raid_init);
4753 module_exit(raid_exit);
4754 MODULE_LICENSE("GPL");
4755 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4756 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4757 MODULE_ALIAS("md-raid10");
4758 MODULE_ALIAS("md-level-10");
4760 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);