x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / misc / vmw_vmci / vmci_queue_pair.c
bloba0515a6d6ebdbcf1438e4e8c544d879fc478e08a
1 /*
2 * VMware VMCI Driver
4 * Copyright (C) 2012 VMware, Inc. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation version 2 and no later version.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
31 #include "vmci_handle_array.h"
32 #include "vmci_queue_pair.h"
33 #include "vmci_datagram.h"
34 #include "vmci_resource.h"
35 #include "vmci_context.h"
36 #include "vmci_driver.h"
37 #include "vmci_event.h"
38 #include "vmci_route.h"
41 * In the following, we will distinguish between two kinds of VMX processes -
42 * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
43 * VMCI page files in the VMX and supporting VM to VM communication and the
44 * newer ones that use the guest memory directly. We will in the following
45 * refer to the older VMX versions as old-style VMX'en, and the newer ones as
46 * new-style VMX'en.
48 * The state transition datagram is as follows (the VMCIQPB_ prefix has been
49 * removed for readability) - see below for more details on the transtions:
51 * -------------- NEW -------------
52 * | |
53 * \_/ \_/
54 * CREATED_NO_MEM <-----------------> CREATED_MEM
55 * | | |
56 * | o-----------------------o |
57 * | | |
58 * \_/ \_/ \_/
59 * ATTACHED_NO_MEM <----------------> ATTACHED_MEM
60 * | | |
61 * | o----------------------o |
62 * | | |
63 * \_/ \_/ \_/
64 * SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
65 * | |
66 * | |
67 * -------------> gone <-------------
69 * In more detail. When a VMCI queue pair is first created, it will be in the
70 * VMCIQPB_NEW state. It will then move into one of the following states:
72 * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
74 * - the created was performed by a host endpoint, in which case there is
75 * no backing memory yet.
77 * - the create was initiated by an old-style VMX, that uses
78 * vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
79 * a later point in time. This state can be distinguished from the one
80 * above by the context ID of the creator. A host side is not allowed to
81 * attach until the page store has been set.
83 * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
84 * is created by a VMX using the queue pair device backend that
85 * sets the UVAs of the queue pair immediately and stores the
86 * information for later attachers. At this point, it is ready for
87 * the host side to attach to it.
89 * Once the queue pair is in one of the created states (with the exception of
90 * the case mentioned for older VMX'en above), it is possible to attach to the
91 * queue pair. Again we have two new states possible:
93 * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
94 * paths:
96 * - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
97 * pair, and attaches to a queue pair previously created by the host side.
99 * - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
100 * already created by a guest.
102 * - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
103 * vmci_qp_broker_set_page_store (see below).
105 * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
106 * VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
107 * bring the queue pair into this state. Once vmci_qp_broker_set_page_store
108 * is called to register the user memory, the VMCIQPB_ATTACH_MEM state
109 * will be entered.
111 * From the attached queue pair, the queue pair can enter the shutdown states
112 * when either side of the queue pair detaches. If the guest side detaches
113 * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
114 * the content of the queue pair will no longer be available. If the host
115 * side detaches first, the queue pair will either enter the
116 * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
117 * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
118 * (e.g., the host detaches while a guest is stunned).
120 * New-style VMX'en will also unmap guest memory, if the guest is
121 * quiesced, e.g., during a snapshot operation. In that case, the guest
122 * memory will no longer be available, and the queue pair will transition from
123 * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
124 * in which case the queue pair will transition from the *_NO_MEM state at that
125 * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
126 * since the peer may have either attached or detached in the meantime. The
127 * values are laid out such that ++ on a state will move from a *_NO_MEM to a
128 * *_MEM state, and vice versa.
132 * VMCIMemcpy{To,From}QueueFunc() prototypes. Functions of these
133 * types are passed around to enqueue and dequeue routines. Note that
134 * often the functions passed are simply wrappers around memcpy
135 * itself.
137 * Note: In order for the memcpy typedefs to be compatible with the VMKernel,
138 * there's an unused last parameter for the hosted side. In
139 * ESX, that parameter holds a buffer type.
141 typedef int vmci_memcpy_to_queue_func(struct vmci_queue *queue,
142 u64 queue_offset, const void *src,
143 size_t src_offset, size_t size);
144 typedef int vmci_memcpy_from_queue_func(void *dest, size_t dest_offset,
145 const struct vmci_queue *queue,
146 u64 queue_offset, size_t size);
148 /* The Kernel specific component of the struct vmci_queue structure. */
149 struct vmci_queue_kern_if {
150 struct mutex __mutex; /* Protects the queue. */
151 struct mutex *mutex; /* Shared by producer and consumer queues. */
152 size_t num_pages; /* Number of pages incl. header. */
153 bool host; /* Host or guest? */
154 union {
155 struct {
156 dma_addr_t *pas;
157 void **vas;
158 } g; /* Used by the guest. */
159 struct {
160 struct page **page;
161 struct page **header_page;
162 } h; /* Used by the host. */
163 } u;
167 * This structure is opaque to the clients.
169 struct vmci_qp {
170 struct vmci_handle handle;
171 struct vmci_queue *produce_q;
172 struct vmci_queue *consume_q;
173 u64 produce_q_size;
174 u64 consume_q_size;
175 u32 peer;
176 u32 flags;
177 u32 priv_flags;
178 bool guest_endpoint;
179 unsigned int blocked;
180 unsigned int generation;
181 wait_queue_head_t event;
184 enum qp_broker_state {
185 VMCIQPB_NEW,
186 VMCIQPB_CREATED_NO_MEM,
187 VMCIQPB_CREATED_MEM,
188 VMCIQPB_ATTACHED_NO_MEM,
189 VMCIQPB_ATTACHED_MEM,
190 VMCIQPB_SHUTDOWN_NO_MEM,
191 VMCIQPB_SHUTDOWN_MEM,
192 VMCIQPB_GONE
195 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
196 _qpb->state == VMCIQPB_ATTACHED_MEM || \
197 _qpb->state == VMCIQPB_SHUTDOWN_MEM)
200 * In the queue pair broker, we always use the guest point of view for
201 * the produce and consume queue values and references, e.g., the
202 * produce queue size stored is the guests produce queue size. The
203 * host endpoint will need to swap these around. The only exception is
204 * the local queue pairs on the host, in which case the host endpoint
205 * that creates the queue pair will have the right orientation, and
206 * the attaching host endpoint will need to swap.
208 struct qp_entry {
209 struct list_head list_item;
210 struct vmci_handle handle;
211 u32 peer;
212 u32 flags;
213 u64 produce_size;
214 u64 consume_size;
215 u32 ref_count;
218 struct qp_broker_entry {
219 struct vmci_resource resource;
220 struct qp_entry qp;
221 u32 create_id;
222 u32 attach_id;
223 enum qp_broker_state state;
224 bool require_trusted_attach;
225 bool created_by_trusted;
226 bool vmci_page_files; /* Created by VMX using VMCI page files */
227 struct vmci_queue *produce_q;
228 struct vmci_queue *consume_q;
229 struct vmci_queue_header saved_produce_q;
230 struct vmci_queue_header saved_consume_q;
231 vmci_event_release_cb wakeup_cb;
232 void *client_data;
233 void *local_mem; /* Kernel memory for local queue pair */
236 struct qp_guest_endpoint {
237 struct vmci_resource resource;
238 struct qp_entry qp;
239 u64 num_ppns;
240 void *produce_q;
241 void *consume_q;
242 struct ppn_set ppn_set;
245 struct qp_list {
246 struct list_head head;
247 struct mutex mutex; /* Protect queue list. */
250 static struct qp_list qp_broker_list = {
251 .head = LIST_HEAD_INIT(qp_broker_list.head),
252 .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
255 static struct qp_list qp_guest_endpoints = {
256 .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
257 .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
260 #define INVALID_VMCI_GUEST_MEM_ID 0
261 #define QPE_NUM_PAGES(_QPE) ((u32) \
262 (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
263 DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
267 * Frees kernel VA space for a given queue and its queue header, and
268 * frees physical data pages.
270 static void qp_free_queue(void *q, u64 size)
272 struct vmci_queue *queue = q;
274 if (queue) {
275 u64 i;
277 /* Given size does not include header, so add in a page here. */
278 for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
279 dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
280 queue->kernel_if->u.g.vas[i],
281 queue->kernel_if->u.g.pas[i]);
284 vfree(queue);
289 * Allocates kernel queue pages of specified size with IOMMU mappings,
290 * plus space for the queue structure/kernel interface and the queue
291 * header.
293 static void *qp_alloc_queue(u64 size, u32 flags)
295 u64 i;
296 struct vmci_queue *queue;
297 const size_t num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
298 const size_t pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
299 const size_t vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
300 const size_t queue_size =
301 sizeof(*queue) + sizeof(*queue->kernel_if) +
302 pas_size + vas_size;
304 queue = vmalloc(queue_size);
305 if (!queue)
306 return NULL;
308 queue->q_header = NULL;
309 queue->saved_header = NULL;
310 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
311 queue->kernel_if->mutex = NULL;
312 queue->kernel_if->num_pages = num_pages;
313 queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
314 queue->kernel_if->u.g.vas =
315 (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
316 queue->kernel_if->host = false;
318 for (i = 0; i < num_pages; i++) {
319 queue->kernel_if->u.g.vas[i] =
320 dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
321 &queue->kernel_if->u.g.pas[i],
322 GFP_KERNEL);
323 if (!queue->kernel_if->u.g.vas[i]) {
324 /* Size excl. the header. */
325 qp_free_queue(queue, i * PAGE_SIZE);
326 return NULL;
330 /* Queue header is the first page. */
331 queue->q_header = queue->kernel_if->u.g.vas[0];
333 return queue;
337 * Copies from a given buffer or iovector to a VMCI Queue. Uses
338 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
339 * by traversing the offset -> page translation structure for the queue.
340 * Assumes that offset + size does not wrap around in the queue.
342 static int __qp_memcpy_to_queue(struct vmci_queue *queue,
343 u64 queue_offset,
344 const void *src,
345 size_t size,
346 bool is_iovec)
348 struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
349 size_t bytes_copied = 0;
351 while (bytes_copied < size) {
352 const u64 page_index =
353 (queue_offset + bytes_copied) / PAGE_SIZE;
354 const size_t page_offset =
355 (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
356 void *va;
357 size_t to_copy;
359 if (kernel_if->host)
360 va = kmap(kernel_if->u.h.page[page_index]);
361 else
362 va = kernel_if->u.g.vas[page_index + 1];
363 /* Skip header. */
365 if (size - bytes_copied > PAGE_SIZE - page_offset)
366 /* Enough payload to fill up from this page. */
367 to_copy = PAGE_SIZE - page_offset;
368 else
369 to_copy = size - bytes_copied;
371 if (is_iovec) {
372 struct iovec *iov = (struct iovec *)src;
373 int err;
375 /* The iovec will track bytes_copied internally. */
376 err = memcpy_fromiovec((u8 *)va + page_offset,
377 iov, to_copy);
378 if (err != 0) {
379 if (kernel_if->host)
380 kunmap(kernel_if->u.h.page[page_index]);
381 return VMCI_ERROR_INVALID_ARGS;
383 } else {
384 memcpy((u8 *)va + page_offset,
385 (u8 *)src + bytes_copied, to_copy);
388 bytes_copied += to_copy;
389 if (kernel_if->host)
390 kunmap(kernel_if->u.h.page[page_index]);
393 return VMCI_SUCCESS;
397 * Copies to a given buffer or iovector from a VMCI Queue. Uses
398 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
399 * by traversing the offset -> page translation structure for the queue.
400 * Assumes that offset + size does not wrap around in the queue.
402 static int __qp_memcpy_from_queue(void *dest,
403 const struct vmci_queue *queue,
404 u64 queue_offset,
405 size_t size,
406 bool is_iovec)
408 struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
409 size_t bytes_copied = 0;
411 while (bytes_copied < size) {
412 const u64 page_index =
413 (queue_offset + bytes_copied) / PAGE_SIZE;
414 const size_t page_offset =
415 (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
416 void *va;
417 size_t to_copy;
419 if (kernel_if->host)
420 va = kmap(kernel_if->u.h.page[page_index]);
421 else
422 va = kernel_if->u.g.vas[page_index + 1];
423 /* Skip header. */
425 if (size - bytes_copied > PAGE_SIZE - page_offset)
426 /* Enough payload to fill up this page. */
427 to_copy = PAGE_SIZE - page_offset;
428 else
429 to_copy = size - bytes_copied;
431 if (is_iovec) {
432 struct iovec *iov = (struct iovec *)dest;
433 int err;
435 /* The iovec will track bytes_copied internally. */
436 err = memcpy_toiovec(iov, (u8 *)va + page_offset,
437 to_copy);
438 if (err != 0) {
439 if (kernel_if->host)
440 kunmap(kernel_if->u.h.page[page_index]);
441 return VMCI_ERROR_INVALID_ARGS;
443 } else {
444 memcpy((u8 *)dest + bytes_copied,
445 (u8 *)va + page_offset, to_copy);
448 bytes_copied += to_copy;
449 if (kernel_if->host)
450 kunmap(kernel_if->u.h.page[page_index]);
453 return VMCI_SUCCESS;
457 * Allocates two list of PPNs --- one for the pages in the produce queue,
458 * and the other for the pages in the consume queue. Intializes the list
459 * of PPNs with the page frame numbers of the KVA for the two queues (and
460 * the queue headers).
462 static int qp_alloc_ppn_set(void *prod_q,
463 u64 num_produce_pages,
464 void *cons_q,
465 u64 num_consume_pages, struct ppn_set *ppn_set)
467 u32 *produce_ppns;
468 u32 *consume_ppns;
469 struct vmci_queue *produce_q = prod_q;
470 struct vmci_queue *consume_q = cons_q;
471 u64 i;
473 if (!produce_q || !num_produce_pages || !consume_q ||
474 !num_consume_pages || !ppn_set)
475 return VMCI_ERROR_INVALID_ARGS;
477 if (ppn_set->initialized)
478 return VMCI_ERROR_ALREADY_EXISTS;
480 produce_ppns =
481 kmalloc(num_produce_pages * sizeof(*produce_ppns), GFP_KERNEL);
482 if (!produce_ppns)
483 return VMCI_ERROR_NO_MEM;
485 consume_ppns =
486 kmalloc(num_consume_pages * sizeof(*consume_ppns), GFP_KERNEL);
487 if (!consume_ppns) {
488 kfree(produce_ppns);
489 return VMCI_ERROR_NO_MEM;
492 for (i = 0; i < num_produce_pages; i++) {
493 unsigned long pfn;
495 produce_ppns[i] =
496 produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
497 pfn = produce_ppns[i];
499 /* Fail allocation if PFN isn't supported by hypervisor. */
500 if (sizeof(pfn) > sizeof(*produce_ppns)
501 && pfn != produce_ppns[i])
502 goto ppn_error;
505 for (i = 0; i < num_consume_pages; i++) {
506 unsigned long pfn;
508 consume_ppns[i] =
509 consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
510 pfn = consume_ppns[i];
512 /* Fail allocation if PFN isn't supported by hypervisor. */
513 if (sizeof(pfn) > sizeof(*consume_ppns)
514 && pfn != consume_ppns[i])
515 goto ppn_error;
518 ppn_set->num_produce_pages = num_produce_pages;
519 ppn_set->num_consume_pages = num_consume_pages;
520 ppn_set->produce_ppns = produce_ppns;
521 ppn_set->consume_ppns = consume_ppns;
522 ppn_set->initialized = true;
523 return VMCI_SUCCESS;
525 ppn_error:
526 kfree(produce_ppns);
527 kfree(consume_ppns);
528 return VMCI_ERROR_INVALID_ARGS;
532 * Frees the two list of PPNs for a queue pair.
534 static void qp_free_ppn_set(struct ppn_set *ppn_set)
536 if (ppn_set->initialized) {
537 /* Do not call these functions on NULL inputs. */
538 kfree(ppn_set->produce_ppns);
539 kfree(ppn_set->consume_ppns);
541 memset(ppn_set, 0, sizeof(*ppn_set));
545 * Populates the list of PPNs in the hypercall structure with the PPNS
546 * of the produce queue and the consume queue.
548 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
550 memcpy(call_buf, ppn_set->produce_ppns,
551 ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
552 memcpy(call_buf +
553 ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
554 ppn_set->consume_ppns,
555 ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
557 return VMCI_SUCCESS;
560 static int qp_memcpy_to_queue(struct vmci_queue *queue,
561 u64 queue_offset,
562 const void *src, size_t src_offset, size_t size)
564 return __qp_memcpy_to_queue(queue, queue_offset,
565 (u8 *)src + src_offset, size, false);
568 static int qp_memcpy_from_queue(void *dest,
569 size_t dest_offset,
570 const struct vmci_queue *queue,
571 u64 queue_offset, size_t size)
573 return __qp_memcpy_from_queue((u8 *)dest + dest_offset,
574 queue, queue_offset, size, false);
578 * Copies from a given iovec from a VMCI Queue.
580 static int qp_memcpy_to_queue_iov(struct vmci_queue *queue,
581 u64 queue_offset,
582 const void *src,
583 size_t src_offset, size_t size)
587 * We ignore src_offset because src is really a struct iovec * and will
588 * maintain offset internally.
590 return __qp_memcpy_to_queue(queue, queue_offset, src, size, true);
594 * Copies to a given iovec from a VMCI Queue.
596 static int qp_memcpy_from_queue_iov(void *dest,
597 size_t dest_offset,
598 const struct vmci_queue *queue,
599 u64 queue_offset, size_t size)
602 * We ignore dest_offset because dest is really a struct iovec * and
603 * will maintain offset internally.
605 return __qp_memcpy_from_queue(dest, queue, queue_offset, size, true);
609 * Allocates kernel VA space of specified size plus space for the queue
610 * and kernel interface. This is different from the guest queue allocator,
611 * because we do not allocate our own queue header/data pages here but
612 * share those of the guest.
614 static struct vmci_queue *qp_host_alloc_queue(u64 size)
616 struct vmci_queue *queue;
617 const size_t num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
618 const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
619 const size_t queue_page_size =
620 num_pages * sizeof(*queue->kernel_if->u.h.page);
622 queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
623 if (queue) {
624 queue->q_header = NULL;
625 queue->saved_header = NULL;
626 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
627 queue->kernel_if->host = true;
628 queue->kernel_if->mutex = NULL;
629 queue->kernel_if->num_pages = num_pages;
630 queue->kernel_if->u.h.header_page =
631 (struct page **)((u8 *)queue + queue_size);
632 queue->kernel_if->u.h.page =
633 &queue->kernel_if->u.h.header_page[1];
636 return queue;
640 * Frees kernel memory for a given queue (header plus translation
641 * structure).
643 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
645 kfree(queue);
649 * Initialize the mutex for the pair of queues. This mutex is used to
650 * protect the q_header and the buffer from changing out from under any
651 * users of either queue. Of course, it's only any good if the mutexes
652 * are actually acquired. Queue structure must lie on non-paged memory
653 * or we cannot guarantee access to the mutex.
655 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
656 struct vmci_queue *consume_q)
659 * Only the host queue has shared state - the guest queues do not
660 * need to synchronize access using a queue mutex.
663 if (produce_q->kernel_if->host) {
664 produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
665 consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
666 mutex_init(produce_q->kernel_if->mutex);
671 * Cleans up the mutex for the pair of queues.
673 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
674 struct vmci_queue *consume_q)
676 if (produce_q->kernel_if->host) {
677 produce_q->kernel_if->mutex = NULL;
678 consume_q->kernel_if->mutex = NULL;
683 * Acquire the mutex for the queue. Note that the produce_q and
684 * the consume_q share a mutex. So, only one of the two need to
685 * be passed in to this routine. Either will work just fine.
687 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
689 if (queue->kernel_if->host)
690 mutex_lock(queue->kernel_if->mutex);
694 * Release the mutex for the queue. Note that the produce_q and
695 * the consume_q share a mutex. So, only one of the two need to
696 * be passed in to this routine. Either will work just fine.
698 static void qp_release_queue_mutex(struct vmci_queue *queue)
700 if (queue->kernel_if->host)
701 mutex_unlock(queue->kernel_if->mutex);
705 * Helper function to release pages in the PageStoreAttachInfo
706 * previously obtained using get_user_pages.
708 static void qp_release_pages(struct page **pages,
709 u64 num_pages, bool dirty)
711 int i;
713 for (i = 0; i < num_pages; i++) {
714 if (dirty)
715 set_page_dirty(pages[i]);
717 page_cache_release(pages[i]);
718 pages[i] = NULL;
723 * Lock the user pages referenced by the {produce,consume}Buffer
724 * struct into memory and populate the {produce,consume}Pages
725 * arrays in the attach structure with them.
727 static int qp_host_get_user_memory(u64 produce_uva,
728 u64 consume_uva,
729 struct vmci_queue *produce_q,
730 struct vmci_queue *consume_q)
732 int retval;
733 int err = VMCI_SUCCESS;
735 down_write(&current->mm->mmap_sem);
736 retval = get_user_pages(current,
737 current->mm,
738 (uintptr_t) produce_uva,
739 produce_q->kernel_if->num_pages,
740 1, 0,
741 produce_q->kernel_if->u.h.header_page, NULL);
742 if (retval < produce_q->kernel_if->num_pages) {
743 pr_warn("get_user_pages(produce) failed (retval=%d)", retval);
744 qp_release_pages(produce_q->kernel_if->u.h.header_page,
745 retval, false);
746 err = VMCI_ERROR_NO_MEM;
747 goto out;
750 retval = get_user_pages(current,
751 current->mm,
752 (uintptr_t) consume_uva,
753 consume_q->kernel_if->num_pages,
754 1, 0,
755 consume_q->kernel_if->u.h.header_page, NULL);
756 if (retval < consume_q->kernel_if->num_pages) {
757 pr_warn("get_user_pages(consume) failed (retval=%d)", retval);
758 qp_release_pages(consume_q->kernel_if->u.h.header_page,
759 retval, false);
760 qp_release_pages(produce_q->kernel_if->u.h.header_page,
761 produce_q->kernel_if->num_pages, false);
762 err = VMCI_ERROR_NO_MEM;
765 out:
766 up_write(&current->mm->mmap_sem);
768 return err;
772 * Registers the specification of the user pages used for backing a queue
773 * pair. Enough information to map in pages is stored in the OS specific
774 * part of the struct vmci_queue structure.
776 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
777 struct vmci_queue *produce_q,
778 struct vmci_queue *consume_q)
780 u64 produce_uva;
781 u64 consume_uva;
784 * The new style and the old style mapping only differs in
785 * that we either get a single or two UVAs, so we split the
786 * single UVA range at the appropriate spot.
788 produce_uva = page_store->pages;
789 consume_uva = page_store->pages +
790 produce_q->kernel_if->num_pages * PAGE_SIZE;
791 return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
792 consume_q);
796 * Releases and removes the references to user pages stored in the attach
797 * struct. Pages are released from the page cache and may become
798 * swappable again.
800 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
801 struct vmci_queue *consume_q)
803 qp_release_pages(produce_q->kernel_if->u.h.header_page,
804 produce_q->kernel_if->num_pages, true);
805 memset(produce_q->kernel_if->u.h.header_page, 0,
806 sizeof(*produce_q->kernel_if->u.h.header_page) *
807 produce_q->kernel_if->num_pages);
808 qp_release_pages(consume_q->kernel_if->u.h.header_page,
809 consume_q->kernel_if->num_pages, true);
810 memset(consume_q->kernel_if->u.h.header_page, 0,
811 sizeof(*consume_q->kernel_if->u.h.header_page) *
812 consume_q->kernel_if->num_pages);
816 * Once qp_host_register_user_memory has been performed on a
817 * queue, the queue pair headers can be mapped into the
818 * kernel. Once mapped, they must be unmapped with
819 * qp_host_unmap_queues prior to calling
820 * qp_host_unregister_user_memory.
821 * Pages are pinned.
823 static int qp_host_map_queues(struct vmci_queue *produce_q,
824 struct vmci_queue *consume_q)
826 int result;
828 if (!produce_q->q_header || !consume_q->q_header) {
829 struct page *headers[2];
831 if (produce_q->q_header != consume_q->q_header)
832 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
834 if (produce_q->kernel_if->u.h.header_page == NULL ||
835 *produce_q->kernel_if->u.h.header_page == NULL)
836 return VMCI_ERROR_UNAVAILABLE;
838 headers[0] = *produce_q->kernel_if->u.h.header_page;
839 headers[1] = *consume_q->kernel_if->u.h.header_page;
841 produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
842 if (produce_q->q_header != NULL) {
843 consume_q->q_header =
844 (struct vmci_queue_header *)((u8 *)
845 produce_q->q_header +
846 PAGE_SIZE);
847 result = VMCI_SUCCESS;
848 } else {
849 pr_warn("vmap failed\n");
850 result = VMCI_ERROR_NO_MEM;
852 } else {
853 result = VMCI_SUCCESS;
856 return result;
860 * Unmaps previously mapped queue pair headers from the kernel.
861 * Pages are unpinned.
863 static int qp_host_unmap_queues(u32 gid,
864 struct vmci_queue *produce_q,
865 struct vmci_queue *consume_q)
867 if (produce_q->q_header) {
868 if (produce_q->q_header < consume_q->q_header)
869 vunmap(produce_q->q_header);
870 else
871 vunmap(consume_q->q_header);
873 produce_q->q_header = NULL;
874 consume_q->q_header = NULL;
877 return VMCI_SUCCESS;
881 * Finds the entry in the list corresponding to a given handle. Assumes
882 * that the list is locked.
884 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
885 struct vmci_handle handle)
887 struct qp_entry *entry;
889 if (vmci_handle_is_invalid(handle))
890 return NULL;
892 list_for_each_entry(entry, &qp_list->head, list_item) {
893 if (vmci_handle_is_equal(entry->handle, handle))
894 return entry;
897 return NULL;
901 * Finds the entry in the list corresponding to a given handle.
903 static struct qp_guest_endpoint *
904 qp_guest_handle_to_entry(struct vmci_handle handle)
906 struct qp_guest_endpoint *entry;
907 struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
909 entry = qp ? container_of(
910 qp, struct qp_guest_endpoint, qp) : NULL;
911 return entry;
915 * Finds the entry in the list corresponding to a given handle.
917 static struct qp_broker_entry *
918 qp_broker_handle_to_entry(struct vmci_handle handle)
920 struct qp_broker_entry *entry;
921 struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
923 entry = qp ? container_of(
924 qp, struct qp_broker_entry, qp) : NULL;
925 return entry;
929 * Dispatches a queue pair event message directly into the local event
930 * queue.
932 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
934 u32 context_id = vmci_get_context_id();
935 struct vmci_event_qp ev;
937 ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
938 ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
939 VMCI_CONTEXT_RESOURCE_ID);
940 ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
941 ev.msg.event_data.event =
942 attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
943 ev.payload.peer_id = context_id;
944 ev.payload.handle = handle;
946 return vmci_event_dispatch(&ev.msg.hdr);
950 * Allocates and initializes a qp_guest_endpoint structure.
951 * Allocates a queue_pair rid (and handle) iff the given entry has
952 * an invalid handle. 0 through VMCI_RESERVED_RESOURCE_ID_MAX
953 * are reserved handles. Assumes that the QP list mutex is held
954 * by the caller.
956 static struct qp_guest_endpoint *
957 qp_guest_endpoint_create(struct vmci_handle handle,
958 u32 peer,
959 u32 flags,
960 u64 produce_size,
961 u64 consume_size,
962 void *produce_q,
963 void *consume_q)
965 int result;
966 struct qp_guest_endpoint *entry;
967 /* One page each for the queue headers. */
968 const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
969 DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
971 if (vmci_handle_is_invalid(handle)) {
972 u32 context_id = vmci_get_context_id();
974 handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
977 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
978 if (entry) {
979 entry->qp.peer = peer;
980 entry->qp.flags = flags;
981 entry->qp.produce_size = produce_size;
982 entry->qp.consume_size = consume_size;
983 entry->qp.ref_count = 0;
984 entry->num_ppns = num_ppns;
985 entry->produce_q = produce_q;
986 entry->consume_q = consume_q;
987 INIT_LIST_HEAD(&entry->qp.list_item);
989 /* Add resource obj */
990 result = vmci_resource_add(&entry->resource,
991 VMCI_RESOURCE_TYPE_QPAIR_GUEST,
992 handle);
993 entry->qp.handle = vmci_resource_handle(&entry->resource);
994 if ((result != VMCI_SUCCESS) ||
995 qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
996 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
997 handle.context, handle.resource, result);
998 kfree(entry);
999 entry = NULL;
1002 return entry;
1006 * Frees a qp_guest_endpoint structure.
1008 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
1010 qp_free_ppn_set(&entry->ppn_set);
1011 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
1012 qp_free_queue(entry->produce_q, entry->qp.produce_size);
1013 qp_free_queue(entry->consume_q, entry->qp.consume_size);
1014 /* Unlink from resource hash table and free callback */
1015 vmci_resource_remove(&entry->resource);
1017 kfree(entry);
1021 * Helper to make a queue_pairAlloc hypercall when the driver is
1022 * supporting a guest device.
1024 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
1026 struct vmci_qp_alloc_msg *alloc_msg;
1027 size_t msg_size;
1028 int result;
1030 if (!entry || entry->num_ppns <= 2)
1031 return VMCI_ERROR_INVALID_ARGS;
1033 msg_size = sizeof(*alloc_msg) +
1034 (size_t) entry->num_ppns * sizeof(u32);
1035 alloc_msg = kmalloc(msg_size, GFP_KERNEL);
1036 if (!alloc_msg)
1037 return VMCI_ERROR_NO_MEM;
1039 alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1040 VMCI_QUEUEPAIR_ALLOC);
1041 alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
1042 alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
1043 alloc_msg->handle = entry->qp.handle;
1044 alloc_msg->peer = entry->qp.peer;
1045 alloc_msg->flags = entry->qp.flags;
1046 alloc_msg->produce_size = entry->qp.produce_size;
1047 alloc_msg->consume_size = entry->qp.consume_size;
1048 alloc_msg->num_ppns = entry->num_ppns;
1050 result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
1051 &entry->ppn_set);
1052 if (result == VMCI_SUCCESS)
1053 result = vmci_send_datagram(&alloc_msg->hdr);
1055 kfree(alloc_msg);
1057 return result;
1061 * Helper to make a queue_pairDetach hypercall when the driver is
1062 * supporting a guest device.
1064 static int qp_detatch_hypercall(struct vmci_handle handle)
1066 struct vmci_qp_detach_msg detach_msg;
1068 detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1069 VMCI_QUEUEPAIR_DETACH);
1070 detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
1071 detach_msg.hdr.payload_size = sizeof(handle);
1072 detach_msg.handle = handle;
1074 return vmci_send_datagram(&detach_msg.hdr);
1078 * Adds the given entry to the list. Assumes that the list is locked.
1080 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1082 if (entry)
1083 list_add(&entry->list_item, &qp_list->head);
1087 * Removes the given entry from the list. Assumes that the list is locked.
1089 static void qp_list_remove_entry(struct qp_list *qp_list,
1090 struct qp_entry *entry)
1092 if (entry)
1093 list_del(&entry->list_item);
1097 * Helper for VMCI queue_pair detach interface. Frees the physical
1098 * pages for the queue pair.
1100 static int qp_detatch_guest_work(struct vmci_handle handle)
1102 int result;
1103 struct qp_guest_endpoint *entry;
1104 u32 ref_count = ~0; /* To avoid compiler warning below */
1106 mutex_lock(&qp_guest_endpoints.mutex);
1108 entry = qp_guest_handle_to_entry(handle);
1109 if (!entry) {
1110 mutex_unlock(&qp_guest_endpoints.mutex);
1111 return VMCI_ERROR_NOT_FOUND;
1114 if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1115 result = VMCI_SUCCESS;
1117 if (entry->qp.ref_count > 1) {
1118 result = qp_notify_peer_local(false, handle);
1120 * We can fail to notify a local queuepair
1121 * because we can't allocate. We still want
1122 * to release the entry if that happens, so
1123 * don't bail out yet.
1126 } else {
1127 result = qp_detatch_hypercall(handle);
1128 if (result < VMCI_SUCCESS) {
1130 * We failed to notify a non-local queuepair.
1131 * That other queuepair might still be
1132 * accessing the shared memory, so don't
1133 * release the entry yet. It will get cleaned
1134 * up by VMCIqueue_pair_Exit() if necessary
1135 * (assuming we are going away, otherwise why
1136 * did this fail?).
1139 mutex_unlock(&qp_guest_endpoints.mutex);
1140 return result;
1145 * If we get here then we either failed to notify a local queuepair, or
1146 * we succeeded in all cases. Release the entry if required.
1149 entry->qp.ref_count--;
1150 if (entry->qp.ref_count == 0)
1151 qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1153 /* If we didn't remove the entry, this could change once we unlock. */
1154 if (entry)
1155 ref_count = entry->qp.ref_count;
1157 mutex_unlock(&qp_guest_endpoints.mutex);
1159 if (ref_count == 0)
1160 qp_guest_endpoint_destroy(entry);
1162 return result;
1166 * This functions handles the actual allocation of a VMCI queue
1167 * pair guest endpoint. Allocates physical pages for the queue
1168 * pair. It makes OS dependent calls through generic wrappers.
1170 static int qp_alloc_guest_work(struct vmci_handle *handle,
1171 struct vmci_queue **produce_q,
1172 u64 produce_size,
1173 struct vmci_queue **consume_q,
1174 u64 consume_size,
1175 u32 peer,
1176 u32 flags,
1177 u32 priv_flags)
1179 const u64 num_produce_pages =
1180 DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1181 const u64 num_consume_pages =
1182 DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1183 void *my_produce_q = NULL;
1184 void *my_consume_q = NULL;
1185 int result;
1186 struct qp_guest_endpoint *queue_pair_entry = NULL;
1188 if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1189 return VMCI_ERROR_NO_ACCESS;
1191 mutex_lock(&qp_guest_endpoints.mutex);
1193 queue_pair_entry = qp_guest_handle_to_entry(*handle);
1194 if (queue_pair_entry) {
1195 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1196 /* Local attach case. */
1197 if (queue_pair_entry->qp.ref_count > 1) {
1198 pr_devel("Error attempting to attach more than once\n");
1199 result = VMCI_ERROR_UNAVAILABLE;
1200 goto error_keep_entry;
1203 if (queue_pair_entry->qp.produce_size != consume_size ||
1204 queue_pair_entry->qp.consume_size !=
1205 produce_size ||
1206 queue_pair_entry->qp.flags !=
1207 (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1208 pr_devel("Error mismatched queue pair in local attach\n");
1209 result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1210 goto error_keep_entry;
1214 * Do a local attach. We swap the consume and
1215 * produce queues for the attacher and deliver
1216 * an attach event.
1218 result = qp_notify_peer_local(true, *handle);
1219 if (result < VMCI_SUCCESS)
1220 goto error_keep_entry;
1222 my_produce_q = queue_pair_entry->consume_q;
1223 my_consume_q = queue_pair_entry->produce_q;
1224 goto out;
1227 result = VMCI_ERROR_ALREADY_EXISTS;
1228 goto error_keep_entry;
1231 my_produce_q = qp_alloc_queue(produce_size, flags);
1232 if (!my_produce_q) {
1233 pr_warn("Error allocating pages for produce queue\n");
1234 result = VMCI_ERROR_NO_MEM;
1235 goto error;
1238 my_consume_q = qp_alloc_queue(consume_size, flags);
1239 if (!my_consume_q) {
1240 pr_warn("Error allocating pages for consume queue\n");
1241 result = VMCI_ERROR_NO_MEM;
1242 goto error;
1245 queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1246 produce_size, consume_size,
1247 my_produce_q, my_consume_q);
1248 if (!queue_pair_entry) {
1249 pr_warn("Error allocating memory in %s\n", __func__);
1250 result = VMCI_ERROR_NO_MEM;
1251 goto error;
1254 result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1255 num_consume_pages,
1256 &queue_pair_entry->ppn_set);
1257 if (result < VMCI_SUCCESS) {
1258 pr_warn("qp_alloc_ppn_set failed\n");
1259 goto error;
1263 * It's only necessary to notify the host if this queue pair will be
1264 * attached to from another context.
1266 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1267 /* Local create case. */
1268 u32 context_id = vmci_get_context_id();
1271 * Enforce similar checks on local queue pairs as we
1272 * do for regular ones. The handle's context must
1273 * match the creator or attacher context id (here they
1274 * are both the current context id) and the
1275 * attach-only flag cannot exist during create. We
1276 * also ensure specified peer is this context or an
1277 * invalid one.
1279 if (queue_pair_entry->qp.handle.context != context_id ||
1280 (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1281 queue_pair_entry->qp.peer != context_id)) {
1282 result = VMCI_ERROR_NO_ACCESS;
1283 goto error;
1286 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1287 result = VMCI_ERROR_NOT_FOUND;
1288 goto error;
1290 } else {
1291 result = qp_alloc_hypercall(queue_pair_entry);
1292 if (result < VMCI_SUCCESS) {
1293 pr_warn("qp_alloc_hypercall result = %d\n", result);
1294 goto error;
1298 qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1299 (struct vmci_queue *)my_consume_q);
1301 qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1303 out:
1304 queue_pair_entry->qp.ref_count++;
1305 *handle = queue_pair_entry->qp.handle;
1306 *produce_q = (struct vmci_queue *)my_produce_q;
1307 *consume_q = (struct vmci_queue *)my_consume_q;
1310 * We should initialize the queue pair header pages on a local
1311 * queue pair create. For non-local queue pairs, the
1312 * hypervisor initializes the header pages in the create step.
1314 if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1315 queue_pair_entry->qp.ref_count == 1) {
1316 vmci_q_header_init((*produce_q)->q_header, *handle);
1317 vmci_q_header_init((*consume_q)->q_header, *handle);
1320 mutex_unlock(&qp_guest_endpoints.mutex);
1322 return VMCI_SUCCESS;
1324 error:
1325 mutex_unlock(&qp_guest_endpoints.mutex);
1326 if (queue_pair_entry) {
1327 /* The queues will be freed inside the destroy routine. */
1328 qp_guest_endpoint_destroy(queue_pair_entry);
1329 } else {
1330 qp_free_queue(my_produce_q, produce_size);
1331 qp_free_queue(my_consume_q, consume_size);
1333 return result;
1335 error_keep_entry:
1336 /* This path should only be used when an existing entry was found. */
1337 mutex_unlock(&qp_guest_endpoints.mutex);
1338 return result;
1342 * The first endpoint issuing a queue pair allocation will create the state
1343 * of the queue pair in the queue pair broker.
1345 * If the creator is a guest, it will associate a VMX virtual address range
1346 * with the queue pair as specified by the page_store. For compatibility with
1347 * older VMX'en, that would use a separate step to set the VMX virtual
1348 * address range, the virtual address range can be registered later using
1349 * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1350 * used.
1352 * If the creator is the host, a page_store of NULL should be used as well,
1353 * since the host is not able to supply a page store for the queue pair.
1355 * For older VMX and host callers, the queue pair will be created in the
1356 * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1357 * created in VMCOQPB_CREATED_MEM state.
1359 static int qp_broker_create(struct vmci_handle handle,
1360 u32 peer,
1361 u32 flags,
1362 u32 priv_flags,
1363 u64 produce_size,
1364 u64 consume_size,
1365 struct vmci_qp_page_store *page_store,
1366 struct vmci_ctx *context,
1367 vmci_event_release_cb wakeup_cb,
1368 void *client_data, struct qp_broker_entry **ent)
1370 struct qp_broker_entry *entry = NULL;
1371 const u32 context_id = vmci_ctx_get_id(context);
1372 bool is_local = flags & VMCI_QPFLAG_LOCAL;
1373 int result;
1374 u64 guest_produce_size;
1375 u64 guest_consume_size;
1377 /* Do not create if the caller asked not to. */
1378 if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1379 return VMCI_ERROR_NOT_FOUND;
1382 * Creator's context ID should match handle's context ID or the creator
1383 * must allow the context in handle's context ID as the "peer".
1385 if (handle.context != context_id && handle.context != peer)
1386 return VMCI_ERROR_NO_ACCESS;
1388 if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1389 return VMCI_ERROR_DST_UNREACHABLE;
1392 * Creator's context ID for local queue pairs should match the
1393 * peer, if a peer is specified.
1395 if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1396 return VMCI_ERROR_NO_ACCESS;
1398 entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1399 if (!entry)
1400 return VMCI_ERROR_NO_MEM;
1402 if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1404 * The queue pair broker entry stores values from the guest
1405 * point of view, so a creating host side endpoint should swap
1406 * produce and consume values -- unless it is a local queue
1407 * pair, in which case no swapping is necessary, since the local
1408 * attacher will swap queues.
1411 guest_produce_size = consume_size;
1412 guest_consume_size = produce_size;
1413 } else {
1414 guest_produce_size = produce_size;
1415 guest_consume_size = consume_size;
1418 entry->qp.handle = handle;
1419 entry->qp.peer = peer;
1420 entry->qp.flags = flags;
1421 entry->qp.produce_size = guest_produce_size;
1422 entry->qp.consume_size = guest_consume_size;
1423 entry->qp.ref_count = 1;
1424 entry->create_id = context_id;
1425 entry->attach_id = VMCI_INVALID_ID;
1426 entry->state = VMCIQPB_NEW;
1427 entry->require_trusted_attach =
1428 !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1429 entry->created_by_trusted =
1430 !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1431 entry->vmci_page_files = false;
1432 entry->wakeup_cb = wakeup_cb;
1433 entry->client_data = client_data;
1434 entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1435 if (entry->produce_q == NULL) {
1436 result = VMCI_ERROR_NO_MEM;
1437 goto error;
1439 entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1440 if (entry->consume_q == NULL) {
1441 result = VMCI_ERROR_NO_MEM;
1442 goto error;
1445 qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1447 INIT_LIST_HEAD(&entry->qp.list_item);
1449 if (is_local) {
1450 u8 *tmp;
1452 entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1453 PAGE_SIZE, GFP_KERNEL);
1454 if (entry->local_mem == NULL) {
1455 result = VMCI_ERROR_NO_MEM;
1456 goto error;
1458 entry->state = VMCIQPB_CREATED_MEM;
1459 entry->produce_q->q_header = entry->local_mem;
1460 tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1461 (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1462 entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1463 } else if (page_store) {
1465 * The VMX already initialized the queue pair headers, so no
1466 * need for the kernel side to do that.
1468 result = qp_host_register_user_memory(page_store,
1469 entry->produce_q,
1470 entry->consume_q);
1471 if (result < VMCI_SUCCESS)
1472 goto error;
1474 entry->state = VMCIQPB_CREATED_MEM;
1475 } else {
1477 * A create without a page_store may be either a host
1478 * side create (in which case we are waiting for the
1479 * guest side to supply the memory) or an old style
1480 * queue pair create (in which case we will expect a
1481 * set page store call as the next step).
1483 entry->state = VMCIQPB_CREATED_NO_MEM;
1486 qp_list_add_entry(&qp_broker_list, &entry->qp);
1487 if (ent != NULL)
1488 *ent = entry;
1490 /* Add to resource obj */
1491 result = vmci_resource_add(&entry->resource,
1492 VMCI_RESOURCE_TYPE_QPAIR_HOST,
1493 handle);
1494 if (result != VMCI_SUCCESS) {
1495 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1496 handle.context, handle.resource, result);
1497 goto error;
1500 entry->qp.handle = vmci_resource_handle(&entry->resource);
1501 if (is_local) {
1502 vmci_q_header_init(entry->produce_q->q_header,
1503 entry->qp.handle);
1504 vmci_q_header_init(entry->consume_q->q_header,
1505 entry->qp.handle);
1508 vmci_ctx_qp_create(context, entry->qp.handle);
1510 return VMCI_SUCCESS;
1512 error:
1513 if (entry != NULL) {
1514 qp_host_free_queue(entry->produce_q, guest_produce_size);
1515 qp_host_free_queue(entry->consume_q, guest_consume_size);
1516 kfree(entry);
1519 return result;
1523 * Enqueues an event datagram to notify the peer VM attached to
1524 * the given queue pair handle about attach/detach event by the
1525 * given VM. Returns Payload size of datagram enqueued on
1526 * success, error code otherwise.
1528 static int qp_notify_peer(bool attach,
1529 struct vmci_handle handle,
1530 u32 my_id,
1531 u32 peer_id)
1533 int rv;
1534 struct vmci_event_qp ev;
1536 if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1537 peer_id == VMCI_INVALID_ID)
1538 return VMCI_ERROR_INVALID_ARGS;
1541 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1542 * number of pending events from the hypervisor to a given VM
1543 * otherwise a rogue VM could do an arbitrary number of attach
1544 * and detach operations causing memory pressure in the host
1545 * kernel.
1548 ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1549 ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1550 VMCI_CONTEXT_RESOURCE_ID);
1551 ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1552 ev.msg.event_data.event = attach ?
1553 VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1554 ev.payload.handle = handle;
1555 ev.payload.peer_id = my_id;
1557 rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1558 &ev.msg.hdr, false);
1559 if (rv < VMCI_SUCCESS)
1560 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1561 attach ? "ATTACH" : "DETACH", peer_id);
1563 return rv;
1567 * The second endpoint issuing a queue pair allocation will attach to
1568 * the queue pair registered with the queue pair broker.
1570 * If the attacher is a guest, it will associate a VMX virtual address
1571 * range with the queue pair as specified by the page_store. At this
1572 * point, the already attach host endpoint may start using the queue
1573 * pair, and an attach event is sent to it. For compatibility with
1574 * older VMX'en, that used a separate step to set the VMX virtual
1575 * address range, the virtual address range can be registered later
1576 * using vmci_qp_broker_set_page_store. In that case, a page_store of
1577 * NULL should be used, and the attach event will be generated once
1578 * the actual page store has been set.
1580 * If the attacher is the host, a page_store of NULL should be used as
1581 * well, since the page store information is already set by the guest.
1583 * For new VMX and host callers, the queue pair will be moved to the
1584 * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1585 * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1587 static int qp_broker_attach(struct qp_broker_entry *entry,
1588 u32 peer,
1589 u32 flags,
1590 u32 priv_flags,
1591 u64 produce_size,
1592 u64 consume_size,
1593 struct vmci_qp_page_store *page_store,
1594 struct vmci_ctx *context,
1595 vmci_event_release_cb wakeup_cb,
1596 void *client_data,
1597 struct qp_broker_entry **ent)
1599 const u32 context_id = vmci_ctx_get_id(context);
1600 bool is_local = flags & VMCI_QPFLAG_LOCAL;
1601 int result;
1603 if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1604 entry->state != VMCIQPB_CREATED_MEM)
1605 return VMCI_ERROR_UNAVAILABLE;
1607 if (is_local) {
1608 if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1609 context_id != entry->create_id) {
1610 return VMCI_ERROR_INVALID_ARGS;
1612 } else if (context_id == entry->create_id ||
1613 context_id == entry->attach_id) {
1614 return VMCI_ERROR_ALREADY_EXISTS;
1617 if (VMCI_CONTEXT_IS_VM(context_id) &&
1618 VMCI_CONTEXT_IS_VM(entry->create_id))
1619 return VMCI_ERROR_DST_UNREACHABLE;
1622 * If we are attaching from a restricted context then the queuepair
1623 * must have been created by a trusted endpoint.
1625 if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1626 !entry->created_by_trusted)
1627 return VMCI_ERROR_NO_ACCESS;
1630 * If we are attaching to a queuepair that was created by a restricted
1631 * context then we must be trusted.
1633 if (entry->require_trusted_attach &&
1634 (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1635 return VMCI_ERROR_NO_ACCESS;
1638 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1639 * control check is not performed.
1641 if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1642 return VMCI_ERROR_NO_ACCESS;
1644 if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1646 * Do not attach if the caller doesn't support Host Queue Pairs
1647 * and a host created this queue pair.
1650 if (!vmci_ctx_supports_host_qp(context))
1651 return VMCI_ERROR_INVALID_RESOURCE;
1653 } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1654 struct vmci_ctx *create_context;
1655 bool supports_host_qp;
1658 * Do not attach a host to a user created queue pair if that
1659 * user doesn't support host queue pair end points.
1662 create_context = vmci_ctx_get(entry->create_id);
1663 supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1664 vmci_ctx_put(create_context);
1666 if (!supports_host_qp)
1667 return VMCI_ERROR_INVALID_RESOURCE;
1670 if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1671 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1673 if (context_id != VMCI_HOST_CONTEXT_ID) {
1675 * The queue pair broker entry stores values from the guest
1676 * point of view, so an attaching guest should match the values
1677 * stored in the entry.
1680 if (entry->qp.produce_size != produce_size ||
1681 entry->qp.consume_size != consume_size) {
1682 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1684 } else if (entry->qp.produce_size != consume_size ||
1685 entry->qp.consume_size != produce_size) {
1686 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1689 if (context_id != VMCI_HOST_CONTEXT_ID) {
1691 * If a guest attached to a queue pair, it will supply
1692 * the backing memory. If this is a pre NOVMVM vmx,
1693 * the backing memory will be supplied by calling
1694 * vmci_qp_broker_set_page_store() following the
1695 * return of the vmci_qp_broker_alloc() call. If it is
1696 * a vmx of version NOVMVM or later, the page store
1697 * must be supplied as part of the
1698 * vmci_qp_broker_alloc call. Under all circumstances
1699 * must the initially created queue pair not have any
1700 * memory associated with it already.
1703 if (entry->state != VMCIQPB_CREATED_NO_MEM)
1704 return VMCI_ERROR_INVALID_ARGS;
1706 if (page_store != NULL) {
1708 * Patch up host state to point to guest
1709 * supplied memory. The VMX already
1710 * initialized the queue pair headers, so no
1711 * need for the kernel side to do that.
1714 result = qp_host_register_user_memory(page_store,
1715 entry->produce_q,
1716 entry->consume_q);
1717 if (result < VMCI_SUCCESS)
1718 return result;
1720 entry->state = VMCIQPB_ATTACHED_MEM;
1721 } else {
1722 entry->state = VMCIQPB_ATTACHED_NO_MEM;
1724 } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1726 * The host side is attempting to attach to a queue
1727 * pair that doesn't have any memory associated with
1728 * it. This must be a pre NOVMVM vmx that hasn't set
1729 * the page store information yet, or a quiesced VM.
1732 return VMCI_ERROR_UNAVAILABLE;
1733 } else {
1734 /* The host side has successfully attached to a queue pair. */
1735 entry->state = VMCIQPB_ATTACHED_MEM;
1738 if (entry->state == VMCIQPB_ATTACHED_MEM) {
1739 result =
1740 qp_notify_peer(true, entry->qp.handle, context_id,
1741 entry->create_id);
1742 if (result < VMCI_SUCCESS)
1743 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1744 entry->create_id, entry->qp.handle.context,
1745 entry->qp.handle.resource);
1748 entry->attach_id = context_id;
1749 entry->qp.ref_count++;
1750 if (wakeup_cb) {
1751 entry->wakeup_cb = wakeup_cb;
1752 entry->client_data = client_data;
1756 * When attaching to local queue pairs, the context already has
1757 * an entry tracking the queue pair, so don't add another one.
1759 if (!is_local)
1760 vmci_ctx_qp_create(context, entry->qp.handle);
1762 if (ent != NULL)
1763 *ent = entry;
1765 return VMCI_SUCCESS;
1769 * queue_pair_Alloc for use when setting up queue pair endpoints
1770 * on the host.
1772 static int qp_broker_alloc(struct vmci_handle handle,
1773 u32 peer,
1774 u32 flags,
1775 u32 priv_flags,
1776 u64 produce_size,
1777 u64 consume_size,
1778 struct vmci_qp_page_store *page_store,
1779 struct vmci_ctx *context,
1780 vmci_event_release_cb wakeup_cb,
1781 void *client_data,
1782 struct qp_broker_entry **ent,
1783 bool *swap)
1785 const u32 context_id = vmci_ctx_get_id(context);
1786 bool create;
1787 struct qp_broker_entry *entry = NULL;
1788 bool is_local = flags & VMCI_QPFLAG_LOCAL;
1789 int result;
1791 if (vmci_handle_is_invalid(handle) ||
1792 (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1793 !(produce_size || consume_size) ||
1794 !context || context_id == VMCI_INVALID_ID ||
1795 handle.context == VMCI_INVALID_ID) {
1796 return VMCI_ERROR_INVALID_ARGS;
1799 if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1800 return VMCI_ERROR_INVALID_ARGS;
1803 * In the initial argument check, we ensure that non-vmkernel hosts
1804 * are not allowed to create local queue pairs.
1807 mutex_lock(&qp_broker_list.mutex);
1809 if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1810 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1811 context_id, handle.context, handle.resource);
1812 mutex_unlock(&qp_broker_list.mutex);
1813 return VMCI_ERROR_ALREADY_EXISTS;
1816 if (handle.resource != VMCI_INVALID_ID)
1817 entry = qp_broker_handle_to_entry(handle);
1819 if (!entry) {
1820 create = true;
1821 result =
1822 qp_broker_create(handle, peer, flags, priv_flags,
1823 produce_size, consume_size, page_store,
1824 context, wakeup_cb, client_data, ent);
1825 } else {
1826 create = false;
1827 result =
1828 qp_broker_attach(entry, peer, flags, priv_flags,
1829 produce_size, consume_size, page_store,
1830 context, wakeup_cb, client_data, ent);
1833 mutex_unlock(&qp_broker_list.mutex);
1835 if (swap)
1836 *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1837 !(create && is_local);
1839 return result;
1843 * This function implements the kernel API for allocating a queue
1844 * pair.
1846 static int qp_alloc_host_work(struct vmci_handle *handle,
1847 struct vmci_queue **produce_q,
1848 u64 produce_size,
1849 struct vmci_queue **consume_q,
1850 u64 consume_size,
1851 u32 peer,
1852 u32 flags,
1853 u32 priv_flags,
1854 vmci_event_release_cb wakeup_cb,
1855 void *client_data)
1857 struct vmci_handle new_handle;
1858 struct vmci_ctx *context;
1859 struct qp_broker_entry *entry;
1860 int result;
1861 bool swap;
1863 if (vmci_handle_is_invalid(*handle)) {
1864 new_handle = vmci_make_handle(
1865 VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1866 } else
1867 new_handle = *handle;
1869 context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1870 entry = NULL;
1871 result =
1872 qp_broker_alloc(new_handle, peer, flags, priv_flags,
1873 produce_size, consume_size, NULL, context,
1874 wakeup_cb, client_data, &entry, &swap);
1875 if (result == VMCI_SUCCESS) {
1876 if (swap) {
1878 * If this is a local queue pair, the attacher
1879 * will swap around produce and consume
1880 * queues.
1883 *produce_q = entry->consume_q;
1884 *consume_q = entry->produce_q;
1885 } else {
1886 *produce_q = entry->produce_q;
1887 *consume_q = entry->consume_q;
1890 *handle = vmci_resource_handle(&entry->resource);
1891 } else {
1892 *handle = VMCI_INVALID_HANDLE;
1893 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1894 result);
1896 vmci_ctx_put(context);
1897 return result;
1901 * Allocates a VMCI queue_pair. Only checks validity of input
1902 * arguments. The real work is done in the host or guest
1903 * specific function.
1905 int vmci_qp_alloc(struct vmci_handle *handle,
1906 struct vmci_queue **produce_q,
1907 u64 produce_size,
1908 struct vmci_queue **consume_q,
1909 u64 consume_size,
1910 u32 peer,
1911 u32 flags,
1912 u32 priv_flags,
1913 bool guest_endpoint,
1914 vmci_event_release_cb wakeup_cb,
1915 void *client_data)
1917 if (!handle || !produce_q || !consume_q ||
1918 (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1919 return VMCI_ERROR_INVALID_ARGS;
1921 if (guest_endpoint) {
1922 return qp_alloc_guest_work(handle, produce_q,
1923 produce_size, consume_q,
1924 consume_size, peer,
1925 flags, priv_flags);
1926 } else {
1927 return qp_alloc_host_work(handle, produce_q,
1928 produce_size, consume_q,
1929 consume_size, peer, flags,
1930 priv_flags, wakeup_cb, client_data);
1935 * This function implements the host kernel API for detaching from
1936 * a queue pair.
1938 static int qp_detatch_host_work(struct vmci_handle handle)
1940 int result;
1941 struct vmci_ctx *context;
1943 context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1945 result = vmci_qp_broker_detach(handle, context);
1947 vmci_ctx_put(context);
1948 return result;
1952 * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1953 * Real work is done in the host or guest specific function.
1955 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1957 if (vmci_handle_is_invalid(handle))
1958 return VMCI_ERROR_INVALID_ARGS;
1960 if (guest_endpoint)
1961 return qp_detatch_guest_work(handle);
1962 else
1963 return qp_detatch_host_work(handle);
1967 * Returns the entry from the head of the list. Assumes that the list is
1968 * locked.
1970 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1972 if (!list_empty(&qp_list->head)) {
1973 struct qp_entry *entry =
1974 list_first_entry(&qp_list->head, struct qp_entry,
1975 list_item);
1976 return entry;
1979 return NULL;
1982 void vmci_qp_broker_exit(void)
1984 struct qp_entry *entry;
1985 struct qp_broker_entry *be;
1987 mutex_lock(&qp_broker_list.mutex);
1989 while ((entry = qp_list_get_head(&qp_broker_list))) {
1990 be = (struct qp_broker_entry *)entry;
1992 qp_list_remove_entry(&qp_broker_list, entry);
1993 kfree(be);
1996 mutex_unlock(&qp_broker_list.mutex);
2000 * Requests that a queue pair be allocated with the VMCI queue
2001 * pair broker. Allocates a queue pair entry if one does not
2002 * exist. Attaches to one if it exists, and retrieves the page
2003 * files backing that queue_pair. Assumes that the queue pair
2004 * broker lock is held.
2006 int vmci_qp_broker_alloc(struct vmci_handle handle,
2007 u32 peer,
2008 u32 flags,
2009 u32 priv_flags,
2010 u64 produce_size,
2011 u64 consume_size,
2012 struct vmci_qp_page_store *page_store,
2013 struct vmci_ctx *context)
2015 return qp_broker_alloc(handle, peer, flags, priv_flags,
2016 produce_size, consume_size,
2017 page_store, context, NULL, NULL, NULL, NULL);
2021 * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
2022 * step to add the UVAs of the VMX mapping of the queue pair. This function
2023 * provides backwards compatibility with such VMX'en, and takes care of
2024 * registering the page store for a queue pair previously allocated by the
2025 * VMX during create or attach. This function will move the queue pair state
2026 * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
2027 * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
2028 * attached state with memory, the queue pair is ready to be used by the
2029 * host peer, and an attached event will be generated.
2031 * Assumes that the queue pair broker lock is held.
2033 * This function is only used by the hosted platform, since there is no
2034 * issue with backwards compatibility for vmkernel.
2036 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
2037 u64 produce_uva,
2038 u64 consume_uva,
2039 struct vmci_ctx *context)
2041 struct qp_broker_entry *entry;
2042 int result;
2043 const u32 context_id = vmci_ctx_get_id(context);
2045 if (vmci_handle_is_invalid(handle) || !context ||
2046 context_id == VMCI_INVALID_ID)
2047 return VMCI_ERROR_INVALID_ARGS;
2050 * We only support guest to host queue pairs, so the VMX must
2051 * supply UVAs for the mapped page files.
2054 if (produce_uva == 0 || consume_uva == 0)
2055 return VMCI_ERROR_INVALID_ARGS;
2057 mutex_lock(&qp_broker_list.mutex);
2059 if (!vmci_ctx_qp_exists(context, handle)) {
2060 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2061 context_id, handle.context, handle.resource);
2062 result = VMCI_ERROR_NOT_FOUND;
2063 goto out;
2066 entry = qp_broker_handle_to_entry(handle);
2067 if (!entry) {
2068 result = VMCI_ERROR_NOT_FOUND;
2069 goto out;
2073 * If I'm the owner then I can set the page store.
2075 * Or, if a host created the queue_pair and I'm the attached peer
2076 * then I can set the page store.
2078 if (entry->create_id != context_id &&
2079 (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2080 entry->attach_id != context_id)) {
2081 result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2082 goto out;
2085 if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2086 entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2087 result = VMCI_ERROR_UNAVAILABLE;
2088 goto out;
2091 result = qp_host_get_user_memory(produce_uva, consume_uva,
2092 entry->produce_q, entry->consume_q);
2093 if (result < VMCI_SUCCESS)
2094 goto out;
2096 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2097 if (result < VMCI_SUCCESS) {
2098 qp_host_unregister_user_memory(entry->produce_q,
2099 entry->consume_q);
2100 goto out;
2103 if (entry->state == VMCIQPB_CREATED_NO_MEM)
2104 entry->state = VMCIQPB_CREATED_MEM;
2105 else
2106 entry->state = VMCIQPB_ATTACHED_MEM;
2108 entry->vmci_page_files = true;
2110 if (entry->state == VMCIQPB_ATTACHED_MEM) {
2111 result =
2112 qp_notify_peer(true, handle, context_id, entry->create_id);
2113 if (result < VMCI_SUCCESS) {
2114 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2115 entry->create_id, entry->qp.handle.context,
2116 entry->qp.handle.resource);
2120 result = VMCI_SUCCESS;
2121 out:
2122 mutex_unlock(&qp_broker_list.mutex);
2123 return result;
2127 * Resets saved queue headers for the given QP broker
2128 * entry. Should be used when guest memory becomes available
2129 * again, or the guest detaches.
2131 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2133 entry->produce_q->saved_header = NULL;
2134 entry->consume_q->saved_header = NULL;
2138 * The main entry point for detaching from a queue pair registered with the
2139 * queue pair broker. If more than one endpoint is attached to the queue
2140 * pair, the first endpoint will mainly decrement a reference count and
2141 * generate a notification to its peer. The last endpoint will clean up
2142 * the queue pair state registered with the broker.
2144 * When a guest endpoint detaches, it will unmap and unregister the guest
2145 * memory backing the queue pair. If the host is still attached, it will
2146 * no longer be able to access the queue pair content.
2148 * If the queue pair is already in a state where there is no memory
2149 * registered for the queue pair (any *_NO_MEM state), it will transition to
2150 * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2151 * endpoint is the first of two endpoints to detach. If the host endpoint is
2152 * the first out of two to detach, the queue pair will move to the
2153 * VMCIQPB_SHUTDOWN_MEM state.
2155 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2157 struct qp_broker_entry *entry;
2158 const u32 context_id = vmci_ctx_get_id(context);
2159 u32 peer_id;
2160 bool is_local = false;
2161 int result;
2163 if (vmci_handle_is_invalid(handle) || !context ||
2164 context_id == VMCI_INVALID_ID) {
2165 return VMCI_ERROR_INVALID_ARGS;
2168 mutex_lock(&qp_broker_list.mutex);
2170 if (!vmci_ctx_qp_exists(context, handle)) {
2171 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2172 context_id, handle.context, handle.resource);
2173 result = VMCI_ERROR_NOT_FOUND;
2174 goto out;
2177 entry = qp_broker_handle_to_entry(handle);
2178 if (!entry) {
2179 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2180 context_id, handle.context, handle.resource);
2181 result = VMCI_ERROR_NOT_FOUND;
2182 goto out;
2185 if (context_id != entry->create_id && context_id != entry->attach_id) {
2186 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2187 goto out;
2190 if (context_id == entry->create_id) {
2191 peer_id = entry->attach_id;
2192 entry->create_id = VMCI_INVALID_ID;
2193 } else {
2194 peer_id = entry->create_id;
2195 entry->attach_id = VMCI_INVALID_ID;
2197 entry->qp.ref_count--;
2199 is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2201 if (context_id != VMCI_HOST_CONTEXT_ID) {
2202 bool headers_mapped;
2205 * Pre NOVMVM vmx'en may detach from a queue pair
2206 * before setting the page store, and in that case
2207 * there is no user memory to detach from. Also, more
2208 * recent VMX'en may detach from a queue pair in the
2209 * quiesced state.
2212 qp_acquire_queue_mutex(entry->produce_q);
2213 headers_mapped = entry->produce_q->q_header ||
2214 entry->consume_q->q_header;
2215 if (QPBROKERSTATE_HAS_MEM(entry)) {
2216 result =
2217 qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2218 entry->produce_q,
2219 entry->consume_q);
2220 if (result < VMCI_SUCCESS)
2221 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2222 handle.context, handle.resource,
2223 result);
2225 if (entry->vmci_page_files)
2226 qp_host_unregister_user_memory(entry->produce_q,
2227 entry->
2228 consume_q);
2229 else
2230 qp_host_unregister_user_memory(entry->produce_q,
2231 entry->
2232 consume_q);
2236 if (!headers_mapped)
2237 qp_reset_saved_headers(entry);
2239 qp_release_queue_mutex(entry->produce_q);
2241 if (!headers_mapped && entry->wakeup_cb)
2242 entry->wakeup_cb(entry->client_data);
2244 } else {
2245 if (entry->wakeup_cb) {
2246 entry->wakeup_cb = NULL;
2247 entry->client_data = NULL;
2251 if (entry->qp.ref_count == 0) {
2252 qp_list_remove_entry(&qp_broker_list, &entry->qp);
2254 if (is_local)
2255 kfree(entry->local_mem);
2257 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2258 qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2259 qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2260 /* Unlink from resource hash table and free callback */
2261 vmci_resource_remove(&entry->resource);
2263 kfree(entry);
2265 vmci_ctx_qp_destroy(context, handle);
2266 } else {
2267 qp_notify_peer(false, handle, context_id, peer_id);
2268 if (context_id == VMCI_HOST_CONTEXT_ID &&
2269 QPBROKERSTATE_HAS_MEM(entry)) {
2270 entry->state = VMCIQPB_SHUTDOWN_MEM;
2271 } else {
2272 entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2275 if (!is_local)
2276 vmci_ctx_qp_destroy(context, handle);
2279 result = VMCI_SUCCESS;
2280 out:
2281 mutex_unlock(&qp_broker_list.mutex);
2282 return result;
2286 * Establishes the necessary mappings for a queue pair given a
2287 * reference to the queue pair guest memory. This is usually
2288 * called when a guest is unquiesced and the VMX is allowed to
2289 * map guest memory once again.
2291 int vmci_qp_broker_map(struct vmci_handle handle,
2292 struct vmci_ctx *context,
2293 u64 guest_mem)
2295 struct qp_broker_entry *entry;
2296 const u32 context_id = vmci_ctx_get_id(context);
2297 bool is_local = false;
2298 int result;
2300 if (vmci_handle_is_invalid(handle) || !context ||
2301 context_id == VMCI_INVALID_ID)
2302 return VMCI_ERROR_INVALID_ARGS;
2304 mutex_lock(&qp_broker_list.mutex);
2306 if (!vmci_ctx_qp_exists(context, handle)) {
2307 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2308 context_id, handle.context, handle.resource);
2309 result = VMCI_ERROR_NOT_FOUND;
2310 goto out;
2313 entry = qp_broker_handle_to_entry(handle);
2314 if (!entry) {
2315 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2316 context_id, handle.context, handle.resource);
2317 result = VMCI_ERROR_NOT_FOUND;
2318 goto out;
2321 if (context_id != entry->create_id && context_id != entry->attach_id) {
2322 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2323 goto out;
2326 is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2327 result = VMCI_SUCCESS;
2329 if (context_id != VMCI_HOST_CONTEXT_ID) {
2330 struct vmci_qp_page_store page_store;
2332 page_store.pages = guest_mem;
2333 page_store.len = QPE_NUM_PAGES(entry->qp);
2335 qp_acquire_queue_mutex(entry->produce_q);
2336 qp_reset_saved_headers(entry);
2337 result =
2338 qp_host_register_user_memory(&page_store,
2339 entry->produce_q,
2340 entry->consume_q);
2341 qp_release_queue_mutex(entry->produce_q);
2342 if (result == VMCI_SUCCESS) {
2343 /* Move state from *_NO_MEM to *_MEM */
2345 entry->state++;
2347 if (entry->wakeup_cb)
2348 entry->wakeup_cb(entry->client_data);
2352 out:
2353 mutex_unlock(&qp_broker_list.mutex);
2354 return result;
2358 * Saves a snapshot of the queue headers for the given QP broker
2359 * entry. Should be used when guest memory is unmapped.
2360 * Results:
2361 * VMCI_SUCCESS on success, appropriate error code if guest memory
2362 * can't be accessed..
2364 static int qp_save_headers(struct qp_broker_entry *entry)
2366 int result;
2368 if (entry->produce_q->saved_header != NULL &&
2369 entry->consume_q->saved_header != NULL) {
2371 * If the headers have already been saved, we don't need to do
2372 * it again, and we don't want to map in the headers
2373 * unnecessarily.
2376 return VMCI_SUCCESS;
2379 if (NULL == entry->produce_q->q_header ||
2380 NULL == entry->consume_q->q_header) {
2381 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2382 if (result < VMCI_SUCCESS)
2383 return result;
2386 memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2387 sizeof(entry->saved_produce_q));
2388 entry->produce_q->saved_header = &entry->saved_produce_q;
2389 memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2390 sizeof(entry->saved_consume_q));
2391 entry->consume_q->saved_header = &entry->saved_consume_q;
2393 return VMCI_SUCCESS;
2397 * Removes all references to the guest memory of a given queue pair, and
2398 * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2399 * called when a VM is being quiesced where access to guest memory should
2400 * avoided.
2402 int vmci_qp_broker_unmap(struct vmci_handle handle,
2403 struct vmci_ctx *context,
2404 u32 gid)
2406 struct qp_broker_entry *entry;
2407 const u32 context_id = vmci_ctx_get_id(context);
2408 bool is_local = false;
2409 int result;
2411 if (vmci_handle_is_invalid(handle) || !context ||
2412 context_id == VMCI_INVALID_ID)
2413 return VMCI_ERROR_INVALID_ARGS;
2415 mutex_lock(&qp_broker_list.mutex);
2417 if (!vmci_ctx_qp_exists(context, handle)) {
2418 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2419 context_id, handle.context, handle.resource);
2420 result = VMCI_ERROR_NOT_FOUND;
2421 goto out;
2424 entry = qp_broker_handle_to_entry(handle);
2425 if (!entry) {
2426 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2427 context_id, handle.context, handle.resource);
2428 result = VMCI_ERROR_NOT_FOUND;
2429 goto out;
2432 if (context_id != entry->create_id && context_id != entry->attach_id) {
2433 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2434 goto out;
2437 is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2439 if (context_id != VMCI_HOST_CONTEXT_ID) {
2440 qp_acquire_queue_mutex(entry->produce_q);
2441 result = qp_save_headers(entry);
2442 if (result < VMCI_SUCCESS)
2443 pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2444 handle.context, handle.resource, result);
2446 qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2449 * On hosted, when we unmap queue pairs, the VMX will also
2450 * unmap the guest memory, so we invalidate the previously
2451 * registered memory. If the queue pair is mapped again at a
2452 * later point in time, we will need to reregister the user
2453 * memory with a possibly new user VA.
2455 qp_host_unregister_user_memory(entry->produce_q,
2456 entry->consume_q);
2459 * Move state from *_MEM to *_NO_MEM.
2461 entry->state--;
2463 qp_release_queue_mutex(entry->produce_q);
2466 result = VMCI_SUCCESS;
2468 out:
2469 mutex_unlock(&qp_broker_list.mutex);
2470 return result;
2474 * Destroys all guest queue pair endpoints. If active guest queue
2475 * pairs still exist, hypercalls to attempt detach from these
2476 * queue pairs will be made. Any failure to detach is silently
2477 * ignored.
2479 void vmci_qp_guest_endpoints_exit(void)
2481 struct qp_entry *entry;
2482 struct qp_guest_endpoint *ep;
2484 mutex_lock(&qp_guest_endpoints.mutex);
2486 while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2487 ep = (struct qp_guest_endpoint *)entry;
2489 /* Don't make a hypercall for local queue_pairs. */
2490 if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2491 qp_detatch_hypercall(entry->handle);
2493 /* We cannot fail the exit, so let's reset ref_count. */
2494 entry->ref_count = 0;
2495 qp_list_remove_entry(&qp_guest_endpoints, entry);
2497 qp_guest_endpoint_destroy(ep);
2500 mutex_unlock(&qp_guest_endpoints.mutex);
2504 * Helper routine that will lock the queue pair before subsequent
2505 * operations.
2506 * Note: Non-blocking on the host side is currently only implemented in ESX.
2507 * Since non-blocking isn't yet implemented on the host personality we
2508 * have no reason to acquire a spin lock. So to avoid the use of an
2509 * unnecessary lock only acquire the mutex if we can block.
2511 static void qp_lock(const struct vmci_qp *qpair)
2513 qp_acquire_queue_mutex(qpair->produce_q);
2517 * Helper routine that unlocks the queue pair after calling
2518 * qp_lock.
2520 static void qp_unlock(const struct vmci_qp *qpair)
2522 qp_release_queue_mutex(qpair->produce_q);
2526 * The queue headers may not be mapped at all times. If a queue is
2527 * currently not mapped, it will be attempted to do so.
2529 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2530 struct vmci_queue *consume_q)
2532 int result;
2534 if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2535 result = qp_host_map_queues(produce_q, consume_q);
2536 if (result < VMCI_SUCCESS)
2537 return (produce_q->saved_header &&
2538 consume_q->saved_header) ?
2539 VMCI_ERROR_QUEUEPAIR_NOT_READY :
2540 VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2543 return VMCI_SUCCESS;
2547 * Helper routine that will retrieve the produce and consume
2548 * headers of a given queue pair. If the guest memory of the
2549 * queue pair is currently not available, the saved queue headers
2550 * will be returned, if these are available.
2552 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2553 struct vmci_queue_header **produce_q_header,
2554 struct vmci_queue_header **consume_q_header)
2556 int result;
2558 result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2559 if (result == VMCI_SUCCESS) {
2560 *produce_q_header = qpair->produce_q->q_header;
2561 *consume_q_header = qpair->consume_q->q_header;
2562 } else if (qpair->produce_q->saved_header &&
2563 qpair->consume_q->saved_header) {
2564 *produce_q_header = qpair->produce_q->saved_header;
2565 *consume_q_header = qpair->consume_q->saved_header;
2566 result = VMCI_SUCCESS;
2569 return result;
2573 * Callback from VMCI queue pair broker indicating that a queue
2574 * pair that was previously not ready, now either is ready or
2575 * gone forever.
2577 static int qp_wakeup_cb(void *client_data)
2579 struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2581 qp_lock(qpair);
2582 while (qpair->blocked > 0) {
2583 qpair->blocked--;
2584 qpair->generation++;
2585 wake_up(&qpair->event);
2587 qp_unlock(qpair);
2589 return VMCI_SUCCESS;
2593 * Makes the calling thread wait for the queue pair to become
2594 * ready for host side access. Returns true when thread is
2595 * woken up after queue pair state change, false otherwise.
2597 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2599 unsigned int generation;
2601 qpair->blocked++;
2602 generation = qpair->generation;
2603 qp_unlock(qpair);
2604 wait_event(qpair->event, generation != qpair->generation);
2605 qp_lock(qpair);
2607 return true;
2611 * Enqueues a given buffer to the produce queue using the provided
2612 * function. As many bytes as possible (space available in the queue)
2613 * are enqueued. Assumes the queue->mutex has been acquired. Returns
2614 * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2615 * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2616 * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2617 * an error occured when accessing the buffer,
2618 * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2619 * available. Otherwise, the number of bytes written to the queue is
2620 * returned. Updates the tail pointer of the produce queue.
2622 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2623 struct vmci_queue *consume_q,
2624 const u64 produce_q_size,
2625 const void *buf,
2626 size_t buf_size,
2627 vmci_memcpy_to_queue_func memcpy_to_queue)
2629 s64 free_space;
2630 u64 tail;
2631 size_t written;
2632 ssize_t result;
2634 result = qp_map_queue_headers(produce_q, consume_q);
2635 if (unlikely(result != VMCI_SUCCESS))
2636 return result;
2638 free_space = vmci_q_header_free_space(produce_q->q_header,
2639 consume_q->q_header,
2640 produce_q_size);
2641 if (free_space == 0)
2642 return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2644 if (free_space < VMCI_SUCCESS)
2645 return (ssize_t) free_space;
2647 written = (size_t) (free_space > buf_size ? buf_size : free_space);
2648 tail = vmci_q_header_producer_tail(produce_q->q_header);
2649 if (likely(tail + written < produce_q_size)) {
2650 result = memcpy_to_queue(produce_q, tail, buf, 0, written);
2651 } else {
2652 /* Tail pointer wraps around. */
2654 const size_t tmp = (size_t) (produce_q_size - tail);
2656 result = memcpy_to_queue(produce_q, tail, buf, 0, tmp);
2657 if (result >= VMCI_SUCCESS)
2658 result = memcpy_to_queue(produce_q, 0, buf, tmp,
2659 written - tmp);
2662 if (result < VMCI_SUCCESS)
2663 return result;
2665 vmci_q_header_add_producer_tail(produce_q->q_header, written,
2666 produce_q_size);
2667 return written;
2671 * Dequeues data (if available) from the given consume queue. Writes data
2672 * to the user provided buffer using the provided function.
2673 * Assumes the queue->mutex has been acquired.
2674 * Results:
2675 * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2676 * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2677 * (as defined by the queue size).
2678 * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2679 * Otherwise the number of bytes dequeued is returned.
2680 * Side effects:
2681 * Updates the head pointer of the consume queue.
2683 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2684 struct vmci_queue *consume_q,
2685 const u64 consume_q_size,
2686 void *buf,
2687 size_t buf_size,
2688 vmci_memcpy_from_queue_func memcpy_from_queue,
2689 bool update_consumer)
2691 s64 buf_ready;
2692 u64 head;
2693 size_t read;
2694 ssize_t result;
2696 result = qp_map_queue_headers(produce_q, consume_q);
2697 if (unlikely(result != VMCI_SUCCESS))
2698 return result;
2700 buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2701 produce_q->q_header,
2702 consume_q_size);
2703 if (buf_ready == 0)
2704 return VMCI_ERROR_QUEUEPAIR_NODATA;
2706 if (buf_ready < VMCI_SUCCESS)
2707 return (ssize_t) buf_ready;
2709 read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2710 head = vmci_q_header_consumer_head(produce_q->q_header);
2711 if (likely(head + read < consume_q_size)) {
2712 result = memcpy_from_queue(buf, 0, consume_q, head, read);
2713 } else {
2714 /* Head pointer wraps around. */
2716 const size_t tmp = (size_t) (consume_q_size - head);
2718 result = memcpy_from_queue(buf, 0, consume_q, head, tmp);
2719 if (result >= VMCI_SUCCESS)
2720 result = memcpy_from_queue(buf, tmp, consume_q, 0,
2721 read - tmp);
2725 if (result < VMCI_SUCCESS)
2726 return result;
2728 if (update_consumer)
2729 vmci_q_header_add_consumer_head(produce_q->q_header,
2730 read, consume_q_size);
2732 return read;
2736 * vmci_qpair_alloc() - Allocates a queue pair.
2737 * @qpair: Pointer for the new vmci_qp struct.
2738 * @handle: Handle to track the resource.
2739 * @produce_qsize: Desired size of the producer queue.
2740 * @consume_qsize: Desired size of the consumer queue.
2741 * @peer: ContextID of the peer.
2742 * @flags: VMCI flags.
2743 * @priv_flags: VMCI priviledge flags.
2745 * This is the client interface for allocating the memory for a
2746 * vmci_qp structure and then attaching to the underlying
2747 * queue. If an error occurs allocating the memory for the
2748 * vmci_qp structure no attempt is made to attach. If an
2749 * error occurs attaching, then the structure is freed.
2751 int vmci_qpair_alloc(struct vmci_qp **qpair,
2752 struct vmci_handle *handle,
2753 u64 produce_qsize,
2754 u64 consume_qsize,
2755 u32 peer,
2756 u32 flags,
2757 u32 priv_flags)
2759 struct vmci_qp *my_qpair;
2760 int retval;
2761 struct vmci_handle src = VMCI_INVALID_HANDLE;
2762 struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2763 enum vmci_route route;
2764 vmci_event_release_cb wakeup_cb;
2765 void *client_data;
2768 * Restrict the size of a queuepair. The device already
2769 * enforces a limit on the total amount of memory that can be
2770 * allocated to queuepairs for a guest. However, we try to
2771 * allocate this memory before we make the queuepair
2772 * allocation hypercall. On Linux, we allocate each page
2773 * separately, which means rather than fail, the guest will
2774 * thrash while it tries to allocate, and will become
2775 * increasingly unresponsive to the point where it appears to
2776 * be hung. So we place a limit on the size of an individual
2777 * queuepair here, and leave the device to enforce the
2778 * restriction on total queuepair memory. (Note that this
2779 * doesn't prevent all cases; a user with only this much
2780 * physical memory could still get into trouble.) The error
2781 * used by the device is NO_RESOURCES, so use that here too.
2784 if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2785 produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2786 return VMCI_ERROR_NO_RESOURCES;
2788 retval = vmci_route(&src, &dst, false, &route);
2789 if (retval < VMCI_SUCCESS)
2790 route = vmci_guest_code_active() ?
2791 VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2793 if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2794 pr_devel("NONBLOCK OR PINNED set");
2795 return VMCI_ERROR_INVALID_ARGS;
2798 my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2799 if (!my_qpair)
2800 return VMCI_ERROR_NO_MEM;
2802 my_qpair->produce_q_size = produce_qsize;
2803 my_qpair->consume_q_size = consume_qsize;
2804 my_qpair->peer = peer;
2805 my_qpair->flags = flags;
2806 my_qpair->priv_flags = priv_flags;
2808 wakeup_cb = NULL;
2809 client_data = NULL;
2811 if (VMCI_ROUTE_AS_HOST == route) {
2812 my_qpair->guest_endpoint = false;
2813 if (!(flags & VMCI_QPFLAG_LOCAL)) {
2814 my_qpair->blocked = 0;
2815 my_qpair->generation = 0;
2816 init_waitqueue_head(&my_qpair->event);
2817 wakeup_cb = qp_wakeup_cb;
2818 client_data = (void *)my_qpair;
2820 } else {
2821 my_qpair->guest_endpoint = true;
2824 retval = vmci_qp_alloc(handle,
2825 &my_qpair->produce_q,
2826 my_qpair->produce_q_size,
2827 &my_qpair->consume_q,
2828 my_qpair->consume_q_size,
2829 my_qpair->peer,
2830 my_qpair->flags,
2831 my_qpair->priv_flags,
2832 my_qpair->guest_endpoint,
2833 wakeup_cb, client_data);
2835 if (retval < VMCI_SUCCESS) {
2836 kfree(my_qpair);
2837 return retval;
2840 *qpair = my_qpair;
2841 my_qpair->handle = *handle;
2843 return retval;
2845 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2848 * vmci_qpair_detach() - Detatches the client from a queue pair.
2849 * @qpair: Reference of a pointer to the qpair struct.
2851 * This is the client interface for detaching from a VMCIQPair.
2852 * Note that this routine will free the memory allocated for the
2853 * vmci_qp structure too.
2855 int vmci_qpair_detach(struct vmci_qp **qpair)
2857 int result;
2858 struct vmci_qp *old_qpair;
2860 if (!qpair || !(*qpair))
2861 return VMCI_ERROR_INVALID_ARGS;
2863 old_qpair = *qpair;
2864 result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2867 * The guest can fail to detach for a number of reasons, and
2868 * if it does so, it will cleanup the entry (if there is one).
2869 * The host can fail too, but it won't cleanup the entry
2870 * immediately, it will do that later when the context is
2871 * freed. Either way, we need to release the qpair struct
2872 * here; there isn't much the caller can do, and we don't want
2873 * to leak.
2876 memset(old_qpair, 0, sizeof(*old_qpair));
2877 old_qpair->handle = VMCI_INVALID_HANDLE;
2878 old_qpair->peer = VMCI_INVALID_ID;
2879 kfree(old_qpair);
2880 *qpair = NULL;
2882 return result;
2884 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2887 * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2888 * @qpair: Pointer to the queue pair struct.
2889 * @producer_tail: Reference used for storing producer tail index.
2890 * @consumer_head: Reference used for storing the consumer head index.
2892 * This is the client interface for getting the current indexes of the
2893 * QPair from the point of the view of the caller as the producer.
2895 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2896 u64 *producer_tail,
2897 u64 *consumer_head)
2899 struct vmci_queue_header *produce_q_header;
2900 struct vmci_queue_header *consume_q_header;
2901 int result;
2903 if (!qpair)
2904 return VMCI_ERROR_INVALID_ARGS;
2906 qp_lock(qpair);
2907 result =
2908 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2909 if (result == VMCI_SUCCESS)
2910 vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2911 producer_tail, consumer_head);
2912 qp_unlock(qpair);
2914 if (result == VMCI_SUCCESS &&
2915 ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2916 (consumer_head && *consumer_head >= qpair->produce_q_size)))
2917 return VMCI_ERROR_INVALID_SIZE;
2919 return result;
2921 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2924 * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the comsumer.
2925 * @qpair: Pointer to the queue pair struct.
2926 * @consumer_tail: Reference used for storing consumer tail index.
2927 * @producer_head: Reference used for storing the producer head index.
2929 * This is the client interface for getting the current indexes of the
2930 * QPair from the point of the view of the caller as the consumer.
2932 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2933 u64 *consumer_tail,
2934 u64 *producer_head)
2936 struct vmci_queue_header *produce_q_header;
2937 struct vmci_queue_header *consume_q_header;
2938 int result;
2940 if (!qpair)
2941 return VMCI_ERROR_INVALID_ARGS;
2943 qp_lock(qpair);
2944 result =
2945 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2946 if (result == VMCI_SUCCESS)
2947 vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2948 consumer_tail, producer_head);
2949 qp_unlock(qpair);
2951 if (result == VMCI_SUCCESS &&
2952 ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2953 (producer_head && *producer_head >= qpair->consume_q_size)))
2954 return VMCI_ERROR_INVALID_SIZE;
2956 return result;
2958 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2961 * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2962 * @qpair: Pointer to the queue pair struct.
2964 * This is the client interface for getting the amount of free
2965 * space in the QPair from the point of the view of the caller as
2966 * the producer which is the common case. Returns < 0 if err, else
2967 * available bytes into which data can be enqueued if > 0.
2969 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2971 struct vmci_queue_header *produce_q_header;
2972 struct vmci_queue_header *consume_q_header;
2973 s64 result;
2975 if (!qpair)
2976 return VMCI_ERROR_INVALID_ARGS;
2978 qp_lock(qpair);
2979 result =
2980 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2981 if (result == VMCI_SUCCESS)
2982 result = vmci_q_header_free_space(produce_q_header,
2983 consume_q_header,
2984 qpair->produce_q_size);
2985 else
2986 result = 0;
2988 qp_unlock(qpair);
2990 return result;
2992 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2995 * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2996 * @qpair: Pointer to the queue pair struct.
2998 * This is the client interface for getting the amount of free
2999 * space in the QPair from the point of the view of the caller as
3000 * the consumer which is not the common case. Returns < 0 if err, else
3001 * available bytes into which data can be enqueued if > 0.
3003 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
3005 struct vmci_queue_header *produce_q_header;
3006 struct vmci_queue_header *consume_q_header;
3007 s64 result;
3009 if (!qpair)
3010 return VMCI_ERROR_INVALID_ARGS;
3012 qp_lock(qpair);
3013 result =
3014 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3015 if (result == VMCI_SUCCESS)
3016 result = vmci_q_header_free_space(consume_q_header,
3017 produce_q_header,
3018 qpair->consume_q_size);
3019 else
3020 result = 0;
3022 qp_unlock(qpair);
3024 return result;
3026 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
3029 * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
3030 * producer queue.
3031 * @qpair: Pointer to the queue pair struct.
3033 * This is the client interface for getting the amount of
3034 * enqueued data in the QPair from the point of the view of the
3035 * caller as the producer which is not the common case. Returns < 0 if err,
3036 * else available bytes that may be read.
3038 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
3040 struct vmci_queue_header *produce_q_header;
3041 struct vmci_queue_header *consume_q_header;
3042 s64 result;
3044 if (!qpair)
3045 return VMCI_ERROR_INVALID_ARGS;
3047 qp_lock(qpair);
3048 result =
3049 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3050 if (result == VMCI_SUCCESS)
3051 result = vmci_q_header_buf_ready(produce_q_header,
3052 consume_q_header,
3053 qpair->produce_q_size);
3054 else
3055 result = 0;
3057 qp_unlock(qpair);
3059 return result;
3061 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
3064 * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
3065 * consumer queue.
3066 * @qpair: Pointer to the queue pair struct.
3068 * This is the client interface for getting the amount of
3069 * enqueued data in the QPair from the point of the view of the
3070 * caller as the consumer which is the normal case. Returns < 0 if err,
3071 * else available bytes that may be read.
3073 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
3075 struct vmci_queue_header *produce_q_header;
3076 struct vmci_queue_header *consume_q_header;
3077 s64 result;
3079 if (!qpair)
3080 return VMCI_ERROR_INVALID_ARGS;
3082 qp_lock(qpair);
3083 result =
3084 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3085 if (result == VMCI_SUCCESS)
3086 result = vmci_q_header_buf_ready(consume_q_header,
3087 produce_q_header,
3088 qpair->consume_q_size);
3089 else
3090 result = 0;
3092 qp_unlock(qpair);
3094 return result;
3096 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3099 * vmci_qpair_enqueue() - Throw data on the queue.
3100 * @qpair: Pointer to the queue pair struct.
3101 * @buf: Pointer to buffer containing data
3102 * @buf_size: Length of buffer.
3103 * @buf_type: Buffer type (Unused).
3105 * This is the client interface for enqueueing data into the queue.
3106 * Returns number of bytes enqueued or < 0 on error.
3108 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3109 const void *buf,
3110 size_t buf_size,
3111 int buf_type)
3113 ssize_t result;
3115 if (!qpair || !buf)
3116 return VMCI_ERROR_INVALID_ARGS;
3118 qp_lock(qpair);
3120 do {
3121 result = qp_enqueue_locked(qpair->produce_q,
3122 qpair->consume_q,
3123 qpair->produce_q_size,
3124 buf, buf_size,
3125 qp_memcpy_to_queue);
3127 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3128 !qp_wait_for_ready_queue(qpair))
3129 result = VMCI_ERROR_WOULD_BLOCK;
3131 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3133 qp_unlock(qpair);
3135 return result;
3137 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3140 * vmci_qpair_dequeue() - Get data from the queue.
3141 * @qpair: Pointer to the queue pair struct.
3142 * @buf: Pointer to buffer for the data
3143 * @buf_size: Length of buffer.
3144 * @buf_type: Buffer type (Unused).
3146 * This is the client interface for dequeueing data from the queue.
3147 * Returns number of bytes dequeued or < 0 on error.
3149 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3150 void *buf,
3151 size_t buf_size,
3152 int buf_type)
3154 ssize_t result;
3156 if (!qpair || !buf)
3157 return VMCI_ERROR_INVALID_ARGS;
3159 qp_lock(qpair);
3161 do {
3162 result = qp_dequeue_locked(qpair->produce_q,
3163 qpair->consume_q,
3164 qpair->consume_q_size,
3165 buf, buf_size,
3166 qp_memcpy_from_queue, true);
3168 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3169 !qp_wait_for_ready_queue(qpair))
3170 result = VMCI_ERROR_WOULD_BLOCK;
3172 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3174 qp_unlock(qpair);
3176 return result;
3178 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3181 * vmci_qpair_peek() - Peek at the data in the queue.
3182 * @qpair: Pointer to the queue pair struct.
3183 * @buf: Pointer to buffer for the data
3184 * @buf_size: Length of buffer.
3185 * @buf_type: Buffer type (Unused on Linux).
3187 * This is the client interface for peeking into a queue. (I.e.,
3188 * copy data from the queue without updating the head pointer.)
3189 * Returns number of bytes dequeued or < 0 on error.
3191 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3192 void *buf,
3193 size_t buf_size,
3194 int buf_type)
3196 ssize_t result;
3198 if (!qpair || !buf)
3199 return VMCI_ERROR_INVALID_ARGS;
3201 qp_lock(qpair);
3203 do {
3204 result = qp_dequeue_locked(qpair->produce_q,
3205 qpair->consume_q,
3206 qpair->consume_q_size,
3207 buf, buf_size,
3208 qp_memcpy_from_queue, false);
3210 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3211 !qp_wait_for_ready_queue(qpair))
3212 result = VMCI_ERROR_WOULD_BLOCK;
3214 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3216 qp_unlock(qpair);
3218 return result;
3220 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3223 * vmci_qpair_enquev() - Throw data on the queue using iov.
3224 * @qpair: Pointer to the queue pair struct.
3225 * @iov: Pointer to buffer containing data
3226 * @iov_size: Length of buffer.
3227 * @buf_type: Buffer type (Unused).
3229 * This is the client interface for enqueueing data into the queue.
3230 * This function uses IO vectors to handle the work. Returns number
3231 * of bytes enqueued or < 0 on error.
3233 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3234 void *iov,
3235 size_t iov_size,
3236 int buf_type)
3238 ssize_t result;
3240 if (!qpair || !iov)
3241 return VMCI_ERROR_INVALID_ARGS;
3243 qp_lock(qpair);
3245 do {
3246 result = qp_enqueue_locked(qpair->produce_q,
3247 qpair->consume_q,
3248 qpair->produce_q_size,
3249 iov, iov_size,
3250 qp_memcpy_to_queue_iov);
3252 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3253 !qp_wait_for_ready_queue(qpair))
3254 result = VMCI_ERROR_WOULD_BLOCK;
3256 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3258 qp_unlock(qpair);
3260 return result;
3262 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3265 * vmci_qpair_dequev() - Get data from the queue using iov.
3266 * @qpair: Pointer to the queue pair struct.
3267 * @iov: Pointer to buffer for the data
3268 * @iov_size: Length of buffer.
3269 * @buf_type: Buffer type (Unused).
3271 * This is the client interface for dequeueing data from the queue.
3272 * This function uses IO vectors to handle the work. Returns number
3273 * of bytes dequeued or < 0 on error.
3275 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3276 void *iov,
3277 size_t iov_size,
3278 int buf_type)
3280 ssize_t result;
3282 if (!qpair || !iov)
3283 return VMCI_ERROR_INVALID_ARGS;
3285 qp_lock(qpair);
3287 do {
3288 result = qp_dequeue_locked(qpair->produce_q,
3289 qpair->consume_q,
3290 qpair->consume_q_size,
3291 iov, iov_size,
3292 qp_memcpy_from_queue_iov,
3293 true);
3295 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3296 !qp_wait_for_ready_queue(qpair))
3297 result = VMCI_ERROR_WOULD_BLOCK;
3299 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3301 qp_unlock(qpair);
3303 return result;
3305 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3308 * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3309 * @qpair: Pointer to the queue pair struct.
3310 * @iov: Pointer to buffer for the data
3311 * @iov_size: Length of buffer.
3312 * @buf_type: Buffer type (Unused on Linux).
3314 * This is the client interface for peeking into a queue. (I.e.,
3315 * copy data from the queue without updating the head pointer.)
3316 * This function uses IO vectors to handle the work. Returns number
3317 * of bytes peeked or < 0 on error.
3319 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3320 void *iov,
3321 size_t iov_size,
3322 int buf_type)
3324 ssize_t result;
3326 if (!qpair || !iov)
3327 return VMCI_ERROR_INVALID_ARGS;
3329 qp_lock(qpair);
3331 do {
3332 result = qp_dequeue_locked(qpair->produce_q,
3333 qpair->consume_q,
3334 qpair->consume_q_size,
3335 iov, iov_size,
3336 qp_memcpy_from_queue_iov,
3337 false);
3339 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3340 !qp_wait_for_ready_queue(qpair))
3341 result = VMCI_ERROR_WOULD_BLOCK;
3343 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3345 qp_unlock(qpair);
3346 return result;
3348 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);