x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / mtd / nand / mxc_nand.c
blobe5c0e593ed1e9802a520af06a8e72291cca32684
1 /*
2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17 * MA 02110-1301, USA.
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 #include <linux/of_device.h>
36 #include <linux/of_mtd.h>
38 #include <asm/mach/flash.h>
39 #include <linux/platform_data/mtd-mxc_nand.h>
41 #define DRIVER_NAME "mxc_nand"
43 /* Addresses for NFC registers */
44 #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
45 #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
46 #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
47 #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
48 #define NFC_V1_V2_CONFIG (host->regs + 0x0a)
49 #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
50 #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
51 #define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10)
52 #define NFC_V1_V2_WRPROT (host->regs + 0x12)
53 #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
54 #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
55 #define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
56 #define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
57 #define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
58 #define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
59 #define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
60 #define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
61 #define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
62 #define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
63 #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
64 #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
65 #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
67 #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
68 #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
69 #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
70 #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
71 #define NFC_V1_V2_CONFIG1_BIG (1 << 5)
72 #define NFC_V1_V2_CONFIG1_RST (1 << 6)
73 #define NFC_V1_V2_CONFIG1_CE (1 << 7)
74 #define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
75 #define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
76 #define NFC_V2_CONFIG1_FP_INT (1 << 11)
78 #define NFC_V1_V2_CONFIG2_INT (1 << 15)
81 * Operation modes for the NFC. Valid for v1, v2 and v3
82 * type controllers.
84 #define NFC_CMD (1 << 0)
85 #define NFC_ADDR (1 << 1)
86 #define NFC_INPUT (1 << 2)
87 #define NFC_OUTPUT (1 << 3)
88 #define NFC_ID (1 << 4)
89 #define NFC_STATUS (1 << 5)
91 #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
92 #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
94 #define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
95 #define NFC_V3_CONFIG1_SP_EN (1 << 0)
96 #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
98 #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
100 #define NFC_V3_LAUNCH (host->regs_axi + 0x40)
102 #define NFC_V3_WRPROT (host->regs_ip + 0x0)
103 #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
104 #define NFC_V3_WRPROT_LOCK (1 << 1)
105 #define NFC_V3_WRPROT_UNLOCK (1 << 2)
106 #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
108 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
110 #define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
111 #define NFC_V3_CONFIG2_PS_512 (0 << 0)
112 #define NFC_V3_CONFIG2_PS_2048 (1 << 0)
113 #define NFC_V3_CONFIG2_PS_4096 (2 << 0)
114 #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
115 #define NFC_V3_CONFIG2_ECC_EN (1 << 3)
116 #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
117 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
118 #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
119 #define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift)
120 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
121 #define NFC_V3_CONFIG2_INT_MSK (1 << 15)
122 #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
123 #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
125 #define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
126 #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
127 #define NFC_V3_CONFIG3_FW8 (1 << 3)
128 #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
129 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
130 #define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
131 #define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
133 #define NFC_V3_IPC (host->regs_ip + 0x2C)
134 #define NFC_V3_IPC_CREQ (1 << 0)
135 #define NFC_V3_IPC_INT (1 << 31)
137 #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
139 struct mxc_nand_host;
141 struct mxc_nand_devtype_data {
142 void (*preset)(struct mtd_info *);
143 void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
144 void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
145 void (*send_page)(struct mtd_info *, unsigned int);
146 void (*send_read_id)(struct mxc_nand_host *);
147 uint16_t (*get_dev_status)(struct mxc_nand_host *);
148 int (*check_int)(struct mxc_nand_host *);
149 void (*irq_control)(struct mxc_nand_host *, int);
150 u32 (*get_ecc_status)(struct mxc_nand_host *);
151 struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
152 void (*select_chip)(struct mtd_info *mtd, int chip);
153 int (*correct_data)(struct mtd_info *mtd, u_char *dat,
154 u_char *read_ecc, u_char *calc_ecc);
157 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
158 * (CONFIG1:INT_MSK is set). To handle this the driver uses
159 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
161 int irqpending_quirk;
162 int needs_ip;
164 size_t regs_offset;
165 size_t spare0_offset;
166 size_t axi_offset;
168 int spare_len;
169 int eccbytes;
170 int eccsize;
171 int ppb_shift;
174 struct mxc_nand_host {
175 struct mtd_info mtd;
176 struct nand_chip nand;
177 struct device *dev;
179 void __iomem *spare0;
180 void __iomem *main_area0;
182 void __iomem *base;
183 void __iomem *regs;
184 void __iomem *regs_axi;
185 void __iomem *regs_ip;
186 int status_request;
187 struct clk *clk;
188 int clk_act;
189 int irq;
190 int eccsize;
191 int active_cs;
193 struct completion op_completion;
195 uint8_t *data_buf;
196 unsigned int buf_start;
198 const struct mxc_nand_devtype_data *devtype_data;
199 struct mxc_nand_platform_data pdata;
202 /* OOB placement block for use with hardware ecc generation */
203 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
204 .eccbytes = 5,
205 .eccpos = {6, 7, 8, 9, 10},
206 .oobfree = {{0, 5}, {12, 4}, }
209 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
210 .eccbytes = 20,
211 .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
212 38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
213 .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
216 /* OOB description for 512 byte pages with 16 byte OOB */
217 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
218 .eccbytes = 1 * 9,
219 .eccpos = {
220 7, 8, 9, 10, 11, 12, 13, 14, 15
222 .oobfree = {
223 {.offset = 0, .length = 5}
227 /* OOB description for 2048 byte pages with 64 byte OOB */
228 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
229 .eccbytes = 4 * 9,
230 .eccpos = {
231 7, 8, 9, 10, 11, 12, 13, 14, 15,
232 23, 24, 25, 26, 27, 28, 29, 30, 31,
233 39, 40, 41, 42, 43, 44, 45, 46, 47,
234 55, 56, 57, 58, 59, 60, 61, 62, 63
236 .oobfree = {
237 {.offset = 2, .length = 4},
238 {.offset = 16, .length = 7},
239 {.offset = 32, .length = 7},
240 {.offset = 48, .length = 7}
244 /* OOB description for 4096 byte pages with 128 byte OOB */
245 static struct nand_ecclayout nandv2_hw_eccoob_4k = {
246 .eccbytes = 8 * 9,
247 .eccpos = {
248 7, 8, 9, 10, 11, 12, 13, 14, 15,
249 23, 24, 25, 26, 27, 28, 29, 30, 31,
250 39, 40, 41, 42, 43, 44, 45, 46, 47,
251 55, 56, 57, 58, 59, 60, 61, 62, 63,
252 71, 72, 73, 74, 75, 76, 77, 78, 79,
253 87, 88, 89, 90, 91, 92, 93, 94, 95,
254 103, 104, 105, 106, 107, 108, 109, 110, 111,
255 119, 120, 121, 122, 123, 124, 125, 126, 127,
257 .oobfree = {
258 {.offset = 2, .length = 4},
259 {.offset = 16, .length = 7},
260 {.offset = 32, .length = 7},
261 {.offset = 48, .length = 7},
262 {.offset = 64, .length = 7},
263 {.offset = 80, .length = 7},
264 {.offset = 96, .length = 7},
265 {.offset = 112, .length = 7},
269 static const char * const part_probes[] = {
270 "cmdlinepart", "RedBoot", "ofpart", NULL };
272 static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size)
274 int i;
275 u32 *t = trg;
276 const __iomem u32 *s = src;
278 for (i = 0; i < (size >> 2); i++)
279 *t++ = __raw_readl(s++);
282 static void memcpy32_toio(void __iomem *trg, const void *src, int size)
284 int i;
285 u32 __iomem *t = trg;
286 const u32 *s = src;
288 for (i = 0; i < (size >> 2); i++)
289 __raw_writel(*s++, t++);
292 static int check_int_v3(struct mxc_nand_host *host)
294 uint32_t tmp;
296 tmp = readl(NFC_V3_IPC);
297 if (!(tmp & NFC_V3_IPC_INT))
298 return 0;
300 tmp &= ~NFC_V3_IPC_INT;
301 writel(tmp, NFC_V3_IPC);
303 return 1;
306 static int check_int_v1_v2(struct mxc_nand_host *host)
308 uint32_t tmp;
310 tmp = readw(NFC_V1_V2_CONFIG2);
311 if (!(tmp & NFC_V1_V2_CONFIG2_INT))
312 return 0;
314 if (!host->devtype_data->irqpending_quirk)
315 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
317 return 1;
320 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
322 uint16_t tmp;
324 tmp = readw(NFC_V1_V2_CONFIG1);
326 if (activate)
327 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
328 else
329 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
331 writew(tmp, NFC_V1_V2_CONFIG1);
334 static void irq_control_v3(struct mxc_nand_host *host, int activate)
336 uint32_t tmp;
338 tmp = readl(NFC_V3_CONFIG2);
340 if (activate)
341 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
342 else
343 tmp |= NFC_V3_CONFIG2_INT_MSK;
345 writel(tmp, NFC_V3_CONFIG2);
348 static void irq_control(struct mxc_nand_host *host, int activate)
350 if (host->devtype_data->irqpending_quirk) {
351 if (activate)
352 enable_irq(host->irq);
353 else
354 disable_irq_nosync(host->irq);
355 } else {
356 host->devtype_data->irq_control(host, activate);
360 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
362 return readw(NFC_V1_V2_ECC_STATUS_RESULT);
365 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
367 return readl(NFC_V1_V2_ECC_STATUS_RESULT);
370 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
372 return readl(NFC_V3_ECC_STATUS_RESULT);
375 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
377 struct mxc_nand_host *host = dev_id;
379 if (!host->devtype_data->check_int(host))
380 return IRQ_NONE;
382 irq_control(host, 0);
384 complete(&host->op_completion);
386 return IRQ_HANDLED;
389 /* This function polls the NANDFC to wait for the basic operation to
390 * complete by checking the INT bit of config2 register.
392 static void wait_op_done(struct mxc_nand_host *host, int useirq)
394 int max_retries = 8000;
396 if (useirq) {
397 if (!host->devtype_data->check_int(host)) {
398 INIT_COMPLETION(host->op_completion);
399 irq_control(host, 1);
400 wait_for_completion(&host->op_completion);
402 } else {
403 while (max_retries-- > 0) {
404 if (host->devtype_data->check_int(host))
405 break;
407 udelay(1);
409 if (max_retries < 0)
410 pr_debug("%s: INT not set\n", __func__);
414 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
416 /* fill command */
417 writel(cmd, NFC_V3_FLASH_CMD);
419 /* send out command */
420 writel(NFC_CMD, NFC_V3_LAUNCH);
422 /* Wait for operation to complete */
423 wait_op_done(host, useirq);
426 /* This function issues the specified command to the NAND device and
427 * waits for completion. */
428 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
430 pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
432 writew(cmd, NFC_V1_V2_FLASH_CMD);
433 writew(NFC_CMD, NFC_V1_V2_CONFIG2);
435 if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
436 int max_retries = 100;
437 /* Reset completion is indicated by NFC_CONFIG2 */
438 /* being set to 0 */
439 while (max_retries-- > 0) {
440 if (readw(NFC_V1_V2_CONFIG2) == 0) {
441 break;
443 udelay(1);
445 if (max_retries < 0)
446 pr_debug("%s: RESET failed\n", __func__);
447 } else {
448 /* Wait for operation to complete */
449 wait_op_done(host, useirq);
453 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
455 /* fill address */
456 writel(addr, NFC_V3_FLASH_ADDR0);
458 /* send out address */
459 writel(NFC_ADDR, NFC_V3_LAUNCH);
461 wait_op_done(host, 0);
464 /* This function sends an address (or partial address) to the
465 * NAND device. The address is used to select the source/destination for
466 * a NAND command. */
467 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
469 pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
471 writew(addr, NFC_V1_V2_FLASH_ADDR);
472 writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
474 /* Wait for operation to complete */
475 wait_op_done(host, islast);
478 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
480 struct nand_chip *nand_chip = mtd->priv;
481 struct mxc_nand_host *host = nand_chip->priv;
482 uint32_t tmp;
484 tmp = readl(NFC_V3_CONFIG1);
485 tmp &= ~(7 << 4);
486 writel(tmp, NFC_V3_CONFIG1);
488 /* transfer data from NFC ram to nand */
489 writel(ops, NFC_V3_LAUNCH);
491 wait_op_done(host, false);
494 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
496 struct nand_chip *nand_chip = mtd->priv;
497 struct mxc_nand_host *host = nand_chip->priv;
499 /* NANDFC buffer 0 is used for page read/write */
500 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
502 writew(ops, NFC_V1_V2_CONFIG2);
504 /* Wait for operation to complete */
505 wait_op_done(host, true);
508 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
510 struct nand_chip *nand_chip = mtd->priv;
511 struct mxc_nand_host *host = nand_chip->priv;
512 int bufs, i;
514 if (mtd->writesize > 512)
515 bufs = 4;
516 else
517 bufs = 1;
519 for (i = 0; i < bufs; i++) {
521 /* NANDFC buffer 0 is used for page read/write */
522 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
524 writew(ops, NFC_V1_V2_CONFIG2);
526 /* Wait for operation to complete */
527 wait_op_done(host, true);
531 static void send_read_id_v3(struct mxc_nand_host *host)
533 struct nand_chip *this = &host->nand;
535 /* Read ID into main buffer */
536 writel(NFC_ID, NFC_V3_LAUNCH);
538 wait_op_done(host, true);
540 memcpy32_fromio(host->data_buf, host->main_area0, 16);
542 if (this->options & NAND_BUSWIDTH_16) {
543 /* compress the ID info */
544 host->data_buf[1] = host->data_buf[2];
545 host->data_buf[2] = host->data_buf[4];
546 host->data_buf[3] = host->data_buf[6];
547 host->data_buf[4] = host->data_buf[8];
548 host->data_buf[5] = host->data_buf[10];
552 /* Request the NANDFC to perform a read of the NAND device ID. */
553 static void send_read_id_v1_v2(struct mxc_nand_host *host)
555 struct nand_chip *this = &host->nand;
557 /* NANDFC buffer 0 is used for device ID output */
558 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
560 writew(NFC_ID, NFC_V1_V2_CONFIG2);
562 /* Wait for operation to complete */
563 wait_op_done(host, true);
565 memcpy32_fromio(host->data_buf, host->main_area0, 16);
567 if (this->options & NAND_BUSWIDTH_16) {
568 /* compress the ID info */
569 host->data_buf[1] = host->data_buf[2];
570 host->data_buf[2] = host->data_buf[4];
571 host->data_buf[3] = host->data_buf[6];
572 host->data_buf[4] = host->data_buf[8];
573 host->data_buf[5] = host->data_buf[10];
577 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
579 writew(NFC_STATUS, NFC_V3_LAUNCH);
580 wait_op_done(host, true);
582 return readl(NFC_V3_CONFIG1) >> 16;
585 /* This function requests the NANDFC to perform a read of the
586 * NAND device status and returns the current status. */
587 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
589 void __iomem *main_buf = host->main_area0;
590 uint32_t store;
591 uint16_t ret;
593 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
596 * The device status is stored in main_area0. To
597 * prevent corruption of the buffer save the value
598 * and restore it afterwards.
600 store = readl(main_buf);
602 writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
603 wait_op_done(host, true);
605 ret = readw(main_buf);
607 writel(store, main_buf);
609 return ret;
612 /* This functions is used by upper layer to checks if device is ready */
613 static int mxc_nand_dev_ready(struct mtd_info *mtd)
616 * NFC handles R/B internally. Therefore, this function
617 * always returns status as ready.
619 return 1;
622 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
625 * If HW ECC is enabled, we turn it on during init. There is
626 * no need to enable again here.
630 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
631 u_char *read_ecc, u_char *calc_ecc)
633 struct nand_chip *nand_chip = mtd->priv;
634 struct mxc_nand_host *host = nand_chip->priv;
637 * 1-Bit errors are automatically corrected in HW. No need for
638 * additional correction. 2-Bit errors cannot be corrected by
639 * HW ECC, so we need to return failure
641 uint16_t ecc_status = get_ecc_status_v1(host);
643 if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
644 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
645 return -1;
648 return 0;
651 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
652 u_char *read_ecc, u_char *calc_ecc)
654 struct nand_chip *nand_chip = mtd->priv;
655 struct mxc_nand_host *host = nand_chip->priv;
656 u32 ecc_stat, err;
657 int no_subpages = 1;
658 int ret = 0;
659 u8 ecc_bit_mask, err_limit;
661 ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
662 err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
664 no_subpages = mtd->writesize >> 9;
666 ecc_stat = host->devtype_data->get_ecc_status(host);
668 do {
669 err = ecc_stat & ecc_bit_mask;
670 if (err > err_limit) {
671 printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
672 return -1;
673 } else {
674 ret += err;
676 ecc_stat >>= 4;
677 } while (--no_subpages);
679 pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
681 return ret;
684 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
685 u_char *ecc_code)
687 return 0;
690 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
692 struct nand_chip *nand_chip = mtd->priv;
693 struct mxc_nand_host *host = nand_chip->priv;
694 uint8_t ret;
696 /* Check for status request */
697 if (host->status_request)
698 return host->devtype_data->get_dev_status(host) & 0xFF;
700 ret = *(uint8_t *)(host->data_buf + host->buf_start);
701 host->buf_start++;
703 return ret;
706 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
708 struct nand_chip *nand_chip = mtd->priv;
709 struct mxc_nand_host *host = nand_chip->priv;
710 uint16_t ret;
712 ret = *(uint16_t *)(host->data_buf + host->buf_start);
713 host->buf_start += 2;
715 return ret;
718 /* Write data of length len to buffer buf. The data to be
719 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
720 * Operation by the NFC, the data is written to NAND Flash */
721 static void mxc_nand_write_buf(struct mtd_info *mtd,
722 const u_char *buf, int len)
724 struct nand_chip *nand_chip = mtd->priv;
725 struct mxc_nand_host *host = nand_chip->priv;
726 u16 col = host->buf_start;
727 int n = mtd->oobsize + mtd->writesize - col;
729 n = min(n, len);
731 memcpy(host->data_buf + col, buf, n);
733 host->buf_start += n;
736 /* Read the data buffer from the NAND Flash. To read the data from NAND
737 * Flash first the data output cycle is initiated by the NFC, which copies
738 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
740 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
742 struct nand_chip *nand_chip = mtd->priv;
743 struct mxc_nand_host *host = nand_chip->priv;
744 u16 col = host->buf_start;
745 int n = mtd->oobsize + mtd->writesize - col;
747 n = min(n, len);
749 memcpy(buf, host->data_buf + col, n);
751 host->buf_start += n;
754 /* This function is used by upper layer for select and
755 * deselect of the NAND chip */
756 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
758 struct nand_chip *nand_chip = mtd->priv;
759 struct mxc_nand_host *host = nand_chip->priv;
761 if (chip == -1) {
762 /* Disable the NFC clock */
763 if (host->clk_act) {
764 clk_disable_unprepare(host->clk);
765 host->clk_act = 0;
767 return;
770 if (!host->clk_act) {
771 /* Enable the NFC clock */
772 clk_prepare_enable(host->clk);
773 host->clk_act = 1;
777 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
779 struct nand_chip *nand_chip = mtd->priv;
780 struct mxc_nand_host *host = nand_chip->priv;
782 if (chip == -1) {
783 /* Disable the NFC clock */
784 if (host->clk_act) {
785 clk_disable_unprepare(host->clk);
786 host->clk_act = 0;
788 return;
791 if (!host->clk_act) {
792 /* Enable the NFC clock */
793 clk_prepare_enable(host->clk);
794 host->clk_act = 1;
797 host->active_cs = chip;
798 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
802 * Function to transfer data to/from spare area.
804 static void copy_spare(struct mtd_info *mtd, bool bfrom)
806 struct nand_chip *this = mtd->priv;
807 struct mxc_nand_host *host = this->priv;
808 u16 i, j;
809 u16 n = mtd->writesize >> 9;
810 u8 *d = host->data_buf + mtd->writesize;
811 u8 __iomem *s = host->spare0;
812 u16 t = host->devtype_data->spare_len;
814 j = (mtd->oobsize / n >> 1) << 1;
816 if (bfrom) {
817 for (i = 0; i < n - 1; i++)
818 memcpy32_fromio(d + i * j, s + i * t, j);
820 /* the last section */
821 memcpy32_fromio(d + i * j, s + i * t, mtd->oobsize - i * j);
822 } else {
823 for (i = 0; i < n - 1; i++)
824 memcpy32_toio(&s[i * t], &d[i * j], j);
826 /* the last section */
827 memcpy32_toio(&s[i * t], &d[i * j], mtd->oobsize - i * j);
831 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
833 struct nand_chip *nand_chip = mtd->priv;
834 struct mxc_nand_host *host = nand_chip->priv;
836 /* Write out column address, if necessary */
837 if (column != -1) {
839 * MXC NANDFC can only perform full page+spare or
840 * spare-only read/write. When the upper layers
841 * perform a read/write buf operation, the saved column
842 * address is used to index into the full page.
844 host->devtype_data->send_addr(host, 0, page_addr == -1);
845 if (mtd->writesize > 512)
846 /* another col addr cycle for 2k page */
847 host->devtype_data->send_addr(host, 0, false);
850 /* Write out page address, if necessary */
851 if (page_addr != -1) {
852 /* paddr_0 - p_addr_7 */
853 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
855 if (mtd->writesize > 512) {
856 if (mtd->size >= 0x10000000) {
857 /* paddr_8 - paddr_15 */
858 host->devtype_data->send_addr(host,
859 (page_addr >> 8) & 0xff,
860 false);
861 host->devtype_data->send_addr(host,
862 (page_addr >> 16) & 0xff,
863 true);
864 } else
865 /* paddr_8 - paddr_15 */
866 host->devtype_data->send_addr(host,
867 (page_addr >> 8) & 0xff, true);
868 } else {
869 /* One more address cycle for higher density devices */
870 if (mtd->size >= 0x4000000) {
871 /* paddr_8 - paddr_15 */
872 host->devtype_data->send_addr(host,
873 (page_addr >> 8) & 0xff,
874 false);
875 host->devtype_data->send_addr(host,
876 (page_addr >> 16) & 0xff,
877 true);
878 } else
879 /* paddr_8 - paddr_15 */
880 host->devtype_data->send_addr(host,
881 (page_addr >> 8) & 0xff, true);
887 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
888 * on how much oob the nand chip has. For 8bit ecc we need at least
889 * 26 bytes of oob data per 512 byte block.
891 static int get_eccsize(struct mtd_info *mtd)
893 int oobbytes_per_512 = 0;
895 oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
897 if (oobbytes_per_512 < 26)
898 return 4;
899 else
900 return 8;
903 static void preset_v1(struct mtd_info *mtd)
905 struct nand_chip *nand_chip = mtd->priv;
906 struct mxc_nand_host *host = nand_chip->priv;
907 uint16_t config1 = 0;
909 if (nand_chip->ecc.mode == NAND_ECC_HW)
910 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
912 if (!host->devtype_data->irqpending_quirk)
913 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
915 host->eccsize = 1;
917 writew(config1, NFC_V1_V2_CONFIG1);
918 /* preset operation */
920 /* Unlock the internal RAM Buffer */
921 writew(0x2, NFC_V1_V2_CONFIG);
923 /* Blocks to be unlocked */
924 writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
925 writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
927 /* Unlock Block Command for given address range */
928 writew(0x4, NFC_V1_V2_WRPROT);
931 static void preset_v2(struct mtd_info *mtd)
933 struct nand_chip *nand_chip = mtd->priv;
934 struct mxc_nand_host *host = nand_chip->priv;
935 uint16_t config1 = 0;
937 if (nand_chip->ecc.mode == NAND_ECC_HW)
938 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
940 config1 |= NFC_V2_CONFIG1_FP_INT;
942 if (!host->devtype_data->irqpending_quirk)
943 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
945 if (mtd->writesize) {
946 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
948 host->eccsize = get_eccsize(mtd);
949 if (host->eccsize == 4)
950 config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
952 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
953 } else {
954 host->eccsize = 1;
957 writew(config1, NFC_V1_V2_CONFIG1);
958 /* preset operation */
960 /* Unlock the internal RAM Buffer */
961 writew(0x2, NFC_V1_V2_CONFIG);
963 /* Blocks to be unlocked */
964 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
965 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
966 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
967 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
968 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
969 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
970 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
971 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
973 /* Unlock Block Command for given address range */
974 writew(0x4, NFC_V1_V2_WRPROT);
977 static void preset_v3(struct mtd_info *mtd)
979 struct nand_chip *chip = mtd->priv;
980 struct mxc_nand_host *host = chip->priv;
981 uint32_t config2, config3;
982 int i, addr_phases;
984 writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
985 writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
987 /* Unlock the internal RAM Buffer */
988 writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
989 NFC_V3_WRPROT);
991 /* Blocks to be unlocked */
992 for (i = 0; i < NAND_MAX_CHIPS; i++)
993 writel(0x0 | (0xffff << 16),
994 NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
996 writel(0, NFC_V3_IPC);
998 config2 = NFC_V3_CONFIG2_ONE_CYCLE |
999 NFC_V3_CONFIG2_2CMD_PHASES |
1000 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1001 NFC_V3_CONFIG2_ST_CMD(0x70) |
1002 NFC_V3_CONFIG2_INT_MSK |
1003 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1005 if (chip->ecc.mode == NAND_ECC_HW)
1006 config2 |= NFC_V3_CONFIG2_ECC_EN;
1008 addr_phases = fls(chip->pagemask) >> 3;
1010 if (mtd->writesize == 2048) {
1011 config2 |= NFC_V3_CONFIG2_PS_2048;
1012 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1013 } else if (mtd->writesize == 4096) {
1014 config2 |= NFC_V3_CONFIG2_PS_4096;
1015 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1016 } else {
1017 config2 |= NFC_V3_CONFIG2_PS_512;
1018 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1021 if (mtd->writesize) {
1022 config2 |= NFC_V3_CONFIG2_PPB(
1023 ffs(mtd->erasesize / mtd->writesize) - 6,
1024 host->devtype_data->ppb_shift);
1025 host->eccsize = get_eccsize(mtd);
1026 if (host->eccsize == 8)
1027 config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1030 writel(config2, NFC_V3_CONFIG2);
1032 config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1033 NFC_V3_CONFIG3_NO_SDMA |
1034 NFC_V3_CONFIG3_RBB_MODE |
1035 NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1036 NFC_V3_CONFIG3_ADD_OP(0);
1038 if (!(chip->options & NAND_BUSWIDTH_16))
1039 config3 |= NFC_V3_CONFIG3_FW8;
1041 writel(config3, NFC_V3_CONFIG3);
1043 writel(0, NFC_V3_DELAY_LINE);
1046 /* Used by the upper layer to write command to NAND Flash for
1047 * different operations to be carried out on NAND Flash */
1048 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1049 int column, int page_addr)
1051 struct nand_chip *nand_chip = mtd->priv;
1052 struct mxc_nand_host *host = nand_chip->priv;
1054 pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1055 command, column, page_addr);
1057 /* Reset command state information */
1058 host->status_request = false;
1060 /* Command pre-processing step */
1061 switch (command) {
1062 case NAND_CMD_RESET:
1063 host->devtype_data->preset(mtd);
1064 host->devtype_data->send_cmd(host, command, false);
1065 break;
1067 case NAND_CMD_STATUS:
1068 host->buf_start = 0;
1069 host->status_request = true;
1071 host->devtype_data->send_cmd(host, command, true);
1072 mxc_do_addr_cycle(mtd, column, page_addr);
1073 break;
1075 case NAND_CMD_READ0:
1076 case NAND_CMD_READOOB:
1077 if (command == NAND_CMD_READ0)
1078 host->buf_start = column;
1079 else
1080 host->buf_start = column + mtd->writesize;
1082 command = NAND_CMD_READ0; /* only READ0 is valid */
1084 host->devtype_data->send_cmd(host, command, false);
1085 mxc_do_addr_cycle(mtd, column, page_addr);
1087 if (mtd->writesize > 512)
1088 host->devtype_data->send_cmd(host,
1089 NAND_CMD_READSTART, true);
1091 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1093 memcpy32_fromio(host->data_buf, host->main_area0,
1094 mtd->writesize);
1095 copy_spare(mtd, true);
1096 break;
1098 case NAND_CMD_SEQIN:
1099 if (column >= mtd->writesize)
1100 /* call ourself to read a page */
1101 mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1103 host->buf_start = column;
1105 host->devtype_data->send_cmd(host, command, false);
1106 mxc_do_addr_cycle(mtd, column, page_addr);
1107 break;
1109 case NAND_CMD_PAGEPROG:
1110 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1111 copy_spare(mtd, false);
1112 host->devtype_data->send_page(mtd, NFC_INPUT);
1113 host->devtype_data->send_cmd(host, command, true);
1114 mxc_do_addr_cycle(mtd, column, page_addr);
1115 break;
1117 case NAND_CMD_READID:
1118 host->devtype_data->send_cmd(host, command, true);
1119 mxc_do_addr_cycle(mtd, column, page_addr);
1120 host->devtype_data->send_read_id(host);
1121 host->buf_start = column;
1122 break;
1124 case NAND_CMD_ERASE1:
1125 case NAND_CMD_ERASE2:
1126 host->devtype_data->send_cmd(host, command, false);
1127 mxc_do_addr_cycle(mtd, column, page_addr);
1129 break;
1134 * The generic flash bbt decriptors overlap with our ecc
1135 * hardware, so define some i.MX specific ones.
1137 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1138 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1140 static struct nand_bbt_descr bbt_main_descr = {
1141 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1142 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1143 .offs = 0,
1144 .len = 4,
1145 .veroffs = 4,
1146 .maxblocks = 4,
1147 .pattern = bbt_pattern,
1150 static struct nand_bbt_descr bbt_mirror_descr = {
1151 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1152 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1153 .offs = 0,
1154 .len = 4,
1155 .veroffs = 4,
1156 .maxblocks = 4,
1157 .pattern = mirror_pattern,
1160 /* v1 + irqpending_quirk: i.MX21 */
1161 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1162 .preset = preset_v1,
1163 .send_cmd = send_cmd_v1_v2,
1164 .send_addr = send_addr_v1_v2,
1165 .send_page = send_page_v1,
1166 .send_read_id = send_read_id_v1_v2,
1167 .get_dev_status = get_dev_status_v1_v2,
1168 .check_int = check_int_v1_v2,
1169 .irq_control = irq_control_v1_v2,
1170 .get_ecc_status = get_ecc_status_v1,
1171 .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1172 .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1173 .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1174 .select_chip = mxc_nand_select_chip_v1_v3,
1175 .correct_data = mxc_nand_correct_data_v1,
1176 .irqpending_quirk = 1,
1177 .needs_ip = 0,
1178 .regs_offset = 0xe00,
1179 .spare0_offset = 0x800,
1180 .spare_len = 16,
1181 .eccbytes = 3,
1182 .eccsize = 1,
1185 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1186 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1187 .preset = preset_v1,
1188 .send_cmd = send_cmd_v1_v2,
1189 .send_addr = send_addr_v1_v2,
1190 .send_page = send_page_v1,
1191 .send_read_id = send_read_id_v1_v2,
1192 .get_dev_status = get_dev_status_v1_v2,
1193 .check_int = check_int_v1_v2,
1194 .irq_control = irq_control_v1_v2,
1195 .get_ecc_status = get_ecc_status_v1,
1196 .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1197 .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1198 .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1199 .select_chip = mxc_nand_select_chip_v1_v3,
1200 .correct_data = mxc_nand_correct_data_v1,
1201 .irqpending_quirk = 0,
1202 .needs_ip = 0,
1203 .regs_offset = 0xe00,
1204 .spare0_offset = 0x800,
1205 .axi_offset = 0,
1206 .spare_len = 16,
1207 .eccbytes = 3,
1208 .eccsize = 1,
1211 /* v21: i.MX25, i.MX35 */
1212 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1213 .preset = preset_v2,
1214 .send_cmd = send_cmd_v1_v2,
1215 .send_addr = send_addr_v1_v2,
1216 .send_page = send_page_v2,
1217 .send_read_id = send_read_id_v1_v2,
1218 .get_dev_status = get_dev_status_v1_v2,
1219 .check_int = check_int_v1_v2,
1220 .irq_control = irq_control_v1_v2,
1221 .get_ecc_status = get_ecc_status_v2,
1222 .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1223 .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1224 .ecclayout_4k = &nandv2_hw_eccoob_4k,
1225 .select_chip = mxc_nand_select_chip_v2,
1226 .correct_data = mxc_nand_correct_data_v2_v3,
1227 .irqpending_quirk = 0,
1228 .needs_ip = 0,
1229 .regs_offset = 0x1e00,
1230 .spare0_offset = 0x1000,
1231 .axi_offset = 0,
1232 .spare_len = 64,
1233 .eccbytes = 9,
1234 .eccsize = 0,
1237 /* v3.2a: i.MX51 */
1238 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1239 .preset = preset_v3,
1240 .send_cmd = send_cmd_v3,
1241 .send_addr = send_addr_v3,
1242 .send_page = send_page_v3,
1243 .send_read_id = send_read_id_v3,
1244 .get_dev_status = get_dev_status_v3,
1245 .check_int = check_int_v3,
1246 .irq_control = irq_control_v3,
1247 .get_ecc_status = get_ecc_status_v3,
1248 .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1249 .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1250 .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1251 .select_chip = mxc_nand_select_chip_v1_v3,
1252 .correct_data = mxc_nand_correct_data_v2_v3,
1253 .irqpending_quirk = 0,
1254 .needs_ip = 1,
1255 .regs_offset = 0,
1256 .spare0_offset = 0x1000,
1257 .axi_offset = 0x1e00,
1258 .spare_len = 64,
1259 .eccbytes = 0,
1260 .eccsize = 0,
1261 .ppb_shift = 7,
1264 /* v3.2b: i.MX53 */
1265 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1266 .preset = preset_v3,
1267 .send_cmd = send_cmd_v3,
1268 .send_addr = send_addr_v3,
1269 .send_page = send_page_v3,
1270 .send_read_id = send_read_id_v3,
1271 .get_dev_status = get_dev_status_v3,
1272 .check_int = check_int_v3,
1273 .irq_control = irq_control_v3,
1274 .get_ecc_status = get_ecc_status_v3,
1275 .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1276 .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1277 .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1278 .select_chip = mxc_nand_select_chip_v1_v3,
1279 .correct_data = mxc_nand_correct_data_v2_v3,
1280 .irqpending_quirk = 0,
1281 .needs_ip = 1,
1282 .regs_offset = 0,
1283 .spare0_offset = 0x1000,
1284 .axi_offset = 0x1e00,
1285 .spare_len = 64,
1286 .eccbytes = 0,
1287 .eccsize = 0,
1288 .ppb_shift = 8,
1291 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1293 return host->devtype_data == &imx21_nand_devtype_data;
1296 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1298 return host->devtype_data == &imx27_nand_devtype_data;
1301 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1303 return host->devtype_data == &imx25_nand_devtype_data;
1306 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1308 return host->devtype_data == &imx51_nand_devtype_data;
1311 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1313 return host->devtype_data == &imx53_nand_devtype_data;
1316 static struct platform_device_id mxcnd_devtype[] = {
1318 .name = "imx21-nand",
1319 .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1320 }, {
1321 .name = "imx27-nand",
1322 .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1323 }, {
1324 .name = "imx25-nand",
1325 .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1326 }, {
1327 .name = "imx51-nand",
1328 .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1329 }, {
1330 .name = "imx53-nand",
1331 .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1332 }, {
1333 /* sentinel */
1336 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1338 #ifdef CONFIG_OF_MTD
1339 static const struct of_device_id mxcnd_dt_ids[] = {
1341 .compatible = "fsl,imx21-nand",
1342 .data = &imx21_nand_devtype_data,
1343 }, {
1344 .compatible = "fsl,imx27-nand",
1345 .data = &imx27_nand_devtype_data,
1346 }, {
1347 .compatible = "fsl,imx25-nand",
1348 .data = &imx25_nand_devtype_data,
1349 }, {
1350 .compatible = "fsl,imx51-nand",
1351 .data = &imx51_nand_devtype_data,
1352 }, {
1353 .compatible = "fsl,imx53-nand",
1354 .data = &imx53_nand_devtype_data,
1356 { /* sentinel */ }
1359 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1361 struct device_node *np = host->dev->of_node;
1362 struct mxc_nand_platform_data *pdata = &host->pdata;
1363 const struct of_device_id *of_id =
1364 of_match_device(mxcnd_dt_ids, host->dev);
1365 int buswidth;
1367 if (!np)
1368 return 1;
1370 if (of_get_nand_ecc_mode(np) >= 0)
1371 pdata->hw_ecc = 1;
1373 pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
1375 buswidth = of_get_nand_bus_width(np);
1376 if (buswidth < 0)
1377 return buswidth;
1379 pdata->width = buswidth / 8;
1381 host->devtype_data = of_id->data;
1383 return 0;
1385 #else
1386 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1388 return 1;
1390 #endif
1392 static int mxcnd_probe(struct platform_device *pdev)
1394 struct nand_chip *this;
1395 struct mtd_info *mtd;
1396 struct mxc_nand_host *host;
1397 struct resource *res;
1398 int err = 0;
1400 /* Allocate memory for MTD device structure and private data */
1401 host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host) +
1402 NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE, GFP_KERNEL);
1403 if (!host)
1404 return -ENOMEM;
1406 host->data_buf = (uint8_t *)(host + 1);
1408 host->dev = &pdev->dev;
1409 /* structures must be linked */
1410 this = &host->nand;
1411 mtd = &host->mtd;
1412 mtd->priv = this;
1413 mtd->owner = THIS_MODULE;
1414 mtd->dev.parent = &pdev->dev;
1415 mtd->name = DRIVER_NAME;
1417 /* 50 us command delay time */
1418 this->chip_delay = 5;
1420 this->priv = host;
1421 this->dev_ready = mxc_nand_dev_ready;
1422 this->cmdfunc = mxc_nand_command;
1423 this->read_byte = mxc_nand_read_byte;
1424 this->read_word = mxc_nand_read_word;
1425 this->write_buf = mxc_nand_write_buf;
1426 this->read_buf = mxc_nand_read_buf;
1428 host->clk = devm_clk_get(&pdev->dev, NULL);
1429 if (IS_ERR(host->clk))
1430 return PTR_ERR(host->clk);
1432 err = mxcnd_probe_dt(host);
1433 if (err > 0) {
1434 struct mxc_nand_platform_data *pdata =
1435 dev_get_platdata(&pdev->dev);
1436 if (pdata) {
1437 host->pdata = *pdata;
1438 host->devtype_data = (struct mxc_nand_devtype_data *)
1439 pdev->id_entry->driver_data;
1440 } else {
1441 err = -ENODEV;
1444 if (err < 0)
1445 return err;
1447 if (host->devtype_data->needs_ip) {
1448 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1449 host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1450 if (IS_ERR(host->regs_ip))
1451 return PTR_ERR(host->regs_ip);
1453 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1454 } else {
1455 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1458 host->base = devm_ioremap_resource(&pdev->dev, res);
1459 if (IS_ERR(host->base))
1460 return PTR_ERR(host->base);
1462 host->main_area0 = host->base;
1464 if (host->devtype_data->regs_offset)
1465 host->regs = host->base + host->devtype_data->regs_offset;
1466 host->spare0 = host->base + host->devtype_data->spare0_offset;
1467 if (host->devtype_data->axi_offset)
1468 host->regs_axi = host->base + host->devtype_data->axi_offset;
1470 this->ecc.bytes = host->devtype_data->eccbytes;
1471 host->eccsize = host->devtype_data->eccsize;
1473 this->select_chip = host->devtype_data->select_chip;
1474 this->ecc.size = 512;
1475 this->ecc.layout = host->devtype_data->ecclayout_512;
1477 if (host->pdata.hw_ecc) {
1478 this->ecc.calculate = mxc_nand_calculate_ecc;
1479 this->ecc.hwctl = mxc_nand_enable_hwecc;
1480 this->ecc.correct = host->devtype_data->correct_data;
1481 this->ecc.mode = NAND_ECC_HW;
1482 } else {
1483 this->ecc.mode = NAND_ECC_SOFT;
1486 /* NAND bus width determines access functions used by upper layer */
1487 if (host->pdata.width == 2)
1488 this->options |= NAND_BUSWIDTH_16;
1490 if (host->pdata.flash_bbt) {
1491 this->bbt_td = &bbt_main_descr;
1492 this->bbt_md = &bbt_mirror_descr;
1493 /* update flash based bbt */
1494 this->bbt_options |= NAND_BBT_USE_FLASH;
1497 init_completion(&host->op_completion);
1499 host->irq = platform_get_irq(pdev, 0);
1502 * Use host->devtype_data->irq_control() here instead of irq_control()
1503 * because we must not disable_irq_nosync without having requested the
1504 * irq.
1506 host->devtype_data->irq_control(host, 0);
1508 err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1509 IRQF_DISABLED, DRIVER_NAME, host);
1510 if (err)
1511 return err;
1513 clk_prepare_enable(host->clk);
1514 host->clk_act = 1;
1517 * Now that we "own" the interrupt make sure the interrupt mask bit is
1518 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1519 * on this machine.
1521 if (host->devtype_data->irqpending_quirk) {
1522 disable_irq_nosync(host->irq);
1523 host->devtype_data->irq_control(host, 1);
1526 /* first scan to find the device and get the page size */
1527 if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) {
1528 err = -ENXIO;
1529 goto escan;
1532 /* Call preset again, with correct writesize this time */
1533 host->devtype_data->preset(mtd);
1535 if (mtd->writesize == 2048)
1536 this->ecc.layout = host->devtype_data->ecclayout_2k;
1537 else if (mtd->writesize == 4096)
1538 this->ecc.layout = host->devtype_data->ecclayout_4k;
1540 if (this->ecc.mode == NAND_ECC_HW) {
1541 if (is_imx21_nfc(host) || is_imx27_nfc(host))
1542 this->ecc.strength = 1;
1543 else
1544 this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1547 /* second phase scan */
1548 if (nand_scan_tail(mtd)) {
1549 err = -ENXIO;
1550 goto escan;
1553 /* Register the partitions */
1554 mtd_device_parse_register(mtd, part_probes,
1555 &(struct mtd_part_parser_data){
1556 .of_node = pdev->dev.of_node,
1558 host->pdata.parts,
1559 host->pdata.nr_parts);
1561 platform_set_drvdata(pdev, host);
1563 return 0;
1565 escan:
1566 if (host->clk_act)
1567 clk_disable_unprepare(host->clk);
1569 return err;
1572 static int mxcnd_remove(struct platform_device *pdev)
1574 struct mxc_nand_host *host = platform_get_drvdata(pdev);
1576 nand_release(&host->mtd);
1578 return 0;
1581 static struct platform_driver mxcnd_driver = {
1582 .driver = {
1583 .name = DRIVER_NAME,
1584 .owner = THIS_MODULE,
1585 .of_match_table = of_match_ptr(mxcnd_dt_ids),
1587 .id_table = mxcnd_devtype,
1588 .probe = mxcnd_probe,
1589 .remove = mxcnd_remove,
1591 module_platform_driver(mxcnd_driver);
1593 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1594 MODULE_DESCRIPTION("MXC NAND MTD driver");
1595 MODULE_LICENSE("GPL");