x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / net / can / dev.c
blob539239d8e9ab10c32ec3032bf3da9d80a4b52f4d
1 /*
2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/slab.h>
23 #include <linux/netdevice.h>
24 #include <linux/if_arp.h>
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/skb.h>
28 #include <linux/can/netlink.h>
29 #include <linux/can/led.h>
30 #include <net/rtnetlink.h>
32 #define MOD_DESC "CAN device driver interface"
34 MODULE_DESCRIPTION(MOD_DESC);
35 MODULE_LICENSE("GPL v2");
36 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
38 /* CAN DLC to real data length conversion helpers */
40 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
41 8, 12, 16, 20, 24, 32, 48, 64};
43 /* get data length from can_dlc with sanitized can_dlc */
44 u8 can_dlc2len(u8 can_dlc)
46 return dlc2len[can_dlc & 0x0F];
48 EXPORT_SYMBOL_GPL(can_dlc2len);
50 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */
51 9, 9, 9, 9, /* 9 - 12 */
52 10, 10, 10, 10, /* 13 - 16 */
53 11, 11, 11, 11, /* 17 - 20 */
54 12, 12, 12, 12, /* 21 - 24 */
55 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */
56 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */
57 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */
58 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */
59 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */
61 /* map the sanitized data length to an appropriate data length code */
62 u8 can_len2dlc(u8 len)
64 if (unlikely(len > 64))
65 return 0xF;
67 return len2dlc[len];
69 EXPORT_SYMBOL_GPL(can_len2dlc);
71 #ifdef CONFIG_CAN_CALC_BITTIMING
72 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
75 * Bit-timing calculation derived from:
77 * Code based on LinCAN sources and H8S2638 project
78 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
79 * Copyright 2005 Stanislav Marek
80 * email: pisa@cmp.felk.cvut.cz
82 * Calculates proper bit-timing parameters for a specified bit-rate
83 * and sample-point, which can then be used to set the bit-timing
84 * registers of the CAN controller. You can find more information
85 * in the header file linux/can/netlink.h.
87 static int can_update_spt(const struct can_bittiming_const *btc,
88 int sampl_pt, int tseg, int *tseg1, int *tseg2)
90 *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
91 if (*tseg2 < btc->tseg2_min)
92 *tseg2 = btc->tseg2_min;
93 if (*tseg2 > btc->tseg2_max)
94 *tseg2 = btc->tseg2_max;
95 *tseg1 = tseg - *tseg2;
96 if (*tseg1 > btc->tseg1_max) {
97 *tseg1 = btc->tseg1_max;
98 *tseg2 = tseg - *tseg1;
100 return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
103 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
105 struct can_priv *priv = netdev_priv(dev);
106 const struct can_bittiming_const *btc = priv->bittiming_const;
107 long rate, best_rate = 0;
108 long best_error = 1000000000, error = 0;
109 int best_tseg = 0, best_brp = 0, brp = 0;
110 int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
111 int spt_error = 1000, spt = 0, sampl_pt;
112 u64 v64;
114 if (!priv->bittiming_const)
115 return -ENOTSUPP;
117 /* Use CIA recommended sample points */
118 if (bt->sample_point) {
119 sampl_pt = bt->sample_point;
120 } else {
121 if (bt->bitrate > 800000)
122 sampl_pt = 750;
123 else if (bt->bitrate > 500000)
124 sampl_pt = 800;
125 else
126 sampl_pt = 875;
129 /* tseg even = round down, odd = round up */
130 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
131 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
132 tsegall = 1 + tseg / 2;
133 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
134 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
135 /* chose brp step which is possible in system */
136 brp = (brp / btc->brp_inc) * btc->brp_inc;
137 if ((brp < btc->brp_min) || (brp > btc->brp_max))
138 continue;
139 rate = priv->clock.freq / (brp * tsegall);
140 error = bt->bitrate - rate;
141 /* tseg brp biterror */
142 if (error < 0)
143 error = -error;
144 if (error > best_error)
145 continue;
146 best_error = error;
147 if (error == 0) {
148 spt = can_update_spt(btc, sampl_pt, tseg / 2,
149 &tseg1, &tseg2);
150 error = sampl_pt - spt;
151 if (error < 0)
152 error = -error;
153 if (error > spt_error)
154 continue;
155 spt_error = error;
157 best_tseg = tseg / 2;
158 best_brp = brp;
159 best_rate = rate;
160 if (error == 0)
161 break;
164 if (best_error) {
165 /* Error in one-tenth of a percent */
166 error = (best_error * 1000) / bt->bitrate;
167 if (error > CAN_CALC_MAX_ERROR) {
168 netdev_err(dev,
169 "bitrate error %ld.%ld%% too high\n",
170 error / 10, error % 10);
171 return -EDOM;
172 } else {
173 netdev_warn(dev, "bitrate error %ld.%ld%%\n",
174 error / 10, error % 10);
178 /* real sample point */
179 bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
180 &tseg1, &tseg2);
182 v64 = (u64)best_brp * 1000000000UL;
183 do_div(v64, priv->clock.freq);
184 bt->tq = (u32)v64;
185 bt->prop_seg = tseg1 / 2;
186 bt->phase_seg1 = tseg1 - bt->prop_seg;
187 bt->phase_seg2 = tseg2;
189 /* check for sjw user settings */
190 if (!bt->sjw || !btc->sjw_max)
191 bt->sjw = 1;
192 else {
193 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
194 if (bt->sjw > btc->sjw_max)
195 bt->sjw = btc->sjw_max;
196 /* bt->sjw must not be higher than tseg2 */
197 if (tseg2 < bt->sjw)
198 bt->sjw = tseg2;
201 bt->brp = best_brp;
202 /* real bit-rate */
203 bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
205 return 0;
207 #else /* !CONFIG_CAN_CALC_BITTIMING */
208 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
210 netdev_err(dev, "bit-timing calculation not available\n");
211 return -EINVAL;
213 #endif /* CONFIG_CAN_CALC_BITTIMING */
216 * Checks the validity of the specified bit-timing parameters prop_seg,
217 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
218 * prescaler value brp. You can find more information in the header
219 * file linux/can/netlink.h.
221 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt)
223 struct can_priv *priv = netdev_priv(dev);
224 const struct can_bittiming_const *btc = priv->bittiming_const;
225 int tseg1, alltseg;
226 u64 brp64;
228 if (!priv->bittiming_const)
229 return -ENOTSUPP;
231 tseg1 = bt->prop_seg + bt->phase_seg1;
232 if (!bt->sjw)
233 bt->sjw = 1;
234 if (bt->sjw > btc->sjw_max ||
235 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
236 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
237 return -ERANGE;
239 brp64 = (u64)priv->clock.freq * (u64)bt->tq;
240 if (btc->brp_inc > 1)
241 do_div(brp64, btc->brp_inc);
242 brp64 += 500000000UL - 1;
243 do_div(brp64, 1000000000UL); /* the practicable BRP */
244 if (btc->brp_inc > 1)
245 brp64 *= btc->brp_inc;
246 bt->brp = (u32)brp64;
248 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
249 return -EINVAL;
251 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
252 bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
253 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
255 return 0;
258 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt)
260 struct can_priv *priv = netdev_priv(dev);
261 int err;
263 /* Check if the CAN device has bit-timing parameters */
264 if (priv->bittiming_const) {
266 /* Non-expert mode? Check if the bitrate has been pre-defined */
267 if (!bt->tq)
268 /* Determine bit-timing parameters */
269 err = can_calc_bittiming(dev, bt);
270 else
271 /* Check bit-timing params and calculate proper brp */
272 err = can_fixup_bittiming(dev, bt);
273 if (err)
274 return err;
277 return 0;
281 * Local echo of CAN messages
283 * CAN network devices *should* support a local echo functionality
284 * (see Documentation/networking/can.txt). To test the handling of CAN
285 * interfaces that do not support the local echo both driver types are
286 * implemented. In the case that the driver does not support the echo
287 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
288 * to perform the echo as a fallback solution.
290 static void can_flush_echo_skb(struct net_device *dev)
292 struct can_priv *priv = netdev_priv(dev);
293 struct net_device_stats *stats = &dev->stats;
294 int i;
296 for (i = 0; i < priv->echo_skb_max; i++) {
297 if (priv->echo_skb[i]) {
298 kfree_skb(priv->echo_skb[i]);
299 priv->echo_skb[i] = NULL;
300 stats->tx_dropped++;
301 stats->tx_aborted_errors++;
307 * Put the skb on the stack to be looped backed locally lateron
309 * The function is typically called in the start_xmit function
310 * of the device driver. The driver must protect access to
311 * priv->echo_skb, if necessary.
313 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
314 unsigned int idx)
316 struct can_priv *priv = netdev_priv(dev);
318 BUG_ON(idx >= priv->echo_skb_max);
320 /* check flag whether this packet has to be looped back */
321 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) {
322 kfree_skb(skb);
323 return;
326 if (!priv->echo_skb[idx]) {
328 skb = can_create_echo_skb(skb);
329 if (!skb)
330 return;
332 /* make settings for echo to reduce code in irq context */
333 skb->protocol = htons(ETH_P_CAN);
334 skb->pkt_type = PACKET_BROADCAST;
335 skb->ip_summed = CHECKSUM_UNNECESSARY;
336 skb->dev = dev;
338 /* save this skb for tx interrupt echo handling */
339 priv->echo_skb[idx] = skb;
340 } else {
341 /* locking problem with netif_stop_queue() ?? */
342 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
343 kfree_skb(skb);
346 EXPORT_SYMBOL_GPL(can_put_echo_skb);
349 * Get the skb from the stack and loop it back locally
351 * The function is typically called when the TX done interrupt
352 * is handled in the device driver. The driver must protect
353 * access to priv->echo_skb, if necessary.
355 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
357 struct can_priv *priv = netdev_priv(dev);
359 BUG_ON(idx >= priv->echo_skb_max);
361 if (priv->echo_skb[idx]) {
362 struct sk_buff *skb = priv->echo_skb[idx];
363 struct can_frame *cf = (struct can_frame *)skb->data;
364 u8 dlc = cf->can_dlc;
366 netif_rx(priv->echo_skb[idx]);
367 priv->echo_skb[idx] = NULL;
369 return dlc;
372 return 0;
374 EXPORT_SYMBOL_GPL(can_get_echo_skb);
377 * Remove the skb from the stack and free it.
379 * The function is typically called when TX failed.
381 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
383 struct can_priv *priv = netdev_priv(dev);
385 BUG_ON(idx >= priv->echo_skb_max);
387 if (priv->echo_skb[idx]) {
388 kfree_skb(priv->echo_skb[idx]);
389 priv->echo_skb[idx] = NULL;
392 EXPORT_SYMBOL_GPL(can_free_echo_skb);
395 * CAN device restart for bus-off recovery
397 static void can_restart(unsigned long data)
399 struct net_device *dev = (struct net_device *)data;
400 struct can_priv *priv = netdev_priv(dev);
401 struct net_device_stats *stats = &dev->stats;
402 struct sk_buff *skb;
403 struct can_frame *cf;
404 int err;
406 BUG_ON(netif_carrier_ok(dev));
409 * No synchronization needed because the device is bus-off and
410 * no messages can come in or go out.
412 can_flush_echo_skb(dev);
414 /* send restart message upstream */
415 skb = alloc_can_err_skb(dev, &cf);
416 if (skb == NULL) {
417 err = -ENOMEM;
418 goto restart;
420 cf->can_id |= CAN_ERR_RESTARTED;
422 netif_rx(skb);
424 stats->rx_packets++;
425 stats->rx_bytes += cf->can_dlc;
427 restart:
428 netdev_dbg(dev, "restarted\n");
429 priv->can_stats.restarts++;
431 /* Now restart the device */
432 err = priv->do_set_mode(dev, CAN_MODE_START);
434 netif_carrier_on(dev);
435 if (err)
436 netdev_err(dev, "Error %d during restart", err);
439 int can_restart_now(struct net_device *dev)
441 struct can_priv *priv = netdev_priv(dev);
444 * A manual restart is only permitted if automatic restart is
445 * disabled and the device is in the bus-off state
447 if (priv->restart_ms)
448 return -EINVAL;
449 if (priv->state != CAN_STATE_BUS_OFF)
450 return -EBUSY;
452 /* Runs as soon as possible in the timer context */
453 mod_timer(&priv->restart_timer, jiffies);
455 return 0;
459 * CAN bus-off
461 * This functions should be called when the device goes bus-off to
462 * tell the netif layer that no more packets can be sent or received.
463 * If enabled, a timer is started to trigger bus-off recovery.
465 void can_bus_off(struct net_device *dev)
467 struct can_priv *priv = netdev_priv(dev);
469 netdev_dbg(dev, "bus-off\n");
471 netif_carrier_off(dev);
472 priv->can_stats.bus_off++;
474 if (priv->restart_ms)
475 mod_timer(&priv->restart_timer,
476 jiffies + (priv->restart_ms * HZ) / 1000);
478 EXPORT_SYMBOL_GPL(can_bus_off);
480 static void can_setup(struct net_device *dev)
482 dev->type = ARPHRD_CAN;
483 dev->mtu = CAN_MTU;
484 dev->hard_header_len = 0;
485 dev->addr_len = 0;
486 dev->tx_queue_len = 10;
488 /* New-style flags. */
489 dev->flags = IFF_NOARP;
490 dev->features = NETIF_F_HW_CSUM;
493 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
495 struct sk_buff *skb;
497 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
498 sizeof(struct can_frame));
499 if (unlikely(!skb))
500 return NULL;
502 skb->protocol = htons(ETH_P_CAN);
503 skb->pkt_type = PACKET_BROADCAST;
504 skb->ip_summed = CHECKSUM_UNNECESSARY;
506 can_skb_reserve(skb);
507 can_skb_prv(skb)->ifindex = dev->ifindex;
509 *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
510 memset(*cf, 0, sizeof(struct can_frame));
512 return skb;
514 EXPORT_SYMBOL_GPL(alloc_can_skb);
516 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
518 struct sk_buff *skb;
520 skb = alloc_can_skb(dev, cf);
521 if (unlikely(!skb))
522 return NULL;
524 (*cf)->can_id = CAN_ERR_FLAG;
525 (*cf)->can_dlc = CAN_ERR_DLC;
527 return skb;
529 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
532 * Allocate and setup space for the CAN network device
534 struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
536 struct net_device *dev;
537 struct can_priv *priv;
538 int size;
540 if (echo_skb_max)
541 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
542 echo_skb_max * sizeof(struct sk_buff *);
543 else
544 size = sizeof_priv;
546 dev = alloc_netdev(size, "can%d", can_setup);
547 if (!dev)
548 return NULL;
550 priv = netdev_priv(dev);
552 if (echo_skb_max) {
553 priv->echo_skb_max = echo_skb_max;
554 priv->echo_skb = (void *)priv +
555 ALIGN(sizeof_priv, sizeof(struct sk_buff *));
558 priv->state = CAN_STATE_STOPPED;
560 init_timer(&priv->restart_timer);
562 return dev;
564 EXPORT_SYMBOL_GPL(alloc_candev);
567 * Free space of the CAN network device
569 void free_candev(struct net_device *dev)
571 free_netdev(dev);
573 EXPORT_SYMBOL_GPL(free_candev);
576 * Common open function when the device gets opened.
578 * This function should be called in the open function of the device
579 * driver.
581 int open_candev(struct net_device *dev)
583 struct can_priv *priv = netdev_priv(dev);
585 if (!priv->bittiming.tq && !priv->bittiming.bitrate) {
586 netdev_err(dev, "bit-timing not yet defined\n");
587 return -EINVAL;
590 /* Switch carrier on if device was stopped while in bus-off state */
591 if (!netif_carrier_ok(dev))
592 netif_carrier_on(dev);
594 setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
596 return 0;
598 EXPORT_SYMBOL_GPL(open_candev);
601 * Common close function for cleanup before the device gets closed.
603 * This function should be called in the close function of the device
604 * driver.
606 void close_candev(struct net_device *dev)
608 struct can_priv *priv = netdev_priv(dev);
610 del_timer_sync(&priv->restart_timer);
611 can_flush_echo_skb(dev);
613 EXPORT_SYMBOL_GPL(close_candev);
616 * CAN netlink interface
618 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
619 [IFLA_CAN_STATE] = { .type = NLA_U32 },
620 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
621 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
622 [IFLA_CAN_RESTART] = { .type = NLA_U32 },
623 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
624 [IFLA_CAN_BITTIMING_CONST]
625 = { .len = sizeof(struct can_bittiming_const) },
626 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
627 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
630 static int can_changelink(struct net_device *dev,
631 struct nlattr *tb[], struct nlattr *data[])
633 struct can_priv *priv = netdev_priv(dev);
634 int err;
636 /* We need synchronization with dev->stop() */
637 ASSERT_RTNL();
639 if (data[IFLA_CAN_CTRLMODE]) {
640 struct can_ctrlmode *cm;
642 /* Do not allow changing controller mode while running */
643 if (dev->flags & IFF_UP)
644 return -EBUSY;
645 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
646 if (cm->flags & ~priv->ctrlmode_supported)
647 return -EOPNOTSUPP;
648 priv->ctrlmode &= ~cm->mask;
649 priv->ctrlmode |= cm->flags;
652 if (data[IFLA_CAN_BITTIMING]) {
653 struct can_bittiming bt;
655 /* Do not allow changing bittiming while running */
656 if (dev->flags & IFF_UP)
657 return -EBUSY;
658 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
659 if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq))
660 return -EINVAL;
661 err = can_get_bittiming(dev, &bt);
662 if (err)
663 return err;
664 memcpy(&priv->bittiming, &bt, sizeof(bt));
666 if (priv->do_set_bittiming) {
667 /* Finally, set the bit-timing registers */
668 err = priv->do_set_bittiming(dev);
669 if (err)
670 return err;
674 if (data[IFLA_CAN_RESTART_MS]) {
675 /* Do not allow changing restart delay while running */
676 if (dev->flags & IFF_UP)
677 return -EBUSY;
678 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
681 if (data[IFLA_CAN_RESTART]) {
682 /* Do not allow a restart while not running */
683 if (!(dev->flags & IFF_UP))
684 return -EINVAL;
685 err = can_restart_now(dev);
686 if (err)
687 return err;
690 return 0;
693 static size_t can_get_size(const struct net_device *dev)
695 struct can_priv *priv = netdev_priv(dev);
696 size_t size;
698 size = nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */
699 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */
700 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */
701 size += nla_total_size(sizeof(struct can_bittiming)); /* IFLA_CAN_BITTIMING */
702 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */
703 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */
704 size += nla_total_size(sizeof(struct can_berr_counter));
705 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */
706 size += nla_total_size(sizeof(struct can_bittiming_const));
708 return size;
711 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
713 struct can_priv *priv = netdev_priv(dev);
714 struct can_ctrlmode cm = {.flags = priv->ctrlmode};
715 struct can_berr_counter bec;
716 enum can_state state = priv->state;
718 if (priv->do_get_state)
719 priv->do_get_state(dev, &state);
720 if (nla_put_u32(skb, IFLA_CAN_STATE, state) ||
721 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
722 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
723 nla_put(skb, IFLA_CAN_BITTIMING,
724 sizeof(priv->bittiming), &priv->bittiming) ||
725 nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
726 (priv->do_get_berr_counter &&
727 !priv->do_get_berr_counter(dev, &bec) &&
728 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
729 (priv->bittiming_const &&
730 nla_put(skb, IFLA_CAN_BITTIMING_CONST,
731 sizeof(*priv->bittiming_const), priv->bittiming_const)))
732 goto nla_put_failure;
733 return 0;
735 nla_put_failure:
736 return -EMSGSIZE;
739 static size_t can_get_xstats_size(const struct net_device *dev)
741 return sizeof(struct can_device_stats);
744 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
746 struct can_priv *priv = netdev_priv(dev);
748 if (nla_put(skb, IFLA_INFO_XSTATS,
749 sizeof(priv->can_stats), &priv->can_stats))
750 goto nla_put_failure;
751 return 0;
753 nla_put_failure:
754 return -EMSGSIZE;
757 static int can_newlink(struct net *src_net, struct net_device *dev,
758 struct nlattr *tb[], struct nlattr *data[])
760 return -EOPNOTSUPP;
763 static struct rtnl_link_ops can_link_ops __read_mostly = {
764 .kind = "can",
765 .maxtype = IFLA_CAN_MAX,
766 .policy = can_policy,
767 .setup = can_setup,
768 .newlink = can_newlink,
769 .changelink = can_changelink,
770 .get_size = can_get_size,
771 .fill_info = can_fill_info,
772 .get_xstats_size = can_get_xstats_size,
773 .fill_xstats = can_fill_xstats,
777 * Register the CAN network device
779 int register_candev(struct net_device *dev)
781 dev->rtnl_link_ops = &can_link_ops;
782 return register_netdev(dev);
784 EXPORT_SYMBOL_GPL(register_candev);
787 * Unregister the CAN network device
789 void unregister_candev(struct net_device *dev)
791 unregister_netdev(dev);
793 EXPORT_SYMBOL_GPL(unregister_candev);
796 * Test if a network device is a candev based device
797 * and return the can_priv* if so.
799 struct can_priv *safe_candev_priv(struct net_device *dev)
801 if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
802 return NULL;
804 return netdev_priv(dev);
806 EXPORT_SYMBOL_GPL(safe_candev_priv);
808 static __init int can_dev_init(void)
810 int err;
812 can_led_notifier_init();
814 err = rtnl_link_register(&can_link_ops);
815 if (!err)
816 printk(KERN_INFO MOD_DESC "\n");
818 return err;
820 module_init(can_dev_init);
822 static __exit void can_dev_exit(void)
824 rtnl_link_unregister(&can_link_ops);
826 can_led_notifier_exit();
828 module_exit(can_dev_exit);
830 MODULE_ALIAS_RTNL_LINK("can");