1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
18 #include <linux/tcp.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
31 #include "workarounds.h"
33 /**************************************************************************
37 **************************************************************************
40 /* Loopback mode names (see LOOPBACK_MODE()) */
41 const unsigned int efx_loopback_mode_max
= LOOPBACK_MAX
;
42 const char *const efx_loopback_mode_names
[] = {
43 [LOOPBACK_NONE
] = "NONE",
44 [LOOPBACK_DATA
] = "DATAPATH",
45 [LOOPBACK_GMAC
] = "GMAC",
46 [LOOPBACK_XGMII
] = "XGMII",
47 [LOOPBACK_XGXS
] = "XGXS",
48 [LOOPBACK_XAUI
] = "XAUI",
49 [LOOPBACK_GMII
] = "GMII",
50 [LOOPBACK_SGMII
] = "SGMII",
51 [LOOPBACK_XGBR
] = "XGBR",
52 [LOOPBACK_XFI
] = "XFI",
53 [LOOPBACK_XAUI_FAR
] = "XAUI_FAR",
54 [LOOPBACK_GMII_FAR
] = "GMII_FAR",
55 [LOOPBACK_SGMII_FAR
] = "SGMII_FAR",
56 [LOOPBACK_XFI_FAR
] = "XFI_FAR",
57 [LOOPBACK_GPHY
] = "GPHY",
58 [LOOPBACK_PHYXS
] = "PHYXS",
59 [LOOPBACK_PCS
] = "PCS",
60 [LOOPBACK_PMAPMD
] = "PMA/PMD",
61 [LOOPBACK_XPORT
] = "XPORT",
62 [LOOPBACK_XGMII_WS
] = "XGMII_WS",
63 [LOOPBACK_XAUI_WS
] = "XAUI_WS",
64 [LOOPBACK_XAUI_WS_FAR
] = "XAUI_WS_FAR",
65 [LOOPBACK_XAUI_WS_NEAR
] = "XAUI_WS_NEAR",
66 [LOOPBACK_GMII_WS
] = "GMII_WS",
67 [LOOPBACK_XFI_WS
] = "XFI_WS",
68 [LOOPBACK_XFI_WS_FAR
] = "XFI_WS_FAR",
69 [LOOPBACK_PHYXS_WS
] = "PHYXS_WS",
72 const unsigned int efx_reset_type_max
= RESET_TYPE_MAX
;
73 const char *const efx_reset_type_names
[] = {
74 [RESET_TYPE_INVISIBLE
] = "INVISIBLE",
75 [RESET_TYPE_ALL
] = "ALL",
76 [RESET_TYPE_RECOVER_OR_ALL
] = "RECOVER_OR_ALL",
77 [RESET_TYPE_WORLD
] = "WORLD",
78 [RESET_TYPE_RECOVER_OR_DISABLE
] = "RECOVER_OR_DISABLE",
79 [RESET_TYPE_DISABLE
] = "DISABLE",
80 [RESET_TYPE_TX_WATCHDOG
] = "TX_WATCHDOG",
81 [RESET_TYPE_INT_ERROR
] = "INT_ERROR",
82 [RESET_TYPE_RX_RECOVERY
] = "RX_RECOVERY",
83 [RESET_TYPE_DMA_ERROR
] = "DMA_ERROR",
84 [RESET_TYPE_TX_SKIP
] = "TX_SKIP",
85 [RESET_TYPE_MC_FAILURE
] = "MC_FAILURE",
88 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
89 * queued onto this work queue. This is not a per-nic work queue, because
90 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
92 static struct workqueue_struct
*reset_workqueue
;
94 /**************************************************************************
98 *************************************************************************/
101 * Use separate channels for TX and RX events
103 * Set this to 1 to use separate channels for TX and RX. It allows us
104 * to control interrupt affinity separately for TX and RX.
106 * This is only used in MSI-X interrupt mode
108 static bool separate_tx_channels
;
109 module_param(separate_tx_channels
, bool, 0444);
110 MODULE_PARM_DESC(separate_tx_channels
,
111 "Use separate channels for TX and RX");
113 /* This is the weight assigned to each of the (per-channel) virtual
116 static int napi_weight
= 64;
118 /* This is the time (in jiffies) between invocations of the hardware
120 * On Falcon-based NICs, this will:
121 * - Check the on-board hardware monitor;
122 * - Poll the link state and reconfigure the hardware as necessary.
123 * On Siena-based NICs for power systems with EEH support, this will give EEH a
126 static unsigned int efx_monitor_interval
= 1 * HZ
;
128 /* Initial interrupt moderation settings. They can be modified after
129 * module load with ethtool.
131 * The default for RX should strike a balance between increasing the
132 * round-trip latency and reducing overhead.
134 static unsigned int rx_irq_mod_usec
= 60;
136 /* Initial interrupt moderation settings. They can be modified after
137 * module load with ethtool.
139 * This default is chosen to ensure that a 10G link does not go idle
140 * while a TX queue is stopped after it has become full. A queue is
141 * restarted when it drops below half full. The time this takes (assuming
142 * worst case 3 descriptors per packet and 1024 descriptors) is
143 * 512 / 3 * 1.2 = 205 usec.
145 static unsigned int tx_irq_mod_usec
= 150;
147 /* This is the first interrupt mode to try out of:
152 static unsigned int interrupt_mode
;
154 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
155 * i.e. the number of CPUs among which we may distribute simultaneous
156 * interrupt handling.
158 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
159 * The default (0) means to assign an interrupt to each core.
161 static unsigned int rss_cpus
;
162 module_param(rss_cpus
, uint
, 0444);
163 MODULE_PARM_DESC(rss_cpus
, "Number of CPUs to use for Receive-Side Scaling");
165 static bool phy_flash_cfg
;
166 module_param(phy_flash_cfg
, bool, 0644);
167 MODULE_PARM_DESC(phy_flash_cfg
, "Set PHYs into reflash mode initially");
169 static unsigned irq_adapt_low_thresh
= 8000;
170 module_param(irq_adapt_low_thresh
, uint
, 0644);
171 MODULE_PARM_DESC(irq_adapt_low_thresh
,
172 "Threshold score for reducing IRQ moderation");
174 static unsigned irq_adapt_high_thresh
= 16000;
175 module_param(irq_adapt_high_thresh
, uint
, 0644);
176 MODULE_PARM_DESC(irq_adapt_high_thresh
,
177 "Threshold score for increasing IRQ moderation");
179 static unsigned debug
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
180 NETIF_MSG_LINK
| NETIF_MSG_IFDOWN
|
181 NETIF_MSG_IFUP
| NETIF_MSG_RX_ERR
|
182 NETIF_MSG_TX_ERR
| NETIF_MSG_HW
);
183 module_param(debug
, uint
, 0);
184 MODULE_PARM_DESC(debug
, "Bitmapped debugging message enable value");
186 /**************************************************************************
188 * Utility functions and prototypes
190 *************************************************************************/
192 static int efx_soft_enable_interrupts(struct efx_nic
*efx
);
193 static void efx_soft_disable_interrupts(struct efx_nic
*efx
);
194 static void efx_remove_channel(struct efx_channel
*channel
);
195 static void efx_remove_channels(struct efx_nic
*efx
);
196 static const struct efx_channel_type efx_default_channel_type
;
197 static void efx_remove_port(struct efx_nic
*efx
);
198 static void efx_init_napi_channel(struct efx_channel
*channel
);
199 static void efx_fini_napi(struct efx_nic
*efx
);
200 static void efx_fini_napi_channel(struct efx_channel
*channel
);
201 static void efx_fini_struct(struct efx_nic
*efx
);
202 static void efx_start_all(struct efx_nic
*efx
);
203 static void efx_stop_all(struct efx_nic
*efx
);
205 #define EFX_ASSERT_RESET_SERIALISED(efx) \
207 if ((efx->state == STATE_READY) || \
208 (efx->state == STATE_RECOVERY) || \
209 (efx->state == STATE_DISABLED)) \
213 static int efx_check_disabled(struct efx_nic
*efx
)
215 if (efx
->state
== STATE_DISABLED
|| efx
->state
== STATE_RECOVERY
) {
216 netif_err(efx
, drv
, efx
->net_dev
,
217 "device is disabled due to earlier errors\n");
223 /**************************************************************************
225 * Event queue processing
227 *************************************************************************/
229 /* Process channel's event queue
231 * This function is responsible for processing the event queue of a
232 * single channel. The caller must guarantee that this function will
233 * never be concurrently called more than once on the same channel,
234 * though different channels may be being processed concurrently.
236 static int efx_process_channel(struct efx_channel
*channel
, int budget
)
240 if (unlikely(!channel
->enabled
))
243 spent
= efx_nic_process_eventq(channel
, budget
);
244 if (spent
&& efx_channel_has_rx_queue(channel
)) {
245 struct efx_rx_queue
*rx_queue
=
246 efx_channel_get_rx_queue(channel
);
248 efx_rx_flush_packet(channel
);
249 efx_fast_push_rx_descriptors(rx_queue
);
257 * NAPI guarantees serialisation of polls of the same device, which
258 * provides the guarantee required by efx_process_channel().
260 static int efx_poll(struct napi_struct
*napi
, int budget
)
262 struct efx_channel
*channel
=
263 container_of(napi
, struct efx_channel
, napi_str
);
264 struct efx_nic
*efx
= channel
->efx
;
267 netif_vdbg(efx
, intr
, efx
->net_dev
,
268 "channel %d NAPI poll executing on CPU %d\n",
269 channel
->channel
, raw_smp_processor_id());
271 spent
= efx_process_channel(channel
, budget
);
273 if (spent
< budget
) {
274 if (efx_channel_has_rx_queue(channel
) &&
275 efx
->irq_rx_adaptive
&&
276 unlikely(++channel
->irq_count
== 1000)) {
277 if (unlikely(channel
->irq_mod_score
<
278 irq_adapt_low_thresh
)) {
279 if (channel
->irq_moderation
> 1) {
280 channel
->irq_moderation
-= 1;
281 efx
->type
->push_irq_moderation(channel
);
283 } else if (unlikely(channel
->irq_mod_score
>
284 irq_adapt_high_thresh
)) {
285 if (channel
->irq_moderation
<
286 efx
->irq_rx_moderation
) {
287 channel
->irq_moderation
+= 1;
288 efx
->type
->push_irq_moderation(channel
);
291 channel
->irq_count
= 0;
292 channel
->irq_mod_score
= 0;
295 efx_filter_rfs_expire(channel
);
297 /* There is no race here; although napi_disable() will
298 * only wait for napi_complete(), this isn't a problem
299 * since efx_nic_eventq_read_ack() will have no effect if
300 * interrupts have already been disabled.
303 efx_nic_eventq_read_ack(channel
);
309 /* Create event queue
310 * Event queue memory allocations are done only once. If the channel
311 * is reset, the memory buffer will be reused; this guards against
312 * errors during channel reset and also simplifies interrupt handling.
314 static int efx_probe_eventq(struct efx_channel
*channel
)
316 struct efx_nic
*efx
= channel
->efx
;
317 unsigned long entries
;
319 netif_dbg(efx
, probe
, efx
->net_dev
,
320 "chan %d create event queue\n", channel
->channel
);
322 /* Build an event queue with room for one event per tx and rx buffer,
323 * plus some extra for link state events and MCDI completions. */
324 entries
= roundup_pow_of_two(efx
->rxq_entries
+ efx
->txq_entries
+ 128);
325 EFX_BUG_ON_PARANOID(entries
> EFX_MAX_EVQ_SIZE
);
326 channel
->eventq_mask
= max(entries
, EFX_MIN_EVQ_SIZE
) - 1;
328 return efx_nic_probe_eventq(channel
);
331 /* Prepare channel's event queue */
332 static int efx_init_eventq(struct efx_channel
*channel
)
334 struct efx_nic
*efx
= channel
->efx
;
337 EFX_WARN_ON_PARANOID(channel
->eventq_init
);
339 netif_dbg(efx
, drv
, efx
->net_dev
,
340 "chan %d init event queue\n", channel
->channel
);
342 rc
= efx_nic_init_eventq(channel
);
344 efx
->type
->push_irq_moderation(channel
);
345 channel
->eventq_read_ptr
= 0;
346 channel
->eventq_init
= true;
351 /* Enable event queue processing and NAPI */
352 static void efx_start_eventq(struct efx_channel
*channel
)
354 netif_dbg(channel
->efx
, ifup
, channel
->efx
->net_dev
,
355 "chan %d start event queue\n", channel
->channel
);
357 /* Make sure the NAPI handler sees the enabled flag set */
358 channel
->enabled
= true;
361 napi_enable(&channel
->napi_str
);
362 efx_nic_eventq_read_ack(channel
);
365 /* Disable event queue processing and NAPI */
366 static void efx_stop_eventq(struct efx_channel
*channel
)
368 if (!channel
->enabled
)
371 napi_disable(&channel
->napi_str
);
372 channel
->enabled
= false;
375 static void efx_fini_eventq(struct efx_channel
*channel
)
377 if (!channel
->eventq_init
)
380 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
381 "chan %d fini event queue\n", channel
->channel
);
383 efx_nic_fini_eventq(channel
);
384 channel
->eventq_init
= false;
387 static void efx_remove_eventq(struct efx_channel
*channel
)
389 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
390 "chan %d remove event queue\n", channel
->channel
);
392 efx_nic_remove_eventq(channel
);
395 /**************************************************************************
399 *************************************************************************/
401 /* Allocate and initialise a channel structure. */
402 static struct efx_channel
*
403 efx_alloc_channel(struct efx_nic
*efx
, int i
, struct efx_channel
*old_channel
)
405 struct efx_channel
*channel
;
406 struct efx_rx_queue
*rx_queue
;
407 struct efx_tx_queue
*tx_queue
;
410 channel
= kzalloc(sizeof(*channel
), GFP_KERNEL
);
415 channel
->channel
= i
;
416 channel
->type
= &efx_default_channel_type
;
418 for (j
= 0; j
< EFX_TXQ_TYPES
; j
++) {
419 tx_queue
= &channel
->tx_queue
[j
];
421 tx_queue
->queue
= i
* EFX_TXQ_TYPES
+ j
;
422 tx_queue
->channel
= channel
;
425 rx_queue
= &channel
->rx_queue
;
427 setup_timer(&rx_queue
->slow_fill
, efx_rx_slow_fill
,
428 (unsigned long)rx_queue
);
433 /* Allocate and initialise a channel structure, copying parameters
434 * (but not resources) from an old channel structure.
436 static struct efx_channel
*
437 efx_copy_channel(const struct efx_channel
*old_channel
)
439 struct efx_channel
*channel
;
440 struct efx_rx_queue
*rx_queue
;
441 struct efx_tx_queue
*tx_queue
;
444 channel
= kmalloc(sizeof(*channel
), GFP_KERNEL
);
448 *channel
= *old_channel
;
450 channel
->napi_dev
= NULL
;
451 memset(&channel
->eventq
, 0, sizeof(channel
->eventq
));
453 for (j
= 0; j
< EFX_TXQ_TYPES
; j
++) {
454 tx_queue
= &channel
->tx_queue
[j
];
455 if (tx_queue
->channel
)
456 tx_queue
->channel
= channel
;
457 tx_queue
->buffer
= NULL
;
458 memset(&tx_queue
->txd
, 0, sizeof(tx_queue
->txd
));
461 rx_queue
= &channel
->rx_queue
;
462 rx_queue
->buffer
= NULL
;
463 memset(&rx_queue
->rxd
, 0, sizeof(rx_queue
->rxd
));
464 setup_timer(&rx_queue
->slow_fill
, efx_rx_slow_fill
,
465 (unsigned long)rx_queue
);
470 static int efx_probe_channel(struct efx_channel
*channel
)
472 struct efx_tx_queue
*tx_queue
;
473 struct efx_rx_queue
*rx_queue
;
476 netif_dbg(channel
->efx
, probe
, channel
->efx
->net_dev
,
477 "creating channel %d\n", channel
->channel
);
479 rc
= channel
->type
->pre_probe(channel
);
483 rc
= efx_probe_eventq(channel
);
487 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
488 rc
= efx_probe_tx_queue(tx_queue
);
493 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
494 rc
= efx_probe_rx_queue(rx_queue
);
499 channel
->n_rx_frm_trunc
= 0;
504 efx_remove_channel(channel
);
509 efx_get_channel_name(struct efx_channel
*channel
, char *buf
, size_t len
)
511 struct efx_nic
*efx
= channel
->efx
;
515 number
= channel
->channel
;
516 if (efx
->tx_channel_offset
== 0) {
518 } else if (channel
->channel
< efx
->tx_channel_offset
) {
522 number
-= efx
->tx_channel_offset
;
524 snprintf(buf
, len
, "%s%s-%d", efx
->name
, type
, number
);
527 static void efx_set_channel_names(struct efx_nic
*efx
)
529 struct efx_channel
*channel
;
531 efx_for_each_channel(channel
, efx
)
532 channel
->type
->get_name(channel
,
533 efx
->msi_context
[channel
->channel
].name
,
534 sizeof(efx
->msi_context
[0].name
));
537 static int efx_probe_channels(struct efx_nic
*efx
)
539 struct efx_channel
*channel
;
542 /* Restart special buffer allocation */
543 efx
->next_buffer_table
= 0;
545 /* Probe channels in reverse, so that any 'extra' channels
546 * use the start of the buffer table. This allows the traffic
547 * channels to be resized without moving them or wasting the
548 * entries before them.
550 efx_for_each_channel_rev(channel
, efx
) {
551 rc
= efx_probe_channel(channel
);
553 netif_err(efx
, probe
, efx
->net_dev
,
554 "failed to create channel %d\n",
559 efx_set_channel_names(efx
);
564 efx_remove_channels(efx
);
568 /* Channels are shutdown and reinitialised whilst the NIC is running
569 * to propagate configuration changes (mtu, checksum offload), or
570 * to clear hardware error conditions
572 static void efx_start_datapath(struct efx_nic
*efx
)
574 bool old_rx_scatter
= efx
->rx_scatter
;
575 struct efx_tx_queue
*tx_queue
;
576 struct efx_rx_queue
*rx_queue
;
577 struct efx_channel
*channel
;
580 /* Calculate the rx buffer allocation parameters required to
581 * support the current MTU, including padding for header
582 * alignment and overruns.
584 efx
->rx_dma_len
= (efx
->rx_prefix_size
+
585 EFX_MAX_FRAME_LEN(efx
->net_dev
->mtu
) +
586 efx
->type
->rx_buffer_padding
);
587 rx_buf_len
= (sizeof(struct efx_rx_page_state
) +
588 efx
->rx_ip_align
+ efx
->rx_dma_len
);
589 if (rx_buf_len
<= PAGE_SIZE
) {
590 efx
->rx_scatter
= efx
->type
->always_rx_scatter
;
591 efx
->rx_buffer_order
= 0;
592 } else if (efx
->type
->can_rx_scatter
) {
593 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE
% L1_CACHE_BYTES
);
594 BUILD_BUG_ON(sizeof(struct efx_rx_page_state
) +
595 2 * ALIGN(NET_IP_ALIGN
+ EFX_RX_USR_BUF_SIZE
,
596 EFX_RX_BUF_ALIGNMENT
) >
598 efx
->rx_scatter
= true;
599 efx
->rx_dma_len
= EFX_RX_USR_BUF_SIZE
;
600 efx
->rx_buffer_order
= 0;
602 efx
->rx_scatter
= false;
603 efx
->rx_buffer_order
= get_order(rx_buf_len
);
606 efx_rx_config_page_split(efx
);
607 if (efx
->rx_buffer_order
)
608 netif_dbg(efx
, drv
, efx
->net_dev
,
609 "RX buf len=%u; page order=%u batch=%u\n",
610 efx
->rx_dma_len
, efx
->rx_buffer_order
,
611 efx
->rx_pages_per_batch
);
613 netif_dbg(efx
, drv
, efx
->net_dev
,
614 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
615 efx
->rx_dma_len
, efx
->rx_page_buf_step
,
616 efx
->rx_bufs_per_page
, efx
->rx_pages_per_batch
);
618 /* RX filters may also have scatter-enabled flags */
619 if (efx
->rx_scatter
!= old_rx_scatter
)
620 efx
->type
->filter_update_rx_scatter(efx
);
622 /* We must keep at least one descriptor in a TX ring empty.
623 * We could avoid this when the queue size does not exactly
624 * match the hardware ring size, but it's not that important.
625 * Therefore we stop the queue when one more skb might fill
626 * the ring completely. We wake it when half way back to
629 efx
->txq_stop_thresh
= efx
->txq_entries
- efx_tx_max_skb_descs(efx
);
630 efx
->txq_wake_thresh
= efx
->txq_stop_thresh
/ 2;
632 /* Initialise the channels */
633 efx_for_each_channel(channel
, efx
) {
634 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
635 efx_init_tx_queue(tx_queue
);
636 atomic_inc(&efx
->active_queues
);
639 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
640 efx_init_rx_queue(rx_queue
);
641 atomic_inc(&efx
->active_queues
);
642 efx_nic_generate_fill_event(rx_queue
);
645 WARN_ON(channel
->rx_pkt_n_frags
);
648 efx_ptp_start_datapath(efx
);
650 if (netif_device_present(efx
->net_dev
))
651 netif_tx_wake_all_queues(efx
->net_dev
);
654 static void efx_stop_datapath(struct efx_nic
*efx
)
656 struct efx_channel
*channel
;
657 struct efx_tx_queue
*tx_queue
;
658 struct efx_rx_queue
*rx_queue
;
661 EFX_ASSERT_RESET_SERIALISED(efx
);
662 BUG_ON(efx
->port_enabled
);
664 efx_ptp_stop_datapath(efx
);
667 efx_for_each_channel(channel
, efx
) {
668 efx_for_each_channel_rx_queue(rx_queue
, channel
)
669 rx_queue
->refill_enabled
= false;
672 efx_for_each_channel(channel
, efx
) {
673 /* RX packet processing is pipelined, so wait for the
674 * NAPI handler to complete. At least event queue 0
675 * might be kept active by non-data events, so don't
676 * use napi_synchronize() but actually disable NAPI
679 if (efx_channel_has_rx_queue(channel
)) {
680 efx_stop_eventq(channel
);
681 efx_start_eventq(channel
);
685 rc
= efx
->type
->fini_dmaq(efx
);
686 if (rc
&& EFX_WORKAROUND_7803(efx
)) {
687 /* Schedule a reset to recover from the flush failure. The
688 * descriptor caches reference memory we're about to free,
689 * but falcon_reconfigure_mac_wrapper() won't reconnect
690 * the MACs because of the pending reset.
692 netif_err(efx
, drv
, efx
->net_dev
,
693 "Resetting to recover from flush failure\n");
694 efx_schedule_reset(efx
, RESET_TYPE_ALL
);
696 netif_err(efx
, drv
, efx
->net_dev
, "failed to flush queues\n");
698 netif_dbg(efx
, drv
, efx
->net_dev
,
699 "successfully flushed all queues\n");
702 efx_for_each_channel(channel
, efx
) {
703 efx_for_each_channel_rx_queue(rx_queue
, channel
)
704 efx_fini_rx_queue(rx_queue
);
705 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
)
706 efx_fini_tx_queue(tx_queue
);
710 static void efx_remove_channel(struct efx_channel
*channel
)
712 struct efx_tx_queue
*tx_queue
;
713 struct efx_rx_queue
*rx_queue
;
715 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
716 "destroy chan %d\n", channel
->channel
);
718 efx_for_each_channel_rx_queue(rx_queue
, channel
)
719 efx_remove_rx_queue(rx_queue
);
720 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
)
721 efx_remove_tx_queue(tx_queue
);
722 efx_remove_eventq(channel
);
723 channel
->type
->post_remove(channel
);
726 static void efx_remove_channels(struct efx_nic
*efx
)
728 struct efx_channel
*channel
;
730 efx_for_each_channel(channel
, efx
)
731 efx_remove_channel(channel
);
735 efx_realloc_channels(struct efx_nic
*efx
, u32 rxq_entries
, u32 txq_entries
)
737 struct efx_channel
*other_channel
[EFX_MAX_CHANNELS
], *channel
;
738 u32 old_rxq_entries
, old_txq_entries
;
739 unsigned i
, next_buffer_table
= 0;
742 rc
= efx_check_disabled(efx
);
746 /* Not all channels should be reallocated. We must avoid
747 * reallocating their buffer table entries.
749 efx_for_each_channel(channel
, efx
) {
750 struct efx_rx_queue
*rx_queue
;
751 struct efx_tx_queue
*tx_queue
;
753 if (channel
->type
->copy
)
755 next_buffer_table
= max(next_buffer_table
,
756 channel
->eventq
.index
+
757 channel
->eventq
.entries
);
758 efx_for_each_channel_rx_queue(rx_queue
, channel
)
759 next_buffer_table
= max(next_buffer_table
,
760 rx_queue
->rxd
.index
+
761 rx_queue
->rxd
.entries
);
762 efx_for_each_channel_tx_queue(tx_queue
, channel
)
763 next_buffer_table
= max(next_buffer_table
,
764 tx_queue
->txd
.index
+
765 tx_queue
->txd
.entries
);
768 efx_device_detach_sync(efx
);
770 efx_soft_disable_interrupts(efx
);
772 /* Clone channels (where possible) */
773 memset(other_channel
, 0, sizeof(other_channel
));
774 for (i
= 0; i
< efx
->n_channels
; i
++) {
775 channel
= efx
->channel
[i
];
776 if (channel
->type
->copy
)
777 channel
= channel
->type
->copy(channel
);
782 other_channel
[i
] = channel
;
785 /* Swap entry counts and channel pointers */
786 old_rxq_entries
= efx
->rxq_entries
;
787 old_txq_entries
= efx
->txq_entries
;
788 efx
->rxq_entries
= rxq_entries
;
789 efx
->txq_entries
= txq_entries
;
790 for (i
= 0; i
< efx
->n_channels
; i
++) {
791 channel
= efx
->channel
[i
];
792 efx
->channel
[i
] = other_channel
[i
];
793 other_channel
[i
] = channel
;
796 /* Restart buffer table allocation */
797 efx
->next_buffer_table
= next_buffer_table
;
799 for (i
= 0; i
< efx
->n_channels
; i
++) {
800 channel
= efx
->channel
[i
];
801 if (!channel
->type
->copy
)
803 rc
= efx_probe_channel(channel
);
806 efx_init_napi_channel(efx
->channel
[i
]);
810 /* Destroy unused channel structures */
811 for (i
= 0; i
< efx
->n_channels
; i
++) {
812 channel
= other_channel
[i
];
813 if (channel
&& channel
->type
->copy
) {
814 efx_fini_napi_channel(channel
);
815 efx_remove_channel(channel
);
820 rc2
= efx_soft_enable_interrupts(efx
);
823 netif_err(efx
, drv
, efx
->net_dev
,
824 "unable to restart interrupts on channel reallocation\n");
825 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
828 netif_device_attach(efx
->net_dev
);
834 efx
->rxq_entries
= old_rxq_entries
;
835 efx
->txq_entries
= old_txq_entries
;
836 for (i
= 0; i
< efx
->n_channels
; i
++) {
837 channel
= efx
->channel
[i
];
838 efx
->channel
[i
] = other_channel
[i
];
839 other_channel
[i
] = channel
;
844 void efx_schedule_slow_fill(struct efx_rx_queue
*rx_queue
)
846 mod_timer(&rx_queue
->slow_fill
, jiffies
+ msecs_to_jiffies(100));
849 static const struct efx_channel_type efx_default_channel_type
= {
850 .pre_probe
= efx_channel_dummy_op_int
,
851 .post_remove
= efx_channel_dummy_op_void
,
852 .get_name
= efx_get_channel_name
,
853 .copy
= efx_copy_channel
,
854 .keep_eventq
= false,
857 int efx_channel_dummy_op_int(struct efx_channel
*channel
)
862 void efx_channel_dummy_op_void(struct efx_channel
*channel
)
866 /**************************************************************************
870 **************************************************************************/
872 /* This ensures that the kernel is kept informed (via
873 * netif_carrier_on/off) of the link status, and also maintains the
874 * link status's stop on the port's TX queue.
876 void efx_link_status_changed(struct efx_nic
*efx
)
878 struct efx_link_state
*link_state
= &efx
->link_state
;
880 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
881 * that no events are triggered between unregister_netdev() and the
882 * driver unloading. A more general condition is that NETDEV_CHANGE
883 * can only be generated between NETDEV_UP and NETDEV_DOWN */
884 if (!netif_running(efx
->net_dev
))
887 if (link_state
->up
!= netif_carrier_ok(efx
->net_dev
)) {
888 efx
->n_link_state_changes
++;
891 netif_carrier_on(efx
->net_dev
);
893 netif_carrier_off(efx
->net_dev
);
896 /* Status message for kernel log */
898 netif_info(efx
, link
, efx
->net_dev
,
899 "link up at %uMbps %s-duplex (MTU %d)\n",
900 link_state
->speed
, link_state
->fd
? "full" : "half",
903 netif_info(efx
, link
, efx
->net_dev
, "link down\n");
906 void efx_link_set_advertising(struct efx_nic
*efx
, u32 advertising
)
908 efx
->link_advertising
= advertising
;
910 if (advertising
& ADVERTISED_Pause
)
911 efx
->wanted_fc
|= (EFX_FC_TX
| EFX_FC_RX
);
913 efx
->wanted_fc
&= ~(EFX_FC_TX
| EFX_FC_RX
);
914 if (advertising
& ADVERTISED_Asym_Pause
)
915 efx
->wanted_fc
^= EFX_FC_TX
;
919 void efx_link_set_wanted_fc(struct efx_nic
*efx
, u8 wanted_fc
)
921 efx
->wanted_fc
= wanted_fc
;
922 if (efx
->link_advertising
) {
923 if (wanted_fc
& EFX_FC_RX
)
924 efx
->link_advertising
|= (ADVERTISED_Pause
|
925 ADVERTISED_Asym_Pause
);
927 efx
->link_advertising
&= ~(ADVERTISED_Pause
|
928 ADVERTISED_Asym_Pause
);
929 if (wanted_fc
& EFX_FC_TX
)
930 efx
->link_advertising
^= ADVERTISED_Asym_Pause
;
934 static void efx_fini_port(struct efx_nic
*efx
);
936 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
937 * the MAC appropriately. All other PHY configuration changes are pushed
938 * through phy_op->set_settings(), and pushed asynchronously to the MAC
939 * through efx_monitor().
941 * Callers must hold the mac_lock
943 int __efx_reconfigure_port(struct efx_nic
*efx
)
945 enum efx_phy_mode phy_mode
;
948 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
950 /* Disable PHY transmit in mac level loopbacks */
951 phy_mode
= efx
->phy_mode
;
952 if (LOOPBACK_INTERNAL(efx
))
953 efx
->phy_mode
|= PHY_MODE_TX_DISABLED
;
955 efx
->phy_mode
&= ~PHY_MODE_TX_DISABLED
;
957 rc
= efx
->type
->reconfigure_port(efx
);
960 efx
->phy_mode
= phy_mode
;
965 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
967 int efx_reconfigure_port(struct efx_nic
*efx
)
971 EFX_ASSERT_RESET_SERIALISED(efx
);
973 mutex_lock(&efx
->mac_lock
);
974 rc
= __efx_reconfigure_port(efx
);
975 mutex_unlock(&efx
->mac_lock
);
980 /* Asynchronous work item for changing MAC promiscuity and multicast
981 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
983 static void efx_mac_work(struct work_struct
*data
)
985 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, mac_work
);
987 mutex_lock(&efx
->mac_lock
);
988 if (efx
->port_enabled
)
989 efx
->type
->reconfigure_mac(efx
);
990 mutex_unlock(&efx
->mac_lock
);
993 static int efx_probe_port(struct efx_nic
*efx
)
997 netif_dbg(efx
, probe
, efx
->net_dev
, "create port\n");
1000 efx
->phy_mode
= PHY_MODE_SPECIAL
;
1002 /* Connect up MAC/PHY operations table */
1003 rc
= efx
->type
->probe_port(efx
);
1007 /* Initialise MAC address to permanent address */
1008 memcpy(efx
->net_dev
->dev_addr
, efx
->net_dev
->perm_addr
, ETH_ALEN
);
1013 static int efx_init_port(struct efx_nic
*efx
)
1017 netif_dbg(efx
, drv
, efx
->net_dev
, "init port\n");
1019 mutex_lock(&efx
->mac_lock
);
1021 rc
= efx
->phy_op
->init(efx
);
1025 efx
->port_initialized
= true;
1027 /* Reconfigure the MAC before creating dma queues (required for
1028 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1029 efx
->type
->reconfigure_mac(efx
);
1031 /* Ensure the PHY advertises the correct flow control settings */
1032 rc
= efx
->phy_op
->reconfigure(efx
);
1036 mutex_unlock(&efx
->mac_lock
);
1040 efx
->phy_op
->fini(efx
);
1042 mutex_unlock(&efx
->mac_lock
);
1046 static void efx_start_port(struct efx_nic
*efx
)
1048 netif_dbg(efx
, ifup
, efx
->net_dev
, "start port\n");
1049 BUG_ON(efx
->port_enabled
);
1051 mutex_lock(&efx
->mac_lock
);
1052 efx
->port_enabled
= true;
1054 /* efx_mac_work() might have been scheduled after efx_stop_port(),
1055 * and then cancelled by efx_flush_all() */
1056 efx
->type
->reconfigure_mac(efx
);
1058 mutex_unlock(&efx
->mac_lock
);
1061 /* Prevent efx_mac_work() and efx_monitor() from working */
1062 static void efx_stop_port(struct efx_nic
*efx
)
1064 netif_dbg(efx
, ifdown
, efx
->net_dev
, "stop port\n");
1066 mutex_lock(&efx
->mac_lock
);
1067 efx
->port_enabled
= false;
1068 mutex_unlock(&efx
->mac_lock
);
1070 /* Serialise against efx_set_multicast_list() */
1071 netif_addr_lock_bh(efx
->net_dev
);
1072 netif_addr_unlock_bh(efx
->net_dev
);
1075 static void efx_fini_port(struct efx_nic
*efx
)
1077 netif_dbg(efx
, drv
, efx
->net_dev
, "shut down port\n");
1079 if (!efx
->port_initialized
)
1082 efx
->phy_op
->fini(efx
);
1083 efx
->port_initialized
= false;
1085 efx
->link_state
.up
= false;
1086 efx_link_status_changed(efx
);
1089 static void efx_remove_port(struct efx_nic
*efx
)
1091 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying port\n");
1093 efx
->type
->remove_port(efx
);
1096 /**************************************************************************
1100 **************************************************************************/
1102 /* This configures the PCI device to enable I/O and DMA. */
1103 static int efx_init_io(struct efx_nic
*efx
)
1105 struct pci_dev
*pci_dev
= efx
->pci_dev
;
1106 dma_addr_t dma_mask
= efx
->type
->max_dma_mask
;
1107 unsigned int mem_map_size
= efx
->type
->mem_map_size(efx
);
1110 netif_dbg(efx
, probe
, efx
->net_dev
, "initialising I/O\n");
1112 rc
= pci_enable_device(pci_dev
);
1114 netif_err(efx
, probe
, efx
->net_dev
,
1115 "failed to enable PCI device\n");
1119 pci_set_master(pci_dev
);
1121 /* Set the PCI DMA mask. Try all possibilities from our
1122 * genuine mask down to 32 bits, because some architectures
1123 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1124 * masks event though they reject 46 bit masks.
1126 while (dma_mask
> 0x7fffffffUL
) {
1127 if (dma_supported(&pci_dev
->dev
, dma_mask
)) {
1128 rc
= dma_set_mask(&pci_dev
->dev
, dma_mask
);
1135 netif_err(efx
, probe
, efx
->net_dev
,
1136 "could not find a suitable DMA mask\n");
1139 netif_dbg(efx
, probe
, efx
->net_dev
,
1140 "using DMA mask %llx\n", (unsigned long long) dma_mask
);
1141 rc
= dma_set_coherent_mask(&pci_dev
->dev
, dma_mask
);
1143 /* dma_set_coherent_mask() is not *allowed* to
1144 * fail with a mask that dma_set_mask() accepted,
1145 * but just in case...
1147 netif_err(efx
, probe
, efx
->net_dev
,
1148 "failed to set consistent DMA mask\n");
1152 efx
->membase_phys
= pci_resource_start(efx
->pci_dev
, EFX_MEM_BAR
);
1153 rc
= pci_request_region(pci_dev
, EFX_MEM_BAR
, "sfc");
1155 netif_err(efx
, probe
, efx
->net_dev
,
1156 "request for memory BAR failed\n");
1160 efx
->membase
= ioremap_nocache(efx
->membase_phys
, mem_map_size
);
1161 if (!efx
->membase
) {
1162 netif_err(efx
, probe
, efx
->net_dev
,
1163 "could not map memory BAR at %llx+%x\n",
1164 (unsigned long long)efx
->membase_phys
, mem_map_size
);
1168 netif_dbg(efx
, probe
, efx
->net_dev
,
1169 "memory BAR at %llx+%x (virtual %p)\n",
1170 (unsigned long long)efx
->membase_phys
, mem_map_size
,
1176 pci_release_region(efx
->pci_dev
, EFX_MEM_BAR
);
1178 efx
->membase_phys
= 0;
1180 pci_disable_device(efx
->pci_dev
);
1185 static void efx_fini_io(struct efx_nic
*efx
)
1187 netif_dbg(efx
, drv
, efx
->net_dev
, "shutting down I/O\n");
1190 iounmap(efx
->membase
);
1191 efx
->membase
= NULL
;
1194 if (efx
->membase_phys
) {
1195 pci_release_region(efx
->pci_dev
, EFX_MEM_BAR
);
1196 efx
->membase_phys
= 0;
1199 pci_disable_device(efx
->pci_dev
);
1202 static unsigned int efx_wanted_parallelism(struct efx_nic
*efx
)
1204 cpumask_var_t thread_mask
;
1211 if (unlikely(!zalloc_cpumask_var(&thread_mask
, GFP_KERNEL
))) {
1212 netif_warn(efx
, probe
, efx
->net_dev
,
1213 "RSS disabled due to allocation failure\n");
1218 for_each_online_cpu(cpu
) {
1219 if (!cpumask_test_cpu(cpu
, thread_mask
)) {
1221 cpumask_or(thread_mask
, thread_mask
,
1222 topology_thread_cpumask(cpu
));
1226 free_cpumask_var(thread_mask
);
1229 /* If RSS is requested for the PF *and* VFs then we can't write RSS
1230 * table entries that are inaccessible to VFs
1232 if (efx_sriov_wanted(efx
) && efx_vf_size(efx
) > 1 &&
1233 count
> efx_vf_size(efx
)) {
1234 netif_warn(efx
, probe
, efx
->net_dev
,
1235 "Reducing number of RSS channels from %u to %u for "
1236 "VF support. Increase vf-msix-limit to use more "
1237 "channels on the PF.\n",
1238 count
, efx_vf_size(efx
));
1239 count
= efx_vf_size(efx
);
1245 /* Probe the number and type of interrupts we are able to obtain, and
1246 * the resulting numbers of channels and RX queues.
1248 static int efx_probe_interrupts(struct efx_nic
*efx
)
1250 unsigned int extra_channels
= 0;
1254 for (i
= 0; i
< EFX_MAX_EXTRA_CHANNELS
; i
++)
1255 if (efx
->extra_channel_type
[i
])
1258 if (efx
->interrupt_mode
== EFX_INT_MODE_MSIX
) {
1259 struct msix_entry xentries
[EFX_MAX_CHANNELS
];
1260 unsigned int n_channels
;
1262 n_channels
= efx_wanted_parallelism(efx
);
1263 if (separate_tx_channels
)
1265 n_channels
+= extra_channels
;
1266 n_channels
= min(n_channels
, efx
->max_channels
);
1268 for (i
= 0; i
< n_channels
; i
++)
1269 xentries
[i
].entry
= i
;
1270 rc
= pci_enable_msix(efx
->pci_dev
, xentries
, n_channels
);
1272 netif_err(efx
, drv
, efx
->net_dev
,
1273 "WARNING: Insufficient MSI-X vectors"
1274 " available (%d < %u).\n", rc
, n_channels
);
1275 netif_err(efx
, drv
, efx
->net_dev
,
1276 "WARNING: Performance may be reduced.\n");
1277 EFX_BUG_ON_PARANOID(rc
>= n_channels
);
1279 rc
= pci_enable_msix(efx
->pci_dev
, xentries
,
1284 efx
->n_channels
= n_channels
;
1285 if (n_channels
> extra_channels
)
1286 n_channels
-= extra_channels
;
1287 if (separate_tx_channels
) {
1288 efx
->n_tx_channels
= max(n_channels
/ 2, 1U);
1289 efx
->n_rx_channels
= max(n_channels
-
1293 efx
->n_tx_channels
= n_channels
;
1294 efx
->n_rx_channels
= n_channels
;
1296 for (i
= 0; i
< efx
->n_channels
; i
++)
1297 efx_get_channel(efx
, i
)->irq
=
1300 /* Fall back to single channel MSI */
1301 efx
->interrupt_mode
= EFX_INT_MODE_MSI
;
1302 netif_err(efx
, drv
, efx
->net_dev
,
1303 "could not enable MSI-X\n");
1307 /* Try single interrupt MSI */
1308 if (efx
->interrupt_mode
== EFX_INT_MODE_MSI
) {
1309 efx
->n_channels
= 1;
1310 efx
->n_rx_channels
= 1;
1311 efx
->n_tx_channels
= 1;
1312 rc
= pci_enable_msi(efx
->pci_dev
);
1314 efx_get_channel(efx
, 0)->irq
= efx
->pci_dev
->irq
;
1316 netif_err(efx
, drv
, efx
->net_dev
,
1317 "could not enable MSI\n");
1318 efx
->interrupt_mode
= EFX_INT_MODE_LEGACY
;
1322 /* Assume legacy interrupts */
1323 if (efx
->interrupt_mode
== EFX_INT_MODE_LEGACY
) {
1324 efx
->n_channels
= 1 + (separate_tx_channels
? 1 : 0);
1325 efx
->n_rx_channels
= 1;
1326 efx
->n_tx_channels
= 1;
1327 efx
->legacy_irq
= efx
->pci_dev
->irq
;
1330 /* Assign extra channels if possible */
1331 j
= efx
->n_channels
;
1332 for (i
= 0; i
< EFX_MAX_EXTRA_CHANNELS
; i
++) {
1333 if (!efx
->extra_channel_type
[i
])
1335 if (efx
->interrupt_mode
!= EFX_INT_MODE_MSIX
||
1336 efx
->n_channels
<= extra_channels
) {
1337 efx
->extra_channel_type
[i
]->handle_no_channel(efx
);
1340 efx_get_channel(efx
, j
)->type
=
1341 efx
->extra_channel_type
[i
];
1345 /* RSS might be usable on VFs even if it is disabled on the PF */
1346 efx
->rss_spread
= ((efx
->n_rx_channels
> 1 || !efx_sriov_wanted(efx
)) ?
1347 efx
->n_rx_channels
: efx_vf_size(efx
));
1352 static int efx_soft_enable_interrupts(struct efx_nic
*efx
)
1354 struct efx_channel
*channel
, *end_channel
;
1357 BUG_ON(efx
->state
== STATE_DISABLED
);
1359 efx
->irq_soft_enabled
= true;
1362 efx_for_each_channel(channel
, efx
) {
1363 if (!channel
->type
->keep_eventq
) {
1364 rc
= efx_init_eventq(channel
);
1368 efx_start_eventq(channel
);
1371 efx_mcdi_mode_event(efx
);
1375 end_channel
= channel
;
1376 efx_for_each_channel(channel
, efx
) {
1377 if (channel
== end_channel
)
1379 efx_stop_eventq(channel
);
1380 if (!channel
->type
->keep_eventq
)
1381 efx_fini_eventq(channel
);
1387 static void efx_soft_disable_interrupts(struct efx_nic
*efx
)
1389 struct efx_channel
*channel
;
1391 if (efx
->state
== STATE_DISABLED
)
1394 efx_mcdi_mode_poll(efx
);
1396 efx
->irq_soft_enabled
= false;
1399 if (efx
->legacy_irq
)
1400 synchronize_irq(efx
->legacy_irq
);
1402 efx_for_each_channel(channel
, efx
) {
1404 synchronize_irq(channel
->irq
);
1406 efx_stop_eventq(channel
);
1407 if (!channel
->type
->keep_eventq
)
1408 efx_fini_eventq(channel
);
1411 /* Flush the asynchronous MCDI request queue */
1412 efx_mcdi_flush_async(efx
);
1415 static int efx_enable_interrupts(struct efx_nic
*efx
)
1417 struct efx_channel
*channel
, *end_channel
;
1420 BUG_ON(efx
->state
== STATE_DISABLED
);
1422 if (efx
->eeh_disabled_legacy_irq
) {
1423 enable_irq(efx
->legacy_irq
);
1424 efx
->eeh_disabled_legacy_irq
= false;
1427 efx
->type
->irq_enable_master(efx
);
1429 efx_for_each_channel(channel
, efx
) {
1430 if (channel
->type
->keep_eventq
) {
1431 rc
= efx_init_eventq(channel
);
1437 rc
= efx_soft_enable_interrupts(efx
);
1444 end_channel
= channel
;
1445 efx_for_each_channel(channel
, efx
) {
1446 if (channel
== end_channel
)
1448 if (channel
->type
->keep_eventq
)
1449 efx_fini_eventq(channel
);
1452 efx
->type
->irq_disable_non_ev(efx
);
1457 static void efx_disable_interrupts(struct efx_nic
*efx
)
1459 struct efx_channel
*channel
;
1461 efx_soft_disable_interrupts(efx
);
1463 efx_for_each_channel(channel
, efx
) {
1464 if (channel
->type
->keep_eventq
)
1465 efx_fini_eventq(channel
);
1468 efx
->type
->irq_disable_non_ev(efx
);
1471 static void efx_remove_interrupts(struct efx_nic
*efx
)
1473 struct efx_channel
*channel
;
1475 /* Remove MSI/MSI-X interrupts */
1476 efx_for_each_channel(channel
, efx
)
1478 pci_disable_msi(efx
->pci_dev
);
1479 pci_disable_msix(efx
->pci_dev
);
1481 /* Remove legacy interrupt */
1482 efx
->legacy_irq
= 0;
1485 static void efx_set_channels(struct efx_nic
*efx
)
1487 struct efx_channel
*channel
;
1488 struct efx_tx_queue
*tx_queue
;
1490 efx
->tx_channel_offset
=
1491 separate_tx_channels
? efx
->n_channels
- efx
->n_tx_channels
: 0;
1493 /* We need to mark which channels really have RX and TX
1494 * queues, and adjust the TX queue numbers if we have separate
1495 * RX-only and TX-only channels.
1497 efx_for_each_channel(channel
, efx
) {
1498 if (channel
->channel
< efx
->n_rx_channels
)
1499 channel
->rx_queue
.core_index
= channel
->channel
;
1501 channel
->rx_queue
.core_index
= -1;
1503 efx_for_each_channel_tx_queue(tx_queue
, channel
)
1504 tx_queue
->queue
-= (efx
->tx_channel_offset
*
1509 static int efx_probe_nic(struct efx_nic
*efx
)
1514 netif_dbg(efx
, probe
, efx
->net_dev
, "creating NIC\n");
1516 /* Carry out hardware-type specific initialisation */
1517 rc
= efx
->type
->probe(efx
);
1521 /* Determine the number of channels and queues by trying to hook
1522 * in MSI-X interrupts. */
1523 rc
= efx_probe_interrupts(efx
);
1527 rc
= efx
->type
->dimension_resources(efx
);
1531 if (efx
->n_channels
> 1)
1532 get_random_bytes(&efx
->rx_hash_key
, sizeof(efx
->rx_hash_key
));
1533 for (i
= 0; i
< ARRAY_SIZE(efx
->rx_indir_table
); i
++)
1534 efx
->rx_indir_table
[i
] =
1535 ethtool_rxfh_indir_default(i
, efx
->rss_spread
);
1537 efx_set_channels(efx
);
1538 netif_set_real_num_tx_queues(efx
->net_dev
, efx
->n_tx_channels
);
1539 netif_set_real_num_rx_queues(efx
->net_dev
, efx
->n_rx_channels
);
1541 /* Initialise the interrupt moderation settings */
1542 efx_init_irq_moderation(efx
, tx_irq_mod_usec
, rx_irq_mod_usec
, true,
1548 efx_remove_interrupts(efx
);
1550 efx
->type
->remove(efx
);
1554 static void efx_remove_nic(struct efx_nic
*efx
)
1556 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying NIC\n");
1558 efx_remove_interrupts(efx
);
1559 efx
->type
->remove(efx
);
1562 static int efx_probe_filters(struct efx_nic
*efx
)
1566 spin_lock_init(&efx
->filter_lock
);
1568 rc
= efx
->type
->filter_table_probe(efx
);
1572 #ifdef CONFIG_RFS_ACCEL
1573 if (efx
->type
->offload_features
& NETIF_F_NTUPLE
) {
1574 efx
->rps_flow_id
= kcalloc(efx
->type
->max_rx_ip_filters
,
1575 sizeof(*efx
->rps_flow_id
),
1577 if (!efx
->rps_flow_id
) {
1578 efx
->type
->filter_table_remove(efx
);
1587 static void efx_remove_filters(struct efx_nic
*efx
)
1589 #ifdef CONFIG_RFS_ACCEL
1590 kfree(efx
->rps_flow_id
);
1592 efx
->type
->filter_table_remove(efx
);
1595 static void efx_restore_filters(struct efx_nic
*efx
)
1597 efx
->type
->filter_table_restore(efx
);
1600 /**************************************************************************
1602 * NIC startup/shutdown
1604 *************************************************************************/
1606 static int efx_probe_all(struct efx_nic
*efx
)
1610 rc
= efx_probe_nic(efx
);
1612 netif_err(efx
, probe
, efx
->net_dev
, "failed to create NIC\n");
1616 rc
= efx_probe_port(efx
);
1618 netif_err(efx
, probe
, efx
->net_dev
, "failed to create port\n");
1622 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE
< EFX_RXQ_MIN_ENT
);
1623 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE
< EFX_TXQ_MIN_ENT(efx
))) {
1627 efx
->rxq_entries
= efx
->txq_entries
= EFX_DEFAULT_DMAQ_SIZE
;
1629 rc
= efx_probe_filters(efx
);
1631 netif_err(efx
, probe
, efx
->net_dev
,
1632 "failed to create filter tables\n");
1636 rc
= efx_probe_channels(efx
);
1643 efx_remove_filters(efx
);
1645 efx_remove_port(efx
);
1647 efx_remove_nic(efx
);
1652 /* If the interface is supposed to be running but is not, start
1653 * the hardware and software data path, regular activity for the port
1654 * (MAC statistics, link polling, etc.) and schedule the port to be
1655 * reconfigured. Interrupts must already be enabled. This function
1656 * is safe to call multiple times, so long as the NIC is not disabled.
1657 * Requires the RTNL lock.
1659 static void efx_start_all(struct efx_nic
*efx
)
1661 EFX_ASSERT_RESET_SERIALISED(efx
);
1662 BUG_ON(efx
->state
== STATE_DISABLED
);
1664 /* Check that it is appropriate to restart the interface. All
1665 * of these flags are safe to read under just the rtnl lock */
1666 if (efx
->port_enabled
|| !netif_running(efx
->net_dev
))
1669 efx_start_port(efx
);
1670 efx_start_datapath(efx
);
1672 /* Start the hardware monitor if there is one */
1673 if (efx
->type
->monitor
!= NULL
)
1674 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1675 efx_monitor_interval
);
1677 /* If link state detection is normally event-driven, we have
1678 * to poll now because we could have missed a change
1680 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
) {
1681 mutex_lock(&efx
->mac_lock
);
1682 if (efx
->phy_op
->poll(efx
))
1683 efx_link_status_changed(efx
);
1684 mutex_unlock(&efx
->mac_lock
);
1687 efx
->type
->start_stats(efx
);
1690 /* Flush all delayed work. Should only be called when no more delayed work
1691 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1692 * since we're holding the rtnl_lock at this point. */
1693 static void efx_flush_all(struct efx_nic
*efx
)
1695 /* Make sure the hardware monitor and event self-test are stopped */
1696 cancel_delayed_work_sync(&efx
->monitor_work
);
1697 efx_selftest_async_cancel(efx
);
1698 /* Stop scheduled port reconfigurations */
1699 cancel_work_sync(&efx
->mac_work
);
1702 /* Quiesce the hardware and software data path, and regular activity
1703 * for the port without bringing the link down. Safe to call multiple
1704 * times with the NIC in almost any state, but interrupts should be
1705 * enabled. Requires the RTNL lock.
1707 static void efx_stop_all(struct efx_nic
*efx
)
1709 EFX_ASSERT_RESET_SERIALISED(efx
);
1711 /* port_enabled can be read safely under the rtnl lock */
1712 if (!efx
->port_enabled
)
1715 efx
->type
->stop_stats(efx
);
1718 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
1721 /* Stop the kernel transmit interface. This is only valid if
1722 * the device is stopped or detached; otherwise the watchdog
1723 * may fire immediately.
1725 WARN_ON(netif_running(efx
->net_dev
) &&
1726 netif_device_present(efx
->net_dev
));
1727 netif_tx_disable(efx
->net_dev
);
1729 efx_stop_datapath(efx
);
1732 static void efx_remove_all(struct efx_nic
*efx
)
1734 efx_remove_channels(efx
);
1735 efx_remove_filters(efx
);
1736 efx_remove_port(efx
);
1737 efx_remove_nic(efx
);
1740 /**************************************************************************
1742 * Interrupt moderation
1744 **************************************************************************/
1746 static unsigned int irq_mod_ticks(unsigned int usecs
, unsigned int quantum_ns
)
1750 if (usecs
* 1000 < quantum_ns
)
1751 return 1; /* never round down to 0 */
1752 return usecs
* 1000 / quantum_ns
;
1755 /* Set interrupt moderation parameters */
1756 int efx_init_irq_moderation(struct efx_nic
*efx
, unsigned int tx_usecs
,
1757 unsigned int rx_usecs
, bool rx_adaptive
,
1758 bool rx_may_override_tx
)
1760 struct efx_channel
*channel
;
1761 unsigned int irq_mod_max
= DIV_ROUND_UP(efx
->type
->timer_period_max
*
1762 efx
->timer_quantum_ns
,
1764 unsigned int tx_ticks
;
1765 unsigned int rx_ticks
;
1767 EFX_ASSERT_RESET_SERIALISED(efx
);
1769 if (tx_usecs
> irq_mod_max
|| rx_usecs
> irq_mod_max
)
1772 tx_ticks
= irq_mod_ticks(tx_usecs
, efx
->timer_quantum_ns
);
1773 rx_ticks
= irq_mod_ticks(rx_usecs
, efx
->timer_quantum_ns
);
1775 if (tx_ticks
!= rx_ticks
&& efx
->tx_channel_offset
== 0 &&
1776 !rx_may_override_tx
) {
1777 netif_err(efx
, drv
, efx
->net_dev
, "Channels are shared. "
1778 "RX and TX IRQ moderation must be equal\n");
1782 efx
->irq_rx_adaptive
= rx_adaptive
;
1783 efx
->irq_rx_moderation
= rx_ticks
;
1784 efx_for_each_channel(channel
, efx
) {
1785 if (efx_channel_has_rx_queue(channel
))
1786 channel
->irq_moderation
= rx_ticks
;
1787 else if (efx_channel_has_tx_queues(channel
))
1788 channel
->irq_moderation
= tx_ticks
;
1794 void efx_get_irq_moderation(struct efx_nic
*efx
, unsigned int *tx_usecs
,
1795 unsigned int *rx_usecs
, bool *rx_adaptive
)
1797 /* We must round up when converting ticks to microseconds
1798 * because we round down when converting the other way.
1801 *rx_adaptive
= efx
->irq_rx_adaptive
;
1802 *rx_usecs
= DIV_ROUND_UP(efx
->irq_rx_moderation
*
1803 efx
->timer_quantum_ns
,
1806 /* If channels are shared between RX and TX, so is IRQ
1807 * moderation. Otherwise, IRQ moderation is the same for all
1808 * TX channels and is not adaptive.
1810 if (efx
->tx_channel_offset
== 0)
1811 *tx_usecs
= *rx_usecs
;
1813 *tx_usecs
= DIV_ROUND_UP(
1814 efx
->channel
[efx
->tx_channel_offset
]->irq_moderation
*
1815 efx
->timer_quantum_ns
,
1819 /**************************************************************************
1823 **************************************************************************/
1825 /* Run periodically off the general workqueue */
1826 static void efx_monitor(struct work_struct
*data
)
1828 struct efx_nic
*efx
= container_of(data
, struct efx_nic
,
1831 netif_vdbg(efx
, timer
, efx
->net_dev
,
1832 "hardware monitor executing on CPU %d\n",
1833 raw_smp_processor_id());
1834 BUG_ON(efx
->type
->monitor
== NULL
);
1836 /* If the mac_lock is already held then it is likely a port
1837 * reconfiguration is already in place, which will likely do
1838 * most of the work of monitor() anyway. */
1839 if (mutex_trylock(&efx
->mac_lock
)) {
1840 if (efx
->port_enabled
)
1841 efx
->type
->monitor(efx
);
1842 mutex_unlock(&efx
->mac_lock
);
1845 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1846 efx_monitor_interval
);
1849 /**************************************************************************
1853 *************************************************************************/
1856 * Context: process, rtnl_lock() held.
1858 static int efx_ioctl(struct net_device
*net_dev
, struct ifreq
*ifr
, int cmd
)
1860 struct efx_nic
*efx
= netdev_priv(net_dev
);
1861 struct mii_ioctl_data
*data
= if_mii(ifr
);
1863 if (cmd
== SIOCSHWTSTAMP
)
1864 return efx_ptp_ioctl(efx
, ifr
, cmd
);
1866 /* Convert phy_id from older PRTAD/DEVAD format */
1867 if ((cmd
== SIOCGMIIREG
|| cmd
== SIOCSMIIREG
) &&
1868 (data
->phy_id
& 0xfc00) == 0x0400)
1869 data
->phy_id
^= MDIO_PHY_ID_C45
| 0x0400;
1871 return mdio_mii_ioctl(&efx
->mdio
, data
, cmd
);
1874 /**************************************************************************
1878 **************************************************************************/
1880 static void efx_init_napi_channel(struct efx_channel
*channel
)
1882 struct efx_nic
*efx
= channel
->efx
;
1884 channel
->napi_dev
= efx
->net_dev
;
1885 netif_napi_add(channel
->napi_dev
, &channel
->napi_str
,
1886 efx_poll
, napi_weight
);
1889 static void efx_init_napi(struct efx_nic
*efx
)
1891 struct efx_channel
*channel
;
1893 efx_for_each_channel(channel
, efx
)
1894 efx_init_napi_channel(channel
);
1897 static void efx_fini_napi_channel(struct efx_channel
*channel
)
1899 if (channel
->napi_dev
)
1900 netif_napi_del(&channel
->napi_str
);
1901 channel
->napi_dev
= NULL
;
1904 static void efx_fini_napi(struct efx_nic
*efx
)
1906 struct efx_channel
*channel
;
1908 efx_for_each_channel(channel
, efx
)
1909 efx_fini_napi_channel(channel
);
1912 /**************************************************************************
1914 * Kernel netpoll interface
1916 *************************************************************************/
1918 #ifdef CONFIG_NET_POLL_CONTROLLER
1920 /* Although in the common case interrupts will be disabled, this is not
1921 * guaranteed. However, all our work happens inside the NAPI callback,
1922 * so no locking is required.
1924 static void efx_netpoll(struct net_device
*net_dev
)
1926 struct efx_nic
*efx
= netdev_priv(net_dev
);
1927 struct efx_channel
*channel
;
1929 efx_for_each_channel(channel
, efx
)
1930 efx_schedule_channel(channel
);
1935 /**************************************************************************
1937 * Kernel net device interface
1939 *************************************************************************/
1941 /* Context: process, rtnl_lock() held. */
1942 static int efx_net_open(struct net_device
*net_dev
)
1944 struct efx_nic
*efx
= netdev_priv(net_dev
);
1947 netif_dbg(efx
, ifup
, efx
->net_dev
, "opening device on CPU %d\n",
1948 raw_smp_processor_id());
1950 rc
= efx_check_disabled(efx
);
1953 if (efx
->phy_mode
& PHY_MODE_SPECIAL
)
1955 if (efx_mcdi_poll_reboot(efx
) && efx_reset(efx
, RESET_TYPE_ALL
))
1958 /* Notify the kernel of the link state polled during driver load,
1959 * before the monitor starts running */
1960 efx_link_status_changed(efx
);
1963 efx_selftest_async_start(efx
);
1967 /* Context: process, rtnl_lock() held.
1968 * Note that the kernel will ignore our return code; this method
1969 * should really be a void.
1971 static int efx_net_stop(struct net_device
*net_dev
)
1973 struct efx_nic
*efx
= netdev_priv(net_dev
);
1975 netif_dbg(efx
, ifdown
, efx
->net_dev
, "closing on CPU %d\n",
1976 raw_smp_processor_id());
1978 /* Stop the device and flush all the channels */
1984 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1985 static struct rtnl_link_stats64
*efx_net_stats(struct net_device
*net_dev
,
1986 struct rtnl_link_stats64
*stats
)
1988 struct efx_nic
*efx
= netdev_priv(net_dev
);
1990 spin_lock_bh(&efx
->stats_lock
);
1991 efx
->type
->update_stats(efx
, NULL
, stats
);
1992 spin_unlock_bh(&efx
->stats_lock
);
1997 /* Context: netif_tx_lock held, BHs disabled. */
1998 static void efx_watchdog(struct net_device
*net_dev
)
2000 struct efx_nic
*efx
= netdev_priv(net_dev
);
2002 netif_err(efx
, tx_err
, efx
->net_dev
,
2003 "TX stuck with port_enabled=%d: resetting channels\n",
2006 efx_schedule_reset(efx
, RESET_TYPE_TX_WATCHDOG
);
2010 /* Context: process, rtnl_lock() held. */
2011 static int efx_change_mtu(struct net_device
*net_dev
, int new_mtu
)
2013 struct efx_nic
*efx
= netdev_priv(net_dev
);
2016 rc
= efx_check_disabled(efx
);
2019 if (new_mtu
> EFX_MAX_MTU
)
2022 netif_dbg(efx
, drv
, efx
->net_dev
, "changing MTU to %d\n", new_mtu
);
2024 efx_device_detach_sync(efx
);
2027 mutex_lock(&efx
->mac_lock
);
2028 net_dev
->mtu
= new_mtu
;
2029 efx
->type
->reconfigure_mac(efx
);
2030 mutex_unlock(&efx
->mac_lock
);
2033 netif_device_attach(efx
->net_dev
);
2037 static int efx_set_mac_address(struct net_device
*net_dev
, void *data
)
2039 struct efx_nic
*efx
= netdev_priv(net_dev
);
2040 struct sockaddr
*addr
= data
;
2041 char *new_addr
= addr
->sa_data
;
2043 if (!is_valid_ether_addr(new_addr
)) {
2044 netif_err(efx
, drv
, efx
->net_dev
,
2045 "invalid ethernet MAC address requested: %pM\n",
2047 return -EADDRNOTAVAIL
;
2050 memcpy(net_dev
->dev_addr
, new_addr
, net_dev
->addr_len
);
2051 efx_sriov_mac_address_changed(efx
);
2053 /* Reconfigure the MAC */
2054 mutex_lock(&efx
->mac_lock
);
2055 efx
->type
->reconfigure_mac(efx
);
2056 mutex_unlock(&efx
->mac_lock
);
2061 /* Context: netif_addr_lock held, BHs disabled. */
2062 static void efx_set_rx_mode(struct net_device
*net_dev
)
2064 struct efx_nic
*efx
= netdev_priv(net_dev
);
2066 if (efx
->port_enabled
)
2067 queue_work(efx
->workqueue
, &efx
->mac_work
);
2068 /* Otherwise efx_start_port() will do this */
2071 static int efx_set_features(struct net_device
*net_dev
, netdev_features_t data
)
2073 struct efx_nic
*efx
= netdev_priv(net_dev
);
2075 /* If disabling RX n-tuple filtering, clear existing filters */
2076 if (net_dev
->features
& ~data
& NETIF_F_NTUPLE
)
2077 efx_filter_clear_rx(efx
, EFX_FILTER_PRI_MANUAL
);
2082 static const struct net_device_ops efx_farch_netdev_ops
= {
2083 .ndo_open
= efx_net_open
,
2084 .ndo_stop
= efx_net_stop
,
2085 .ndo_get_stats64
= efx_net_stats
,
2086 .ndo_tx_timeout
= efx_watchdog
,
2087 .ndo_start_xmit
= efx_hard_start_xmit
,
2088 .ndo_validate_addr
= eth_validate_addr
,
2089 .ndo_do_ioctl
= efx_ioctl
,
2090 .ndo_change_mtu
= efx_change_mtu
,
2091 .ndo_set_mac_address
= efx_set_mac_address
,
2092 .ndo_set_rx_mode
= efx_set_rx_mode
,
2093 .ndo_set_features
= efx_set_features
,
2094 #ifdef CONFIG_SFC_SRIOV
2095 .ndo_set_vf_mac
= efx_sriov_set_vf_mac
,
2096 .ndo_set_vf_vlan
= efx_sriov_set_vf_vlan
,
2097 .ndo_set_vf_spoofchk
= efx_sriov_set_vf_spoofchk
,
2098 .ndo_get_vf_config
= efx_sriov_get_vf_config
,
2100 #ifdef CONFIG_NET_POLL_CONTROLLER
2101 .ndo_poll_controller
= efx_netpoll
,
2103 .ndo_setup_tc
= efx_setup_tc
,
2104 #ifdef CONFIG_RFS_ACCEL
2105 .ndo_rx_flow_steer
= efx_filter_rfs
,
2109 static const struct net_device_ops efx_ef10_netdev_ops
= {
2110 .ndo_open
= efx_net_open
,
2111 .ndo_stop
= efx_net_stop
,
2112 .ndo_get_stats64
= efx_net_stats
,
2113 .ndo_tx_timeout
= efx_watchdog
,
2114 .ndo_start_xmit
= efx_hard_start_xmit
,
2115 .ndo_validate_addr
= eth_validate_addr
,
2116 .ndo_do_ioctl
= efx_ioctl
,
2117 .ndo_change_mtu
= efx_change_mtu
,
2118 .ndo_set_mac_address
= efx_set_mac_address
,
2119 .ndo_set_rx_mode
= efx_set_rx_mode
,
2120 .ndo_set_features
= efx_set_features
,
2121 #ifdef CONFIG_NET_POLL_CONTROLLER
2122 .ndo_poll_controller
= efx_netpoll
,
2124 #ifdef CONFIG_RFS_ACCEL
2125 .ndo_rx_flow_steer
= efx_filter_rfs
,
2129 static void efx_update_name(struct efx_nic
*efx
)
2131 strcpy(efx
->name
, efx
->net_dev
->name
);
2132 efx_mtd_rename(efx
);
2133 efx_set_channel_names(efx
);
2136 static int efx_netdev_event(struct notifier_block
*this,
2137 unsigned long event
, void *ptr
)
2139 struct net_device
*net_dev
= netdev_notifier_info_to_dev(ptr
);
2141 if ((net_dev
->netdev_ops
== &efx_farch_netdev_ops
||
2142 net_dev
->netdev_ops
== &efx_ef10_netdev_ops
) &&
2143 event
== NETDEV_CHANGENAME
)
2144 efx_update_name(netdev_priv(net_dev
));
2149 static struct notifier_block efx_netdev_notifier
= {
2150 .notifier_call
= efx_netdev_event
,
2154 show_phy_type(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2156 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2157 return sprintf(buf
, "%d\n", efx
->phy_type
);
2159 static DEVICE_ATTR(phy_type
, 0444, show_phy_type
, NULL
);
2161 static int efx_register_netdev(struct efx_nic
*efx
)
2163 struct net_device
*net_dev
= efx
->net_dev
;
2164 struct efx_channel
*channel
;
2167 net_dev
->watchdog_timeo
= 5 * HZ
;
2168 net_dev
->irq
= efx
->pci_dev
->irq
;
2169 if (efx_nic_rev(efx
) >= EFX_REV_HUNT_A0
) {
2170 net_dev
->netdev_ops
= &efx_ef10_netdev_ops
;
2171 net_dev
->priv_flags
|= IFF_UNICAST_FLT
;
2173 net_dev
->netdev_ops
= &efx_farch_netdev_ops
;
2175 SET_ETHTOOL_OPS(net_dev
, &efx_ethtool_ops
);
2176 net_dev
->gso_max_segs
= EFX_TSO_MAX_SEGS
;
2180 /* Enable resets to be scheduled and check whether any were
2181 * already requested. If so, the NIC is probably hosed so we
2184 efx
->state
= STATE_READY
;
2185 smp_mb(); /* ensure we change state before checking reset_pending */
2186 if (efx
->reset_pending
) {
2187 netif_err(efx
, probe
, efx
->net_dev
,
2188 "aborting probe due to scheduled reset\n");
2193 rc
= dev_alloc_name(net_dev
, net_dev
->name
);
2196 efx_update_name(efx
);
2198 /* Always start with carrier off; PHY events will detect the link */
2199 netif_carrier_off(net_dev
);
2201 rc
= register_netdevice(net_dev
);
2205 efx_for_each_channel(channel
, efx
) {
2206 struct efx_tx_queue
*tx_queue
;
2207 efx_for_each_channel_tx_queue(tx_queue
, channel
)
2208 efx_init_tx_queue_core_txq(tx_queue
);
2213 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2215 netif_err(efx
, drv
, efx
->net_dev
,
2216 "failed to init net dev attributes\n");
2217 goto fail_registered
;
2224 unregister_netdevice(net_dev
);
2226 efx
->state
= STATE_UNINIT
;
2228 netif_err(efx
, drv
, efx
->net_dev
, "could not register net dev\n");
2232 static void efx_unregister_netdev(struct efx_nic
*efx
)
2237 BUG_ON(netdev_priv(efx
->net_dev
) != efx
);
2239 strlcpy(efx
->name
, pci_name(efx
->pci_dev
), sizeof(efx
->name
));
2240 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2243 unregister_netdevice(efx
->net_dev
);
2244 efx
->state
= STATE_UNINIT
;
2248 /**************************************************************************
2250 * Device reset and suspend
2252 **************************************************************************/
2254 /* Tears down the entire software state and most of the hardware state
2256 void efx_reset_down(struct efx_nic
*efx
, enum reset_type method
)
2258 EFX_ASSERT_RESET_SERIALISED(efx
);
2261 efx_disable_interrupts(efx
);
2263 mutex_lock(&efx
->mac_lock
);
2264 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
)
2265 efx
->phy_op
->fini(efx
);
2266 efx
->type
->fini(efx
);
2269 /* This function will always ensure that the locks acquired in
2270 * efx_reset_down() are released. A failure return code indicates
2271 * that we were unable to reinitialise the hardware, and the
2272 * driver should be disabled. If ok is false, then the rx and tx
2273 * engines are not restarted, pending a RESET_DISABLE. */
2274 int efx_reset_up(struct efx_nic
*efx
, enum reset_type method
, bool ok
)
2278 EFX_ASSERT_RESET_SERIALISED(efx
);
2280 rc
= efx
->type
->init(efx
);
2282 netif_err(efx
, drv
, efx
->net_dev
, "failed to initialise NIC\n");
2289 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
) {
2290 rc
= efx
->phy_op
->init(efx
);
2293 if (efx
->phy_op
->reconfigure(efx
))
2294 netif_err(efx
, drv
, efx
->net_dev
,
2295 "could not restore PHY settings\n");
2298 rc
= efx_enable_interrupts(efx
);
2301 efx_restore_filters(efx
);
2302 efx_sriov_reset(efx
);
2304 mutex_unlock(&efx
->mac_lock
);
2311 efx
->port_initialized
= false;
2313 mutex_unlock(&efx
->mac_lock
);
2318 /* Reset the NIC using the specified method. Note that the reset may
2319 * fail, in which case the card will be left in an unusable state.
2321 * Caller must hold the rtnl_lock.
2323 int efx_reset(struct efx_nic
*efx
, enum reset_type method
)
2328 netif_info(efx
, drv
, efx
->net_dev
, "resetting (%s)\n",
2329 RESET_TYPE(method
));
2331 efx_device_detach_sync(efx
);
2332 efx_reset_down(efx
, method
);
2334 rc
= efx
->type
->reset(efx
, method
);
2336 netif_err(efx
, drv
, efx
->net_dev
, "failed to reset hardware\n");
2340 /* Clear flags for the scopes we covered. We assume the NIC and
2341 * driver are now quiescent so that there is no race here.
2343 efx
->reset_pending
&= -(1 << (method
+ 1));
2345 /* Reinitialise bus-mastering, which may have been turned off before
2346 * the reset was scheduled. This is still appropriate, even in the
2347 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2348 * can respond to requests. */
2349 pci_set_master(efx
->pci_dev
);
2352 /* Leave device stopped if necessary */
2354 method
== RESET_TYPE_DISABLE
||
2355 method
== RESET_TYPE_RECOVER_OR_DISABLE
;
2356 rc2
= efx_reset_up(efx
, method
, !disabled
);
2364 dev_close(efx
->net_dev
);
2365 netif_err(efx
, drv
, efx
->net_dev
, "has been disabled\n");
2366 efx
->state
= STATE_DISABLED
;
2368 netif_dbg(efx
, drv
, efx
->net_dev
, "reset complete\n");
2369 netif_device_attach(efx
->net_dev
);
2374 /* Try recovery mechanisms.
2375 * For now only EEH is supported.
2376 * Returns 0 if the recovery mechanisms are unsuccessful.
2377 * Returns a non-zero value otherwise.
2379 int efx_try_recovery(struct efx_nic
*efx
)
2382 /* A PCI error can occur and not be seen by EEH because nothing
2383 * happens on the PCI bus. In this case the driver may fail and
2384 * schedule a 'recover or reset', leading to this recovery handler.
2385 * Manually call the eeh failure check function.
2387 struct eeh_dev
*eehdev
=
2388 of_node_to_eeh_dev(pci_device_to_OF_node(efx
->pci_dev
));
2390 if (eeh_dev_check_failure(eehdev
)) {
2391 /* The EEH mechanisms will handle the error and reset the
2392 * device if necessary.
2400 /* The worker thread exists so that code that cannot sleep can
2401 * schedule a reset for later.
2403 static void efx_reset_work(struct work_struct
*data
)
2405 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, reset_work
);
2406 unsigned long pending
;
2407 enum reset_type method
;
2409 pending
= ACCESS_ONCE(efx
->reset_pending
);
2410 method
= fls(pending
) - 1;
2412 if ((method
== RESET_TYPE_RECOVER_OR_DISABLE
||
2413 method
== RESET_TYPE_RECOVER_OR_ALL
) &&
2414 efx_try_recovery(efx
))
2422 /* We checked the state in efx_schedule_reset() but it may
2423 * have changed by now. Now that we have the RTNL lock,
2424 * it cannot change again.
2426 if (efx
->state
== STATE_READY
)
2427 (void)efx_reset(efx
, method
);
2432 void efx_schedule_reset(struct efx_nic
*efx
, enum reset_type type
)
2434 enum reset_type method
;
2436 if (efx
->state
== STATE_RECOVERY
) {
2437 netif_dbg(efx
, drv
, efx
->net_dev
,
2438 "recovering: skip scheduling %s reset\n",
2444 case RESET_TYPE_INVISIBLE
:
2445 case RESET_TYPE_ALL
:
2446 case RESET_TYPE_RECOVER_OR_ALL
:
2447 case RESET_TYPE_WORLD
:
2448 case RESET_TYPE_DISABLE
:
2449 case RESET_TYPE_RECOVER_OR_DISABLE
:
2451 netif_dbg(efx
, drv
, efx
->net_dev
, "scheduling %s reset\n",
2452 RESET_TYPE(method
));
2455 method
= efx
->type
->map_reset_reason(type
);
2456 netif_dbg(efx
, drv
, efx
->net_dev
,
2457 "scheduling %s reset for %s\n",
2458 RESET_TYPE(method
), RESET_TYPE(type
));
2462 set_bit(method
, &efx
->reset_pending
);
2463 smp_mb(); /* ensure we change reset_pending before checking state */
2465 /* If we're not READY then just leave the flags set as the cue
2466 * to abort probing or reschedule the reset later.
2468 if (ACCESS_ONCE(efx
->state
) != STATE_READY
)
2471 /* efx_process_channel() will no longer read events once a
2472 * reset is scheduled. So switch back to poll'd MCDI completions. */
2473 efx_mcdi_mode_poll(efx
);
2475 queue_work(reset_workqueue
, &efx
->reset_work
);
2478 /**************************************************************************
2480 * List of NICs we support
2482 **************************************************************************/
2484 /* PCI device ID table */
2485 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table
) = {
2486 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
,
2487 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0
),
2488 .driver_data
= (unsigned long) &falcon_a1_nic_type
},
2489 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
,
2490 PCI_DEVICE_ID_SOLARFLARE_SFC4000B
),
2491 .driver_data
= (unsigned long) &falcon_b0_nic_type
},
2492 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x0803), /* SFC9020 */
2493 .driver_data
= (unsigned long) &siena_a0_nic_type
},
2494 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x0813), /* SFL9021 */
2495 .driver_data
= (unsigned long) &siena_a0_nic_type
},
2496 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
, 0x0903), /* SFC9120 PF */
2497 .driver_data
= (unsigned long) &efx_hunt_a0_nic_type
},
2498 {0} /* end of list */
2501 /**************************************************************************
2503 * Dummy PHY/MAC operations
2505 * Can be used for some unimplemented operations
2506 * Needed so all function pointers are valid and do not have to be tested
2509 **************************************************************************/
2510 int efx_port_dummy_op_int(struct efx_nic
*efx
)
2514 void efx_port_dummy_op_void(struct efx_nic
*efx
) {}
2516 static bool efx_port_dummy_op_poll(struct efx_nic
*efx
)
2521 static const struct efx_phy_operations efx_dummy_phy_operations
= {
2522 .init
= efx_port_dummy_op_int
,
2523 .reconfigure
= efx_port_dummy_op_int
,
2524 .poll
= efx_port_dummy_op_poll
,
2525 .fini
= efx_port_dummy_op_void
,
2528 /**************************************************************************
2532 **************************************************************************/
2534 /* This zeroes out and then fills in the invariants in a struct
2535 * efx_nic (including all sub-structures).
2537 static int efx_init_struct(struct efx_nic
*efx
,
2538 struct pci_dev
*pci_dev
, struct net_device
*net_dev
)
2542 /* Initialise common structures */
2543 spin_lock_init(&efx
->biu_lock
);
2544 #ifdef CONFIG_SFC_MTD
2545 INIT_LIST_HEAD(&efx
->mtd_list
);
2547 INIT_WORK(&efx
->reset_work
, efx_reset_work
);
2548 INIT_DELAYED_WORK(&efx
->monitor_work
, efx_monitor
);
2549 INIT_DELAYED_WORK(&efx
->selftest_work
, efx_selftest_async_work
);
2550 efx
->pci_dev
= pci_dev
;
2551 efx
->msg_enable
= debug
;
2552 efx
->state
= STATE_UNINIT
;
2553 strlcpy(efx
->name
, pci_name(pci_dev
), sizeof(efx
->name
));
2555 efx
->net_dev
= net_dev
;
2556 efx
->rx_prefix_size
= efx
->type
->rx_prefix_size
;
2558 NET_IP_ALIGN
? (efx
->rx_prefix_size
+ NET_IP_ALIGN
) % 4 : 0;
2559 efx
->rx_packet_hash_offset
=
2560 efx
->type
->rx_hash_offset
- efx
->type
->rx_prefix_size
;
2561 spin_lock_init(&efx
->stats_lock
);
2562 mutex_init(&efx
->mac_lock
);
2563 efx
->phy_op
= &efx_dummy_phy_operations
;
2564 efx
->mdio
.dev
= net_dev
;
2565 INIT_WORK(&efx
->mac_work
, efx_mac_work
);
2566 init_waitqueue_head(&efx
->flush_wq
);
2568 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++) {
2569 efx
->channel
[i
] = efx_alloc_channel(efx
, i
, NULL
);
2570 if (!efx
->channel
[i
])
2572 efx
->msi_context
[i
].efx
= efx
;
2573 efx
->msi_context
[i
].index
= i
;
2576 /* Higher numbered interrupt modes are less capable! */
2577 efx
->interrupt_mode
= max(efx
->type
->max_interrupt_mode
,
2580 /* Would be good to use the net_dev name, but we're too early */
2581 snprintf(efx
->workqueue_name
, sizeof(efx
->workqueue_name
), "sfc%s",
2583 efx
->workqueue
= create_singlethread_workqueue(efx
->workqueue_name
);
2584 if (!efx
->workqueue
)
2590 efx_fini_struct(efx
);
2594 static void efx_fini_struct(struct efx_nic
*efx
)
2598 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++)
2599 kfree(efx
->channel
[i
]);
2601 if (efx
->workqueue
) {
2602 destroy_workqueue(efx
->workqueue
);
2603 efx
->workqueue
= NULL
;
2607 /**************************************************************************
2611 **************************************************************************/
2613 /* Main body of final NIC shutdown code
2614 * This is called only at module unload (or hotplug removal).
2616 static void efx_pci_remove_main(struct efx_nic
*efx
)
2618 /* Flush reset_work. It can no longer be scheduled since we
2621 BUG_ON(efx
->state
== STATE_READY
);
2622 cancel_work_sync(&efx
->reset_work
);
2624 efx_disable_interrupts(efx
);
2625 efx_nic_fini_interrupt(efx
);
2627 efx
->type
->fini(efx
);
2629 efx_remove_all(efx
);
2632 /* Final NIC shutdown
2633 * This is called only at module unload (or hotplug removal).
2635 static void efx_pci_remove(struct pci_dev
*pci_dev
)
2637 struct efx_nic
*efx
;
2639 efx
= pci_get_drvdata(pci_dev
);
2643 /* Mark the NIC as fini, then stop the interface */
2645 dev_close(efx
->net_dev
);
2646 efx_disable_interrupts(efx
);
2649 efx_sriov_fini(efx
);
2650 efx_unregister_netdev(efx
);
2652 efx_mtd_remove(efx
);
2654 efx_pci_remove_main(efx
);
2657 netif_dbg(efx
, drv
, efx
->net_dev
, "shutdown successful\n");
2659 efx_fini_struct(efx
);
2660 pci_set_drvdata(pci_dev
, NULL
);
2661 free_netdev(efx
->net_dev
);
2663 pci_disable_pcie_error_reporting(pci_dev
);
2666 /* NIC VPD information
2667 * Called during probe to display the part number of the
2668 * installed NIC. VPD is potentially very large but this should
2669 * always appear within the first 512 bytes.
2671 #define SFC_VPD_LEN 512
2672 static void efx_print_product_vpd(struct efx_nic
*efx
)
2674 struct pci_dev
*dev
= efx
->pci_dev
;
2675 char vpd_data
[SFC_VPD_LEN
];
2679 /* Get the vpd data from the device */
2680 vpd_size
= pci_read_vpd(dev
, 0, sizeof(vpd_data
), vpd_data
);
2681 if (vpd_size
<= 0) {
2682 netif_err(efx
, drv
, efx
->net_dev
, "Unable to read VPD\n");
2686 /* Get the Read only section */
2687 i
= pci_vpd_find_tag(vpd_data
, 0, vpd_size
, PCI_VPD_LRDT_RO_DATA
);
2689 netif_err(efx
, drv
, efx
->net_dev
, "VPD Read-only not found\n");
2693 j
= pci_vpd_lrdt_size(&vpd_data
[i
]);
2694 i
+= PCI_VPD_LRDT_TAG_SIZE
;
2695 if (i
+ j
> vpd_size
)
2698 /* Get the Part number */
2699 i
= pci_vpd_find_info_keyword(vpd_data
, i
, j
, "PN");
2701 netif_err(efx
, drv
, efx
->net_dev
, "Part number not found\n");
2705 j
= pci_vpd_info_field_size(&vpd_data
[i
]);
2706 i
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
2707 if (i
+ j
> vpd_size
) {
2708 netif_err(efx
, drv
, efx
->net_dev
, "Incomplete part number\n");
2712 netif_info(efx
, drv
, efx
->net_dev
,
2713 "Part Number : %.*s\n", j
, &vpd_data
[i
]);
2717 /* Main body of NIC initialisation
2718 * This is called at module load (or hotplug insertion, theoretically).
2720 static int efx_pci_probe_main(struct efx_nic
*efx
)
2724 /* Do start-of-day initialisation */
2725 rc
= efx_probe_all(efx
);
2731 rc
= efx
->type
->init(efx
);
2733 netif_err(efx
, probe
, efx
->net_dev
,
2734 "failed to initialise NIC\n");
2738 rc
= efx_init_port(efx
);
2740 netif_err(efx
, probe
, efx
->net_dev
,
2741 "failed to initialise port\n");
2745 rc
= efx_nic_init_interrupt(efx
);
2748 rc
= efx_enable_interrupts(efx
);
2755 efx_nic_fini_interrupt(efx
);
2759 efx
->type
->fini(efx
);
2762 efx_remove_all(efx
);
2767 /* NIC initialisation
2769 * This is called at module load (or hotplug insertion,
2770 * theoretically). It sets up PCI mappings, resets the NIC,
2771 * sets up and registers the network devices with the kernel and hooks
2772 * the interrupt service routine. It does not prepare the device for
2773 * transmission; this is left to the first time one of the network
2774 * interfaces is brought up (i.e. efx_net_open).
2776 static int efx_pci_probe(struct pci_dev
*pci_dev
,
2777 const struct pci_device_id
*entry
)
2779 struct net_device
*net_dev
;
2780 struct efx_nic
*efx
;
2783 /* Allocate and initialise a struct net_device and struct efx_nic */
2784 net_dev
= alloc_etherdev_mqs(sizeof(*efx
), EFX_MAX_CORE_TX_QUEUES
,
2788 efx
= netdev_priv(net_dev
);
2789 efx
->type
= (const struct efx_nic_type
*) entry
->driver_data
;
2790 net_dev
->features
|= (efx
->type
->offload_features
| NETIF_F_SG
|
2791 NETIF_F_HIGHDMA
| NETIF_F_TSO
|
2793 if (efx
->type
->offload_features
& NETIF_F_V6_CSUM
)
2794 net_dev
->features
|= NETIF_F_TSO6
;
2795 /* Mask for features that also apply to VLAN devices */
2796 net_dev
->vlan_features
|= (NETIF_F_ALL_CSUM
| NETIF_F_SG
|
2797 NETIF_F_HIGHDMA
| NETIF_F_ALL_TSO
|
2799 /* All offloads can be toggled */
2800 net_dev
->hw_features
= net_dev
->features
& ~NETIF_F_HIGHDMA
;
2801 pci_set_drvdata(pci_dev
, efx
);
2802 SET_NETDEV_DEV(net_dev
, &pci_dev
->dev
);
2803 rc
= efx_init_struct(efx
, pci_dev
, net_dev
);
2807 netif_info(efx
, probe
, efx
->net_dev
,
2808 "Solarflare NIC detected\n");
2810 efx_print_product_vpd(efx
);
2812 /* Set up basic I/O (BAR mappings etc) */
2813 rc
= efx_init_io(efx
);
2817 rc
= efx_pci_probe_main(efx
);
2821 rc
= efx_register_netdev(efx
);
2825 rc
= efx_sriov_init(efx
);
2827 netif_err(efx
, probe
, efx
->net_dev
,
2828 "SR-IOV can't be enabled rc %d\n", rc
);
2830 netif_dbg(efx
, probe
, efx
->net_dev
, "initialisation successful\n");
2832 /* Try to create MTDs, but allow this to fail */
2834 rc
= efx_mtd_probe(efx
);
2837 netif_warn(efx
, probe
, efx
->net_dev
,
2838 "failed to create MTDs (%d)\n", rc
);
2840 rc
= pci_enable_pcie_error_reporting(pci_dev
);
2841 if (rc
&& rc
!= -EINVAL
)
2842 netif_warn(efx
, probe
, efx
->net_dev
,
2843 "pci_enable_pcie_error_reporting failed (%d)\n", rc
);
2848 efx_pci_remove_main(efx
);
2852 efx_fini_struct(efx
);
2854 pci_set_drvdata(pci_dev
, NULL
);
2856 netif_dbg(efx
, drv
, efx
->net_dev
, "initialisation failed. rc=%d\n", rc
);
2857 free_netdev(net_dev
);
2861 static int efx_pm_freeze(struct device
*dev
)
2863 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2867 if (efx
->state
!= STATE_DISABLED
) {
2868 efx
->state
= STATE_UNINIT
;
2870 efx_device_detach_sync(efx
);
2873 efx_disable_interrupts(efx
);
2881 static int efx_pm_thaw(struct device
*dev
)
2884 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
2888 if (efx
->state
!= STATE_DISABLED
) {
2889 rc
= efx_enable_interrupts(efx
);
2893 mutex_lock(&efx
->mac_lock
);
2894 efx
->phy_op
->reconfigure(efx
);
2895 mutex_unlock(&efx
->mac_lock
);
2899 netif_device_attach(efx
->net_dev
);
2901 efx
->state
= STATE_READY
;
2903 efx
->type
->resume_wol(efx
);
2908 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2909 queue_work(reset_workqueue
, &efx
->reset_work
);
2919 static int efx_pm_poweroff(struct device
*dev
)
2921 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
2922 struct efx_nic
*efx
= pci_get_drvdata(pci_dev
);
2924 efx
->type
->fini(efx
);
2926 efx
->reset_pending
= 0;
2928 pci_save_state(pci_dev
);
2929 return pci_set_power_state(pci_dev
, PCI_D3hot
);
2932 /* Used for both resume and restore */
2933 static int efx_pm_resume(struct device
*dev
)
2935 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
2936 struct efx_nic
*efx
= pci_get_drvdata(pci_dev
);
2939 rc
= pci_set_power_state(pci_dev
, PCI_D0
);
2942 pci_restore_state(pci_dev
);
2943 rc
= pci_enable_device(pci_dev
);
2946 pci_set_master(efx
->pci_dev
);
2947 rc
= efx
->type
->reset(efx
, RESET_TYPE_ALL
);
2950 rc
= efx
->type
->init(efx
);
2953 rc
= efx_pm_thaw(dev
);
2957 static int efx_pm_suspend(struct device
*dev
)
2962 rc
= efx_pm_poweroff(dev
);
2968 static const struct dev_pm_ops efx_pm_ops
= {
2969 .suspend
= efx_pm_suspend
,
2970 .resume
= efx_pm_resume
,
2971 .freeze
= efx_pm_freeze
,
2972 .thaw
= efx_pm_thaw
,
2973 .poweroff
= efx_pm_poweroff
,
2974 .restore
= efx_pm_resume
,
2977 /* A PCI error affecting this device was detected.
2978 * At this point MMIO and DMA may be disabled.
2979 * Stop the software path and request a slot reset.
2981 static pci_ers_result_t
efx_io_error_detected(struct pci_dev
*pdev
,
2982 enum pci_channel_state state
)
2984 pci_ers_result_t status
= PCI_ERS_RESULT_RECOVERED
;
2985 struct efx_nic
*efx
= pci_get_drvdata(pdev
);
2987 if (state
== pci_channel_io_perm_failure
)
2988 return PCI_ERS_RESULT_DISCONNECT
;
2992 if (efx
->state
!= STATE_DISABLED
) {
2993 efx
->state
= STATE_RECOVERY
;
2994 efx
->reset_pending
= 0;
2996 efx_device_detach_sync(efx
);
2999 efx_disable_interrupts(efx
);
3001 status
= PCI_ERS_RESULT_NEED_RESET
;
3003 /* If the interface is disabled we don't want to do anything
3006 status
= PCI_ERS_RESULT_RECOVERED
;
3011 pci_disable_device(pdev
);
3016 /* Fake a successfull reset, which will be performed later in efx_io_resume. */
3017 static pci_ers_result_t
efx_io_slot_reset(struct pci_dev
*pdev
)
3019 struct efx_nic
*efx
= pci_get_drvdata(pdev
);
3020 pci_ers_result_t status
= PCI_ERS_RESULT_RECOVERED
;
3023 if (pci_enable_device(pdev
)) {
3024 netif_err(efx
, hw
, efx
->net_dev
,
3025 "Cannot re-enable PCI device after reset.\n");
3026 status
= PCI_ERS_RESULT_DISCONNECT
;
3029 rc
= pci_cleanup_aer_uncorrect_error_status(pdev
);
3031 netif_err(efx
, hw
, efx
->net_dev
,
3032 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc
);
3033 /* Non-fatal error. Continue. */
3039 /* Perform the actual reset and resume I/O operations. */
3040 static void efx_io_resume(struct pci_dev
*pdev
)
3042 struct efx_nic
*efx
= pci_get_drvdata(pdev
);
3047 if (efx
->state
== STATE_DISABLED
)
3050 rc
= efx_reset(efx
, RESET_TYPE_ALL
);
3052 netif_err(efx
, hw
, efx
->net_dev
,
3053 "efx_reset failed after PCI error (%d)\n", rc
);
3055 efx
->state
= STATE_READY
;
3056 netif_dbg(efx
, hw
, efx
->net_dev
,
3057 "Done resetting and resuming IO after PCI error.\n");
3064 /* For simplicity and reliability, we always require a slot reset and try to
3065 * reset the hardware when a pci error affecting the device is detected.
3066 * We leave both the link_reset and mmio_enabled callback unimplemented:
3067 * with our request for slot reset the mmio_enabled callback will never be
3068 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3070 static struct pci_error_handlers efx_err_handlers
= {
3071 .error_detected
= efx_io_error_detected
,
3072 .slot_reset
= efx_io_slot_reset
,
3073 .resume
= efx_io_resume
,
3076 static struct pci_driver efx_pci_driver
= {
3077 .name
= KBUILD_MODNAME
,
3078 .id_table
= efx_pci_table
,
3079 .probe
= efx_pci_probe
,
3080 .remove
= efx_pci_remove
,
3081 .driver
.pm
= &efx_pm_ops
,
3082 .err_handler
= &efx_err_handlers
,
3085 /**************************************************************************
3087 * Kernel module interface
3089 *************************************************************************/
3091 module_param(interrupt_mode
, uint
, 0444);
3092 MODULE_PARM_DESC(interrupt_mode
,
3093 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3095 static int __init
efx_init_module(void)
3099 printk(KERN_INFO
"Solarflare NET driver v" EFX_DRIVER_VERSION
"\n");
3101 rc
= register_netdevice_notifier(&efx_netdev_notifier
);
3105 rc
= efx_init_sriov();
3109 reset_workqueue
= create_singlethread_workqueue("sfc_reset");
3110 if (!reset_workqueue
) {
3115 rc
= pci_register_driver(&efx_pci_driver
);
3122 destroy_workqueue(reset_workqueue
);
3126 unregister_netdevice_notifier(&efx_netdev_notifier
);
3131 static void __exit
efx_exit_module(void)
3133 printk(KERN_INFO
"Solarflare NET driver unloading\n");
3135 pci_unregister_driver(&efx_pci_driver
);
3136 destroy_workqueue(reset_workqueue
);
3138 unregister_netdevice_notifier(&efx_netdev_notifier
);
3142 module_init(efx_init_module
);
3143 module_exit(efx_exit_module
);
3145 MODULE_AUTHOR("Solarflare Communications and "
3146 "Michael Brown <mbrown@fensystems.co.uk>");
3147 MODULE_DESCRIPTION("Solarflare Communications network driver");
3148 MODULE_LICENSE("GPL");
3149 MODULE_DEVICE_TABLE(pci
, efx_pci_table
);