x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / net / phy / dp83640.c
blob7490b6c866e685072f8bef2c0b63a090b4061b10
1 /*
2 * Driver for the National Semiconductor DP83640 PHYTER
4 * Copyright (C) 2010 OMICRON electronics GmbH
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23 #include <linux/ethtool.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/mii.h>
27 #include <linux/module.h>
28 #include <linux/net_tstamp.h>
29 #include <linux/netdevice.h>
30 #include <linux/phy.h>
31 #include <linux/ptp_classify.h>
32 #include <linux/ptp_clock_kernel.h>
34 #include "dp83640_reg.h"
36 #define DP83640_PHY_ID 0x20005ce1
37 #define PAGESEL 0x13
38 #define LAYER4 0x02
39 #define LAYER2 0x01
40 #define MAX_RXTS 64
41 #define N_EXT_TS 6
42 #define PSF_PTPVER 2
43 #define PSF_EVNT 0x4000
44 #define PSF_RX 0x2000
45 #define PSF_TX 0x1000
46 #define EXT_EVENT 1
47 #define CAL_EVENT 7
48 #define CAL_TRIGGER 7
49 #define PER_TRIGGER 6
51 #define MII_DP83640_MICR 0x11
52 #define MII_DP83640_MISR 0x12
54 #define MII_DP83640_MICR_OE 0x1
55 #define MII_DP83640_MICR_IE 0x2
57 #define MII_DP83640_MISR_RHF_INT_EN 0x01
58 #define MII_DP83640_MISR_FHF_INT_EN 0x02
59 #define MII_DP83640_MISR_ANC_INT_EN 0x04
60 #define MII_DP83640_MISR_DUP_INT_EN 0x08
61 #define MII_DP83640_MISR_SPD_INT_EN 0x10
62 #define MII_DP83640_MISR_LINK_INT_EN 0x20
63 #define MII_DP83640_MISR_ED_INT_EN 0x40
64 #define MII_DP83640_MISR_LQ_INT_EN 0x80
66 /* phyter seems to miss the mark by 16 ns */
67 #define ADJTIME_FIX 16
69 #if defined(__BIG_ENDIAN)
70 #define ENDIAN_FLAG 0
71 #elif defined(__LITTLE_ENDIAN)
72 #define ENDIAN_FLAG PSF_ENDIAN
73 #endif
75 #define SKB_PTP_TYPE(__skb) (*(unsigned int *)((__skb)->cb))
77 struct phy_rxts {
78 u16 ns_lo; /* ns[15:0] */
79 u16 ns_hi; /* overflow[1:0], ns[29:16] */
80 u16 sec_lo; /* sec[15:0] */
81 u16 sec_hi; /* sec[31:16] */
82 u16 seqid; /* sequenceId[15:0] */
83 u16 msgtype; /* messageType[3:0], hash[11:0] */
86 struct phy_txts {
87 u16 ns_lo; /* ns[15:0] */
88 u16 ns_hi; /* overflow[1:0], ns[29:16] */
89 u16 sec_lo; /* sec[15:0] */
90 u16 sec_hi; /* sec[31:16] */
93 struct rxts {
94 struct list_head list;
95 unsigned long tmo;
96 u64 ns;
97 u16 seqid;
98 u8 msgtype;
99 u16 hash;
102 struct dp83640_clock;
104 struct dp83640_private {
105 struct list_head list;
106 struct dp83640_clock *clock;
107 struct phy_device *phydev;
108 struct work_struct ts_work;
109 int hwts_tx_en;
110 int hwts_rx_en;
111 int layer;
112 int version;
113 /* remember state of cfg0 during calibration */
114 int cfg0;
115 /* remember the last event time stamp */
116 struct phy_txts edata;
117 /* list of rx timestamps */
118 struct list_head rxts;
119 struct list_head rxpool;
120 struct rxts rx_pool_data[MAX_RXTS];
121 /* protects above three fields from concurrent access */
122 spinlock_t rx_lock;
123 /* queues of incoming and outgoing packets */
124 struct sk_buff_head rx_queue;
125 struct sk_buff_head tx_queue;
128 struct dp83640_clock {
129 /* keeps the instance in the 'phyter_clocks' list */
130 struct list_head list;
131 /* we create one clock instance per MII bus */
132 struct mii_bus *bus;
133 /* protects extended registers from concurrent access */
134 struct mutex extreg_lock;
135 /* remembers which page was last selected */
136 int page;
137 /* our advertised capabilities */
138 struct ptp_clock_info caps;
139 /* protects the three fields below from concurrent access */
140 struct mutex clock_lock;
141 /* the one phyter from which we shall read */
142 struct dp83640_private *chosen;
143 /* list of the other attached phyters, not chosen */
144 struct list_head phylist;
145 /* reference to our PTP hardware clock */
146 struct ptp_clock *ptp_clock;
149 /* globals */
151 enum {
152 CALIBRATE_GPIO,
153 PEROUT_GPIO,
154 EXTTS0_GPIO,
155 EXTTS1_GPIO,
156 EXTTS2_GPIO,
157 EXTTS3_GPIO,
158 EXTTS4_GPIO,
159 EXTTS5_GPIO,
160 GPIO_TABLE_SIZE
163 static int chosen_phy = -1;
164 static ushort gpio_tab[GPIO_TABLE_SIZE] = {
165 1, 2, 3, 4, 8, 9, 10, 11
168 module_param(chosen_phy, int, 0444);
169 module_param_array(gpio_tab, ushort, NULL, 0444);
171 MODULE_PARM_DESC(chosen_phy, \
172 "The address of the PHY to use for the ancillary clock features");
173 MODULE_PARM_DESC(gpio_tab, \
174 "Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6");
176 /* a list of clocks and a mutex to protect it */
177 static LIST_HEAD(phyter_clocks);
178 static DEFINE_MUTEX(phyter_clocks_lock);
180 static void rx_timestamp_work(struct work_struct *work);
182 /* extended register access functions */
184 #define BROADCAST_ADDR 31
186 static inline int broadcast_write(struct mii_bus *bus, u32 regnum, u16 val)
188 return mdiobus_write(bus, BROADCAST_ADDR, regnum, val);
191 /* Caller must hold extreg_lock. */
192 static int ext_read(struct phy_device *phydev, int page, u32 regnum)
194 struct dp83640_private *dp83640 = phydev->priv;
195 int val;
197 if (dp83640->clock->page != page) {
198 broadcast_write(phydev->bus, PAGESEL, page);
199 dp83640->clock->page = page;
201 val = phy_read(phydev, regnum);
203 return val;
206 /* Caller must hold extreg_lock. */
207 static void ext_write(int broadcast, struct phy_device *phydev,
208 int page, u32 regnum, u16 val)
210 struct dp83640_private *dp83640 = phydev->priv;
212 if (dp83640->clock->page != page) {
213 broadcast_write(phydev->bus, PAGESEL, page);
214 dp83640->clock->page = page;
216 if (broadcast)
217 broadcast_write(phydev->bus, regnum, val);
218 else
219 phy_write(phydev, regnum, val);
222 /* Caller must hold extreg_lock. */
223 static int tdr_write(int bc, struct phy_device *dev,
224 const struct timespec *ts, u16 cmd)
226 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0] */
227 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16); /* ns[31:16] */
228 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */
229 ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16); /* sec[31:16]*/
231 ext_write(bc, dev, PAGE4, PTP_CTL, cmd);
233 return 0;
236 /* convert phy timestamps into driver timestamps */
238 static void phy2rxts(struct phy_rxts *p, struct rxts *rxts)
240 u32 sec;
242 sec = p->sec_lo;
243 sec |= p->sec_hi << 16;
245 rxts->ns = p->ns_lo;
246 rxts->ns |= (p->ns_hi & 0x3fff) << 16;
247 rxts->ns += ((u64)sec) * 1000000000ULL;
248 rxts->seqid = p->seqid;
249 rxts->msgtype = (p->msgtype >> 12) & 0xf;
250 rxts->hash = p->msgtype & 0x0fff;
251 rxts->tmo = jiffies + 2;
254 static u64 phy2txts(struct phy_txts *p)
256 u64 ns;
257 u32 sec;
259 sec = p->sec_lo;
260 sec |= p->sec_hi << 16;
262 ns = p->ns_lo;
263 ns |= (p->ns_hi & 0x3fff) << 16;
264 ns += ((u64)sec) * 1000000000ULL;
266 return ns;
269 static void periodic_output(struct dp83640_clock *clock,
270 struct ptp_clock_request *clkreq, bool on)
272 struct dp83640_private *dp83640 = clock->chosen;
273 struct phy_device *phydev = dp83640->phydev;
274 u32 sec, nsec, period;
275 u16 gpio, ptp_trig, trigger, val;
277 gpio = on ? gpio_tab[PEROUT_GPIO] : 0;
278 trigger = PER_TRIGGER;
280 ptp_trig = TRIG_WR |
281 (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT |
282 (gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT |
283 TRIG_PER |
284 TRIG_PULSE;
286 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
288 if (!on) {
289 val |= TRIG_DIS;
290 mutex_lock(&clock->extreg_lock);
291 ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
292 ext_write(0, phydev, PAGE4, PTP_CTL, val);
293 mutex_unlock(&clock->extreg_lock);
294 return;
297 sec = clkreq->perout.start.sec;
298 nsec = clkreq->perout.start.nsec;
299 period = clkreq->perout.period.sec * 1000000000UL;
300 period += clkreq->perout.period.nsec;
302 mutex_lock(&clock->extreg_lock);
304 ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
306 /*load trigger*/
307 val |= TRIG_LOAD;
308 ext_write(0, phydev, PAGE4, PTP_CTL, val);
309 ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff); /* ns[15:0] */
310 ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16); /* ns[31:16] */
311 ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff); /* sec[15:0] */
312 ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16); /* sec[31:16] */
313 ext_write(0, phydev, PAGE4, PTP_TDR, period & 0xffff); /* ns[15:0] */
314 ext_write(0, phydev, PAGE4, PTP_TDR, period >> 16); /* ns[31:16] */
316 /*enable trigger*/
317 val &= ~TRIG_LOAD;
318 val |= TRIG_EN;
319 ext_write(0, phydev, PAGE4, PTP_CTL, val);
321 mutex_unlock(&clock->extreg_lock);
324 /* ptp clock methods */
326 static int ptp_dp83640_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
328 struct dp83640_clock *clock =
329 container_of(ptp, struct dp83640_clock, caps);
330 struct phy_device *phydev = clock->chosen->phydev;
331 u64 rate;
332 int neg_adj = 0;
333 u16 hi, lo;
335 if (ppb < 0) {
336 neg_adj = 1;
337 ppb = -ppb;
339 rate = ppb;
340 rate <<= 26;
341 rate = div_u64(rate, 1953125);
343 hi = (rate >> 16) & PTP_RATE_HI_MASK;
344 if (neg_adj)
345 hi |= PTP_RATE_DIR;
347 lo = rate & 0xffff;
349 mutex_lock(&clock->extreg_lock);
351 ext_write(1, phydev, PAGE4, PTP_RATEH, hi);
352 ext_write(1, phydev, PAGE4, PTP_RATEL, lo);
354 mutex_unlock(&clock->extreg_lock);
356 return 0;
359 static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta)
361 struct dp83640_clock *clock =
362 container_of(ptp, struct dp83640_clock, caps);
363 struct phy_device *phydev = clock->chosen->phydev;
364 struct timespec ts;
365 int err;
367 delta += ADJTIME_FIX;
369 ts = ns_to_timespec(delta);
371 mutex_lock(&clock->extreg_lock);
373 err = tdr_write(1, phydev, &ts, PTP_STEP_CLK);
375 mutex_unlock(&clock->extreg_lock);
377 return err;
380 static int ptp_dp83640_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
382 struct dp83640_clock *clock =
383 container_of(ptp, struct dp83640_clock, caps);
384 struct phy_device *phydev = clock->chosen->phydev;
385 unsigned int val[4];
387 mutex_lock(&clock->extreg_lock);
389 ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK);
391 val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */
392 val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */
393 val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */
394 val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */
396 mutex_unlock(&clock->extreg_lock);
398 ts->tv_nsec = val[0] | (val[1] << 16);
399 ts->tv_sec = val[2] | (val[3] << 16);
401 return 0;
404 static int ptp_dp83640_settime(struct ptp_clock_info *ptp,
405 const struct timespec *ts)
407 struct dp83640_clock *clock =
408 container_of(ptp, struct dp83640_clock, caps);
409 struct phy_device *phydev = clock->chosen->phydev;
410 int err;
412 mutex_lock(&clock->extreg_lock);
414 err = tdr_write(1, phydev, ts, PTP_LOAD_CLK);
416 mutex_unlock(&clock->extreg_lock);
418 return err;
421 static int ptp_dp83640_enable(struct ptp_clock_info *ptp,
422 struct ptp_clock_request *rq, int on)
424 struct dp83640_clock *clock =
425 container_of(ptp, struct dp83640_clock, caps);
426 struct phy_device *phydev = clock->chosen->phydev;
427 int index;
428 u16 evnt, event_num, gpio_num;
430 switch (rq->type) {
431 case PTP_CLK_REQ_EXTTS:
432 index = rq->extts.index;
433 if (index < 0 || index >= N_EXT_TS)
434 return -EINVAL;
435 event_num = EXT_EVENT + index;
436 evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
437 if (on) {
438 gpio_num = gpio_tab[EXTTS0_GPIO + index];
439 evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
440 evnt |= EVNT_RISE;
442 ext_write(0, phydev, PAGE5, PTP_EVNT, evnt);
443 return 0;
445 case PTP_CLK_REQ_PEROUT:
446 if (rq->perout.index != 0)
447 return -EINVAL;
448 periodic_output(clock, rq, on);
449 return 0;
451 default:
452 break;
455 return -EOPNOTSUPP;
458 static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 };
459 static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F };
461 static void enable_status_frames(struct phy_device *phydev, bool on)
463 u16 cfg0 = 0, ver;
465 if (on)
466 cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG;
468 ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT;
470 ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0);
471 ext_write(0, phydev, PAGE6, PSF_CFG1, ver);
473 if (!phydev->attached_dev) {
474 pr_warn("expected to find an attached netdevice\n");
475 return;
478 if (on) {
479 if (dev_mc_add(phydev->attached_dev, status_frame_dst))
480 pr_warn("failed to add mc address\n");
481 } else {
482 if (dev_mc_del(phydev->attached_dev, status_frame_dst))
483 pr_warn("failed to delete mc address\n");
487 static bool is_status_frame(struct sk_buff *skb, int type)
489 struct ethhdr *h = eth_hdr(skb);
491 if (PTP_CLASS_V2_L2 == type &&
492 !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src)))
493 return true;
494 else
495 return false;
498 static int expired(struct rxts *rxts)
500 return time_after(jiffies, rxts->tmo);
503 /* Caller must hold rx_lock. */
504 static void prune_rx_ts(struct dp83640_private *dp83640)
506 struct list_head *this, *next;
507 struct rxts *rxts;
509 list_for_each_safe(this, next, &dp83640->rxts) {
510 rxts = list_entry(this, struct rxts, list);
511 if (expired(rxts)) {
512 list_del_init(&rxts->list);
513 list_add(&rxts->list, &dp83640->rxpool);
518 /* synchronize the phyters so they act as one clock */
520 static void enable_broadcast(struct phy_device *phydev, int init_page, int on)
522 int val;
523 phy_write(phydev, PAGESEL, 0);
524 val = phy_read(phydev, PHYCR2);
525 if (on)
526 val |= BC_WRITE;
527 else
528 val &= ~BC_WRITE;
529 phy_write(phydev, PHYCR2, val);
530 phy_write(phydev, PAGESEL, init_page);
533 static void recalibrate(struct dp83640_clock *clock)
535 s64 now, diff;
536 struct phy_txts event_ts;
537 struct timespec ts;
538 struct list_head *this;
539 struct dp83640_private *tmp;
540 struct phy_device *master = clock->chosen->phydev;
541 u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val;
543 trigger = CAL_TRIGGER;
544 cal_gpio = gpio_tab[CALIBRATE_GPIO];
546 mutex_lock(&clock->extreg_lock);
549 * enable broadcast, disable status frames, enable ptp clock
551 list_for_each(this, &clock->phylist) {
552 tmp = list_entry(this, struct dp83640_private, list);
553 enable_broadcast(tmp->phydev, clock->page, 1);
554 tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0);
555 ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0);
556 ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE);
558 enable_broadcast(master, clock->page, 1);
559 cfg0 = ext_read(master, PAGE5, PSF_CFG0);
560 ext_write(0, master, PAGE5, PSF_CFG0, 0);
561 ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE);
564 * enable an event timestamp
566 evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE;
567 evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
568 evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
570 list_for_each(this, &clock->phylist) {
571 tmp = list_entry(this, struct dp83640_private, list);
572 ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt);
574 ext_write(0, master, PAGE5, PTP_EVNT, evnt);
577 * configure a trigger
579 ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE;
580 ptp_trig |= (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT;
581 ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT;
582 ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig);
584 /* load trigger */
585 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
586 val |= TRIG_LOAD;
587 ext_write(0, master, PAGE4, PTP_CTL, val);
589 /* enable trigger */
590 val &= ~TRIG_LOAD;
591 val |= TRIG_EN;
592 ext_write(0, master, PAGE4, PTP_CTL, val);
594 /* disable trigger */
595 val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
596 val |= TRIG_DIS;
597 ext_write(0, master, PAGE4, PTP_CTL, val);
600 * read out and correct offsets
602 val = ext_read(master, PAGE4, PTP_STS);
603 pr_info("master PTP_STS 0x%04hx\n", val);
604 val = ext_read(master, PAGE4, PTP_ESTS);
605 pr_info("master PTP_ESTS 0x%04hx\n", val);
606 event_ts.ns_lo = ext_read(master, PAGE4, PTP_EDATA);
607 event_ts.ns_hi = ext_read(master, PAGE4, PTP_EDATA);
608 event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA);
609 event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA);
610 now = phy2txts(&event_ts);
612 list_for_each(this, &clock->phylist) {
613 tmp = list_entry(this, struct dp83640_private, list);
614 val = ext_read(tmp->phydev, PAGE4, PTP_STS);
615 pr_info("slave PTP_STS 0x%04hx\n", val);
616 val = ext_read(tmp->phydev, PAGE4, PTP_ESTS);
617 pr_info("slave PTP_ESTS 0x%04hx\n", val);
618 event_ts.ns_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
619 event_ts.ns_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
620 event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
621 event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
622 diff = now - (s64) phy2txts(&event_ts);
623 pr_info("slave offset %lld nanoseconds\n", diff);
624 diff += ADJTIME_FIX;
625 ts = ns_to_timespec(diff);
626 tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK);
630 * restore status frames
632 list_for_each(this, &clock->phylist) {
633 tmp = list_entry(this, struct dp83640_private, list);
634 ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0);
636 ext_write(0, master, PAGE5, PSF_CFG0, cfg0);
638 mutex_unlock(&clock->extreg_lock);
641 /* time stamping methods */
643 static inline u16 exts_chan_to_edata(int ch)
645 return 1 << ((ch + EXT_EVENT) * 2);
648 static int decode_evnt(struct dp83640_private *dp83640,
649 void *data, u16 ests)
651 struct phy_txts *phy_txts;
652 struct ptp_clock_event event;
653 int i, parsed;
654 int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK;
655 u16 ext_status = 0;
657 if (ests & MULT_EVNT) {
658 ext_status = *(u16 *) data;
659 data += sizeof(ext_status);
662 phy_txts = data;
664 switch (words) { /* fall through in every case */
665 case 3:
666 dp83640->edata.sec_hi = phy_txts->sec_hi;
667 case 2:
668 dp83640->edata.sec_lo = phy_txts->sec_lo;
669 case 1:
670 dp83640->edata.ns_hi = phy_txts->ns_hi;
671 case 0:
672 dp83640->edata.ns_lo = phy_txts->ns_lo;
675 if (ext_status) {
676 parsed = words + 2;
677 } else {
678 parsed = words + 1;
679 i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT;
680 ext_status = exts_chan_to_edata(i);
683 event.type = PTP_CLOCK_EXTTS;
684 event.timestamp = phy2txts(&dp83640->edata);
686 for (i = 0; i < N_EXT_TS; i++) {
687 if (ext_status & exts_chan_to_edata(i)) {
688 event.index = i;
689 ptp_clock_event(dp83640->clock->ptp_clock, &event);
693 return parsed * sizeof(u16);
696 static void decode_rxts(struct dp83640_private *dp83640,
697 struct phy_rxts *phy_rxts)
699 struct rxts *rxts;
700 unsigned long flags;
702 spin_lock_irqsave(&dp83640->rx_lock, flags);
704 prune_rx_ts(dp83640);
706 if (list_empty(&dp83640->rxpool)) {
707 pr_debug("rx timestamp pool is empty\n");
708 goto out;
710 rxts = list_first_entry(&dp83640->rxpool, struct rxts, list);
711 list_del_init(&rxts->list);
712 phy2rxts(phy_rxts, rxts);
713 list_add_tail(&rxts->list, &dp83640->rxts);
714 out:
715 spin_unlock_irqrestore(&dp83640->rx_lock, flags);
718 static void decode_txts(struct dp83640_private *dp83640,
719 struct phy_txts *phy_txts)
721 struct skb_shared_hwtstamps shhwtstamps;
722 struct sk_buff *skb;
723 u64 ns;
725 /* We must already have the skb that triggered this. */
727 skb = skb_dequeue(&dp83640->tx_queue);
729 if (!skb) {
730 pr_debug("have timestamp but tx_queue empty\n");
731 return;
733 ns = phy2txts(phy_txts);
734 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
735 shhwtstamps.hwtstamp = ns_to_ktime(ns);
736 skb_complete_tx_timestamp(skb, &shhwtstamps);
739 static void decode_status_frame(struct dp83640_private *dp83640,
740 struct sk_buff *skb)
742 struct phy_rxts *phy_rxts;
743 struct phy_txts *phy_txts;
744 u8 *ptr;
745 int len, size;
746 u16 ests, type;
748 ptr = skb->data + 2;
750 for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) {
752 type = *(u16 *)ptr;
753 ests = type & 0x0fff;
754 type = type & 0xf000;
755 len -= sizeof(type);
756 ptr += sizeof(type);
758 if (PSF_RX == type && len >= sizeof(*phy_rxts)) {
760 phy_rxts = (struct phy_rxts *) ptr;
761 decode_rxts(dp83640, phy_rxts);
762 size = sizeof(*phy_rxts);
764 } else if (PSF_TX == type && len >= sizeof(*phy_txts)) {
766 phy_txts = (struct phy_txts *) ptr;
767 decode_txts(dp83640, phy_txts);
768 size = sizeof(*phy_txts);
770 } else if (PSF_EVNT == type && len >= sizeof(*phy_txts)) {
772 size = decode_evnt(dp83640, ptr, ests);
774 } else {
775 size = 0;
776 break;
778 ptr += size;
782 static int is_sync(struct sk_buff *skb, int type)
784 u8 *data = skb->data, *msgtype;
785 unsigned int offset = 0;
787 switch (type) {
788 case PTP_CLASS_V1_IPV4:
789 case PTP_CLASS_V2_IPV4:
790 offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
791 break;
792 case PTP_CLASS_V1_IPV6:
793 case PTP_CLASS_V2_IPV6:
794 offset = OFF_PTP6;
795 break;
796 case PTP_CLASS_V2_L2:
797 offset = ETH_HLEN;
798 break;
799 case PTP_CLASS_V2_VLAN:
800 offset = ETH_HLEN + VLAN_HLEN;
801 break;
802 default:
803 return 0;
806 if (type & PTP_CLASS_V1)
807 offset += OFF_PTP_CONTROL;
809 if (skb->len < offset + 1)
810 return 0;
812 msgtype = data + offset;
814 return (*msgtype & 0xf) == 0;
817 static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts)
819 u16 *seqid;
820 unsigned int offset;
821 u8 *msgtype, *data = skb_mac_header(skb);
823 /* check sequenceID, messageType, 12 bit hash of offset 20-29 */
825 switch (type) {
826 case PTP_CLASS_V1_IPV4:
827 case PTP_CLASS_V2_IPV4:
828 offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
829 break;
830 case PTP_CLASS_V1_IPV6:
831 case PTP_CLASS_V2_IPV6:
832 offset = OFF_PTP6;
833 break;
834 case PTP_CLASS_V2_L2:
835 offset = ETH_HLEN;
836 break;
837 case PTP_CLASS_V2_VLAN:
838 offset = ETH_HLEN + VLAN_HLEN;
839 break;
840 default:
841 return 0;
844 if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
845 return 0;
847 if (unlikely(type & PTP_CLASS_V1))
848 msgtype = data + offset + OFF_PTP_CONTROL;
849 else
850 msgtype = data + offset;
852 seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
854 return (rxts->msgtype == (*msgtype & 0xf) &&
855 rxts->seqid == ntohs(*seqid));
858 static void dp83640_free_clocks(void)
860 struct dp83640_clock *clock;
861 struct list_head *this, *next;
863 mutex_lock(&phyter_clocks_lock);
865 list_for_each_safe(this, next, &phyter_clocks) {
866 clock = list_entry(this, struct dp83640_clock, list);
867 if (!list_empty(&clock->phylist)) {
868 pr_warn("phy list non-empty while unloading\n");
869 BUG();
871 list_del(&clock->list);
872 mutex_destroy(&clock->extreg_lock);
873 mutex_destroy(&clock->clock_lock);
874 put_device(&clock->bus->dev);
875 kfree(clock);
878 mutex_unlock(&phyter_clocks_lock);
881 static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus)
883 INIT_LIST_HEAD(&clock->list);
884 clock->bus = bus;
885 mutex_init(&clock->extreg_lock);
886 mutex_init(&clock->clock_lock);
887 INIT_LIST_HEAD(&clock->phylist);
888 clock->caps.owner = THIS_MODULE;
889 sprintf(clock->caps.name, "dp83640 timer");
890 clock->caps.max_adj = 1953124;
891 clock->caps.n_alarm = 0;
892 clock->caps.n_ext_ts = N_EXT_TS;
893 clock->caps.n_per_out = 1;
894 clock->caps.pps = 0;
895 clock->caps.adjfreq = ptp_dp83640_adjfreq;
896 clock->caps.adjtime = ptp_dp83640_adjtime;
897 clock->caps.gettime = ptp_dp83640_gettime;
898 clock->caps.settime = ptp_dp83640_settime;
899 clock->caps.enable = ptp_dp83640_enable;
901 * Get a reference to this bus instance.
903 get_device(&bus->dev);
906 static int choose_this_phy(struct dp83640_clock *clock,
907 struct phy_device *phydev)
909 if (chosen_phy == -1 && !clock->chosen)
910 return 1;
912 if (chosen_phy == phydev->addr)
913 return 1;
915 return 0;
918 static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock)
920 if (clock)
921 mutex_lock(&clock->clock_lock);
922 return clock;
926 * Look up and lock a clock by bus instance.
927 * If there is no clock for this bus, then create it first.
929 static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus)
931 struct dp83640_clock *clock = NULL, *tmp;
932 struct list_head *this;
934 mutex_lock(&phyter_clocks_lock);
936 list_for_each(this, &phyter_clocks) {
937 tmp = list_entry(this, struct dp83640_clock, list);
938 if (tmp->bus == bus) {
939 clock = tmp;
940 break;
943 if (clock)
944 goto out;
946 clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL);
947 if (!clock)
948 goto out;
950 dp83640_clock_init(clock, bus);
951 list_add_tail(&phyter_clocks, &clock->list);
952 out:
953 mutex_unlock(&phyter_clocks_lock);
955 return dp83640_clock_get(clock);
958 static void dp83640_clock_put(struct dp83640_clock *clock)
960 mutex_unlock(&clock->clock_lock);
963 static int dp83640_probe(struct phy_device *phydev)
965 struct dp83640_clock *clock;
966 struct dp83640_private *dp83640;
967 int err = -ENOMEM, i;
969 if (phydev->addr == BROADCAST_ADDR)
970 return 0;
972 clock = dp83640_clock_get_bus(phydev->bus);
973 if (!clock)
974 goto no_clock;
976 dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL);
977 if (!dp83640)
978 goto no_memory;
980 dp83640->phydev = phydev;
981 INIT_WORK(&dp83640->ts_work, rx_timestamp_work);
983 INIT_LIST_HEAD(&dp83640->rxts);
984 INIT_LIST_HEAD(&dp83640->rxpool);
985 for (i = 0; i < MAX_RXTS; i++)
986 list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool);
988 phydev->priv = dp83640;
990 spin_lock_init(&dp83640->rx_lock);
991 skb_queue_head_init(&dp83640->rx_queue);
992 skb_queue_head_init(&dp83640->tx_queue);
994 dp83640->clock = clock;
996 if (choose_this_phy(clock, phydev)) {
997 clock->chosen = dp83640;
998 clock->ptp_clock = ptp_clock_register(&clock->caps, &phydev->dev);
999 if (IS_ERR(clock->ptp_clock)) {
1000 err = PTR_ERR(clock->ptp_clock);
1001 goto no_register;
1003 } else
1004 list_add_tail(&dp83640->list, &clock->phylist);
1006 if (clock->chosen && !list_empty(&clock->phylist))
1007 recalibrate(clock);
1008 else
1009 enable_broadcast(dp83640->phydev, clock->page, 1);
1011 dp83640_clock_put(clock);
1012 return 0;
1014 no_register:
1015 clock->chosen = NULL;
1016 kfree(dp83640);
1017 no_memory:
1018 dp83640_clock_put(clock);
1019 no_clock:
1020 return err;
1023 static void dp83640_remove(struct phy_device *phydev)
1025 struct dp83640_clock *clock;
1026 struct list_head *this, *next;
1027 struct dp83640_private *tmp, *dp83640 = phydev->priv;
1028 struct sk_buff *skb;
1030 if (phydev->addr == BROADCAST_ADDR)
1031 return;
1033 enable_status_frames(phydev, false);
1034 cancel_work_sync(&dp83640->ts_work);
1036 while ((skb = skb_dequeue(&dp83640->rx_queue)) != NULL)
1037 kfree_skb(skb);
1039 while ((skb = skb_dequeue(&dp83640->tx_queue)) != NULL)
1040 skb_complete_tx_timestamp(skb, NULL);
1042 clock = dp83640_clock_get(dp83640->clock);
1044 if (dp83640 == clock->chosen) {
1045 ptp_clock_unregister(clock->ptp_clock);
1046 clock->chosen = NULL;
1047 } else {
1048 list_for_each_safe(this, next, &clock->phylist) {
1049 tmp = list_entry(this, struct dp83640_private, list);
1050 if (tmp == dp83640) {
1051 list_del_init(&tmp->list);
1052 break;
1057 dp83640_clock_put(clock);
1058 kfree(dp83640);
1061 static int dp83640_ack_interrupt(struct phy_device *phydev)
1063 int err = phy_read(phydev, MII_DP83640_MISR);
1065 if (err < 0)
1066 return err;
1068 return 0;
1071 static int dp83640_config_intr(struct phy_device *phydev)
1073 int micr;
1074 int misr;
1075 int err;
1077 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
1078 misr = phy_read(phydev, MII_DP83640_MISR);
1079 if (misr < 0)
1080 return misr;
1081 misr |=
1082 (MII_DP83640_MISR_ANC_INT_EN |
1083 MII_DP83640_MISR_DUP_INT_EN |
1084 MII_DP83640_MISR_SPD_INT_EN |
1085 MII_DP83640_MISR_LINK_INT_EN);
1086 err = phy_write(phydev, MII_DP83640_MISR, misr);
1087 if (err < 0)
1088 return err;
1090 micr = phy_read(phydev, MII_DP83640_MICR);
1091 if (micr < 0)
1092 return micr;
1093 micr |=
1094 (MII_DP83640_MICR_OE |
1095 MII_DP83640_MICR_IE);
1096 return phy_write(phydev, MII_DP83640_MICR, micr);
1097 } else {
1098 micr = phy_read(phydev, MII_DP83640_MICR);
1099 if (micr < 0)
1100 return micr;
1101 micr &=
1102 ~(MII_DP83640_MICR_OE |
1103 MII_DP83640_MICR_IE);
1104 err = phy_write(phydev, MII_DP83640_MICR, micr);
1105 if (err < 0)
1106 return err;
1108 misr = phy_read(phydev, MII_DP83640_MISR);
1109 if (misr < 0)
1110 return misr;
1111 misr &=
1112 ~(MII_DP83640_MISR_ANC_INT_EN |
1113 MII_DP83640_MISR_DUP_INT_EN |
1114 MII_DP83640_MISR_SPD_INT_EN |
1115 MII_DP83640_MISR_LINK_INT_EN);
1116 return phy_write(phydev, MII_DP83640_MISR, misr);
1120 static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr)
1122 struct dp83640_private *dp83640 = phydev->priv;
1123 struct hwtstamp_config cfg;
1124 u16 txcfg0, rxcfg0;
1126 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1127 return -EFAULT;
1129 if (cfg.flags) /* reserved for future extensions */
1130 return -EINVAL;
1132 if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC)
1133 return -ERANGE;
1135 dp83640->hwts_tx_en = cfg.tx_type;
1137 switch (cfg.rx_filter) {
1138 case HWTSTAMP_FILTER_NONE:
1139 dp83640->hwts_rx_en = 0;
1140 dp83640->layer = 0;
1141 dp83640->version = 0;
1142 break;
1143 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1144 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1145 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1146 dp83640->hwts_rx_en = 1;
1147 dp83640->layer = LAYER4;
1148 dp83640->version = 1;
1149 break;
1150 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1151 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1152 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1153 dp83640->hwts_rx_en = 1;
1154 dp83640->layer = LAYER4;
1155 dp83640->version = 2;
1156 break;
1157 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1158 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1159 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1160 dp83640->hwts_rx_en = 1;
1161 dp83640->layer = LAYER2;
1162 dp83640->version = 2;
1163 break;
1164 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1165 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1166 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1167 dp83640->hwts_rx_en = 1;
1168 dp83640->layer = LAYER4|LAYER2;
1169 dp83640->version = 2;
1170 break;
1171 default:
1172 return -ERANGE;
1175 txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1176 rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1178 if (dp83640->layer & LAYER2) {
1179 txcfg0 |= TX_L2_EN;
1180 rxcfg0 |= RX_L2_EN;
1182 if (dp83640->layer & LAYER4) {
1183 txcfg0 |= TX_IPV6_EN | TX_IPV4_EN;
1184 rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN;
1187 if (dp83640->hwts_tx_en)
1188 txcfg0 |= TX_TS_EN;
1190 if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC)
1191 txcfg0 |= SYNC_1STEP | CHK_1STEP;
1193 if (dp83640->hwts_rx_en)
1194 rxcfg0 |= RX_TS_EN;
1196 mutex_lock(&dp83640->clock->extreg_lock);
1198 if (dp83640->hwts_tx_en || dp83640->hwts_rx_en) {
1199 enable_status_frames(phydev, true);
1200 ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE);
1203 ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0);
1204 ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0);
1206 mutex_unlock(&dp83640->clock->extreg_lock);
1208 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1211 static void rx_timestamp_work(struct work_struct *work)
1213 struct dp83640_private *dp83640 =
1214 container_of(work, struct dp83640_private, ts_work);
1215 struct list_head *this, *next;
1216 struct rxts *rxts;
1217 struct skb_shared_hwtstamps *shhwtstamps;
1218 struct sk_buff *skb;
1219 unsigned int type;
1220 unsigned long flags;
1222 /* Deliver each deferred packet, with or without a time stamp. */
1224 while ((skb = skb_dequeue(&dp83640->rx_queue)) != NULL) {
1225 type = SKB_PTP_TYPE(skb);
1226 spin_lock_irqsave(&dp83640->rx_lock, flags);
1227 list_for_each_safe(this, next, &dp83640->rxts) {
1228 rxts = list_entry(this, struct rxts, list);
1229 if (match(skb, type, rxts)) {
1230 shhwtstamps = skb_hwtstamps(skb);
1231 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1232 shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
1233 list_del_init(&rxts->list);
1234 list_add(&rxts->list, &dp83640->rxpool);
1235 break;
1238 spin_unlock_irqrestore(&dp83640->rx_lock, flags);
1239 netif_rx_ni(skb);
1242 /* Clear out expired time stamps. */
1244 spin_lock_irqsave(&dp83640->rx_lock, flags);
1245 prune_rx_ts(dp83640);
1246 spin_unlock_irqrestore(&dp83640->rx_lock, flags);
1249 static bool dp83640_rxtstamp(struct phy_device *phydev,
1250 struct sk_buff *skb, int type)
1252 struct dp83640_private *dp83640 = phydev->priv;
1254 if (!dp83640->hwts_rx_en)
1255 return false;
1257 if (is_status_frame(skb, type)) {
1258 decode_status_frame(dp83640, skb);
1259 kfree_skb(skb);
1260 return true;
1263 SKB_PTP_TYPE(skb) = type;
1264 skb_queue_tail(&dp83640->rx_queue, skb);
1265 schedule_work(&dp83640->ts_work);
1267 return true;
1270 static void dp83640_txtstamp(struct phy_device *phydev,
1271 struct sk_buff *skb, int type)
1273 struct dp83640_private *dp83640 = phydev->priv;
1275 switch (dp83640->hwts_tx_en) {
1277 case HWTSTAMP_TX_ONESTEP_SYNC:
1278 if (is_sync(skb, type)) {
1279 skb_complete_tx_timestamp(skb, NULL);
1280 return;
1282 /* fall through */
1283 case HWTSTAMP_TX_ON:
1284 skb_queue_tail(&dp83640->tx_queue, skb);
1285 schedule_work(&dp83640->ts_work);
1286 break;
1288 case HWTSTAMP_TX_OFF:
1289 default:
1290 skb_complete_tx_timestamp(skb, NULL);
1291 break;
1295 static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info)
1297 struct dp83640_private *dp83640 = dev->priv;
1299 info->so_timestamping =
1300 SOF_TIMESTAMPING_TX_HARDWARE |
1301 SOF_TIMESTAMPING_RX_HARDWARE |
1302 SOF_TIMESTAMPING_RAW_HARDWARE;
1303 info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock);
1304 info->tx_types =
1305 (1 << HWTSTAMP_TX_OFF) |
1306 (1 << HWTSTAMP_TX_ON) |
1307 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
1308 info->rx_filters =
1309 (1 << HWTSTAMP_FILTER_NONE) |
1310 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
1311 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
1312 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
1313 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
1314 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
1315 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
1316 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1317 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
1318 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
1319 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
1320 (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
1321 (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ);
1322 return 0;
1325 static struct phy_driver dp83640_driver = {
1326 .phy_id = DP83640_PHY_ID,
1327 .phy_id_mask = 0xfffffff0,
1328 .name = "NatSemi DP83640",
1329 .features = PHY_BASIC_FEATURES,
1330 .flags = PHY_HAS_INTERRUPT,
1331 .probe = dp83640_probe,
1332 .remove = dp83640_remove,
1333 .config_aneg = genphy_config_aneg,
1334 .read_status = genphy_read_status,
1335 .ack_interrupt = dp83640_ack_interrupt,
1336 .config_intr = dp83640_config_intr,
1337 .ts_info = dp83640_ts_info,
1338 .hwtstamp = dp83640_hwtstamp,
1339 .rxtstamp = dp83640_rxtstamp,
1340 .txtstamp = dp83640_txtstamp,
1341 .driver = {.owner = THIS_MODULE,}
1344 static int __init dp83640_init(void)
1346 return phy_driver_register(&dp83640_driver);
1349 static void __exit dp83640_exit(void)
1351 dp83640_free_clocks();
1352 phy_driver_unregister(&dp83640_driver);
1355 MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver");
1356 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.at>");
1357 MODULE_LICENSE("GPL");
1359 module_init(dp83640_init);
1360 module_exit(dp83640_exit);
1362 static struct mdio_device_id __maybe_unused dp83640_tbl[] = {
1363 { DP83640_PHY_ID, 0xfffffff0 },
1367 MODULE_DEVICE_TABLE(mdio, dp83640_tbl);