x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath10k / wmi.c
blob55f90c761868ddd9fa228510efb27465d360c00b
1 /*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <linux/skbuff.h>
20 #include "core.h"
21 #include "htc.h"
22 #include "debug.h"
23 #include "wmi.h"
24 #include "mac.h"
26 void ath10k_wmi_flush_tx(struct ath10k *ar)
28 int ret;
30 lockdep_assert_held(&ar->conf_mutex);
32 if (ar->state == ATH10K_STATE_WEDGED) {
33 ath10k_warn("wmi flush skipped - device is wedged anyway\n");
34 return;
37 ret = wait_event_timeout(ar->wmi.wq,
38 atomic_read(&ar->wmi.pending_tx_count) == 0,
39 5*HZ);
40 if (atomic_read(&ar->wmi.pending_tx_count) == 0)
41 return;
43 if (ret == 0)
44 ret = -ETIMEDOUT;
46 if (ret < 0)
47 ath10k_warn("wmi flush failed (%d)\n", ret);
50 int ath10k_wmi_wait_for_service_ready(struct ath10k *ar)
52 int ret;
53 ret = wait_for_completion_timeout(&ar->wmi.service_ready,
54 WMI_SERVICE_READY_TIMEOUT_HZ);
55 return ret;
58 int ath10k_wmi_wait_for_unified_ready(struct ath10k *ar)
60 int ret;
61 ret = wait_for_completion_timeout(&ar->wmi.unified_ready,
62 WMI_UNIFIED_READY_TIMEOUT_HZ);
63 return ret;
66 static struct sk_buff *ath10k_wmi_alloc_skb(u32 len)
68 struct sk_buff *skb;
69 u32 round_len = roundup(len, 4);
71 skb = ath10k_htc_alloc_skb(WMI_SKB_HEADROOM + round_len);
72 if (!skb)
73 return NULL;
75 skb_reserve(skb, WMI_SKB_HEADROOM);
76 if (!IS_ALIGNED((unsigned long)skb->data, 4))
77 ath10k_warn("Unaligned WMI skb\n");
79 skb_put(skb, round_len);
80 memset(skb->data, 0, round_len);
82 return skb;
85 static void ath10k_wmi_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
87 dev_kfree_skb(skb);
89 if (atomic_sub_return(1, &ar->wmi.pending_tx_count) == 0)
90 wake_up(&ar->wmi.wq);
93 /* WMI command API */
94 static int ath10k_wmi_cmd_send(struct ath10k *ar, struct sk_buff *skb,
95 enum wmi_cmd_id cmd_id)
97 struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(skb);
98 struct wmi_cmd_hdr *cmd_hdr;
99 int status;
100 u32 cmd = 0;
102 if (skb_push(skb, sizeof(struct wmi_cmd_hdr)) == NULL)
103 return -ENOMEM;
105 cmd |= SM(cmd_id, WMI_CMD_HDR_CMD_ID);
107 cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
108 cmd_hdr->cmd_id = __cpu_to_le32(cmd);
110 if (atomic_add_return(1, &ar->wmi.pending_tx_count) >
111 WMI_MAX_PENDING_TX_COUNT) {
112 /* avoid using up memory when FW hangs */
113 atomic_dec(&ar->wmi.pending_tx_count);
114 return -EBUSY;
117 memset(skb_cb, 0, sizeof(*skb_cb));
119 trace_ath10k_wmi_cmd(cmd_id, skb->data, skb->len);
121 status = ath10k_htc_send(&ar->htc, ar->wmi.eid, skb);
122 if (status) {
123 dev_kfree_skb_any(skb);
124 atomic_dec(&ar->wmi.pending_tx_count);
125 return status;
128 return 0;
131 static int ath10k_wmi_event_scan(struct ath10k *ar, struct sk_buff *skb)
133 struct wmi_scan_event *event = (struct wmi_scan_event *)skb->data;
134 enum wmi_scan_event_type event_type;
135 enum wmi_scan_completion_reason reason;
136 u32 freq;
137 u32 req_id;
138 u32 scan_id;
139 u32 vdev_id;
141 event_type = __le32_to_cpu(event->event_type);
142 reason = __le32_to_cpu(event->reason);
143 freq = __le32_to_cpu(event->channel_freq);
144 req_id = __le32_to_cpu(event->scan_req_id);
145 scan_id = __le32_to_cpu(event->scan_id);
146 vdev_id = __le32_to_cpu(event->vdev_id);
148 ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENTID\n");
149 ath10k_dbg(ATH10K_DBG_WMI,
150 "scan event type %d reason %d freq %d req_id %d "
151 "scan_id %d vdev_id %d\n",
152 event_type, reason, freq, req_id, scan_id, vdev_id);
154 spin_lock_bh(&ar->data_lock);
156 switch (event_type) {
157 case WMI_SCAN_EVENT_STARTED:
158 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_STARTED\n");
159 if (ar->scan.in_progress && ar->scan.is_roc)
160 ieee80211_ready_on_channel(ar->hw);
162 complete(&ar->scan.started);
163 break;
164 case WMI_SCAN_EVENT_COMPLETED:
165 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_COMPLETED\n");
166 switch (reason) {
167 case WMI_SCAN_REASON_COMPLETED:
168 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_COMPLETED\n");
169 break;
170 case WMI_SCAN_REASON_CANCELLED:
171 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_CANCELED\n");
172 break;
173 case WMI_SCAN_REASON_PREEMPTED:
174 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_PREEMPTED\n");
175 break;
176 case WMI_SCAN_REASON_TIMEDOUT:
177 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_TIMEDOUT\n");
178 break;
179 default:
180 break;
183 ar->scan_channel = NULL;
184 if (!ar->scan.in_progress) {
185 ath10k_warn("no scan requested, ignoring\n");
186 break;
189 if (ar->scan.is_roc) {
190 ath10k_offchan_tx_purge(ar);
192 if (!ar->scan.aborting)
193 ieee80211_remain_on_channel_expired(ar->hw);
194 } else {
195 ieee80211_scan_completed(ar->hw, ar->scan.aborting);
198 del_timer(&ar->scan.timeout);
199 complete_all(&ar->scan.completed);
200 ar->scan.in_progress = false;
201 break;
202 case WMI_SCAN_EVENT_BSS_CHANNEL:
203 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_BSS_CHANNEL\n");
204 ar->scan_channel = NULL;
205 break;
206 case WMI_SCAN_EVENT_FOREIGN_CHANNEL:
207 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_FOREIGN_CHANNEL\n");
208 ar->scan_channel = ieee80211_get_channel(ar->hw->wiphy, freq);
209 if (ar->scan.in_progress && ar->scan.is_roc &&
210 ar->scan.roc_freq == freq) {
211 complete(&ar->scan.on_channel);
213 break;
214 case WMI_SCAN_EVENT_DEQUEUED:
215 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_DEQUEUED\n");
216 break;
217 case WMI_SCAN_EVENT_PREEMPTED:
218 ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_PREEMPTED\n");
219 break;
220 case WMI_SCAN_EVENT_START_FAILED:
221 ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_START_FAILED\n");
222 break;
223 default:
224 break;
227 spin_unlock_bh(&ar->data_lock);
228 return 0;
231 static inline enum ieee80211_band phy_mode_to_band(u32 phy_mode)
233 enum ieee80211_band band;
235 switch (phy_mode) {
236 case MODE_11A:
237 case MODE_11NA_HT20:
238 case MODE_11NA_HT40:
239 case MODE_11AC_VHT20:
240 case MODE_11AC_VHT40:
241 case MODE_11AC_VHT80:
242 band = IEEE80211_BAND_5GHZ;
243 break;
244 case MODE_11G:
245 case MODE_11B:
246 case MODE_11GONLY:
247 case MODE_11NG_HT20:
248 case MODE_11NG_HT40:
249 case MODE_11AC_VHT20_2G:
250 case MODE_11AC_VHT40_2G:
251 case MODE_11AC_VHT80_2G:
252 default:
253 band = IEEE80211_BAND_2GHZ;
256 return band;
259 static inline u8 get_rate_idx(u32 rate, enum ieee80211_band band)
261 u8 rate_idx = 0;
263 /* rate in Kbps */
264 switch (rate) {
265 case 1000:
266 rate_idx = 0;
267 break;
268 case 2000:
269 rate_idx = 1;
270 break;
271 case 5500:
272 rate_idx = 2;
273 break;
274 case 11000:
275 rate_idx = 3;
276 break;
277 case 6000:
278 rate_idx = 4;
279 break;
280 case 9000:
281 rate_idx = 5;
282 break;
283 case 12000:
284 rate_idx = 6;
285 break;
286 case 18000:
287 rate_idx = 7;
288 break;
289 case 24000:
290 rate_idx = 8;
291 break;
292 case 36000:
293 rate_idx = 9;
294 break;
295 case 48000:
296 rate_idx = 10;
297 break;
298 case 54000:
299 rate_idx = 11;
300 break;
301 default:
302 break;
305 if (band == IEEE80211_BAND_5GHZ) {
306 if (rate_idx > 3)
307 /* Omit CCK rates */
308 rate_idx -= 4;
309 else
310 rate_idx = 0;
313 return rate_idx;
316 static int ath10k_wmi_event_mgmt_rx(struct ath10k *ar, struct sk_buff *skb)
318 struct wmi_mgmt_rx_event *event = (struct wmi_mgmt_rx_event *)skb->data;
319 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
320 struct ieee80211_hdr *hdr;
321 u32 rx_status;
322 u32 channel;
323 u32 phy_mode;
324 u32 snr;
325 u32 rate;
326 u32 buf_len;
327 u16 fc;
329 channel = __le32_to_cpu(event->hdr.channel);
330 buf_len = __le32_to_cpu(event->hdr.buf_len);
331 rx_status = __le32_to_cpu(event->hdr.status);
332 snr = __le32_to_cpu(event->hdr.snr);
333 phy_mode = __le32_to_cpu(event->hdr.phy_mode);
334 rate = __le32_to_cpu(event->hdr.rate);
336 memset(status, 0, sizeof(*status));
338 ath10k_dbg(ATH10K_DBG_MGMT,
339 "event mgmt rx status %08x\n", rx_status);
341 if (rx_status & WMI_RX_STATUS_ERR_DECRYPT) {
342 dev_kfree_skb(skb);
343 return 0;
346 if (rx_status & WMI_RX_STATUS_ERR_KEY_CACHE_MISS) {
347 dev_kfree_skb(skb);
348 return 0;
351 if (rx_status & WMI_RX_STATUS_ERR_CRC)
352 status->flag |= RX_FLAG_FAILED_FCS_CRC;
353 if (rx_status & WMI_RX_STATUS_ERR_MIC)
354 status->flag |= RX_FLAG_MMIC_ERROR;
356 status->band = phy_mode_to_band(phy_mode);
357 status->freq = ieee80211_channel_to_frequency(channel, status->band);
358 status->signal = snr + ATH10K_DEFAULT_NOISE_FLOOR;
359 status->rate_idx = get_rate_idx(rate, status->band);
361 skb_pull(skb, sizeof(event->hdr));
363 hdr = (struct ieee80211_hdr *)skb->data;
364 fc = le16_to_cpu(hdr->frame_control);
366 if (fc & IEEE80211_FCTL_PROTECTED) {
367 status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_IV_STRIPPED |
368 RX_FLAG_MMIC_STRIPPED;
369 hdr->frame_control = __cpu_to_le16(fc &
370 ~IEEE80211_FCTL_PROTECTED);
373 ath10k_dbg(ATH10K_DBG_MGMT,
374 "event mgmt rx skb %p len %d ftype %02x stype %02x\n",
375 skb, skb->len,
376 fc & IEEE80211_FCTL_FTYPE, fc & IEEE80211_FCTL_STYPE);
378 ath10k_dbg(ATH10K_DBG_MGMT,
379 "event mgmt rx freq %d band %d snr %d, rate_idx %d\n",
380 status->freq, status->band, status->signal,
381 status->rate_idx);
384 * packets from HTC come aligned to 4byte boundaries
385 * because they can originally come in along with a trailer
387 skb_trim(skb, buf_len);
389 ieee80211_rx(ar->hw, skb);
390 return 0;
393 static int freq_to_idx(struct ath10k *ar, int freq)
395 struct ieee80211_supported_band *sband;
396 int band, ch, idx = 0;
398 for (band = IEEE80211_BAND_2GHZ; band < IEEE80211_NUM_BANDS; band++) {
399 sband = ar->hw->wiphy->bands[band];
400 if (!sband)
401 continue;
403 for (ch = 0; ch < sband->n_channels; ch++, idx++)
404 if (sband->channels[ch].center_freq == freq)
405 goto exit;
408 exit:
409 return idx;
412 static void ath10k_wmi_event_chan_info(struct ath10k *ar, struct sk_buff *skb)
414 struct wmi_chan_info_event *ev;
415 struct survey_info *survey;
416 u32 err_code, freq, cmd_flags, noise_floor, rx_clear_count, cycle_count;
417 int idx;
419 ev = (struct wmi_chan_info_event *)skb->data;
421 err_code = __le32_to_cpu(ev->err_code);
422 freq = __le32_to_cpu(ev->freq);
423 cmd_flags = __le32_to_cpu(ev->cmd_flags);
424 noise_floor = __le32_to_cpu(ev->noise_floor);
425 rx_clear_count = __le32_to_cpu(ev->rx_clear_count);
426 cycle_count = __le32_to_cpu(ev->cycle_count);
428 ath10k_dbg(ATH10K_DBG_WMI,
429 "chan info err_code %d freq %d cmd_flags %d noise_floor %d rx_clear_count %d cycle_count %d\n",
430 err_code, freq, cmd_flags, noise_floor, rx_clear_count,
431 cycle_count);
433 spin_lock_bh(&ar->data_lock);
435 if (!ar->scan.in_progress) {
436 ath10k_warn("chan info event without a scan request?\n");
437 goto exit;
440 idx = freq_to_idx(ar, freq);
441 if (idx >= ARRAY_SIZE(ar->survey)) {
442 ath10k_warn("chan info: invalid frequency %d (idx %d out of bounds)\n",
443 freq, idx);
444 goto exit;
447 if (cmd_flags & WMI_CHAN_INFO_FLAG_COMPLETE) {
448 /* During scanning chan info is reported twice for each
449 * visited channel. The reported cycle count is global
450 * and per-channel cycle count must be calculated */
452 cycle_count -= ar->survey_last_cycle_count;
453 rx_clear_count -= ar->survey_last_rx_clear_count;
455 survey = &ar->survey[idx];
456 survey->channel_time = WMI_CHAN_INFO_MSEC(cycle_count);
457 survey->channel_time_rx = WMI_CHAN_INFO_MSEC(rx_clear_count);
458 survey->noise = noise_floor;
459 survey->filled = SURVEY_INFO_CHANNEL_TIME |
460 SURVEY_INFO_CHANNEL_TIME_RX |
461 SURVEY_INFO_NOISE_DBM;
464 ar->survey_last_rx_clear_count = rx_clear_count;
465 ar->survey_last_cycle_count = cycle_count;
467 exit:
468 spin_unlock_bh(&ar->data_lock);
471 static void ath10k_wmi_event_echo(struct ath10k *ar, struct sk_buff *skb)
473 ath10k_dbg(ATH10K_DBG_WMI, "WMI_ECHO_EVENTID\n");
476 static void ath10k_wmi_event_debug_mesg(struct ath10k *ar, struct sk_buff *skb)
478 ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_MESG_EVENTID\n");
481 static void ath10k_wmi_event_update_stats(struct ath10k *ar,
482 struct sk_buff *skb)
484 struct wmi_stats_event *ev = (struct wmi_stats_event *)skb->data;
486 ath10k_dbg(ATH10K_DBG_WMI, "WMI_UPDATE_STATS_EVENTID\n");
488 ath10k_debug_read_target_stats(ar, ev);
491 static void ath10k_wmi_event_vdev_start_resp(struct ath10k *ar,
492 struct sk_buff *skb)
494 struct wmi_vdev_start_response_event *ev;
496 ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_START_RESP_EVENTID\n");
498 ev = (struct wmi_vdev_start_response_event *)skb->data;
500 if (WARN_ON(__le32_to_cpu(ev->status)))
501 return;
503 complete(&ar->vdev_setup_done);
506 static void ath10k_wmi_event_vdev_stopped(struct ath10k *ar,
507 struct sk_buff *skb)
509 ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_STOPPED_EVENTID\n");
510 complete(&ar->vdev_setup_done);
513 static void ath10k_wmi_event_peer_sta_kickout(struct ath10k *ar,
514 struct sk_buff *skb)
516 ath10k_dbg(ATH10K_DBG_WMI, "WMI_PEER_STA_KICKOUT_EVENTID\n");
520 * FIXME
522 * We don't report to mac80211 sleep state of connected
523 * stations. Due to this mac80211 can't fill in TIM IE
524 * correctly.
526 * I know of no way of getting nullfunc frames that contain
527 * sleep transition from connected stations - these do not
528 * seem to be sent from the target to the host. There also
529 * doesn't seem to be a dedicated event for that. So the
530 * only way left to do this would be to read tim_bitmap
531 * during SWBA.
533 * We could probably try using tim_bitmap from SWBA to tell
534 * mac80211 which stations are asleep and which are not. The
535 * problem here is calling mac80211 functions so many times
536 * could take too long and make us miss the time to submit
537 * the beacon to the target.
539 * So as a workaround we try to extend the TIM IE if there
540 * is unicast buffered for stations with aid > 7 and fill it
541 * in ourselves.
543 static void ath10k_wmi_update_tim(struct ath10k *ar,
544 struct ath10k_vif *arvif,
545 struct sk_buff *bcn,
546 struct wmi_bcn_info *bcn_info)
548 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)bcn->data;
549 struct ieee80211_tim_ie *tim;
550 u8 *ies, *ie;
551 u8 ie_len, pvm_len;
553 /* if next SWBA has no tim_changed the tim_bitmap is garbage.
554 * we must copy the bitmap upon change and reuse it later */
555 if (__le32_to_cpu(bcn_info->tim_info.tim_changed)) {
556 int i;
558 BUILD_BUG_ON(sizeof(arvif->u.ap.tim_bitmap) !=
559 sizeof(bcn_info->tim_info.tim_bitmap));
561 for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++) {
562 __le32 t = bcn_info->tim_info.tim_bitmap[i / 4];
563 u32 v = __le32_to_cpu(t);
564 arvif->u.ap.tim_bitmap[i] = (v >> ((i % 4) * 8)) & 0xFF;
567 /* FW reports either length 0 or 16
568 * so we calculate this on our own */
569 arvif->u.ap.tim_len = 0;
570 for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++)
571 if (arvif->u.ap.tim_bitmap[i])
572 arvif->u.ap.tim_len = i;
574 arvif->u.ap.tim_len++;
577 ies = bcn->data;
578 ies += ieee80211_hdrlen(hdr->frame_control);
579 ies += 12; /* fixed parameters */
581 ie = (u8 *)cfg80211_find_ie(WLAN_EID_TIM, ies,
582 (u8 *)skb_tail_pointer(bcn) - ies);
583 if (!ie) {
584 if (arvif->vdev_type != WMI_VDEV_TYPE_IBSS)
585 ath10k_warn("no tim ie found;\n");
586 return;
589 tim = (void *)ie + 2;
590 ie_len = ie[1];
591 pvm_len = ie_len - 3; /* exclude dtim count, dtim period, bmap ctl */
593 if (pvm_len < arvif->u.ap.tim_len) {
594 int expand_size = sizeof(arvif->u.ap.tim_bitmap) - pvm_len;
595 int move_size = skb_tail_pointer(bcn) - (ie + 2 + ie_len);
596 void *next_ie = ie + 2 + ie_len;
598 if (skb_put(bcn, expand_size)) {
599 memmove(next_ie + expand_size, next_ie, move_size);
601 ie[1] += expand_size;
602 ie_len += expand_size;
603 pvm_len += expand_size;
604 } else {
605 ath10k_warn("tim expansion failed\n");
609 if (pvm_len > sizeof(arvif->u.ap.tim_bitmap)) {
610 ath10k_warn("tim pvm length is too great (%d)\n", pvm_len);
611 return;
614 tim->bitmap_ctrl = !!__le32_to_cpu(bcn_info->tim_info.tim_mcast);
615 memcpy(tim->virtual_map, arvif->u.ap.tim_bitmap, pvm_len);
617 ath10k_dbg(ATH10K_DBG_MGMT, "dtim %d/%d mcast %d pvmlen %d\n",
618 tim->dtim_count, tim->dtim_period,
619 tim->bitmap_ctrl, pvm_len);
622 static void ath10k_p2p_fill_noa_ie(u8 *data, u32 len,
623 struct wmi_p2p_noa_info *noa)
625 struct ieee80211_p2p_noa_attr *noa_attr;
626 u8 ctwindow_oppps = noa->ctwindow_oppps;
627 u8 ctwindow = ctwindow_oppps >> WMI_P2P_OPPPS_CTWINDOW_OFFSET;
628 bool oppps = !!(ctwindow_oppps & WMI_P2P_OPPPS_ENABLE_BIT);
629 __le16 *noa_attr_len;
630 u16 attr_len;
631 u8 noa_descriptors = noa->num_descriptors;
632 int i;
634 /* P2P IE */
635 data[0] = WLAN_EID_VENDOR_SPECIFIC;
636 data[1] = len - 2;
637 data[2] = (WLAN_OUI_WFA >> 16) & 0xff;
638 data[3] = (WLAN_OUI_WFA >> 8) & 0xff;
639 data[4] = (WLAN_OUI_WFA >> 0) & 0xff;
640 data[5] = WLAN_OUI_TYPE_WFA_P2P;
642 /* NOA ATTR */
643 data[6] = IEEE80211_P2P_ATTR_ABSENCE_NOTICE;
644 noa_attr_len = (__le16 *)&data[7]; /* 2 bytes */
645 noa_attr = (struct ieee80211_p2p_noa_attr *)&data[9];
647 noa_attr->index = noa->index;
648 noa_attr->oppps_ctwindow = ctwindow;
649 if (oppps)
650 noa_attr->oppps_ctwindow |= IEEE80211_P2P_OPPPS_ENABLE_BIT;
652 for (i = 0; i < noa_descriptors; i++) {
653 noa_attr->desc[i].count =
654 __le32_to_cpu(noa->descriptors[i].type_count);
655 noa_attr->desc[i].duration = noa->descriptors[i].duration;
656 noa_attr->desc[i].interval = noa->descriptors[i].interval;
657 noa_attr->desc[i].start_time = noa->descriptors[i].start_time;
660 attr_len = 2; /* index + oppps_ctwindow */
661 attr_len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc);
662 *noa_attr_len = __cpu_to_le16(attr_len);
665 static u32 ath10k_p2p_calc_noa_ie_len(struct wmi_p2p_noa_info *noa)
667 u32 len = 0;
668 u8 noa_descriptors = noa->num_descriptors;
669 u8 opp_ps_info = noa->ctwindow_oppps;
670 bool opps_enabled = !!(opp_ps_info & WMI_P2P_OPPPS_ENABLE_BIT);
673 if (!noa_descriptors && !opps_enabled)
674 return len;
676 len += 1 + 1 + 4; /* EID + len + OUI */
677 len += 1 + 2; /* noa attr + attr len */
678 len += 1 + 1; /* index + oppps_ctwindow */
679 len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc);
681 return len;
684 static void ath10k_wmi_update_noa(struct ath10k *ar, struct ath10k_vif *arvif,
685 struct sk_buff *bcn,
686 struct wmi_bcn_info *bcn_info)
688 struct wmi_p2p_noa_info *noa = &bcn_info->p2p_noa_info;
689 u8 *new_data, *old_data = arvif->u.ap.noa_data;
690 u32 new_len;
692 if (arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO)
693 return;
695 ath10k_dbg(ATH10K_DBG_MGMT, "noa changed: %d\n", noa->changed);
696 if (noa->changed & WMI_P2P_NOA_CHANGED_BIT) {
697 new_len = ath10k_p2p_calc_noa_ie_len(noa);
698 if (!new_len)
699 goto cleanup;
701 new_data = kmalloc(new_len, GFP_ATOMIC);
702 if (!new_data)
703 goto cleanup;
705 ath10k_p2p_fill_noa_ie(new_data, new_len, noa);
707 spin_lock_bh(&ar->data_lock);
708 arvif->u.ap.noa_data = new_data;
709 arvif->u.ap.noa_len = new_len;
710 spin_unlock_bh(&ar->data_lock);
711 kfree(old_data);
714 if (arvif->u.ap.noa_data)
715 if (!pskb_expand_head(bcn, 0, arvif->u.ap.noa_len, GFP_ATOMIC))
716 memcpy(skb_put(bcn, arvif->u.ap.noa_len),
717 arvif->u.ap.noa_data,
718 arvif->u.ap.noa_len);
719 return;
721 cleanup:
722 spin_lock_bh(&ar->data_lock);
723 arvif->u.ap.noa_data = NULL;
724 arvif->u.ap.noa_len = 0;
725 spin_unlock_bh(&ar->data_lock);
726 kfree(old_data);
730 static void ath10k_wmi_event_host_swba(struct ath10k *ar, struct sk_buff *skb)
732 struct wmi_host_swba_event *ev;
733 u32 map;
734 int i = -1;
735 struct wmi_bcn_info *bcn_info;
736 struct ath10k_vif *arvif;
737 struct wmi_bcn_tx_arg arg;
738 struct sk_buff *bcn;
739 int vdev_id = 0;
740 int ret;
742 ath10k_dbg(ATH10K_DBG_MGMT, "WMI_HOST_SWBA_EVENTID\n");
744 ev = (struct wmi_host_swba_event *)skb->data;
745 map = __le32_to_cpu(ev->vdev_map);
747 ath10k_dbg(ATH10K_DBG_MGMT, "host swba:\n"
748 "-vdev map 0x%x\n",
749 ev->vdev_map);
751 for (; map; map >>= 1, vdev_id++) {
752 if (!(map & 0x1))
753 continue;
755 i++;
757 if (i >= WMI_MAX_AP_VDEV) {
758 ath10k_warn("swba has corrupted vdev map\n");
759 break;
762 bcn_info = &ev->bcn_info[i];
764 ath10k_dbg(ATH10K_DBG_MGMT,
765 "-bcn_info[%d]:\n"
766 "--tim_len %d\n"
767 "--tim_mcast %d\n"
768 "--tim_changed %d\n"
769 "--tim_num_ps_pending %d\n"
770 "--tim_bitmap 0x%08x%08x%08x%08x\n",
772 __le32_to_cpu(bcn_info->tim_info.tim_len),
773 __le32_to_cpu(bcn_info->tim_info.tim_mcast),
774 __le32_to_cpu(bcn_info->tim_info.tim_changed),
775 __le32_to_cpu(bcn_info->tim_info.tim_num_ps_pending),
776 __le32_to_cpu(bcn_info->tim_info.tim_bitmap[3]),
777 __le32_to_cpu(bcn_info->tim_info.tim_bitmap[2]),
778 __le32_to_cpu(bcn_info->tim_info.tim_bitmap[1]),
779 __le32_to_cpu(bcn_info->tim_info.tim_bitmap[0]));
781 arvif = ath10k_get_arvif(ar, vdev_id);
782 if (arvif == NULL) {
783 ath10k_warn("no vif for vdev_id %d found\n", vdev_id);
784 continue;
787 bcn = ieee80211_beacon_get(ar->hw, arvif->vif);
788 if (!bcn) {
789 ath10k_warn("could not get mac80211 beacon\n");
790 continue;
793 ath10k_tx_h_seq_no(bcn);
794 ath10k_wmi_update_tim(ar, arvif, bcn, bcn_info);
795 ath10k_wmi_update_noa(ar, arvif, bcn, bcn_info);
797 arg.vdev_id = arvif->vdev_id;
798 arg.tx_rate = 0;
799 arg.tx_power = 0;
800 arg.bcn = bcn->data;
801 arg.bcn_len = bcn->len;
803 ret = ath10k_wmi_beacon_send(ar, &arg);
804 if (ret)
805 ath10k_warn("could not send beacon (%d)\n", ret);
807 dev_kfree_skb_any(bcn);
811 static void ath10k_wmi_event_tbttoffset_update(struct ath10k *ar,
812 struct sk_buff *skb)
814 ath10k_dbg(ATH10K_DBG_WMI, "WMI_TBTTOFFSET_UPDATE_EVENTID\n");
817 static void ath10k_wmi_event_phyerr(struct ath10k *ar, struct sk_buff *skb)
819 ath10k_dbg(ATH10K_DBG_WMI, "WMI_PHYERR_EVENTID\n");
822 static void ath10k_wmi_event_roam(struct ath10k *ar, struct sk_buff *skb)
824 ath10k_dbg(ATH10K_DBG_WMI, "WMI_ROAM_EVENTID\n");
827 static void ath10k_wmi_event_profile_match(struct ath10k *ar,
828 struct sk_buff *skb)
830 ath10k_dbg(ATH10K_DBG_WMI, "WMI_PROFILE_MATCH\n");
833 static void ath10k_wmi_event_debug_print(struct ath10k *ar,
834 struct sk_buff *skb)
836 ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_PRINT_EVENTID\n");
839 static void ath10k_wmi_event_pdev_qvit(struct ath10k *ar, struct sk_buff *skb)
841 ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_QVIT_EVENTID\n");
844 static void ath10k_wmi_event_wlan_profile_data(struct ath10k *ar,
845 struct sk_buff *skb)
847 ath10k_dbg(ATH10K_DBG_WMI, "WMI_WLAN_PROFILE_DATA_EVENTID\n");
850 static void ath10k_wmi_event_rtt_measurement_report(struct ath10k *ar,
851 struct sk_buff *skb)
853 ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_MEASUREMENT_REPORT_EVENTID\n");
856 static void ath10k_wmi_event_tsf_measurement_report(struct ath10k *ar,
857 struct sk_buff *skb)
859 ath10k_dbg(ATH10K_DBG_WMI, "WMI_TSF_MEASUREMENT_REPORT_EVENTID\n");
862 static void ath10k_wmi_event_rtt_error_report(struct ath10k *ar,
863 struct sk_buff *skb)
865 ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_ERROR_REPORT_EVENTID\n");
868 static void ath10k_wmi_event_wow_wakeup_host(struct ath10k *ar,
869 struct sk_buff *skb)
871 ath10k_dbg(ATH10K_DBG_WMI, "WMI_WOW_WAKEUP_HOST_EVENTID\n");
874 static void ath10k_wmi_event_dcs_interference(struct ath10k *ar,
875 struct sk_buff *skb)
877 ath10k_dbg(ATH10K_DBG_WMI, "WMI_DCS_INTERFERENCE_EVENTID\n");
880 static void ath10k_wmi_event_pdev_tpc_config(struct ath10k *ar,
881 struct sk_buff *skb)
883 ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_TPC_CONFIG_EVENTID\n");
886 static void ath10k_wmi_event_pdev_ftm_intg(struct ath10k *ar,
887 struct sk_buff *skb)
889 ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_FTM_INTG_EVENTID\n");
892 static void ath10k_wmi_event_gtk_offload_status(struct ath10k *ar,
893 struct sk_buff *skb)
895 ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_OFFLOAD_STATUS_EVENTID\n");
898 static void ath10k_wmi_event_gtk_rekey_fail(struct ath10k *ar,
899 struct sk_buff *skb)
901 ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_REKEY_FAIL_EVENTID\n");
904 static void ath10k_wmi_event_delba_complete(struct ath10k *ar,
905 struct sk_buff *skb)
907 ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_DELBA_COMPLETE_EVENTID\n");
910 static void ath10k_wmi_event_addba_complete(struct ath10k *ar,
911 struct sk_buff *skb)
913 ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_ADDBA_COMPLETE_EVENTID\n");
916 static void ath10k_wmi_event_vdev_install_key_complete(struct ath10k *ar,
917 struct sk_buff *skb)
919 ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID\n");
922 static void ath10k_wmi_service_ready_event_rx(struct ath10k *ar,
923 struct sk_buff *skb)
925 struct wmi_service_ready_event *ev = (void *)skb->data;
927 if (skb->len < sizeof(*ev)) {
928 ath10k_warn("Service ready event was %d B but expected %zu B. Wrong firmware version?\n",
929 skb->len, sizeof(*ev));
930 return;
933 ar->hw_min_tx_power = __le32_to_cpu(ev->hw_min_tx_power);
934 ar->hw_max_tx_power = __le32_to_cpu(ev->hw_max_tx_power);
935 ar->ht_cap_info = __le32_to_cpu(ev->ht_cap_info);
936 ar->vht_cap_info = __le32_to_cpu(ev->vht_cap_info);
937 ar->fw_version_major =
938 (__le32_to_cpu(ev->sw_version) & 0xff000000) >> 24;
939 ar->fw_version_minor = (__le32_to_cpu(ev->sw_version) & 0x00ffffff);
940 ar->fw_version_release =
941 (__le32_to_cpu(ev->sw_version_1) & 0xffff0000) >> 16;
942 ar->fw_version_build = (__le32_to_cpu(ev->sw_version_1) & 0x0000ffff);
943 ar->phy_capability = __le32_to_cpu(ev->phy_capability);
944 ar->num_rf_chains = __le32_to_cpu(ev->num_rf_chains);
946 if (ar->num_rf_chains > WMI_MAX_SPATIAL_STREAM) {
947 ath10k_warn("hardware advertises support for more spatial streams than it should (%d > %d)\n",
948 ar->num_rf_chains, WMI_MAX_SPATIAL_STREAM);
949 ar->num_rf_chains = WMI_MAX_SPATIAL_STREAM;
952 ar->ath_common.regulatory.current_rd =
953 __le32_to_cpu(ev->hal_reg_capabilities.eeprom_rd);
955 ath10k_debug_read_service_map(ar, ev->wmi_service_bitmap,
956 sizeof(ev->wmi_service_bitmap));
958 if (strlen(ar->hw->wiphy->fw_version) == 0) {
959 snprintf(ar->hw->wiphy->fw_version,
960 sizeof(ar->hw->wiphy->fw_version),
961 "%u.%u.%u.%u",
962 ar->fw_version_major,
963 ar->fw_version_minor,
964 ar->fw_version_release,
965 ar->fw_version_build);
968 /* FIXME: it probably should be better to support this */
969 if (__le32_to_cpu(ev->num_mem_reqs) > 0) {
970 ath10k_warn("target requested %d memory chunks; ignoring\n",
971 __le32_to_cpu(ev->num_mem_reqs));
974 ath10k_dbg(ATH10K_DBG_WMI,
975 "wmi event service ready sw_ver 0x%08x sw_ver1 0x%08x abi_ver %u phy_cap 0x%08x ht_cap 0x%08x vht_cap 0x%08x vht_supp_msc 0x%08x sys_cap_info 0x%08x mem_reqs %u num_rf_chains %u\n",
976 __le32_to_cpu(ev->sw_version),
977 __le32_to_cpu(ev->sw_version_1),
978 __le32_to_cpu(ev->abi_version),
979 __le32_to_cpu(ev->phy_capability),
980 __le32_to_cpu(ev->ht_cap_info),
981 __le32_to_cpu(ev->vht_cap_info),
982 __le32_to_cpu(ev->vht_supp_mcs),
983 __le32_to_cpu(ev->sys_cap_info),
984 __le32_to_cpu(ev->num_mem_reqs),
985 __le32_to_cpu(ev->num_rf_chains));
987 complete(&ar->wmi.service_ready);
990 static int ath10k_wmi_ready_event_rx(struct ath10k *ar, struct sk_buff *skb)
992 struct wmi_ready_event *ev = (struct wmi_ready_event *)skb->data;
994 if (WARN_ON(skb->len < sizeof(*ev)))
995 return -EINVAL;
997 memcpy(ar->mac_addr, ev->mac_addr.addr, ETH_ALEN);
999 ath10k_dbg(ATH10K_DBG_WMI,
1000 "wmi event ready sw_version %u abi_version %u mac_addr %pM status %d\n",
1001 __le32_to_cpu(ev->sw_version),
1002 __le32_to_cpu(ev->abi_version),
1003 ev->mac_addr.addr,
1004 __le32_to_cpu(ev->status));
1006 complete(&ar->wmi.unified_ready);
1007 return 0;
1010 static void ath10k_wmi_event_process(struct ath10k *ar, struct sk_buff *skb)
1012 struct wmi_cmd_hdr *cmd_hdr;
1013 enum wmi_event_id id;
1014 u16 len;
1016 cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
1017 id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID);
1019 if (skb_pull(skb, sizeof(struct wmi_cmd_hdr)) == NULL)
1020 return;
1022 len = skb->len;
1024 trace_ath10k_wmi_event(id, skb->data, skb->len);
1026 switch (id) {
1027 case WMI_MGMT_RX_EVENTID:
1028 ath10k_wmi_event_mgmt_rx(ar, skb);
1029 /* mgmt_rx() owns the skb now! */
1030 return;
1031 case WMI_SCAN_EVENTID:
1032 ath10k_wmi_event_scan(ar, skb);
1033 break;
1034 case WMI_CHAN_INFO_EVENTID:
1035 ath10k_wmi_event_chan_info(ar, skb);
1036 break;
1037 case WMI_ECHO_EVENTID:
1038 ath10k_wmi_event_echo(ar, skb);
1039 break;
1040 case WMI_DEBUG_MESG_EVENTID:
1041 ath10k_wmi_event_debug_mesg(ar, skb);
1042 break;
1043 case WMI_UPDATE_STATS_EVENTID:
1044 ath10k_wmi_event_update_stats(ar, skb);
1045 break;
1046 case WMI_VDEV_START_RESP_EVENTID:
1047 ath10k_wmi_event_vdev_start_resp(ar, skb);
1048 break;
1049 case WMI_VDEV_STOPPED_EVENTID:
1050 ath10k_wmi_event_vdev_stopped(ar, skb);
1051 break;
1052 case WMI_PEER_STA_KICKOUT_EVENTID:
1053 ath10k_wmi_event_peer_sta_kickout(ar, skb);
1054 break;
1055 case WMI_HOST_SWBA_EVENTID:
1056 ath10k_wmi_event_host_swba(ar, skb);
1057 break;
1058 case WMI_TBTTOFFSET_UPDATE_EVENTID:
1059 ath10k_wmi_event_tbttoffset_update(ar, skb);
1060 break;
1061 case WMI_PHYERR_EVENTID:
1062 ath10k_wmi_event_phyerr(ar, skb);
1063 break;
1064 case WMI_ROAM_EVENTID:
1065 ath10k_wmi_event_roam(ar, skb);
1066 break;
1067 case WMI_PROFILE_MATCH:
1068 ath10k_wmi_event_profile_match(ar, skb);
1069 break;
1070 case WMI_DEBUG_PRINT_EVENTID:
1071 ath10k_wmi_event_debug_print(ar, skb);
1072 break;
1073 case WMI_PDEV_QVIT_EVENTID:
1074 ath10k_wmi_event_pdev_qvit(ar, skb);
1075 break;
1076 case WMI_WLAN_PROFILE_DATA_EVENTID:
1077 ath10k_wmi_event_wlan_profile_data(ar, skb);
1078 break;
1079 case WMI_RTT_MEASUREMENT_REPORT_EVENTID:
1080 ath10k_wmi_event_rtt_measurement_report(ar, skb);
1081 break;
1082 case WMI_TSF_MEASUREMENT_REPORT_EVENTID:
1083 ath10k_wmi_event_tsf_measurement_report(ar, skb);
1084 break;
1085 case WMI_RTT_ERROR_REPORT_EVENTID:
1086 ath10k_wmi_event_rtt_error_report(ar, skb);
1087 break;
1088 case WMI_WOW_WAKEUP_HOST_EVENTID:
1089 ath10k_wmi_event_wow_wakeup_host(ar, skb);
1090 break;
1091 case WMI_DCS_INTERFERENCE_EVENTID:
1092 ath10k_wmi_event_dcs_interference(ar, skb);
1093 break;
1094 case WMI_PDEV_TPC_CONFIG_EVENTID:
1095 ath10k_wmi_event_pdev_tpc_config(ar, skb);
1096 break;
1097 case WMI_PDEV_FTM_INTG_EVENTID:
1098 ath10k_wmi_event_pdev_ftm_intg(ar, skb);
1099 break;
1100 case WMI_GTK_OFFLOAD_STATUS_EVENTID:
1101 ath10k_wmi_event_gtk_offload_status(ar, skb);
1102 break;
1103 case WMI_GTK_REKEY_FAIL_EVENTID:
1104 ath10k_wmi_event_gtk_rekey_fail(ar, skb);
1105 break;
1106 case WMI_TX_DELBA_COMPLETE_EVENTID:
1107 ath10k_wmi_event_delba_complete(ar, skb);
1108 break;
1109 case WMI_TX_ADDBA_COMPLETE_EVENTID:
1110 ath10k_wmi_event_addba_complete(ar, skb);
1111 break;
1112 case WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID:
1113 ath10k_wmi_event_vdev_install_key_complete(ar, skb);
1114 break;
1115 case WMI_SERVICE_READY_EVENTID:
1116 ath10k_wmi_service_ready_event_rx(ar, skb);
1117 break;
1118 case WMI_READY_EVENTID:
1119 ath10k_wmi_ready_event_rx(ar, skb);
1120 break;
1121 default:
1122 ath10k_warn("Unknown eventid: %d\n", id);
1123 break;
1126 dev_kfree_skb(skb);
1129 static void ath10k_wmi_event_work(struct work_struct *work)
1131 struct ath10k *ar = container_of(work, struct ath10k,
1132 wmi.wmi_event_work);
1133 struct sk_buff *skb;
1135 for (;;) {
1136 skb = skb_dequeue(&ar->wmi.wmi_event_list);
1137 if (!skb)
1138 break;
1140 ath10k_wmi_event_process(ar, skb);
1144 static void ath10k_wmi_process_rx(struct ath10k *ar, struct sk_buff *skb)
1146 struct wmi_cmd_hdr *cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
1147 enum wmi_event_id event_id;
1149 event_id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID);
1151 /* some events require to be handled ASAP
1152 * thus can't be defered to a worker thread */
1153 switch (event_id) {
1154 case WMI_HOST_SWBA_EVENTID:
1155 case WMI_MGMT_RX_EVENTID:
1156 ath10k_wmi_event_process(ar, skb);
1157 return;
1158 default:
1159 break;
1162 skb_queue_tail(&ar->wmi.wmi_event_list, skb);
1163 queue_work(ar->workqueue, &ar->wmi.wmi_event_work);
1166 /* WMI Initialization functions */
1167 int ath10k_wmi_attach(struct ath10k *ar)
1169 init_completion(&ar->wmi.service_ready);
1170 init_completion(&ar->wmi.unified_ready);
1171 init_waitqueue_head(&ar->wmi.wq);
1173 skb_queue_head_init(&ar->wmi.wmi_event_list);
1174 INIT_WORK(&ar->wmi.wmi_event_work, ath10k_wmi_event_work);
1176 return 0;
1179 void ath10k_wmi_detach(struct ath10k *ar)
1181 /* HTC should've drained the packets already */
1182 if (WARN_ON(atomic_read(&ar->wmi.pending_tx_count) > 0))
1183 ath10k_warn("there are still pending packets\n");
1185 cancel_work_sync(&ar->wmi.wmi_event_work);
1186 skb_queue_purge(&ar->wmi.wmi_event_list);
1189 int ath10k_wmi_connect_htc_service(struct ath10k *ar)
1191 int status;
1192 struct ath10k_htc_svc_conn_req conn_req;
1193 struct ath10k_htc_svc_conn_resp conn_resp;
1195 memset(&conn_req, 0, sizeof(conn_req));
1196 memset(&conn_resp, 0, sizeof(conn_resp));
1198 /* these fields are the same for all service endpoints */
1199 conn_req.ep_ops.ep_tx_complete = ath10k_wmi_htc_tx_complete;
1200 conn_req.ep_ops.ep_rx_complete = ath10k_wmi_process_rx;
1202 /* connect to control service */
1203 conn_req.service_id = ATH10K_HTC_SVC_ID_WMI_CONTROL;
1205 status = ath10k_htc_connect_service(&ar->htc, &conn_req, &conn_resp);
1206 if (status) {
1207 ath10k_warn("failed to connect to WMI CONTROL service status: %d\n",
1208 status);
1209 return status;
1212 ar->wmi.eid = conn_resp.eid;
1213 return 0;
1216 int ath10k_wmi_pdev_set_regdomain(struct ath10k *ar, u16 rd, u16 rd2g,
1217 u16 rd5g, u16 ctl2g, u16 ctl5g)
1219 struct wmi_pdev_set_regdomain_cmd *cmd;
1220 struct sk_buff *skb;
1222 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1223 if (!skb)
1224 return -ENOMEM;
1226 cmd = (struct wmi_pdev_set_regdomain_cmd *)skb->data;
1227 cmd->reg_domain = __cpu_to_le32(rd);
1228 cmd->reg_domain_2G = __cpu_to_le32(rd2g);
1229 cmd->reg_domain_5G = __cpu_to_le32(rd5g);
1230 cmd->conformance_test_limit_2G = __cpu_to_le32(ctl2g);
1231 cmd->conformance_test_limit_5G = __cpu_to_le32(ctl5g);
1233 ath10k_dbg(ATH10K_DBG_WMI,
1234 "wmi pdev regdomain rd %x rd2g %x rd5g %x ctl2g %x ctl5g %x\n",
1235 rd, rd2g, rd5g, ctl2g, ctl5g);
1237 return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_REGDOMAIN_CMDID);
1240 int ath10k_wmi_pdev_set_channel(struct ath10k *ar,
1241 const struct wmi_channel_arg *arg)
1243 struct wmi_set_channel_cmd *cmd;
1244 struct sk_buff *skb;
1246 if (arg->passive)
1247 return -EINVAL;
1249 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1250 if (!skb)
1251 return -ENOMEM;
1253 cmd = (struct wmi_set_channel_cmd *)skb->data;
1254 cmd->chan.mhz = __cpu_to_le32(arg->freq);
1255 cmd->chan.band_center_freq1 = __cpu_to_le32(arg->freq);
1256 cmd->chan.mode = arg->mode;
1257 cmd->chan.min_power = arg->min_power;
1258 cmd->chan.max_power = arg->max_power;
1259 cmd->chan.reg_power = arg->max_reg_power;
1260 cmd->chan.reg_classid = arg->reg_class_id;
1261 cmd->chan.antenna_max = arg->max_antenna_gain;
1263 ath10k_dbg(ATH10K_DBG_WMI,
1264 "wmi set channel mode %d freq %d\n",
1265 arg->mode, arg->freq);
1267 return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_CHANNEL_CMDID);
1270 int ath10k_wmi_pdev_suspend_target(struct ath10k *ar)
1272 struct wmi_pdev_suspend_cmd *cmd;
1273 struct sk_buff *skb;
1275 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1276 if (!skb)
1277 return -ENOMEM;
1279 cmd = (struct wmi_pdev_suspend_cmd *)skb->data;
1280 cmd->suspend_opt = WMI_PDEV_SUSPEND;
1282 return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SUSPEND_CMDID);
1285 int ath10k_wmi_pdev_resume_target(struct ath10k *ar)
1287 struct sk_buff *skb;
1289 skb = ath10k_wmi_alloc_skb(0);
1290 if (skb == NULL)
1291 return -ENOMEM;
1293 return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_RESUME_CMDID);
1296 int ath10k_wmi_pdev_set_param(struct ath10k *ar, enum wmi_pdev_param id,
1297 u32 value)
1299 struct wmi_pdev_set_param_cmd *cmd;
1300 struct sk_buff *skb;
1302 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1303 if (!skb)
1304 return -ENOMEM;
1306 cmd = (struct wmi_pdev_set_param_cmd *)skb->data;
1307 cmd->param_id = __cpu_to_le32(id);
1308 cmd->param_value = __cpu_to_le32(value);
1310 ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set param %d value %d\n",
1311 id, value);
1312 return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_PARAM_CMDID);
1315 int ath10k_wmi_cmd_init(struct ath10k *ar)
1317 struct wmi_init_cmd *cmd;
1318 struct sk_buff *buf;
1319 struct wmi_resource_config config = {};
1320 u32 val;
1322 config.num_vdevs = __cpu_to_le32(TARGET_NUM_VDEVS);
1323 config.num_peers = __cpu_to_le32(TARGET_NUM_PEERS + TARGET_NUM_VDEVS);
1324 config.num_offload_peers = __cpu_to_le32(TARGET_NUM_OFFLOAD_PEERS);
1326 config.num_offload_reorder_bufs =
1327 __cpu_to_le32(TARGET_NUM_OFFLOAD_REORDER_BUFS);
1329 config.num_peer_keys = __cpu_to_le32(TARGET_NUM_PEER_KEYS);
1330 config.num_tids = __cpu_to_le32(TARGET_NUM_TIDS);
1331 config.ast_skid_limit = __cpu_to_le32(TARGET_AST_SKID_LIMIT);
1332 config.tx_chain_mask = __cpu_to_le32(TARGET_TX_CHAIN_MASK);
1333 config.rx_chain_mask = __cpu_to_le32(TARGET_RX_CHAIN_MASK);
1334 config.rx_timeout_pri_vo = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
1335 config.rx_timeout_pri_vi = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
1336 config.rx_timeout_pri_be = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
1337 config.rx_timeout_pri_bk = __cpu_to_le32(TARGET_RX_TIMEOUT_HI_PRI);
1338 config.rx_decap_mode = __cpu_to_le32(TARGET_RX_DECAP_MODE);
1340 config.scan_max_pending_reqs =
1341 __cpu_to_le32(TARGET_SCAN_MAX_PENDING_REQS);
1343 config.bmiss_offload_max_vdev =
1344 __cpu_to_le32(TARGET_BMISS_OFFLOAD_MAX_VDEV);
1346 config.roam_offload_max_vdev =
1347 __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_VDEV);
1349 config.roam_offload_max_ap_profiles =
1350 __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_AP_PROFILES);
1352 config.num_mcast_groups = __cpu_to_le32(TARGET_NUM_MCAST_GROUPS);
1353 config.num_mcast_table_elems =
1354 __cpu_to_le32(TARGET_NUM_MCAST_TABLE_ELEMS);
1356 config.mcast2ucast_mode = __cpu_to_le32(TARGET_MCAST2UCAST_MODE);
1357 config.tx_dbg_log_size = __cpu_to_le32(TARGET_TX_DBG_LOG_SIZE);
1358 config.num_wds_entries = __cpu_to_le32(TARGET_NUM_WDS_ENTRIES);
1359 config.dma_burst_size = __cpu_to_le32(TARGET_DMA_BURST_SIZE);
1360 config.mac_aggr_delim = __cpu_to_le32(TARGET_MAC_AGGR_DELIM);
1362 val = TARGET_RX_SKIP_DEFRAG_TIMEOUT_DUP_DETECTION_CHECK;
1363 config.rx_skip_defrag_timeout_dup_detection_check = __cpu_to_le32(val);
1365 config.vow_config = __cpu_to_le32(TARGET_VOW_CONFIG);
1367 config.gtk_offload_max_vdev =
1368 __cpu_to_le32(TARGET_GTK_OFFLOAD_MAX_VDEV);
1370 config.num_msdu_desc = __cpu_to_le32(TARGET_NUM_MSDU_DESC);
1371 config.max_frag_entries = __cpu_to_le32(TARGET_MAX_FRAG_ENTRIES);
1373 buf = ath10k_wmi_alloc_skb(sizeof(*cmd));
1374 if (!buf)
1375 return -ENOMEM;
1377 cmd = (struct wmi_init_cmd *)buf->data;
1378 cmd->num_host_mem_chunks = 0;
1379 memcpy(&cmd->resource_config, &config, sizeof(config));
1381 ath10k_dbg(ATH10K_DBG_WMI, "wmi init\n");
1382 return ath10k_wmi_cmd_send(ar, buf, WMI_INIT_CMDID);
1385 static int ath10k_wmi_start_scan_calc_len(const struct wmi_start_scan_arg *arg)
1387 int len;
1389 len = sizeof(struct wmi_start_scan_cmd);
1391 if (arg->ie_len) {
1392 if (!arg->ie)
1393 return -EINVAL;
1394 if (arg->ie_len > WLAN_SCAN_PARAMS_MAX_IE_LEN)
1395 return -EINVAL;
1397 len += sizeof(struct wmi_ie_data);
1398 len += roundup(arg->ie_len, 4);
1401 if (arg->n_channels) {
1402 if (!arg->channels)
1403 return -EINVAL;
1404 if (arg->n_channels > ARRAY_SIZE(arg->channels))
1405 return -EINVAL;
1407 len += sizeof(struct wmi_chan_list);
1408 len += sizeof(__le32) * arg->n_channels;
1411 if (arg->n_ssids) {
1412 if (!arg->ssids)
1413 return -EINVAL;
1414 if (arg->n_ssids > WLAN_SCAN_PARAMS_MAX_SSID)
1415 return -EINVAL;
1417 len += sizeof(struct wmi_ssid_list);
1418 len += sizeof(struct wmi_ssid) * arg->n_ssids;
1421 if (arg->n_bssids) {
1422 if (!arg->bssids)
1423 return -EINVAL;
1424 if (arg->n_bssids > WLAN_SCAN_PARAMS_MAX_BSSID)
1425 return -EINVAL;
1427 len += sizeof(struct wmi_bssid_list);
1428 len += sizeof(struct wmi_mac_addr) * arg->n_bssids;
1431 return len;
1434 int ath10k_wmi_start_scan(struct ath10k *ar,
1435 const struct wmi_start_scan_arg *arg)
1437 struct wmi_start_scan_cmd *cmd;
1438 struct sk_buff *skb;
1439 struct wmi_ie_data *ie;
1440 struct wmi_chan_list *channels;
1441 struct wmi_ssid_list *ssids;
1442 struct wmi_bssid_list *bssids;
1443 u32 scan_id;
1444 u32 scan_req_id;
1445 int off;
1446 int len = 0;
1447 int i;
1449 len = ath10k_wmi_start_scan_calc_len(arg);
1450 if (len < 0)
1451 return len; /* len contains error code here */
1453 skb = ath10k_wmi_alloc_skb(len);
1454 if (!skb)
1455 return -ENOMEM;
1457 scan_id = WMI_HOST_SCAN_REQ_ID_PREFIX;
1458 scan_id |= arg->scan_id;
1460 scan_req_id = WMI_HOST_SCAN_REQUESTOR_ID_PREFIX;
1461 scan_req_id |= arg->scan_req_id;
1463 cmd = (struct wmi_start_scan_cmd *)skb->data;
1464 cmd->scan_id = __cpu_to_le32(scan_id);
1465 cmd->scan_req_id = __cpu_to_le32(scan_req_id);
1466 cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
1467 cmd->scan_priority = __cpu_to_le32(arg->scan_priority);
1468 cmd->notify_scan_events = __cpu_to_le32(arg->notify_scan_events);
1469 cmd->dwell_time_active = __cpu_to_le32(arg->dwell_time_active);
1470 cmd->dwell_time_passive = __cpu_to_le32(arg->dwell_time_passive);
1471 cmd->min_rest_time = __cpu_to_le32(arg->min_rest_time);
1472 cmd->max_rest_time = __cpu_to_le32(arg->max_rest_time);
1473 cmd->repeat_probe_time = __cpu_to_le32(arg->repeat_probe_time);
1474 cmd->probe_spacing_time = __cpu_to_le32(arg->probe_spacing_time);
1475 cmd->idle_time = __cpu_to_le32(arg->idle_time);
1476 cmd->max_scan_time = __cpu_to_le32(arg->max_scan_time);
1477 cmd->probe_delay = __cpu_to_le32(arg->probe_delay);
1478 cmd->scan_ctrl_flags = __cpu_to_le32(arg->scan_ctrl_flags);
1480 /* TLV list starts after fields included in the struct */
1481 off = sizeof(*cmd);
1483 if (arg->n_channels) {
1484 channels = (void *)skb->data + off;
1485 channels->tag = __cpu_to_le32(WMI_CHAN_LIST_TAG);
1486 channels->num_chan = __cpu_to_le32(arg->n_channels);
1488 for (i = 0; i < arg->n_channels; i++)
1489 channels->channel_list[i] =
1490 __cpu_to_le32(arg->channels[i]);
1492 off += sizeof(*channels);
1493 off += sizeof(__le32) * arg->n_channels;
1496 if (arg->n_ssids) {
1497 ssids = (void *)skb->data + off;
1498 ssids->tag = __cpu_to_le32(WMI_SSID_LIST_TAG);
1499 ssids->num_ssids = __cpu_to_le32(arg->n_ssids);
1501 for (i = 0; i < arg->n_ssids; i++) {
1502 ssids->ssids[i].ssid_len =
1503 __cpu_to_le32(arg->ssids[i].len);
1504 memcpy(&ssids->ssids[i].ssid,
1505 arg->ssids[i].ssid,
1506 arg->ssids[i].len);
1509 off += sizeof(*ssids);
1510 off += sizeof(struct wmi_ssid) * arg->n_ssids;
1513 if (arg->n_bssids) {
1514 bssids = (void *)skb->data + off;
1515 bssids->tag = __cpu_to_le32(WMI_BSSID_LIST_TAG);
1516 bssids->num_bssid = __cpu_to_le32(arg->n_bssids);
1518 for (i = 0; i < arg->n_bssids; i++)
1519 memcpy(&bssids->bssid_list[i],
1520 arg->bssids[i].bssid,
1521 ETH_ALEN);
1523 off += sizeof(*bssids);
1524 off += sizeof(struct wmi_mac_addr) * arg->n_bssids;
1527 if (arg->ie_len) {
1528 ie = (void *)skb->data + off;
1529 ie->tag = __cpu_to_le32(WMI_IE_TAG);
1530 ie->ie_len = __cpu_to_le32(arg->ie_len);
1531 memcpy(ie->ie_data, arg->ie, arg->ie_len);
1533 off += sizeof(*ie);
1534 off += roundup(arg->ie_len, 4);
1537 if (off != skb->len) {
1538 dev_kfree_skb(skb);
1539 return -EINVAL;
1542 ath10k_dbg(ATH10K_DBG_WMI, "wmi start scan\n");
1543 return ath10k_wmi_cmd_send(ar, skb, WMI_START_SCAN_CMDID);
1546 void ath10k_wmi_start_scan_init(struct ath10k *ar,
1547 struct wmi_start_scan_arg *arg)
1549 /* setup commonly used values */
1550 arg->scan_req_id = 1;
1551 arg->scan_priority = WMI_SCAN_PRIORITY_LOW;
1552 arg->dwell_time_active = 50;
1553 arg->dwell_time_passive = 150;
1554 arg->min_rest_time = 50;
1555 arg->max_rest_time = 500;
1556 arg->repeat_probe_time = 0;
1557 arg->probe_spacing_time = 0;
1558 arg->idle_time = 0;
1559 arg->max_scan_time = 5000;
1560 arg->probe_delay = 5;
1561 arg->notify_scan_events = WMI_SCAN_EVENT_STARTED
1562 | WMI_SCAN_EVENT_COMPLETED
1563 | WMI_SCAN_EVENT_BSS_CHANNEL
1564 | WMI_SCAN_EVENT_FOREIGN_CHANNEL
1565 | WMI_SCAN_EVENT_DEQUEUED;
1566 arg->scan_ctrl_flags |= WMI_SCAN_ADD_OFDM_RATES;
1567 arg->scan_ctrl_flags |= WMI_SCAN_CHAN_STAT_EVENT;
1568 arg->n_bssids = 1;
1569 arg->bssids[0].bssid = "\xFF\xFF\xFF\xFF\xFF\xFF";
1572 int ath10k_wmi_stop_scan(struct ath10k *ar, const struct wmi_stop_scan_arg *arg)
1574 struct wmi_stop_scan_cmd *cmd;
1575 struct sk_buff *skb;
1576 u32 scan_id;
1577 u32 req_id;
1579 if (arg->req_id > 0xFFF)
1580 return -EINVAL;
1581 if (arg->req_type == WMI_SCAN_STOP_ONE && arg->u.scan_id > 0xFFF)
1582 return -EINVAL;
1584 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1585 if (!skb)
1586 return -ENOMEM;
1588 scan_id = arg->u.scan_id;
1589 scan_id |= WMI_HOST_SCAN_REQ_ID_PREFIX;
1591 req_id = arg->req_id;
1592 req_id |= WMI_HOST_SCAN_REQUESTOR_ID_PREFIX;
1594 cmd = (struct wmi_stop_scan_cmd *)skb->data;
1595 cmd->req_type = __cpu_to_le32(arg->req_type);
1596 cmd->vdev_id = __cpu_to_le32(arg->u.vdev_id);
1597 cmd->scan_id = __cpu_to_le32(scan_id);
1598 cmd->scan_req_id = __cpu_to_le32(req_id);
1600 ath10k_dbg(ATH10K_DBG_WMI,
1601 "wmi stop scan reqid %d req_type %d vdev/scan_id %d\n",
1602 arg->req_id, arg->req_type, arg->u.scan_id);
1603 return ath10k_wmi_cmd_send(ar, skb, WMI_STOP_SCAN_CMDID);
1606 int ath10k_wmi_vdev_create(struct ath10k *ar, u32 vdev_id,
1607 enum wmi_vdev_type type,
1608 enum wmi_vdev_subtype subtype,
1609 const u8 macaddr[ETH_ALEN])
1611 struct wmi_vdev_create_cmd *cmd;
1612 struct sk_buff *skb;
1614 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1615 if (!skb)
1616 return -ENOMEM;
1618 cmd = (struct wmi_vdev_create_cmd *)skb->data;
1619 cmd->vdev_id = __cpu_to_le32(vdev_id);
1620 cmd->vdev_type = __cpu_to_le32(type);
1621 cmd->vdev_subtype = __cpu_to_le32(subtype);
1622 memcpy(cmd->vdev_macaddr.addr, macaddr, ETH_ALEN);
1624 ath10k_dbg(ATH10K_DBG_WMI,
1625 "WMI vdev create: id %d type %d subtype %d macaddr %pM\n",
1626 vdev_id, type, subtype, macaddr);
1628 return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_CREATE_CMDID);
1631 int ath10k_wmi_vdev_delete(struct ath10k *ar, u32 vdev_id)
1633 struct wmi_vdev_delete_cmd *cmd;
1634 struct sk_buff *skb;
1636 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1637 if (!skb)
1638 return -ENOMEM;
1640 cmd = (struct wmi_vdev_delete_cmd *)skb->data;
1641 cmd->vdev_id = __cpu_to_le32(vdev_id);
1643 ath10k_dbg(ATH10K_DBG_WMI,
1644 "WMI vdev delete id %d\n", vdev_id);
1646 return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DELETE_CMDID);
1649 static int ath10k_wmi_vdev_start_restart(struct ath10k *ar,
1650 const struct wmi_vdev_start_request_arg *arg,
1651 enum wmi_cmd_id cmd_id)
1653 struct wmi_vdev_start_request_cmd *cmd;
1654 struct sk_buff *skb;
1655 const char *cmdname;
1656 u32 flags = 0;
1658 if (cmd_id != WMI_VDEV_START_REQUEST_CMDID &&
1659 cmd_id != WMI_VDEV_RESTART_REQUEST_CMDID)
1660 return -EINVAL;
1661 if (WARN_ON(arg->ssid && arg->ssid_len == 0))
1662 return -EINVAL;
1663 if (WARN_ON(arg->hidden_ssid && !arg->ssid))
1664 return -EINVAL;
1665 if (WARN_ON(arg->ssid_len > sizeof(cmd->ssid.ssid)))
1666 return -EINVAL;
1668 if (cmd_id == WMI_VDEV_START_REQUEST_CMDID)
1669 cmdname = "start";
1670 else if (cmd_id == WMI_VDEV_RESTART_REQUEST_CMDID)
1671 cmdname = "restart";
1672 else
1673 return -EINVAL; /* should not happen, we already check cmd_id */
1675 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1676 if (!skb)
1677 return -ENOMEM;
1679 if (arg->hidden_ssid)
1680 flags |= WMI_VDEV_START_HIDDEN_SSID;
1681 if (arg->pmf_enabled)
1682 flags |= WMI_VDEV_START_PMF_ENABLED;
1684 cmd = (struct wmi_vdev_start_request_cmd *)skb->data;
1685 cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
1686 cmd->disable_hw_ack = __cpu_to_le32(arg->disable_hw_ack);
1687 cmd->beacon_interval = __cpu_to_le32(arg->bcn_intval);
1688 cmd->dtim_period = __cpu_to_le32(arg->dtim_period);
1689 cmd->flags = __cpu_to_le32(flags);
1690 cmd->bcn_tx_rate = __cpu_to_le32(arg->bcn_tx_rate);
1691 cmd->bcn_tx_power = __cpu_to_le32(arg->bcn_tx_power);
1693 if (arg->ssid) {
1694 cmd->ssid.ssid_len = __cpu_to_le32(arg->ssid_len);
1695 memcpy(cmd->ssid.ssid, arg->ssid, arg->ssid_len);
1698 cmd->chan.mhz = __cpu_to_le32(arg->channel.freq);
1700 cmd->chan.band_center_freq1 =
1701 __cpu_to_le32(arg->channel.band_center_freq1);
1703 cmd->chan.mode = arg->channel.mode;
1704 cmd->chan.min_power = arg->channel.min_power;
1705 cmd->chan.max_power = arg->channel.max_power;
1706 cmd->chan.reg_power = arg->channel.max_reg_power;
1707 cmd->chan.reg_classid = arg->channel.reg_class_id;
1708 cmd->chan.antenna_max = arg->channel.max_antenna_gain;
1710 ath10k_dbg(ATH10K_DBG_WMI,
1711 "wmi vdev %s id 0x%x freq %d, mode %d, ch_flags: 0x%0X,"
1712 "max_power: %d\n", cmdname, arg->vdev_id, arg->channel.freq,
1713 arg->channel.mode, flags, arg->channel.max_power);
1715 return ath10k_wmi_cmd_send(ar, skb, cmd_id);
1718 int ath10k_wmi_vdev_start(struct ath10k *ar,
1719 const struct wmi_vdev_start_request_arg *arg)
1721 return ath10k_wmi_vdev_start_restart(ar, arg,
1722 WMI_VDEV_START_REQUEST_CMDID);
1725 int ath10k_wmi_vdev_restart(struct ath10k *ar,
1726 const struct wmi_vdev_start_request_arg *arg)
1728 return ath10k_wmi_vdev_start_restart(ar, arg,
1729 WMI_VDEV_RESTART_REQUEST_CMDID);
1732 int ath10k_wmi_vdev_stop(struct ath10k *ar, u32 vdev_id)
1734 struct wmi_vdev_stop_cmd *cmd;
1735 struct sk_buff *skb;
1737 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1738 if (!skb)
1739 return -ENOMEM;
1741 cmd = (struct wmi_vdev_stop_cmd *)skb->data;
1742 cmd->vdev_id = __cpu_to_le32(vdev_id);
1744 ath10k_dbg(ATH10K_DBG_WMI, "wmi vdev stop id 0x%x\n", vdev_id);
1746 return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_STOP_CMDID);
1749 int ath10k_wmi_vdev_up(struct ath10k *ar, u32 vdev_id, u32 aid, const u8 *bssid)
1751 struct wmi_vdev_up_cmd *cmd;
1752 struct sk_buff *skb;
1754 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1755 if (!skb)
1756 return -ENOMEM;
1758 cmd = (struct wmi_vdev_up_cmd *)skb->data;
1759 cmd->vdev_id = __cpu_to_le32(vdev_id);
1760 cmd->vdev_assoc_id = __cpu_to_le32(aid);
1761 memcpy(&cmd->vdev_bssid.addr, bssid, 6);
1763 ath10k_dbg(ATH10K_DBG_WMI,
1764 "wmi mgmt vdev up id 0x%x assoc id %d bssid %pM\n",
1765 vdev_id, aid, bssid);
1767 return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_UP_CMDID);
1770 int ath10k_wmi_vdev_down(struct ath10k *ar, u32 vdev_id)
1772 struct wmi_vdev_down_cmd *cmd;
1773 struct sk_buff *skb;
1775 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1776 if (!skb)
1777 return -ENOMEM;
1779 cmd = (struct wmi_vdev_down_cmd *)skb->data;
1780 cmd->vdev_id = __cpu_to_le32(vdev_id);
1782 ath10k_dbg(ATH10K_DBG_WMI,
1783 "wmi mgmt vdev down id 0x%x\n", vdev_id);
1785 return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DOWN_CMDID);
1788 int ath10k_wmi_vdev_set_param(struct ath10k *ar, u32 vdev_id,
1789 enum wmi_vdev_param param_id, u32 param_value)
1791 struct wmi_vdev_set_param_cmd *cmd;
1792 struct sk_buff *skb;
1794 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1795 if (!skb)
1796 return -ENOMEM;
1798 cmd = (struct wmi_vdev_set_param_cmd *)skb->data;
1799 cmd->vdev_id = __cpu_to_le32(vdev_id);
1800 cmd->param_id = __cpu_to_le32(param_id);
1801 cmd->param_value = __cpu_to_le32(param_value);
1803 ath10k_dbg(ATH10K_DBG_WMI,
1804 "wmi vdev id 0x%x set param %d value %d\n",
1805 vdev_id, param_id, param_value);
1807 return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_SET_PARAM_CMDID);
1810 int ath10k_wmi_vdev_install_key(struct ath10k *ar,
1811 const struct wmi_vdev_install_key_arg *arg)
1813 struct wmi_vdev_install_key_cmd *cmd;
1814 struct sk_buff *skb;
1816 if (arg->key_cipher == WMI_CIPHER_NONE && arg->key_data != NULL)
1817 return -EINVAL;
1818 if (arg->key_cipher != WMI_CIPHER_NONE && arg->key_data == NULL)
1819 return -EINVAL;
1821 skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->key_len);
1822 if (!skb)
1823 return -ENOMEM;
1825 cmd = (struct wmi_vdev_install_key_cmd *)skb->data;
1826 cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
1827 cmd->key_idx = __cpu_to_le32(arg->key_idx);
1828 cmd->key_flags = __cpu_to_le32(arg->key_flags);
1829 cmd->key_cipher = __cpu_to_le32(arg->key_cipher);
1830 cmd->key_len = __cpu_to_le32(arg->key_len);
1831 cmd->key_txmic_len = __cpu_to_le32(arg->key_txmic_len);
1832 cmd->key_rxmic_len = __cpu_to_le32(arg->key_rxmic_len);
1834 if (arg->macaddr)
1835 memcpy(cmd->peer_macaddr.addr, arg->macaddr, ETH_ALEN);
1836 if (arg->key_data)
1837 memcpy(cmd->key_data, arg->key_data, arg->key_len);
1839 ath10k_dbg(ATH10K_DBG_WMI,
1840 "wmi vdev install key idx %d cipher %d len %d\n",
1841 arg->key_idx, arg->key_cipher, arg->key_len);
1842 return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_INSTALL_KEY_CMDID);
1845 int ath10k_wmi_peer_create(struct ath10k *ar, u32 vdev_id,
1846 const u8 peer_addr[ETH_ALEN])
1848 struct wmi_peer_create_cmd *cmd;
1849 struct sk_buff *skb;
1851 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1852 if (!skb)
1853 return -ENOMEM;
1855 cmd = (struct wmi_peer_create_cmd *)skb->data;
1856 cmd->vdev_id = __cpu_to_le32(vdev_id);
1857 memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
1859 ath10k_dbg(ATH10K_DBG_WMI,
1860 "wmi peer create vdev_id %d peer_addr %pM\n",
1861 vdev_id, peer_addr);
1862 return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_CREATE_CMDID);
1865 int ath10k_wmi_peer_delete(struct ath10k *ar, u32 vdev_id,
1866 const u8 peer_addr[ETH_ALEN])
1868 struct wmi_peer_delete_cmd *cmd;
1869 struct sk_buff *skb;
1871 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1872 if (!skb)
1873 return -ENOMEM;
1875 cmd = (struct wmi_peer_delete_cmd *)skb->data;
1876 cmd->vdev_id = __cpu_to_le32(vdev_id);
1877 memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
1879 ath10k_dbg(ATH10K_DBG_WMI,
1880 "wmi peer delete vdev_id %d peer_addr %pM\n",
1881 vdev_id, peer_addr);
1882 return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_DELETE_CMDID);
1885 int ath10k_wmi_peer_flush(struct ath10k *ar, u32 vdev_id,
1886 const u8 peer_addr[ETH_ALEN], u32 tid_bitmap)
1888 struct wmi_peer_flush_tids_cmd *cmd;
1889 struct sk_buff *skb;
1891 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1892 if (!skb)
1893 return -ENOMEM;
1895 cmd = (struct wmi_peer_flush_tids_cmd *)skb->data;
1896 cmd->vdev_id = __cpu_to_le32(vdev_id);
1897 cmd->peer_tid_bitmap = __cpu_to_le32(tid_bitmap);
1898 memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
1900 ath10k_dbg(ATH10K_DBG_WMI,
1901 "wmi peer flush vdev_id %d peer_addr %pM tids %08x\n",
1902 vdev_id, peer_addr, tid_bitmap);
1903 return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_FLUSH_TIDS_CMDID);
1906 int ath10k_wmi_peer_set_param(struct ath10k *ar, u32 vdev_id,
1907 const u8 *peer_addr, enum wmi_peer_param param_id,
1908 u32 param_value)
1910 struct wmi_peer_set_param_cmd *cmd;
1911 struct sk_buff *skb;
1913 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1914 if (!skb)
1915 return -ENOMEM;
1917 cmd = (struct wmi_peer_set_param_cmd *)skb->data;
1918 cmd->vdev_id = __cpu_to_le32(vdev_id);
1919 cmd->param_id = __cpu_to_le32(param_id);
1920 cmd->param_value = __cpu_to_le32(param_value);
1921 memcpy(&cmd->peer_macaddr.addr, peer_addr, 6);
1923 ath10k_dbg(ATH10K_DBG_WMI,
1924 "wmi vdev %d peer 0x%pM set param %d value %d\n",
1925 vdev_id, peer_addr, param_id, param_value);
1927 return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_SET_PARAM_CMDID);
1930 int ath10k_wmi_set_psmode(struct ath10k *ar, u32 vdev_id,
1931 enum wmi_sta_ps_mode psmode)
1933 struct wmi_sta_powersave_mode_cmd *cmd;
1934 struct sk_buff *skb;
1936 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1937 if (!skb)
1938 return -ENOMEM;
1940 cmd = (struct wmi_sta_powersave_mode_cmd *)skb->data;
1941 cmd->vdev_id = __cpu_to_le32(vdev_id);
1942 cmd->sta_ps_mode = __cpu_to_le32(psmode);
1944 ath10k_dbg(ATH10K_DBG_WMI,
1945 "wmi set powersave id 0x%x mode %d\n",
1946 vdev_id, psmode);
1948 return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_MODE_CMDID);
1951 int ath10k_wmi_set_sta_ps_param(struct ath10k *ar, u32 vdev_id,
1952 enum wmi_sta_powersave_param param_id,
1953 u32 value)
1955 struct wmi_sta_powersave_param_cmd *cmd;
1956 struct sk_buff *skb;
1958 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1959 if (!skb)
1960 return -ENOMEM;
1962 cmd = (struct wmi_sta_powersave_param_cmd *)skb->data;
1963 cmd->vdev_id = __cpu_to_le32(vdev_id);
1964 cmd->param_id = __cpu_to_le32(param_id);
1965 cmd->param_value = __cpu_to_le32(value);
1967 ath10k_dbg(ATH10K_DBG_WMI,
1968 "wmi sta ps param vdev_id 0x%x param %d value %d\n",
1969 vdev_id, param_id, value);
1970 return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_PARAM_CMDID);
1973 int ath10k_wmi_set_ap_ps_param(struct ath10k *ar, u32 vdev_id, const u8 *mac,
1974 enum wmi_ap_ps_peer_param param_id, u32 value)
1976 struct wmi_ap_ps_peer_cmd *cmd;
1977 struct sk_buff *skb;
1979 if (!mac)
1980 return -EINVAL;
1982 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1983 if (!skb)
1984 return -ENOMEM;
1986 cmd = (struct wmi_ap_ps_peer_cmd *)skb->data;
1987 cmd->vdev_id = __cpu_to_le32(vdev_id);
1988 cmd->param_id = __cpu_to_le32(param_id);
1989 cmd->param_value = __cpu_to_le32(value);
1990 memcpy(&cmd->peer_macaddr, mac, ETH_ALEN);
1992 ath10k_dbg(ATH10K_DBG_WMI,
1993 "wmi ap ps param vdev_id 0x%X param %d value %d mac_addr %pM\n",
1994 vdev_id, param_id, value, mac);
1996 return ath10k_wmi_cmd_send(ar, skb, WMI_AP_PS_PEER_PARAM_CMDID);
1999 int ath10k_wmi_scan_chan_list(struct ath10k *ar,
2000 const struct wmi_scan_chan_list_arg *arg)
2002 struct wmi_scan_chan_list_cmd *cmd;
2003 struct sk_buff *skb;
2004 struct wmi_channel_arg *ch;
2005 struct wmi_channel *ci;
2006 int len;
2007 int i;
2009 len = sizeof(*cmd) + arg->n_channels * sizeof(struct wmi_channel);
2011 skb = ath10k_wmi_alloc_skb(len);
2012 if (!skb)
2013 return -EINVAL;
2015 cmd = (struct wmi_scan_chan_list_cmd *)skb->data;
2016 cmd->num_scan_chans = __cpu_to_le32(arg->n_channels);
2018 for (i = 0; i < arg->n_channels; i++) {
2019 u32 flags = 0;
2021 ch = &arg->channels[i];
2022 ci = &cmd->chan_info[i];
2024 if (ch->passive)
2025 flags |= WMI_CHAN_FLAG_PASSIVE;
2026 if (ch->allow_ibss)
2027 flags |= WMI_CHAN_FLAG_ADHOC_ALLOWED;
2028 if (ch->allow_ht)
2029 flags |= WMI_CHAN_FLAG_ALLOW_HT;
2030 if (ch->allow_vht)
2031 flags |= WMI_CHAN_FLAG_ALLOW_VHT;
2032 if (ch->ht40plus)
2033 flags |= WMI_CHAN_FLAG_HT40_PLUS;
2035 ci->mhz = __cpu_to_le32(ch->freq);
2036 ci->band_center_freq1 = __cpu_to_le32(ch->freq);
2037 ci->band_center_freq2 = 0;
2038 ci->min_power = ch->min_power;
2039 ci->max_power = ch->max_power;
2040 ci->reg_power = ch->max_reg_power;
2041 ci->antenna_max = ch->max_antenna_gain;
2042 ci->antenna_max = 0;
2044 /* mode & flags share storage */
2045 ci->mode = ch->mode;
2046 ci->flags |= __cpu_to_le32(flags);
2049 return ath10k_wmi_cmd_send(ar, skb, WMI_SCAN_CHAN_LIST_CMDID);
2052 int ath10k_wmi_peer_assoc(struct ath10k *ar,
2053 const struct wmi_peer_assoc_complete_arg *arg)
2055 struct wmi_peer_assoc_complete_cmd *cmd;
2056 struct sk_buff *skb;
2058 if (arg->peer_mpdu_density > 16)
2059 return -EINVAL;
2060 if (arg->peer_legacy_rates.num_rates > MAX_SUPPORTED_RATES)
2061 return -EINVAL;
2062 if (arg->peer_ht_rates.num_rates > MAX_SUPPORTED_RATES)
2063 return -EINVAL;
2065 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
2066 if (!skb)
2067 return -ENOMEM;
2069 cmd = (struct wmi_peer_assoc_complete_cmd *)skb->data;
2070 cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
2071 cmd->peer_new_assoc = __cpu_to_le32(arg->peer_reassoc ? 0 : 1);
2072 cmd->peer_associd = __cpu_to_le32(arg->peer_aid);
2073 cmd->peer_flags = __cpu_to_le32(arg->peer_flags);
2074 cmd->peer_caps = __cpu_to_le32(arg->peer_caps);
2075 cmd->peer_listen_intval = __cpu_to_le32(arg->peer_listen_intval);
2076 cmd->peer_ht_caps = __cpu_to_le32(arg->peer_ht_caps);
2077 cmd->peer_max_mpdu = __cpu_to_le32(arg->peer_max_mpdu);
2078 cmd->peer_mpdu_density = __cpu_to_le32(arg->peer_mpdu_density);
2079 cmd->peer_rate_caps = __cpu_to_le32(arg->peer_rate_caps);
2080 cmd->peer_nss = __cpu_to_le32(arg->peer_num_spatial_streams);
2081 cmd->peer_vht_caps = __cpu_to_le32(arg->peer_vht_caps);
2082 cmd->peer_phymode = __cpu_to_le32(arg->peer_phymode);
2084 memcpy(cmd->peer_macaddr.addr, arg->addr, ETH_ALEN);
2086 cmd->peer_legacy_rates.num_rates =
2087 __cpu_to_le32(arg->peer_legacy_rates.num_rates);
2088 memcpy(cmd->peer_legacy_rates.rates, arg->peer_legacy_rates.rates,
2089 arg->peer_legacy_rates.num_rates);
2091 cmd->peer_ht_rates.num_rates =
2092 __cpu_to_le32(arg->peer_ht_rates.num_rates);
2093 memcpy(cmd->peer_ht_rates.rates, arg->peer_ht_rates.rates,
2094 arg->peer_ht_rates.num_rates);
2096 cmd->peer_vht_rates.rx_max_rate =
2097 __cpu_to_le32(arg->peer_vht_rates.rx_max_rate);
2098 cmd->peer_vht_rates.rx_mcs_set =
2099 __cpu_to_le32(arg->peer_vht_rates.rx_mcs_set);
2100 cmd->peer_vht_rates.tx_max_rate =
2101 __cpu_to_le32(arg->peer_vht_rates.tx_max_rate);
2102 cmd->peer_vht_rates.tx_mcs_set =
2103 __cpu_to_le32(arg->peer_vht_rates.tx_mcs_set);
2105 ath10k_dbg(ATH10K_DBG_WMI,
2106 "wmi peer assoc vdev %d addr %pM\n",
2107 arg->vdev_id, arg->addr);
2108 return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_ASSOC_CMDID);
2111 int ath10k_wmi_beacon_send(struct ath10k *ar, const struct wmi_bcn_tx_arg *arg)
2113 struct wmi_bcn_tx_cmd *cmd;
2114 struct sk_buff *skb;
2116 skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->bcn_len);
2117 if (!skb)
2118 return -ENOMEM;
2120 cmd = (struct wmi_bcn_tx_cmd *)skb->data;
2121 cmd->hdr.vdev_id = __cpu_to_le32(arg->vdev_id);
2122 cmd->hdr.tx_rate = __cpu_to_le32(arg->tx_rate);
2123 cmd->hdr.tx_power = __cpu_to_le32(arg->tx_power);
2124 cmd->hdr.bcn_len = __cpu_to_le32(arg->bcn_len);
2125 memcpy(cmd->bcn, arg->bcn, arg->bcn_len);
2127 return ath10k_wmi_cmd_send(ar, skb, WMI_BCN_TX_CMDID);
2130 static void ath10k_wmi_pdev_set_wmm_param(struct wmi_wmm_params *params,
2131 const struct wmi_wmm_params_arg *arg)
2133 params->cwmin = __cpu_to_le32(arg->cwmin);
2134 params->cwmax = __cpu_to_le32(arg->cwmax);
2135 params->aifs = __cpu_to_le32(arg->aifs);
2136 params->txop = __cpu_to_le32(arg->txop);
2137 params->acm = __cpu_to_le32(arg->acm);
2138 params->no_ack = __cpu_to_le32(arg->no_ack);
2141 int ath10k_wmi_pdev_set_wmm_params(struct ath10k *ar,
2142 const struct wmi_pdev_set_wmm_params_arg *arg)
2144 struct wmi_pdev_set_wmm_params *cmd;
2145 struct sk_buff *skb;
2147 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
2148 if (!skb)
2149 return -ENOMEM;
2151 cmd = (struct wmi_pdev_set_wmm_params *)skb->data;
2152 ath10k_wmi_pdev_set_wmm_param(&cmd->ac_be, &arg->ac_be);
2153 ath10k_wmi_pdev_set_wmm_param(&cmd->ac_bk, &arg->ac_bk);
2154 ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vi, &arg->ac_vi);
2155 ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vo, &arg->ac_vo);
2157 ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set wmm params\n");
2158 return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_WMM_PARAMS_CMDID);
2161 int ath10k_wmi_request_stats(struct ath10k *ar, enum wmi_stats_id stats_id)
2163 struct wmi_request_stats_cmd *cmd;
2164 struct sk_buff *skb;
2166 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
2167 if (!skb)
2168 return -ENOMEM;
2170 cmd = (struct wmi_request_stats_cmd *)skb->data;
2171 cmd->stats_id = __cpu_to_le32(stats_id);
2173 ath10k_dbg(ATH10K_DBG_WMI, "wmi request stats %d\n", (int)stats_id);
2174 return ath10k_wmi_cmd_send(ar, skb, WMI_REQUEST_STATS_CMDID);
2177 int ath10k_wmi_force_fw_hang(struct ath10k *ar,
2178 enum wmi_force_fw_hang_type type, u32 delay_ms)
2180 struct wmi_force_fw_hang_cmd *cmd;
2181 struct sk_buff *skb;
2183 skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
2184 if (!skb)
2185 return -ENOMEM;
2187 cmd = (struct wmi_force_fw_hang_cmd *)skb->data;
2188 cmd->type = __cpu_to_le32(type);
2189 cmd->delay_ms = __cpu_to_le32(delay_ms);
2191 ath10k_dbg(ATH10K_DBG_WMI, "wmi force fw hang %d delay %d\n",
2192 type, delay_ms);
2193 return ath10k_wmi_cmd_send(ar, skb, WMI_FORCE_FW_HANG_CMDID);