x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath5k / base.c
blob69f58b073e85ff1a183ec1f06e803ff9da00806c
1 /*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
8 * All rights reserved.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 #include <linux/module.h>
46 #include <linux/delay.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/hardirq.h>
49 #include <linux/if.h>
50 #include <linux/io.h>
51 #include <linux/netdevice.h>
52 #include <linux/cache.h>
53 #include <linux/ethtool.h>
54 #include <linux/uaccess.h>
55 #include <linux/slab.h>
56 #include <linux/etherdevice.h>
57 #include <linux/nl80211.h>
59 #include <net/cfg80211.h>
60 #include <net/ieee80211_radiotap.h>
62 #include <asm/unaligned.h>
64 #include <net/mac80211.h>
65 #include "base.h"
66 #include "reg.h"
67 #include "debug.h"
68 #include "ani.h"
69 #include "ath5k.h"
70 #include "../regd.h"
72 #define CREATE_TRACE_POINTS
73 #include "trace.h"
75 bool ath5k_modparam_nohwcrypt;
76 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
77 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
79 static bool modparam_fastchanswitch;
80 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
81 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
83 static bool ath5k_modparam_no_hw_rfkill_switch;
84 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
85 bool, S_IRUGO);
86 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
89 /* Module info */
90 MODULE_AUTHOR("Jiri Slaby");
91 MODULE_AUTHOR("Nick Kossifidis");
92 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
93 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
94 MODULE_LICENSE("Dual BSD/GPL");
96 static int ath5k_init(struct ieee80211_hw *hw);
97 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
98 bool skip_pcu);
100 /* Known SREVs */
101 static const struct ath5k_srev_name srev_names[] = {
102 #ifdef CONFIG_ATHEROS_AR231X
103 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R2 },
104 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R7 },
105 { "2313", AR5K_VERSION_MAC, AR5K_SREV_AR2313_R8 },
106 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R6 },
107 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R7 },
108 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R1 },
109 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R2 },
110 #else
111 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
112 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
113 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
114 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
115 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
116 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
117 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
118 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
119 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
120 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
121 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
122 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
123 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
124 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
125 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
126 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
127 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
128 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
129 #endif
130 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
131 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
132 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
133 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
134 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
135 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
136 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
137 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
138 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
139 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
140 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
141 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
142 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
143 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
144 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
145 #ifdef CONFIG_ATHEROS_AR231X
146 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
147 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
148 #endif
149 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
152 static const struct ieee80211_rate ath5k_rates[] = {
153 { .bitrate = 10,
154 .hw_value = ATH5K_RATE_CODE_1M, },
155 { .bitrate = 20,
156 .hw_value = ATH5K_RATE_CODE_2M,
157 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
158 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
159 { .bitrate = 55,
160 .hw_value = ATH5K_RATE_CODE_5_5M,
161 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
162 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
163 { .bitrate = 110,
164 .hw_value = ATH5K_RATE_CODE_11M,
165 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
166 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
167 { .bitrate = 60,
168 .hw_value = ATH5K_RATE_CODE_6M,
169 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
170 IEEE80211_RATE_SUPPORTS_10MHZ },
171 { .bitrate = 90,
172 .hw_value = ATH5K_RATE_CODE_9M,
173 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
174 IEEE80211_RATE_SUPPORTS_10MHZ },
175 { .bitrate = 120,
176 .hw_value = ATH5K_RATE_CODE_12M,
177 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
178 IEEE80211_RATE_SUPPORTS_10MHZ },
179 { .bitrate = 180,
180 .hw_value = ATH5K_RATE_CODE_18M,
181 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
182 IEEE80211_RATE_SUPPORTS_10MHZ },
183 { .bitrate = 240,
184 .hw_value = ATH5K_RATE_CODE_24M,
185 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
186 IEEE80211_RATE_SUPPORTS_10MHZ },
187 { .bitrate = 360,
188 .hw_value = ATH5K_RATE_CODE_36M,
189 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
190 IEEE80211_RATE_SUPPORTS_10MHZ },
191 { .bitrate = 480,
192 .hw_value = ATH5K_RATE_CODE_48M,
193 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
194 IEEE80211_RATE_SUPPORTS_10MHZ },
195 { .bitrate = 540,
196 .hw_value = ATH5K_RATE_CODE_54M,
197 .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
198 IEEE80211_RATE_SUPPORTS_10MHZ },
201 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
203 u64 tsf = ath5k_hw_get_tsf64(ah);
205 if ((tsf & 0x7fff) < rstamp)
206 tsf -= 0x8000;
208 return (tsf & ~0x7fff) | rstamp;
211 const char *
212 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
214 const char *name = "xxxxx";
215 unsigned int i;
217 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
218 if (srev_names[i].sr_type != type)
219 continue;
221 if ((val & 0xf0) == srev_names[i].sr_val)
222 name = srev_names[i].sr_name;
224 if ((val & 0xff) == srev_names[i].sr_val) {
225 name = srev_names[i].sr_name;
226 break;
230 return name;
232 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
234 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
235 return ath5k_hw_reg_read(ah, reg_offset);
238 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
240 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
241 ath5k_hw_reg_write(ah, val, reg_offset);
244 static const struct ath_ops ath5k_common_ops = {
245 .read = ath5k_ioread32,
246 .write = ath5k_iowrite32,
249 /***********************\
250 * Driver Initialization *
251 \***********************/
253 static void ath5k_reg_notifier(struct wiphy *wiphy,
254 struct regulatory_request *request)
256 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
257 struct ath5k_hw *ah = hw->priv;
258 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
260 ath_reg_notifier_apply(wiphy, request, regulatory);
263 /********************\
264 * Channel/mode setup *
265 \********************/
268 * Returns true for the channel numbers used.
270 #ifdef CONFIG_ATH5K_TEST_CHANNELS
271 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
273 return true;
276 #else
277 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
279 if (band == IEEE80211_BAND_2GHZ && chan <= 14)
280 return true;
282 return /* UNII 1,2 */
283 (((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
284 /* midband */
285 ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
286 /* UNII-3 */
287 ((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
288 /* 802.11j 5.030-5.080 GHz (20MHz) */
289 (chan == 8 || chan == 12 || chan == 16) ||
290 /* 802.11j 4.9GHz (20MHz) */
291 (chan == 184 || chan == 188 || chan == 192 || chan == 196));
293 #endif
295 static unsigned int
296 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
297 unsigned int mode, unsigned int max)
299 unsigned int count, size, freq, ch;
300 enum ieee80211_band band;
302 switch (mode) {
303 case AR5K_MODE_11A:
304 /* 1..220, but 2GHz frequencies are filtered by check_channel */
305 size = 220;
306 band = IEEE80211_BAND_5GHZ;
307 break;
308 case AR5K_MODE_11B:
309 case AR5K_MODE_11G:
310 size = 26;
311 band = IEEE80211_BAND_2GHZ;
312 break;
313 default:
314 ATH5K_WARN(ah, "bad mode, not copying channels\n");
315 return 0;
318 count = 0;
319 for (ch = 1; ch <= size && count < max; ch++) {
320 freq = ieee80211_channel_to_frequency(ch, band);
322 if (freq == 0) /* mapping failed - not a standard channel */
323 continue;
325 /* Write channel info, needed for ath5k_channel_ok() */
326 channels[count].center_freq = freq;
327 channels[count].band = band;
328 channels[count].hw_value = mode;
330 /* Check if channel is supported by the chipset */
331 if (!ath5k_channel_ok(ah, &channels[count]))
332 continue;
334 if (!ath5k_is_standard_channel(ch, band))
335 continue;
337 count++;
340 return count;
343 static void
344 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
346 u8 i;
348 for (i = 0; i < AR5K_MAX_RATES; i++)
349 ah->rate_idx[b->band][i] = -1;
351 for (i = 0; i < b->n_bitrates; i++) {
352 ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
353 if (b->bitrates[i].hw_value_short)
354 ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
358 static int
359 ath5k_setup_bands(struct ieee80211_hw *hw)
361 struct ath5k_hw *ah = hw->priv;
362 struct ieee80211_supported_band *sband;
363 int max_c, count_c = 0;
364 int i;
366 BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
367 max_c = ARRAY_SIZE(ah->channels);
369 /* 2GHz band */
370 sband = &ah->sbands[IEEE80211_BAND_2GHZ];
371 sband->band = IEEE80211_BAND_2GHZ;
372 sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
374 if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
375 /* G mode */
376 memcpy(sband->bitrates, &ath5k_rates[0],
377 sizeof(struct ieee80211_rate) * 12);
378 sband->n_bitrates = 12;
380 sband->channels = ah->channels;
381 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
382 AR5K_MODE_11G, max_c);
384 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
385 count_c = sband->n_channels;
386 max_c -= count_c;
387 } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
388 /* B mode */
389 memcpy(sband->bitrates, &ath5k_rates[0],
390 sizeof(struct ieee80211_rate) * 4);
391 sband->n_bitrates = 4;
393 /* 5211 only supports B rates and uses 4bit rate codes
394 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
395 * fix them up here:
397 if (ah->ah_version == AR5K_AR5211) {
398 for (i = 0; i < 4; i++) {
399 sband->bitrates[i].hw_value =
400 sband->bitrates[i].hw_value & 0xF;
401 sband->bitrates[i].hw_value_short =
402 sband->bitrates[i].hw_value_short & 0xF;
406 sband->channels = ah->channels;
407 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
408 AR5K_MODE_11B, max_c);
410 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
411 count_c = sband->n_channels;
412 max_c -= count_c;
414 ath5k_setup_rate_idx(ah, sband);
416 /* 5GHz band, A mode */
417 if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
418 sband = &ah->sbands[IEEE80211_BAND_5GHZ];
419 sband->band = IEEE80211_BAND_5GHZ;
420 sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
422 memcpy(sband->bitrates, &ath5k_rates[4],
423 sizeof(struct ieee80211_rate) * 8);
424 sband->n_bitrates = 8;
426 sband->channels = &ah->channels[count_c];
427 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
428 AR5K_MODE_11A, max_c);
430 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
432 ath5k_setup_rate_idx(ah, sband);
434 ath5k_debug_dump_bands(ah);
436 return 0;
440 * Set/change channels. We always reset the chip.
441 * To accomplish this we must first cleanup any pending DMA,
442 * then restart stuff after a la ath5k_init.
444 * Called with ah->lock.
447 ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
449 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
450 "channel set, resetting (%u -> %u MHz)\n",
451 ah->curchan->center_freq, chandef->chan->center_freq);
453 switch (chandef->width) {
454 case NL80211_CHAN_WIDTH_20:
455 case NL80211_CHAN_WIDTH_20_NOHT:
456 ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
457 break;
458 case NL80211_CHAN_WIDTH_5:
459 ah->ah_bwmode = AR5K_BWMODE_5MHZ;
460 break;
461 case NL80211_CHAN_WIDTH_10:
462 ah->ah_bwmode = AR5K_BWMODE_10MHZ;
463 break;
464 default:
465 WARN_ON(1);
466 return -EINVAL;
470 * To switch channels clear any pending DMA operations;
471 * wait long enough for the RX fifo to drain, reset the
472 * hardware at the new frequency, and then re-enable
473 * the relevant bits of the h/w.
475 return ath5k_reset(ah, chandef->chan, true);
478 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
480 struct ath5k_vif_iter_data *iter_data = data;
481 int i;
482 struct ath5k_vif *avf = (void *)vif->drv_priv;
484 if (iter_data->hw_macaddr)
485 for (i = 0; i < ETH_ALEN; i++)
486 iter_data->mask[i] &=
487 ~(iter_data->hw_macaddr[i] ^ mac[i]);
489 if (!iter_data->found_active) {
490 iter_data->found_active = true;
491 memcpy(iter_data->active_mac, mac, ETH_ALEN);
494 if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
495 if (ether_addr_equal(iter_data->hw_macaddr, mac))
496 iter_data->need_set_hw_addr = false;
498 if (!iter_data->any_assoc) {
499 if (avf->assoc)
500 iter_data->any_assoc = true;
503 /* Calculate combined mode - when APs are active, operate in AP mode.
504 * Otherwise use the mode of the new interface. This can currently
505 * only deal with combinations of APs and STAs. Only one ad-hoc
506 * interfaces is allowed.
508 if (avf->opmode == NL80211_IFTYPE_AP)
509 iter_data->opmode = NL80211_IFTYPE_AP;
510 else {
511 if (avf->opmode == NL80211_IFTYPE_STATION)
512 iter_data->n_stas++;
513 if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
514 iter_data->opmode = avf->opmode;
518 void
519 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
520 struct ieee80211_vif *vif)
522 struct ath_common *common = ath5k_hw_common(ah);
523 struct ath5k_vif_iter_data iter_data;
524 u32 rfilt;
527 * Use the hardware MAC address as reference, the hardware uses it
528 * together with the BSSID mask when matching addresses.
530 iter_data.hw_macaddr = common->macaddr;
531 memset(&iter_data.mask, 0xff, ETH_ALEN);
532 iter_data.found_active = false;
533 iter_data.need_set_hw_addr = true;
534 iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
535 iter_data.n_stas = 0;
537 if (vif)
538 ath5k_vif_iter(&iter_data, vif->addr, vif);
540 /* Get list of all active MAC addresses */
541 ieee80211_iterate_active_interfaces_atomic(
542 ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
543 ath5k_vif_iter, &iter_data);
544 memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
546 ah->opmode = iter_data.opmode;
547 if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
548 /* Nothing active, default to station mode */
549 ah->opmode = NL80211_IFTYPE_STATION;
551 ath5k_hw_set_opmode(ah, ah->opmode);
552 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
553 ah->opmode, ath_opmode_to_string(ah->opmode));
555 if (iter_data.need_set_hw_addr && iter_data.found_active)
556 ath5k_hw_set_lladdr(ah, iter_data.active_mac);
558 if (ath5k_hw_hasbssidmask(ah))
559 ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
561 /* Set up RX Filter */
562 if (iter_data.n_stas > 1) {
563 /* If you have multiple STA interfaces connected to
564 * different APs, ARPs are not received (most of the time?)
565 * Enabling PROMISC appears to fix that problem.
567 ah->filter_flags |= AR5K_RX_FILTER_PROM;
570 rfilt = ah->filter_flags;
571 ath5k_hw_set_rx_filter(ah, rfilt);
572 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
575 static inline int
576 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
578 int rix;
580 /* return base rate on errors */
581 if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
582 "hw_rix out of bounds: %x\n", hw_rix))
583 return 0;
585 rix = ah->rate_idx[ah->curchan->band][hw_rix];
586 if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
587 rix = 0;
589 return rix;
592 /***************\
593 * Buffers setup *
594 \***************/
596 static
597 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
599 struct ath_common *common = ath5k_hw_common(ah);
600 struct sk_buff *skb;
603 * Allocate buffer with headroom_needed space for the
604 * fake physical layer header at the start.
606 skb = ath_rxbuf_alloc(common,
607 common->rx_bufsize,
608 GFP_ATOMIC);
610 if (!skb) {
611 ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
612 common->rx_bufsize);
613 return NULL;
616 *skb_addr = dma_map_single(ah->dev,
617 skb->data, common->rx_bufsize,
618 DMA_FROM_DEVICE);
620 if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
621 ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
622 dev_kfree_skb(skb);
623 return NULL;
625 return skb;
628 static int
629 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
631 struct sk_buff *skb = bf->skb;
632 struct ath5k_desc *ds;
633 int ret;
635 if (!skb) {
636 skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
637 if (!skb)
638 return -ENOMEM;
639 bf->skb = skb;
643 * Setup descriptors. For receive we always terminate
644 * the descriptor list with a self-linked entry so we'll
645 * not get overrun under high load (as can happen with a
646 * 5212 when ANI processing enables PHY error frames).
648 * To ensure the last descriptor is self-linked we create
649 * each descriptor as self-linked and add it to the end. As
650 * each additional descriptor is added the previous self-linked
651 * entry is "fixed" naturally. This should be safe even
652 * if DMA is happening. When processing RX interrupts we
653 * never remove/process the last, self-linked, entry on the
654 * descriptor list. This ensures the hardware always has
655 * someplace to write a new frame.
657 ds = bf->desc;
658 ds->ds_link = bf->daddr; /* link to self */
659 ds->ds_data = bf->skbaddr;
660 ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
661 if (ret) {
662 ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
663 return ret;
666 if (ah->rxlink != NULL)
667 *ah->rxlink = bf->daddr;
668 ah->rxlink = &ds->ds_link;
669 return 0;
672 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
674 struct ieee80211_hdr *hdr;
675 enum ath5k_pkt_type htype;
676 __le16 fc;
678 hdr = (struct ieee80211_hdr *)skb->data;
679 fc = hdr->frame_control;
681 if (ieee80211_is_beacon(fc))
682 htype = AR5K_PKT_TYPE_BEACON;
683 else if (ieee80211_is_probe_resp(fc))
684 htype = AR5K_PKT_TYPE_PROBE_RESP;
685 else if (ieee80211_is_atim(fc))
686 htype = AR5K_PKT_TYPE_ATIM;
687 else if (ieee80211_is_pspoll(fc))
688 htype = AR5K_PKT_TYPE_PSPOLL;
689 else
690 htype = AR5K_PKT_TYPE_NORMAL;
692 return htype;
695 static struct ieee80211_rate *
696 ath5k_get_rate(const struct ieee80211_hw *hw,
697 const struct ieee80211_tx_info *info,
698 struct ath5k_buf *bf, int idx)
701 * convert a ieee80211_tx_rate RC-table entry to
702 * the respective ieee80211_rate struct
704 if (bf->rates[idx].idx < 0) {
705 return NULL;
708 return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
711 static u16
712 ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
713 const struct ieee80211_tx_info *info,
714 struct ath5k_buf *bf, int idx)
716 struct ieee80211_rate *rate;
717 u16 hw_rate;
718 u8 rc_flags;
720 rate = ath5k_get_rate(hw, info, bf, idx);
721 if (!rate)
722 return 0;
724 rc_flags = bf->rates[idx].flags;
725 hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
726 rate->hw_value_short : rate->hw_value;
728 return hw_rate;
731 static int
732 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
733 struct ath5k_txq *txq, int padsize,
734 struct ieee80211_tx_control *control)
736 struct ath5k_desc *ds = bf->desc;
737 struct sk_buff *skb = bf->skb;
738 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
739 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
740 struct ieee80211_rate *rate;
741 unsigned int mrr_rate[3], mrr_tries[3];
742 int i, ret;
743 u16 hw_rate;
744 u16 cts_rate = 0;
745 u16 duration = 0;
746 u8 rc_flags;
748 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
750 /* XXX endianness */
751 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
752 DMA_TO_DEVICE);
754 ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates,
755 ARRAY_SIZE(bf->rates));
757 rate = ath5k_get_rate(ah->hw, info, bf, 0);
759 if (!rate) {
760 ret = -EINVAL;
761 goto err_unmap;
764 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
765 flags |= AR5K_TXDESC_NOACK;
767 rc_flags = info->control.rates[0].flags;
769 hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
771 pktlen = skb->len;
773 /* FIXME: If we are in g mode and rate is a CCK rate
774 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
775 * from tx power (value is in dB units already) */
776 if (info->control.hw_key) {
777 keyidx = info->control.hw_key->hw_key_idx;
778 pktlen += info->control.hw_key->icv_len;
780 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
781 flags |= AR5K_TXDESC_RTSENA;
782 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
783 duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
784 info->control.vif, pktlen, info));
786 if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
787 flags |= AR5K_TXDESC_CTSENA;
788 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
789 duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
790 info->control.vif, pktlen, info));
793 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
794 ieee80211_get_hdrlen_from_skb(skb), padsize,
795 get_hw_packet_type(skb),
796 (ah->ah_txpower.txp_requested * 2),
797 hw_rate,
798 bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
799 cts_rate, duration);
800 if (ret)
801 goto err_unmap;
803 /* Set up MRR descriptor */
804 if (ah->ah_capabilities.cap_has_mrr_support) {
805 memset(mrr_rate, 0, sizeof(mrr_rate));
806 memset(mrr_tries, 0, sizeof(mrr_tries));
808 for (i = 0; i < 3; i++) {
810 rate = ath5k_get_rate(ah->hw, info, bf, i);
811 if (!rate)
812 break;
814 mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
815 mrr_tries[i] = bf->rates[i].count;
818 ath5k_hw_setup_mrr_tx_desc(ah, ds,
819 mrr_rate[0], mrr_tries[0],
820 mrr_rate[1], mrr_tries[1],
821 mrr_rate[2], mrr_tries[2]);
824 ds->ds_link = 0;
825 ds->ds_data = bf->skbaddr;
827 spin_lock_bh(&txq->lock);
828 list_add_tail(&bf->list, &txq->q);
829 txq->txq_len++;
830 if (txq->link == NULL) /* is this first packet? */
831 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
832 else /* no, so only link it */
833 *txq->link = bf->daddr;
835 txq->link = &ds->ds_link;
836 ath5k_hw_start_tx_dma(ah, txq->qnum);
837 mmiowb();
838 spin_unlock_bh(&txq->lock);
840 return 0;
841 err_unmap:
842 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
843 return ret;
846 /*******************\
847 * Descriptors setup *
848 \*******************/
850 static int
851 ath5k_desc_alloc(struct ath5k_hw *ah)
853 struct ath5k_desc *ds;
854 struct ath5k_buf *bf;
855 dma_addr_t da;
856 unsigned int i;
857 int ret;
859 /* allocate descriptors */
860 ah->desc_len = sizeof(struct ath5k_desc) *
861 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
863 ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
864 &ah->desc_daddr, GFP_KERNEL);
865 if (ah->desc == NULL) {
866 ATH5K_ERR(ah, "can't allocate descriptors\n");
867 ret = -ENOMEM;
868 goto err;
870 ds = ah->desc;
871 da = ah->desc_daddr;
872 ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
873 ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
875 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
876 sizeof(struct ath5k_buf), GFP_KERNEL);
877 if (bf == NULL) {
878 ATH5K_ERR(ah, "can't allocate bufptr\n");
879 ret = -ENOMEM;
880 goto err_free;
882 ah->bufptr = bf;
884 INIT_LIST_HEAD(&ah->rxbuf);
885 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
886 bf->desc = ds;
887 bf->daddr = da;
888 list_add_tail(&bf->list, &ah->rxbuf);
891 INIT_LIST_HEAD(&ah->txbuf);
892 ah->txbuf_len = ATH_TXBUF;
893 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
894 bf->desc = ds;
895 bf->daddr = da;
896 list_add_tail(&bf->list, &ah->txbuf);
899 /* beacon buffers */
900 INIT_LIST_HEAD(&ah->bcbuf);
901 for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
902 bf->desc = ds;
903 bf->daddr = da;
904 list_add_tail(&bf->list, &ah->bcbuf);
907 return 0;
908 err_free:
909 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
910 err:
911 ah->desc = NULL;
912 return ret;
915 void
916 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
918 BUG_ON(!bf);
919 if (!bf->skb)
920 return;
921 dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
922 DMA_TO_DEVICE);
923 ieee80211_free_txskb(ah->hw, bf->skb);
924 bf->skb = NULL;
925 bf->skbaddr = 0;
926 bf->desc->ds_data = 0;
929 void
930 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
932 struct ath_common *common = ath5k_hw_common(ah);
934 BUG_ON(!bf);
935 if (!bf->skb)
936 return;
937 dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
938 DMA_FROM_DEVICE);
939 dev_kfree_skb_any(bf->skb);
940 bf->skb = NULL;
941 bf->skbaddr = 0;
942 bf->desc->ds_data = 0;
945 static void
946 ath5k_desc_free(struct ath5k_hw *ah)
948 struct ath5k_buf *bf;
950 list_for_each_entry(bf, &ah->txbuf, list)
951 ath5k_txbuf_free_skb(ah, bf);
952 list_for_each_entry(bf, &ah->rxbuf, list)
953 ath5k_rxbuf_free_skb(ah, bf);
954 list_for_each_entry(bf, &ah->bcbuf, list)
955 ath5k_txbuf_free_skb(ah, bf);
957 /* Free memory associated with all descriptors */
958 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
959 ah->desc = NULL;
960 ah->desc_daddr = 0;
962 kfree(ah->bufptr);
963 ah->bufptr = NULL;
967 /**************\
968 * Queues setup *
969 \**************/
971 static struct ath5k_txq *
972 ath5k_txq_setup(struct ath5k_hw *ah,
973 int qtype, int subtype)
975 struct ath5k_txq *txq;
976 struct ath5k_txq_info qi = {
977 .tqi_subtype = subtype,
978 /* XXX: default values not correct for B and XR channels,
979 * but who cares? */
980 .tqi_aifs = AR5K_TUNE_AIFS,
981 .tqi_cw_min = AR5K_TUNE_CWMIN,
982 .tqi_cw_max = AR5K_TUNE_CWMAX
984 int qnum;
987 * Enable interrupts only for EOL and DESC conditions.
988 * We mark tx descriptors to receive a DESC interrupt
989 * when a tx queue gets deep; otherwise we wait for the
990 * EOL to reap descriptors. Note that this is done to
991 * reduce interrupt load and this only defers reaping
992 * descriptors, never transmitting frames. Aside from
993 * reducing interrupts this also permits more concurrency.
994 * The only potential downside is if the tx queue backs
995 * up in which case the top half of the kernel may backup
996 * due to a lack of tx descriptors.
998 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
999 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1000 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1001 if (qnum < 0) {
1003 * NB: don't print a message, this happens
1004 * normally on parts with too few tx queues
1006 return ERR_PTR(qnum);
1008 txq = &ah->txqs[qnum];
1009 if (!txq->setup) {
1010 txq->qnum = qnum;
1011 txq->link = NULL;
1012 INIT_LIST_HEAD(&txq->q);
1013 spin_lock_init(&txq->lock);
1014 txq->setup = true;
1015 txq->txq_len = 0;
1016 txq->txq_max = ATH5K_TXQ_LEN_MAX;
1017 txq->txq_poll_mark = false;
1018 txq->txq_stuck = 0;
1020 return &ah->txqs[qnum];
1023 static int
1024 ath5k_beaconq_setup(struct ath5k_hw *ah)
1026 struct ath5k_txq_info qi = {
1027 /* XXX: default values not correct for B and XR channels,
1028 * but who cares? */
1029 .tqi_aifs = AR5K_TUNE_AIFS,
1030 .tqi_cw_min = AR5K_TUNE_CWMIN,
1031 .tqi_cw_max = AR5K_TUNE_CWMAX,
1032 /* NB: for dynamic turbo, don't enable any other interrupts */
1033 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1036 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1039 static int
1040 ath5k_beaconq_config(struct ath5k_hw *ah)
1042 struct ath5k_txq_info qi;
1043 int ret;
1045 ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1046 if (ret)
1047 goto err;
1049 if (ah->opmode == NL80211_IFTYPE_AP ||
1050 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1052 * Always burst out beacon and CAB traffic
1053 * (aifs = cwmin = cwmax = 0)
1055 qi.tqi_aifs = 0;
1056 qi.tqi_cw_min = 0;
1057 qi.tqi_cw_max = 0;
1058 } else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1060 * Adhoc mode; backoff between 0 and (2 * cw_min).
1062 qi.tqi_aifs = 0;
1063 qi.tqi_cw_min = 0;
1064 qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1067 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1068 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1069 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1071 ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1072 if (ret) {
1073 ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1074 "hardware queue!\n", __func__);
1075 goto err;
1077 ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1078 if (ret)
1079 goto err;
1081 /* reconfigure cabq with ready time to 80% of beacon_interval */
1082 ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1083 if (ret)
1084 goto err;
1086 qi.tqi_ready_time = (ah->bintval * 80) / 100;
1087 ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1088 if (ret)
1089 goto err;
1091 ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1092 err:
1093 return ret;
1097 * ath5k_drain_tx_buffs - Empty tx buffers
1099 * @ah The &struct ath5k_hw
1101 * Empty tx buffers from all queues in preparation
1102 * of a reset or during shutdown.
1104 * NB: this assumes output has been stopped and
1105 * we do not need to block ath5k_tx_tasklet
1107 static void
1108 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1110 struct ath5k_txq *txq;
1111 struct ath5k_buf *bf, *bf0;
1112 int i;
1114 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1115 if (ah->txqs[i].setup) {
1116 txq = &ah->txqs[i];
1117 spin_lock_bh(&txq->lock);
1118 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1119 ath5k_debug_printtxbuf(ah, bf);
1121 ath5k_txbuf_free_skb(ah, bf);
1123 spin_lock(&ah->txbuflock);
1124 list_move_tail(&bf->list, &ah->txbuf);
1125 ah->txbuf_len++;
1126 txq->txq_len--;
1127 spin_unlock(&ah->txbuflock);
1129 txq->link = NULL;
1130 txq->txq_poll_mark = false;
1131 spin_unlock_bh(&txq->lock);
1136 static void
1137 ath5k_txq_release(struct ath5k_hw *ah)
1139 struct ath5k_txq *txq = ah->txqs;
1140 unsigned int i;
1142 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1143 if (txq->setup) {
1144 ath5k_hw_release_tx_queue(ah, txq->qnum);
1145 txq->setup = false;
1150 /*************\
1151 * RX Handling *
1152 \*************/
1155 * Enable the receive h/w following a reset.
1157 static int
1158 ath5k_rx_start(struct ath5k_hw *ah)
1160 struct ath_common *common = ath5k_hw_common(ah);
1161 struct ath5k_buf *bf;
1162 int ret;
1164 common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1166 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1167 common->cachelsz, common->rx_bufsize);
1169 spin_lock_bh(&ah->rxbuflock);
1170 ah->rxlink = NULL;
1171 list_for_each_entry(bf, &ah->rxbuf, list) {
1172 ret = ath5k_rxbuf_setup(ah, bf);
1173 if (ret != 0) {
1174 spin_unlock_bh(&ah->rxbuflock);
1175 goto err;
1178 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1179 ath5k_hw_set_rxdp(ah, bf->daddr);
1180 spin_unlock_bh(&ah->rxbuflock);
1182 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
1183 ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1184 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1186 return 0;
1187 err:
1188 return ret;
1192 * Disable the receive logic on PCU (DRU)
1193 * In preparation for a shutdown.
1195 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1196 * does.
1198 static void
1199 ath5k_rx_stop(struct ath5k_hw *ah)
1202 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1203 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
1205 ath5k_debug_printrxbuffs(ah);
1208 static unsigned int
1209 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1210 struct ath5k_rx_status *rs)
1212 struct ath_common *common = ath5k_hw_common(ah);
1213 struct ieee80211_hdr *hdr = (void *)skb->data;
1214 unsigned int keyix, hlen;
1216 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1217 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1218 return RX_FLAG_DECRYPTED;
1220 /* Apparently when a default key is used to decrypt the packet
1221 the hw does not set the index used to decrypt. In such cases
1222 get the index from the packet. */
1223 hlen = ieee80211_hdrlen(hdr->frame_control);
1224 if (ieee80211_has_protected(hdr->frame_control) &&
1225 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1226 skb->len >= hlen + 4) {
1227 keyix = skb->data[hlen + 3] >> 6;
1229 if (test_bit(keyix, common->keymap))
1230 return RX_FLAG_DECRYPTED;
1233 return 0;
1237 static void
1238 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1239 struct ieee80211_rx_status *rxs)
1241 struct ath_common *common = ath5k_hw_common(ah);
1242 u64 tsf, bc_tstamp;
1243 u32 hw_tu;
1244 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1246 if (ieee80211_is_beacon(mgmt->frame_control) &&
1247 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1248 ether_addr_equal(mgmt->bssid, common->curbssid)) {
1250 * Received an IBSS beacon with the same BSSID. Hardware *must*
1251 * have updated the local TSF. We have to work around various
1252 * hardware bugs, though...
1254 tsf = ath5k_hw_get_tsf64(ah);
1255 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1256 hw_tu = TSF_TO_TU(tsf);
1258 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1259 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1260 (unsigned long long)bc_tstamp,
1261 (unsigned long long)rxs->mactime,
1262 (unsigned long long)(rxs->mactime - bc_tstamp),
1263 (unsigned long long)tsf);
1266 * Sometimes the HW will give us a wrong tstamp in the rx
1267 * status, causing the timestamp extension to go wrong.
1268 * (This seems to happen especially with beacon frames bigger
1269 * than 78 byte (incl. FCS))
1270 * But we know that the receive timestamp must be later than the
1271 * timestamp of the beacon since HW must have synced to that.
1273 * NOTE: here we assume mactime to be after the frame was
1274 * received, not like mac80211 which defines it at the start.
1276 if (bc_tstamp > rxs->mactime) {
1277 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1278 "fixing mactime from %llx to %llx\n",
1279 (unsigned long long)rxs->mactime,
1280 (unsigned long long)tsf);
1281 rxs->mactime = tsf;
1285 * Local TSF might have moved higher than our beacon timers,
1286 * in that case we have to update them to continue sending
1287 * beacons. This also takes care of synchronizing beacon sending
1288 * times with other stations.
1290 if (hw_tu >= ah->nexttbtt)
1291 ath5k_beacon_update_timers(ah, bc_tstamp);
1293 /* Check if the beacon timers are still correct, because a TSF
1294 * update might have created a window between them - for a
1295 * longer description see the comment of this function: */
1296 if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1297 ath5k_beacon_update_timers(ah, bc_tstamp);
1298 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1299 "fixed beacon timers after beacon receive\n");
1304 static void
1305 ath5k_update_beacon_rssi(struct ath5k_hw *ah, struct sk_buff *skb, int rssi)
1307 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1308 struct ath_common *common = ath5k_hw_common(ah);
1310 /* only beacons from our BSSID */
1311 if (!ieee80211_is_beacon(mgmt->frame_control) ||
1312 !ether_addr_equal(mgmt->bssid, common->curbssid))
1313 return;
1315 ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1317 /* in IBSS mode we should keep RSSI statistics per neighbour */
1318 /* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1322 * Compute padding position. skb must contain an IEEE 802.11 frame
1324 static int ath5k_common_padpos(struct sk_buff *skb)
1326 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1327 __le16 frame_control = hdr->frame_control;
1328 int padpos = 24;
1330 if (ieee80211_has_a4(frame_control))
1331 padpos += ETH_ALEN;
1333 if (ieee80211_is_data_qos(frame_control))
1334 padpos += IEEE80211_QOS_CTL_LEN;
1336 return padpos;
1340 * This function expects an 802.11 frame and returns the number of
1341 * bytes added, or -1 if we don't have enough header room.
1343 static int ath5k_add_padding(struct sk_buff *skb)
1345 int padpos = ath5k_common_padpos(skb);
1346 int padsize = padpos & 3;
1348 if (padsize && skb->len > padpos) {
1350 if (skb_headroom(skb) < padsize)
1351 return -1;
1353 skb_push(skb, padsize);
1354 memmove(skb->data, skb->data + padsize, padpos);
1355 return padsize;
1358 return 0;
1362 * The MAC header is padded to have 32-bit boundary if the
1363 * packet payload is non-zero. The general calculation for
1364 * padsize would take into account odd header lengths:
1365 * padsize = 4 - (hdrlen & 3); however, since only
1366 * even-length headers are used, padding can only be 0 or 2
1367 * bytes and we can optimize this a bit. We must not try to
1368 * remove padding from short control frames that do not have a
1369 * payload.
1371 * This function expects an 802.11 frame and returns the number of
1372 * bytes removed.
1374 static int ath5k_remove_padding(struct sk_buff *skb)
1376 int padpos = ath5k_common_padpos(skb);
1377 int padsize = padpos & 3;
1379 if (padsize && skb->len >= padpos + padsize) {
1380 memmove(skb->data + padsize, skb->data, padpos);
1381 skb_pull(skb, padsize);
1382 return padsize;
1385 return 0;
1388 static void
1389 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1390 struct ath5k_rx_status *rs)
1392 struct ieee80211_rx_status *rxs;
1394 ath5k_remove_padding(skb);
1396 rxs = IEEE80211_SKB_RXCB(skb);
1398 rxs->flag = 0;
1399 if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1400 rxs->flag |= RX_FLAG_MMIC_ERROR;
1403 * always extend the mac timestamp, since this information is
1404 * also needed for proper IBSS merging.
1406 * XXX: it might be too late to do it here, since rs_tstamp is
1407 * 15bit only. that means TSF extension has to be done within
1408 * 32768usec (about 32ms). it might be necessary to move this to
1409 * the interrupt handler, like it is done in madwifi.
1411 rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1412 rxs->flag |= RX_FLAG_MACTIME_END;
1414 rxs->freq = ah->curchan->center_freq;
1415 rxs->band = ah->curchan->band;
1417 rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1419 rxs->antenna = rs->rs_antenna;
1421 if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1422 ah->stats.antenna_rx[rs->rs_antenna]++;
1423 else
1424 ah->stats.antenna_rx[0]++; /* invalid */
1426 rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1427 rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1428 switch (ah->ah_bwmode) {
1429 case AR5K_BWMODE_5MHZ:
1430 rxs->flag |= RX_FLAG_5MHZ;
1431 break;
1432 case AR5K_BWMODE_10MHZ:
1433 rxs->flag |= RX_FLAG_10MHZ;
1434 break;
1435 default:
1436 break;
1439 if (rxs->rate_idx >= 0 && rs->rs_rate ==
1440 ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1441 rxs->flag |= RX_FLAG_SHORTPRE;
1443 trace_ath5k_rx(ah, skb);
1445 ath5k_update_beacon_rssi(ah, skb, rs->rs_rssi);
1447 /* check beacons in IBSS mode */
1448 if (ah->opmode == NL80211_IFTYPE_ADHOC)
1449 ath5k_check_ibss_tsf(ah, skb, rxs);
1451 ieee80211_rx(ah->hw, skb);
1454 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1456 * Check if we want to further process this frame or not. Also update
1457 * statistics. Return true if we want this frame, false if not.
1459 static bool
1460 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1462 ah->stats.rx_all_count++;
1463 ah->stats.rx_bytes_count += rs->rs_datalen;
1465 if (unlikely(rs->rs_status)) {
1466 if (rs->rs_status & AR5K_RXERR_CRC)
1467 ah->stats.rxerr_crc++;
1468 if (rs->rs_status & AR5K_RXERR_FIFO)
1469 ah->stats.rxerr_fifo++;
1470 if (rs->rs_status & AR5K_RXERR_PHY) {
1471 ah->stats.rxerr_phy++;
1472 if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1473 ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1474 return false;
1476 if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1478 * Decrypt error. If the error occurred
1479 * because there was no hardware key, then
1480 * let the frame through so the upper layers
1481 * can process it. This is necessary for 5210
1482 * parts which have no way to setup a ``clear''
1483 * key cache entry.
1485 * XXX do key cache faulting
1487 ah->stats.rxerr_decrypt++;
1488 if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1489 !(rs->rs_status & AR5K_RXERR_CRC))
1490 return true;
1492 if (rs->rs_status & AR5K_RXERR_MIC) {
1493 ah->stats.rxerr_mic++;
1494 return true;
1497 /* reject any frames with non-crypto errors */
1498 if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1499 return false;
1502 if (unlikely(rs->rs_more)) {
1503 ah->stats.rxerr_jumbo++;
1504 return false;
1506 return true;
1509 static void
1510 ath5k_set_current_imask(struct ath5k_hw *ah)
1512 enum ath5k_int imask;
1513 unsigned long flags;
1515 spin_lock_irqsave(&ah->irqlock, flags);
1516 imask = ah->imask;
1517 if (ah->rx_pending)
1518 imask &= ~AR5K_INT_RX_ALL;
1519 if (ah->tx_pending)
1520 imask &= ~AR5K_INT_TX_ALL;
1521 ath5k_hw_set_imr(ah, imask);
1522 spin_unlock_irqrestore(&ah->irqlock, flags);
1525 static void
1526 ath5k_tasklet_rx(unsigned long data)
1528 struct ath5k_rx_status rs = {};
1529 struct sk_buff *skb, *next_skb;
1530 dma_addr_t next_skb_addr;
1531 struct ath5k_hw *ah = (void *)data;
1532 struct ath_common *common = ath5k_hw_common(ah);
1533 struct ath5k_buf *bf;
1534 struct ath5k_desc *ds;
1535 int ret;
1537 spin_lock(&ah->rxbuflock);
1538 if (list_empty(&ah->rxbuf)) {
1539 ATH5K_WARN(ah, "empty rx buf pool\n");
1540 goto unlock;
1542 do {
1543 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1544 BUG_ON(bf->skb == NULL);
1545 skb = bf->skb;
1546 ds = bf->desc;
1548 /* bail if HW is still using self-linked descriptor */
1549 if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1550 break;
1552 ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1553 if (unlikely(ret == -EINPROGRESS))
1554 break;
1555 else if (unlikely(ret)) {
1556 ATH5K_ERR(ah, "error in processing rx descriptor\n");
1557 ah->stats.rxerr_proc++;
1558 break;
1561 if (ath5k_receive_frame_ok(ah, &rs)) {
1562 next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1565 * If we can't replace bf->skb with a new skb under
1566 * memory pressure, just skip this packet
1568 if (!next_skb)
1569 goto next;
1571 dma_unmap_single(ah->dev, bf->skbaddr,
1572 common->rx_bufsize,
1573 DMA_FROM_DEVICE);
1575 skb_put(skb, rs.rs_datalen);
1577 ath5k_receive_frame(ah, skb, &rs);
1579 bf->skb = next_skb;
1580 bf->skbaddr = next_skb_addr;
1582 next:
1583 list_move_tail(&bf->list, &ah->rxbuf);
1584 } while (ath5k_rxbuf_setup(ah, bf) == 0);
1585 unlock:
1586 spin_unlock(&ah->rxbuflock);
1587 ah->rx_pending = false;
1588 ath5k_set_current_imask(ah);
1592 /*************\
1593 * TX Handling *
1594 \*************/
1596 void
1597 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1598 struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1600 struct ath5k_hw *ah = hw->priv;
1601 struct ath5k_buf *bf;
1602 unsigned long flags;
1603 int padsize;
1605 trace_ath5k_tx(ah, skb, txq);
1608 * The hardware expects the header padded to 4 byte boundaries.
1609 * If this is not the case, we add the padding after the header.
1611 padsize = ath5k_add_padding(skb);
1612 if (padsize < 0) {
1613 ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1614 " headroom to pad");
1615 goto drop_packet;
1618 if (txq->txq_len >= txq->txq_max &&
1619 txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1620 ieee80211_stop_queue(hw, txq->qnum);
1622 spin_lock_irqsave(&ah->txbuflock, flags);
1623 if (list_empty(&ah->txbuf)) {
1624 ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1625 spin_unlock_irqrestore(&ah->txbuflock, flags);
1626 ieee80211_stop_queues(hw);
1627 goto drop_packet;
1629 bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1630 list_del(&bf->list);
1631 ah->txbuf_len--;
1632 if (list_empty(&ah->txbuf))
1633 ieee80211_stop_queues(hw);
1634 spin_unlock_irqrestore(&ah->txbuflock, flags);
1636 bf->skb = skb;
1638 if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1639 bf->skb = NULL;
1640 spin_lock_irqsave(&ah->txbuflock, flags);
1641 list_add_tail(&bf->list, &ah->txbuf);
1642 ah->txbuf_len++;
1643 spin_unlock_irqrestore(&ah->txbuflock, flags);
1644 goto drop_packet;
1646 return;
1648 drop_packet:
1649 ieee80211_free_txskb(hw, skb);
1652 static void
1653 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1654 struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1655 struct ath5k_buf *bf)
1657 struct ieee80211_tx_info *info;
1658 u8 tries[3];
1659 int i;
1660 int size = 0;
1662 ah->stats.tx_all_count++;
1663 ah->stats.tx_bytes_count += skb->len;
1664 info = IEEE80211_SKB_CB(skb);
1666 size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1667 memcpy(info->status.rates, bf->rates, size);
1669 tries[0] = info->status.rates[0].count;
1670 tries[1] = info->status.rates[1].count;
1671 tries[2] = info->status.rates[2].count;
1673 ieee80211_tx_info_clear_status(info);
1675 for (i = 0; i < ts->ts_final_idx; i++) {
1676 struct ieee80211_tx_rate *r =
1677 &info->status.rates[i];
1679 r->count = tries[i];
1682 info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1683 info->status.rates[ts->ts_final_idx + 1].idx = -1;
1685 if (unlikely(ts->ts_status)) {
1686 ah->stats.ack_fail++;
1687 if (ts->ts_status & AR5K_TXERR_FILT) {
1688 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1689 ah->stats.txerr_filt++;
1691 if (ts->ts_status & AR5K_TXERR_XRETRY)
1692 ah->stats.txerr_retry++;
1693 if (ts->ts_status & AR5K_TXERR_FIFO)
1694 ah->stats.txerr_fifo++;
1695 } else {
1696 info->flags |= IEEE80211_TX_STAT_ACK;
1697 info->status.ack_signal = ts->ts_rssi;
1699 /* count the successful attempt as well */
1700 info->status.rates[ts->ts_final_idx].count++;
1704 * Remove MAC header padding before giving the frame
1705 * back to mac80211.
1707 ath5k_remove_padding(skb);
1709 if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1710 ah->stats.antenna_tx[ts->ts_antenna]++;
1711 else
1712 ah->stats.antenna_tx[0]++; /* invalid */
1714 trace_ath5k_tx_complete(ah, skb, txq, ts);
1715 ieee80211_tx_status(ah->hw, skb);
1718 static void
1719 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1721 struct ath5k_tx_status ts = {};
1722 struct ath5k_buf *bf, *bf0;
1723 struct ath5k_desc *ds;
1724 struct sk_buff *skb;
1725 int ret;
1727 spin_lock(&txq->lock);
1728 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1730 txq->txq_poll_mark = false;
1732 /* skb might already have been processed last time. */
1733 if (bf->skb != NULL) {
1734 ds = bf->desc;
1736 ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1737 if (unlikely(ret == -EINPROGRESS))
1738 break;
1739 else if (unlikely(ret)) {
1740 ATH5K_ERR(ah,
1741 "error %d while processing "
1742 "queue %u\n", ret, txq->qnum);
1743 break;
1746 skb = bf->skb;
1747 bf->skb = NULL;
1749 dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1750 DMA_TO_DEVICE);
1751 ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1755 * It's possible that the hardware can say the buffer is
1756 * completed when it hasn't yet loaded the ds_link from
1757 * host memory and moved on.
1758 * Always keep the last descriptor to avoid HW races...
1760 if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1761 spin_lock(&ah->txbuflock);
1762 list_move_tail(&bf->list, &ah->txbuf);
1763 ah->txbuf_len++;
1764 txq->txq_len--;
1765 spin_unlock(&ah->txbuflock);
1768 spin_unlock(&txq->lock);
1769 if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1770 ieee80211_wake_queue(ah->hw, txq->qnum);
1773 static void
1774 ath5k_tasklet_tx(unsigned long data)
1776 int i;
1777 struct ath5k_hw *ah = (void *)data;
1779 for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1780 if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1781 ath5k_tx_processq(ah, &ah->txqs[i]);
1783 ah->tx_pending = false;
1784 ath5k_set_current_imask(ah);
1788 /*****************\
1789 * Beacon handling *
1790 \*****************/
1793 * Setup the beacon frame for transmit.
1795 static int
1796 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1798 struct sk_buff *skb = bf->skb;
1799 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1800 struct ath5k_desc *ds;
1801 int ret = 0;
1802 u8 antenna;
1803 u32 flags;
1804 const int padsize = 0;
1806 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1807 DMA_TO_DEVICE);
1808 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1809 "skbaddr %llx\n", skb, skb->data, skb->len,
1810 (unsigned long long)bf->skbaddr);
1812 if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1813 ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1814 dev_kfree_skb_any(skb);
1815 bf->skb = NULL;
1816 return -EIO;
1819 ds = bf->desc;
1820 antenna = ah->ah_tx_ant;
1822 flags = AR5K_TXDESC_NOACK;
1823 if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1824 ds->ds_link = bf->daddr; /* self-linked */
1825 flags |= AR5K_TXDESC_VEOL;
1826 } else
1827 ds->ds_link = 0;
1830 * If we use multiple antennas on AP and use
1831 * the Sectored AP scenario, switch antenna every
1832 * 4 beacons to make sure everybody hears our AP.
1833 * When a client tries to associate, hw will keep
1834 * track of the tx antenna to be used for this client
1835 * automatically, based on ACKed packets.
1837 * Note: AP still listens and transmits RTS on the
1838 * default antenna which is supposed to be an omni.
1840 * Note2: On sectored scenarios it's possible to have
1841 * multiple antennas (1 omni -- the default -- and 14
1842 * sectors), so if we choose to actually support this
1843 * mode, we need to allow the user to set how many antennas
1844 * we have and tweak the code below to send beacons
1845 * on all of them.
1847 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1848 antenna = ah->bsent & 4 ? 2 : 1;
1851 /* FIXME: If we are in g mode and rate is a CCK rate
1852 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1853 * from tx power (value is in dB units already) */
1854 ds->ds_data = bf->skbaddr;
1855 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1856 ieee80211_get_hdrlen_from_skb(skb), padsize,
1857 AR5K_PKT_TYPE_BEACON,
1858 (ah->ah_txpower.txp_requested * 2),
1859 ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1860 1, AR5K_TXKEYIX_INVALID,
1861 antenna, flags, 0, 0);
1862 if (ret)
1863 goto err_unmap;
1865 return 0;
1866 err_unmap:
1867 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1868 return ret;
1872 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1873 * this is called only once at config_bss time, for AP we do it every
1874 * SWBA interrupt so that the TIM will reflect buffered frames.
1876 * Called with the beacon lock.
1879 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1881 int ret;
1882 struct ath5k_hw *ah = hw->priv;
1883 struct ath5k_vif *avf;
1884 struct sk_buff *skb;
1886 if (WARN_ON(!vif)) {
1887 ret = -EINVAL;
1888 goto out;
1891 skb = ieee80211_beacon_get(hw, vif);
1893 if (!skb) {
1894 ret = -ENOMEM;
1895 goto out;
1898 avf = (void *)vif->drv_priv;
1899 ath5k_txbuf_free_skb(ah, avf->bbuf);
1900 avf->bbuf->skb = skb;
1901 ret = ath5k_beacon_setup(ah, avf->bbuf);
1902 out:
1903 return ret;
1907 * Transmit a beacon frame at SWBA. Dynamic updates to the
1908 * frame contents are done as needed and the slot time is
1909 * also adjusted based on current state.
1911 * This is called from software irq context (beacontq tasklets)
1912 * or user context from ath5k_beacon_config.
1914 static void
1915 ath5k_beacon_send(struct ath5k_hw *ah)
1917 struct ieee80211_vif *vif;
1918 struct ath5k_vif *avf;
1919 struct ath5k_buf *bf;
1920 struct sk_buff *skb;
1921 int err;
1923 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1926 * Check if the previous beacon has gone out. If
1927 * not, don't don't try to post another: skip this
1928 * period and wait for the next. Missed beacons
1929 * indicate a problem and should not occur. If we
1930 * miss too many consecutive beacons reset the device.
1932 if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1933 ah->bmisscount++;
1934 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1935 "missed %u consecutive beacons\n", ah->bmisscount);
1936 if (ah->bmisscount > 10) { /* NB: 10 is a guess */
1937 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1938 "stuck beacon time (%u missed)\n",
1939 ah->bmisscount);
1940 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1941 "stuck beacon, resetting\n");
1942 ieee80211_queue_work(ah->hw, &ah->reset_work);
1944 return;
1946 if (unlikely(ah->bmisscount != 0)) {
1947 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1948 "resume beacon xmit after %u misses\n",
1949 ah->bmisscount);
1950 ah->bmisscount = 0;
1953 if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1954 ah->num_mesh_vifs > 1) ||
1955 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1956 u64 tsf = ath5k_hw_get_tsf64(ah);
1957 u32 tsftu = TSF_TO_TU(tsf);
1958 int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1959 vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1960 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1961 "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1962 (unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1963 } else /* only one interface */
1964 vif = ah->bslot[0];
1966 if (!vif)
1967 return;
1969 avf = (void *)vif->drv_priv;
1970 bf = avf->bbuf;
1973 * Stop any current dma and put the new frame on the queue.
1974 * This should never fail since we check above that no frames
1975 * are still pending on the queue.
1977 if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1978 ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1979 /* NB: hw still stops DMA, so proceed */
1982 /* refresh the beacon for AP or MESH mode */
1983 if (ah->opmode == NL80211_IFTYPE_AP ||
1984 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1985 err = ath5k_beacon_update(ah->hw, vif);
1986 if (err)
1987 return;
1990 if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1991 ah->opmode == NL80211_IFTYPE_MONITOR)) {
1992 ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1993 return;
1996 trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1998 ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1999 ath5k_hw_start_tx_dma(ah, ah->bhalq);
2000 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2001 ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
2003 skb = ieee80211_get_buffered_bc(ah->hw, vif);
2004 while (skb) {
2005 ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
2007 if (ah->cabq->txq_len >= ah->cabq->txq_max)
2008 break;
2010 skb = ieee80211_get_buffered_bc(ah->hw, vif);
2013 ah->bsent++;
2017 * ath5k_beacon_update_timers - update beacon timers
2019 * @ah: struct ath5k_hw pointer we are operating on
2020 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2021 * beacon timer update based on the current HW TSF.
2023 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2024 * of a received beacon or the current local hardware TSF and write it to the
2025 * beacon timer registers.
2027 * This is called in a variety of situations, e.g. when a beacon is received,
2028 * when a TSF update has been detected, but also when an new IBSS is created or
2029 * when we otherwise know we have to update the timers, but we keep it in this
2030 * function to have it all together in one place.
2032 void
2033 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
2035 u32 nexttbtt, intval, hw_tu, bc_tu;
2036 u64 hw_tsf;
2038 intval = ah->bintval & AR5K_BEACON_PERIOD;
2039 if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2040 + ah->num_mesh_vifs > 1) {
2041 intval /= ATH_BCBUF; /* staggered multi-bss beacons */
2042 if (intval < 15)
2043 ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2044 intval);
2046 if (WARN_ON(!intval))
2047 return;
2049 /* beacon TSF converted to TU */
2050 bc_tu = TSF_TO_TU(bc_tsf);
2052 /* current TSF converted to TU */
2053 hw_tsf = ath5k_hw_get_tsf64(ah);
2054 hw_tu = TSF_TO_TU(hw_tsf);
2056 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2057 /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2058 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2059 * configuration we need to make sure it is bigger than that. */
2061 if (bc_tsf == -1) {
2063 * no beacons received, called internally.
2064 * just need to refresh timers based on HW TSF.
2066 nexttbtt = roundup(hw_tu + FUDGE, intval);
2067 } else if (bc_tsf == 0) {
2069 * no beacon received, probably called by ath5k_reset_tsf().
2070 * reset TSF to start with 0.
2072 nexttbtt = intval;
2073 intval |= AR5K_BEACON_RESET_TSF;
2074 } else if (bc_tsf > hw_tsf) {
2076 * beacon received, SW merge happened but HW TSF not yet updated.
2077 * not possible to reconfigure timers yet, but next time we
2078 * receive a beacon with the same BSSID, the hardware will
2079 * automatically update the TSF and then we need to reconfigure
2080 * the timers.
2082 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2083 "need to wait for HW TSF sync\n");
2084 return;
2085 } else {
2087 * most important case for beacon synchronization between STA.
2089 * beacon received and HW TSF has been already updated by HW.
2090 * update next TBTT based on the TSF of the beacon, but make
2091 * sure it is ahead of our local TSF timer.
2093 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2095 #undef FUDGE
2097 ah->nexttbtt = nexttbtt;
2099 intval |= AR5K_BEACON_ENA;
2100 ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2103 * debugging output last in order to preserve the time critical aspect
2104 * of this function
2106 if (bc_tsf == -1)
2107 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2108 "reconfigured timers based on HW TSF\n");
2109 else if (bc_tsf == 0)
2110 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2111 "reset HW TSF and timers\n");
2112 else
2113 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2114 "updated timers based on beacon TSF\n");
2116 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2117 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2118 (unsigned long long) bc_tsf,
2119 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2120 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2121 intval & AR5K_BEACON_PERIOD,
2122 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2123 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2127 * ath5k_beacon_config - Configure the beacon queues and interrupts
2129 * @ah: struct ath5k_hw pointer we are operating on
2131 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2132 * interrupts to detect TSF updates only.
2134 void
2135 ath5k_beacon_config(struct ath5k_hw *ah)
2137 spin_lock_bh(&ah->block);
2138 ah->bmisscount = 0;
2139 ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2141 if (ah->enable_beacon) {
2143 * In IBSS mode we use a self-linked tx descriptor and let the
2144 * hardware send the beacons automatically. We have to load it
2145 * only once here.
2146 * We use the SWBA interrupt only to keep track of the beacon
2147 * timers in order to detect automatic TSF updates.
2149 ath5k_beaconq_config(ah);
2151 ah->imask |= AR5K_INT_SWBA;
2153 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2154 if (ath5k_hw_hasveol(ah))
2155 ath5k_beacon_send(ah);
2156 } else
2157 ath5k_beacon_update_timers(ah, -1);
2158 } else {
2159 ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2162 ath5k_hw_set_imr(ah, ah->imask);
2163 mmiowb();
2164 spin_unlock_bh(&ah->block);
2167 static void ath5k_tasklet_beacon(unsigned long data)
2169 struct ath5k_hw *ah = (struct ath5k_hw *) data;
2172 * Software beacon alert--time to send a beacon.
2174 * In IBSS mode we use this interrupt just to
2175 * keep track of the next TBTT (target beacon
2176 * transmission time) in order to detect whether
2177 * automatic TSF updates happened.
2179 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2180 /* XXX: only if VEOL supported */
2181 u64 tsf = ath5k_hw_get_tsf64(ah);
2182 ah->nexttbtt += ah->bintval;
2183 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2184 "SWBA nexttbtt: %x hw_tu: %x "
2185 "TSF: %llx\n",
2186 ah->nexttbtt,
2187 TSF_TO_TU(tsf),
2188 (unsigned long long) tsf);
2189 } else {
2190 spin_lock(&ah->block);
2191 ath5k_beacon_send(ah);
2192 spin_unlock(&ah->block);
2197 /********************\
2198 * Interrupt handling *
2199 \********************/
2201 static void
2202 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2204 if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2205 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2206 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2208 /* Run ANI only when calibration is not active */
2210 ah->ah_cal_next_ani = jiffies +
2211 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2212 tasklet_schedule(&ah->ani_tasklet);
2214 } else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2215 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2216 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2218 /* Run calibration only when another calibration
2219 * is not running.
2221 * Note: This is for both full/short calibration,
2222 * if it's time for a full one, ath5k_calibrate_work will deal
2223 * with it. */
2225 ah->ah_cal_next_short = jiffies +
2226 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2227 ieee80211_queue_work(ah->hw, &ah->calib_work);
2229 /* we could use SWI to generate enough interrupts to meet our
2230 * calibration interval requirements, if necessary:
2231 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2234 static void
2235 ath5k_schedule_rx(struct ath5k_hw *ah)
2237 ah->rx_pending = true;
2238 tasklet_schedule(&ah->rxtq);
2241 static void
2242 ath5k_schedule_tx(struct ath5k_hw *ah)
2244 ah->tx_pending = true;
2245 tasklet_schedule(&ah->txtq);
2248 static irqreturn_t
2249 ath5k_intr(int irq, void *dev_id)
2251 struct ath5k_hw *ah = dev_id;
2252 enum ath5k_int status;
2253 unsigned int counter = 1000;
2257 * If hw is not ready (or detached) and we get an
2258 * interrupt, or if we have no interrupts pending
2259 * (that means it's not for us) skip it.
2261 * NOTE: Group 0/1 PCI interface registers are not
2262 * supported on WiSOCs, so we can't check for pending
2263 * interrupts (ISR belongs to another register group
2264 * so we are ok).
2266 if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2267 ((ath5k_get_bus_type(ah) != ATH_AHB) &&
2268 !ath5k_hw_is_intr_pending(ah))))
2269 return IRQ_NONE;
2271 /** Main loop **/
2272 do {
2273 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2275 ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2276 status, ah->imask);
2279 * Fatal hw error -> Log and reset
2281 * Fatal errors are unrecoverable so we have to
2282 * reset the card. These errors include bus and
2283 * dma errors.
2285 if (unlikely(status & AR5K_INT_FATAL)) {
2287 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2288 "fatal int, resetting\n");
2289 ieee80211_queue_work(ah->hw, &ah->reset_work);
2292 * RX Overrun -> Count and reset if needed
2294 * Receive buffers are full. Either the bus is busy or
2295 * the CPU is not fast enough to process all received
2296 * frames.
2298 } else if (unlikely(status & AR5K_INT_RXORN)) {
2301 * Older chipsets need a reset to come out of this
2302 * condition, but we treat it as RX for newer chips.
2303 * We don't know exactly which versions need a reset
2304 * this guess is copied from the HAL.
2306 ah->stats.rxorn_intr++;
2308 if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2309 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2310 "rx overrun, resetting\n");
2311 ieee80211_queue_work(ah->hw, &ah->reset_work);
2312 } else
2313 ath5k_schedule_rx(ah);
2315 } else {
2317 /* Software Beacon Alert -> Schedule beacon tasklet */
2318 if (status & AR5K_INT_SWBA)
2319 tasklet_hi_schedule(&ah->beacontq);
2322 * No more RX descriptors -> Just count
2324 * NB: the hardware should re-read the link when
2325 * RXE bit is written, but it doesn't work at
2326 * least on older hardware revs.
2328 if (status & AR5K_INT_RXEOL)
2329 ah->stats.rxeol_intr++;
2332 /* TX Underrun -> Bump tx trigger level */
2333 if (status & AR5K_INT_TXURN)
2334 ath5k_hw_update_tx_triglevel(ah, true);
2336 /* RX -> Schedule rx tasklet */
2337 if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2338 ath5k_schedule_rx(ah);
2340 /* TX -> Schedule tx tasklet */
2341 if (status & (AR5K_INT_TXOK
2342 | AR5K_INT_TXDESC
2343 | AR5K_INT_TXERR
2344 | AR5K_INT_TXEOL))
2345 ath5k_schedule_tx(ah);
2347 /* Missed beacon -> TODO
2348 if (status & AR5K_INT_BMISS)
2351 /* MIB event -> Update counters and notify ANI */
2352 if (status & AR5K_INT_MIB) {
2353 ah->stats.mib_intr++;
2354 ath5k_hw_update_mib_counters(ah);
2355 ath5k_ani_mib_intr(ah);
2358 /* GPIO -> Notify RFKill layer */
2359 if (status & AR5K_INT_GPIO)
2360 tasklet_schedule(&ah->rf_kill.toggleq);
2364 if (ath5k_get_bus_type(ah) == ATH_AHB)
2365 break;
2367 } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2370 * Until we handle rx/tx interrupts mask them on IMR
2372 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2373 * and unset after we 've handled the interrupts.
2375 if (ah->rx_pending || ah->tx_pending)
2376 ath5k_set_current_imask(ah);
2378 if (unlikely(!counter))
2379 ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2381 /* Fire up calibration poll */
2382 ath5k_intr_calibration_poll(ah);
2384 return IRQ_HANDLED;
2388 * Periodically recalibrate the PHY to account
2389 * for temperature/environment changes.
2391 static void
2392 ath5k_calibrate_work(struct work_struct *work)
2394 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2395 calib_work);
2397 /* Should we run a full calibration ? */
2398 if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2400 ah->ah_cal_next_full = jiffies +
2401 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2402 ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2404 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2405 "running full calibration\n");
2407 if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2409 * Rfgain is out of bounds, reset the chip
2410 * to load new gain values.
2412 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2413 "got new rfgain, resetting\n");
2414 ieee80211_queue_work(ah->hw, &ah->reset_work);
2416 } else
2417 ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2420 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2421 ieee80211_frequency_to_channel(ah->curchan->center_freq),
2422 ah->curchan->hw_value);
2424 if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2425 ATH5K_ERR(ah, "calibration of channel %u failed\n",
2426 ieee80211_frequency_to_channel(
2427 ah->curchan->center_freq));
2429 /* Clear calibration flags */
2430 if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2431 ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2432 else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2433 ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2437 static void
2438 ath5k_tasklet_ani(unsigned long data)
2440 struct ath5k_hw *ah = (void *)data;
2442 ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2443 ath5k_ani_calibration(ah);
2444 ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2448 static void
2449 ath5k_tx_complete_poll_work(struct work_struct *work)
2451 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2452 tx_complete_work.work);
2453 struct ath5k_txq *txq;
2454 int i;
2455 bool needreset = false;
2457 if (!test_bit(ATH_STAT_STARTED, ah->status))
2458 return;
2460 mutex_lock(&ah->lock);
2462 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2463 if (ah->txqs[i].setup) {
2464 txq = &ah->txqs[i];
2465 spin_lock_bh(&txq->lock);
2466 if (txq->txq_len > 1) {
2467 if (txq->txq_poll_mark) {
2468 ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2469 "TX queue stuck %d\n",
2470 txq->qnum);
2471 needreset = true;
2472 txq->txq_stuck++;
2473 spin_unlock_bh(&txq->lock);
2474 break;
2475 } else {
2476 txq->txq_poll_mark = true;
2479 spin_unlock_bh(&txq->lock);
2483 if (needreset) {
2484 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2485 "TX queues stuck, resetting\n");
2486 ath5k_reset(ah, NULL, true);
2489 mutex_unlock(&ah->lock);
2491 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2492 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2496 /*************************\
2497 * Initialization routines *
2498 \*************************/
2500 static const struct ieee80211_iface_limit if_limits[] = {
2501 { .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) },
2502 { .max = 4, .types =
2503 #ifdef CONFIG_MAC80211_MESH
2504 BIT(NL80211_IFTYPE_MESH_POINT) |
2505 #endif
2506 BIT(NL80211_IFTYPE_AP) },
2509 static const struct ieee80211_iface_combination if_comb = {
2510 .limits = if_limits,
2511 .n_limits = ARRAY_SIZE(if_limits),
2512 .max_interfaces = 2048,
2513 .num_different_channels = 1,
2517 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2519 struct ieee80211_hw *hw = ah->hw;
2520 struct ath_common *common;
2521 int ret;
2522 int csz;
2524 /* Initialize driver private data */
2525 SET_IEEE80211_DEV(hw, ah->dev);
2526 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2527 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2528 IEEE80211_HW_SIGNAL_DBM |
2529 IEEE80211_HW_MFP_CAPABLE |
2530 IEEE80211_HW_REPORTS_TX_ACK_STATUS |
2531 IEEE80211_HW_SUPPORTS_RC_TABLE;
2533 hw->wiphy->interface_modes =
2534 BIT(NL80211_IFTYPE_AP) |
2535 BIT(NL80211_IFTYPE_STATION) |
2536 BIT(NL80211_IFTYPE_ADHOC) |
2537 BIT(NL80211_IFTYPE_MESH_POINT);
2539 hw->wiphy->iface_combinations = &if_comb;
2540 hw->wiphy->n_iface_combinations = 1;
2542 /* SW support for IBSS_RSN is provided by mac80211 */
2543 hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2545 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
2547 /* both antennas can be configured as RX or TX */
2548 hw->wiphy->available_antennas_tx = 0x3;
2549 hw->wiphy->available_antennas_rx = 0x3;
2551 hw->extra_tx_headroom = 2;
2552 hw->channel_change_time = 5000;
2555 * Mark the device as detached to avoid processing
2556 * interrupts until setup is complete.
2558 __set_bit(ATH_STAT_INVALID, ah->status);
2560 ah->opmode = NL80211_IFTYPE_STATION;
2561 ah->bintval = 1000;
2562 mutex_init(&ah->lock);
2563 spin_lock_init(&ah->rxbuflock);
2564 spin_lock_init(&ah->txbuflock);
2565 spin_lock_init(&ah->block);
2566 spin_lock_init(&ah->irqlock);
2568 /* Setup interrupt handler */
2569 ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2570 if (ret) {
2571 ATH5K_ERR(ah, "request_irq failed\n");
2572 goto err;
2575 common = ath5k_hw_common(ah);
2576 common->ops = &ath5k_common_ops;
2577 common->bus_ops = bus_ops;
2578 common->ah = ah;
2579 common->hw = hw;
2580 common->priv = ah;
2581 common->clockrate = 40;
2584 * Cache line size is used to size and align various
2585 * structures used to communicate with the hardware.
2587 ath5k_read_cachesize(common, &csz);
2588 common->cachelsz = csz << 2; /* convert to bytes */
2590 spin_lock_init(&common->cc_lock);
2592 /* Initialize device */
2593 ret = ath5k_hw_init(ah);
2594 if (ret)
2595 goto err_irq;
2597 /* Set up multi-rate retry capabilities */
2598 if (ah->ah_capabilities.cap_has_mrr_support) {
2599 hw->max_rates = 4;
2600 hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2601 AR5K_INIT_RETRY_LONG);
2604 hw->vif_data_size = sizeof(struct ath5k_vif);
2606 /* Finish private driver data initialization */
2607 ret = ath5k_init(hw);
2608 if (ret)
2609 goto err_ah;
2611 ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2612 ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2613 ah->ah_mac_srev,
2614 ah->ah_phy_revision);
2616 if (!ah->ah_single_chip) {
2617 /* Single chip radio (!RF5111) */
2618 if (ah->ah_radio_5ghz_revision &&
2619 !ah->ah_radio_2ghz_revision) {
2620 /* No 5GHz support -> report 2GHz radio */
2621 if (!test_bit(AR5K_MODE_11A,
2622 ah->ah_capabilities.cap_mode)) {
2623 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2624 ath5k_chip_name(AR5K_VERSION_RAD,
2625 ah->ah_radio_5ghz_revision),
2626 ah->ah_radio_5ghz_revision);
2627 /* No 2GHz support (5110 and some
2628 * 5GHz only cards) -> report 5GHz radio */
2629 } else if (!test_bit(AR5K_MODE_11B,
2630 ah->ah_capabilities.cap_mode)) {
2631 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2632 ath5k_chip_name(AR5K_VERSION_RAD,
2633 ah->ah_radio_5ghz_revision),
2634 ah->ah_radio_5ghz_revision);
2635 /* Multiband radio */
2636 } else {
2637 ATH5K_INFO(ah, "RF%s multiband radio found"
2638 " (0x%x)\n",
2639 ath5k_chip_name(AR5K_VERSION_RAD,
2640 ah->ah_radio_5ghz_revision),
2641 ah->ah_radio_5ghz_revision);
2644 /* Multi chip radio (RF5111 - RF2111) ->
2645 * report both 2GHz/5GHz radios */
2646 else if (ah->ah_radio_5ghz_revision &&
2647 ah->ah_radio_2ghz_revision) {
2648 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2649 ath5k_chip_name(AR5K_VERSION_RAD,
2650 ah->ah_radio_5ghz_revision),
2651 ah->ah_radio_5ghz_revision);
2652 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2653 ath5k_chip_name(AR5K_VERSION_RAD,
2654 ah->ah_radio_2ghz_revision),
2655 ah->ah_radio_2ghz_revision);
2659 ath5k_debug_init_device(ah);
2661 /* ready to process interrupts */
2662 __clear_bit(ATH_STAT_INVALID, ah->status);
2664 return 0;
2665 err_ah:
2666 ath5k_hw_deinit(ah);
2667 err_irq:
2668 free_irq(ah->irq, ah);
2669 err:
2670 return ret;
2673 static int
2674 ath5k_stop_locked(struct ath5k_hw *ah)
2677 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2678 test_bit(ATH_STAT_INVALID, ah->status));
2681 * Shutdown the hardware and driver:
2682 * stop output from above
2683 * disable interrupts
2684 * turn off timers
2685 * turn off the radio
2686 * clear transmit machinery
2687 * clear receive machinery
2688 * drain and release tx queues
2689 * reclaim beacon resources
2690 * power down hardware
2692 * Note that some of this work is not possible if the
2693 * hardware is gone (invalid).
2695 ieee80211_stop_queues(ah->hw);
2697 if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2698 ath5k_led_off(ah);
2699 ath5k_hw_set_imr(ah, 0);
2700 synchronize_irq(ah->irq);
2701 ath5k_rx_stop(ah);
2702 ath5k_hw_dma_stop(ah);
2703 ath5k_drain_tx_buffs(ah);
2704 ath5k_hw_phy_disable(ah);
2707 return 0;
2710 int ath5k_start(struct ieee80211_hw *hw)
2712 struct ath5k_hw *ah = hw->priv;
2713 struct ath_common *common = ath5k_hw_common(ah);
2714 int ret, i;
2716 mutex_lock(&ah->lock);
2718 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2721 * Stop anything previously setup. This is safe
2722 * no matter this is the first time through or not.
2724 ath5k_stop_locked(ah);
2727 * The basic interface to setting the hardware in a good
2728 * state is ``reset''. On return the hardware is known to
2729 * be powered up and with interrupts disabled. This must
2730 * be followed by initialization of the appropriate bits
2731 * and then setup of the interrupt mask.
2733 ah->curchan = ah->hw->conf.chandef.chan;
2734 ah->imask = AR5K_INT_RXOK
2735 | AR5K_INT_RXERR
2736 | AR5K_INT_RXEOL
2737 | AR5K_INT_RXORN
2738 | AR5K_INT_TXDESC
2739 | AR5K_INT_TXEOL
2740 | AR5K_INT_FATAL
2741 | AR5K_INT_GLOBAL
2742 | AR5K_INT_MIB;
2744 ret = ath5k_reset(ah, NULL, false);
2745 if (ret)
2746 goto done;
2748 if (!ath5k_modparam_no_hw_rfkill_switch)
2749 ath5k_rfkill_hw_start(ah);
2752 * Reset the key cache since some parts do not reset the
2753 * contents on initial power up or resume from suspend.
2755 for (i = 0; i < common->keymax; i++)
2756 ath_hw_keyreset(common, (u16) i);
2758 /* Use higher rates for acks instead of base
2759 * rate */
2760 ah->ah_ack_bitrate_high = true;
2762 for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2763 ah->bslot[i] = NULL;
2765 ret = 0;
2766 done:
2767 mmiowb();
2768 mutex_unlock(&ah->lock);
2770 set_bit(ATH_STAT_STARTED, ah->status);
2771 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2772 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2774 return ret;
2777 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2779 ah->rx_pending = false;
2780 ah->tx_pending = false;
2781 tasklet_kill(&ah->rxtq);
2782 tasklet_kill(&ah->txtq);
2783 tasklet_kill(&ah->beacontq);
2784 tasklet_kill(&ah->ani_tasklet);
2788 * Stop the device, grabbing the top-level lock to protect
2789 * against concurrent entry through ath5k_init (which can happen
2790 * if another thread does a system call and the thread doing the
2791 * stop is preempted).
2793 void ath5k_stop(struct ieee80211_hw *hw)
2795 struct ath5k_hw *ah = hw->priv;
2796 int ret;
2798 mutex_lock(&ah->lock);
2799 ret = ath5k_stop_locked(ah);
2800 if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2802 * Don't set the card in full sleep mode!
2804 * a) When the device is in this state it must be carefully
2805 * woken up or references to registers in the PCI clock
2806 * domain may freeze the bus (and system). This varies
2807 * by chip and is mostly an issue with newer parts
2808 * (madwifi sources mentioned srev >= 0x78) that go to
2809 * sleep more quickly.
2811 * b) On older chips full sleep results a weird behaviour
2812 * during wakeup. I tested various cards with srev < 0x78
2813 * and they don't wake up after module reload, a second
2814 * module reload is needed to bring the card up again.
2816 * Until we figure out what's going on don't enable
2817 * full chip reset on any chip (this is what Legacy HAL
2818 * and Sam's HAL do anyway). Instead Perform a full reset
2819 * on the device (same as initial state after attach) and
2820 * leave it idle (keep MAC/BB on warm reset) */
2821 ret = ath5k_hw_on_hold(ah);
2823 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2824 "putting device to sleep\n");
2827 mmiowb();
2828 mutex_unlock(&ah->lock);
2830 ath5k_stop_tasklets(ah);
2832 clear_bit(ATH_STAT_STARTED, ah->status);
2833 cancel_delayed_work_sync(&ah->tx_complete_work);
2835 if (!ath5k_modparam_no_hw_rfkill_switch)
2836 ath5k_rfkill_hw_stop(ah);
2840 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2841 * and change to the given channel.
2843 * This should be called with ah->lock.
2845 static int
2846 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2847 bool skip_pcu)
2849 struct ath_common *common = ath5k_hw_common(ah);
2850 int ret, ani_mode;
2851 bool fast;
2853 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2855 ath5k_hw_set_imr(ah, 0);
2856 synchronize_irq(ah->irq);
2857 ath5k_stop_tasklets(ah);
2859 /* Save ani mode and disable ANI during
2860 * reset. If we don't we might get false
2861 * PHY error interrupts. */
2862 ani_mode = ah->ani_state.ani_mode;
2863 ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2865 /* We are going to empty hw queues
2866 * so we should also free any remaining
2867 * tx buffers */
2868 ath5k_drain_tx_buffs(ah);
2869 if (chan)
2870 ah->curchan = chan;
2872 fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2874 ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2875 if (ret) {
2876 ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2877 goto err;
2880 ret = ath5k_rx_start(ah);
2881 if (ret) {
2882 ATH5K_ERR(ah, "can't start recv logic\n");
2883 goto err;
2886 ath5k_ani_init(ah, ani_mode);
2889 * Set calibration intervals
2891 * Note: We don't need to run calibration imediately
2892 * since some initial calibration is done on reset
2893 * even for fast channel switching. Also on scanning
2894 * this will get set again and again and it won't get
2895 * executed unless we connect somewhere and spend some
2896 * time on the channel (that's what calibration needs
2897 * anyway to be accurate).
2899 ah->ah_cal_next_full = jiffies +
2900 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2901 ah->ah_cal_next_ani = jiffies +
2902 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2903 ah->ah_cal_next_short = jiffies +
2904 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2906 ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2908 /* clear survey data and cycle counters */
2909 memset(&ah->survey, 0, sizeof(ah->survey));
2910 spin_lock_bh(&common->cc_lock);
2911 ath_hw_cycle_counters_update(common);
2912 memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2913 memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2914 spin_unlock_bh(&common->cc_lock);
2917 * Change channels and update the h/w rate map if we're switching;
2918 * e.g. 11a to 11b/g.
2920 * We may be doing a reset in response to an ioctl that changes the
2921 * channel so update any state that might change as a result.
2923 * XXX needed?
2925 /* ath5k_chan_change(ah, c); */
2927 ath5k_beacon_config(ah);
2928 /* intrs are enabled by ath5k_beacon_config */
2930 ieee80211_wake_queues(ah->hw);
2932 return 0;
2933 err:
2934 return ret;
2937 static void ath5k_reset_work(struct work_struct *work)
2939 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2940 reset_work);
2942 mutex_lock(&ah->lock);
2943 ath5k_reset(ah, NULL, true);
2944 mutex_unlock(&ah->lock);
2947 static int
2948 ath5k_init(struct ieee80211_hw *hw)
2951 struct ath5k_hw *ah = hw->priv;
2952 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2953 struct ath5k_txq *txq;
2954 u8 mac[ETH_ALEN] = {};
2955 int ret;
2959 * Collect the channel list. The 802.11 layer
2960 * is responsible for filtering this list based
2961 * on settings like the phy mode and regulatory
2962 * domain restrictions.
2964 ret = ath5k_setup_bands(hw);
2965 if (ret) {
2966 ATH5K_ERR(ah, "can't get channels\n");
2967 goto err;
2971 * Allocate tx+rx descriptors and populate the lists.
2973 ret = ath5k_desc_alloc(ah);
2974 if (ret) {
2975 ATH5K_ERR(ah, "can't allocate descriptors\n");
2976 goto err;
2980 * Allocate hardware transmit queues: one queue for
2981 * beacon frames and one data queue for each QoS
2982 * priority. Note that hw functions handle resetting
2983 * these queues at the needed time.
2985 ret = ath5k_beaconq_setup(ah);
2986 if (ret < 0) {
2987 ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2988 goto err_desc;
2990 ah->bhalq = ret;
2991 ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2992 if (IS_ERR(ah->cabq)) {
2993 ATH5K_ERR(ah, "can't setup cab queue\n");
2994 ret = PTR_ERR(ah->cabq);
2995 goto err_bhal;
2998 /* 5211 and 5212 usually support 10 queues but we better rely on the
2999 * capability information */
3000 if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
3001 /* This order matches mac80211's queue priority, so we can
3002 * directly use the mac80211 queue number without any mapping */
3003 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
3004 if (IS_ERR(txq)) {
3005 ATH5K_ERR(ah, "can't setup xmit queue\n");
3006 ret = PTR_ERR(txq);
3007 goto err_queues;
3009 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
3010 if (IS_ERR(txq)) {
3011 ATH5K_ERR(ah, "can't setup xmit queue\n");
3012 ret = PTR_ERR(txq);
3013 goto err_queues;
3015 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3016 if (IS_ERR(txq)) {
3017 ATH5K_ERR(ah, "can't setup xmit queue\n");
3018 ret = PTR_ERR(txq);
3019 goto err_queues;
3021 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
3022 if (IS_ERR(txq)) {
3023 ATH5K_ERR(ah, "can't setup xmit queue\n");
3024 ret = PTR_ERR(txq);
3025 goto err_queues;
3027 hw->queues = 4;
3028 } else {
3029 /* older hardware (5210) can only support one data queue */
3030 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3031 if (IS_ERR(txq)) {
3032 ATH5K_ERR(ah, "can't setup xmit queue\n");
3033 ret = PTR_ERR(txq);
3034 goto err_queues;
3036 hw->queues = 1;
3039 tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
3040 tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
3041 tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
3042 tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
3044 INIT_WORK(&ah->reset_work, ath5k_reset_work);
3045 INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3046 INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3048 ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3049 if (ret) {
3050 ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3051 goto err_queues;
3054 SET_IEEE80211_PERM_ADDR(hw, mac);
3055 /* All MAC address bits matter for ACKs */
3056 ath5k_update_bssid_mask_and_opmode(ah, NULL);
3058 regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3059 ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3060 if (ret) {
3061 ATH5K_ERR(ah, "can't initialize regulatory system\n");
3062 goto err_queues;
3065 ret = ieee80211_register_hw(hw);
3066 if (ret) {
3067 ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3068 goto err_queues;
3071 if (!ath_is_world_regd(regulatory))
3072 regulatory_hint(hw->wiphy, regulatory->alpha2);
3074 ath5k_init_leds(ah);
3076 ath5k_sysfs_register(ah);
3078 return 0;
3079 err_queues:
3080 ath5k_txq_release(ah);
3081 err_bhal:
3082 ath5k_hw_release_tx_queue(ah, ah->bhalq);
3083 err_desc:
3084 ath5k_desc_free(ah);
3085 err:
3086 return ret;
3089 void
3090 ath5k_deinit_ah(struct ath5k_hw *ah)
3092 struct ieee80211_hw *hw = ah->hw;
3095 * NB: the order of these is important:
3096 * o call the 802.11 layer before detaching ath5k_hw to
3097 * ensure callbacks into the driver to delete global
3098 * key cache entries can be handled
3099 * o reclaim the tx queue data structures after calling
3100 * the 802.11 layer as we'll get called back to reclaim
3101 * node state and potentially want to use them
3102 * o to cleanup the tx queues the hal is called, so detach
3103 * it last
3104 * XXX: ??? detach ath5k_hw ???
3105 * Other than that, it's straightforward...
3107 ieee80211_unregister_hw(hw);
3108 ath5k_desc_free(ah);
3109 ath5k_txq_release(ah);
3110 ath5k_hw_release_tx_queue(ah, ah->bhalq);
3111 ath5k_unregister_leds(ah);
3113 ath5k_sysfs_unregister(ah);
3115 * NB: can't reclaim these until after ieee80211_ifdetach
3116 * returns because we'll get called back to reclaim node
3117 * state and potentially want to use them.
3119 ath5k_hw_deinit(ah);
3120 free_irq(ah->irq, ah);
3123 bool
3124 ath5k_any_vif_assoc(struct ath5k_hw *ah)
3126 struct ath5k_vif_iter_data iter_data;
3127 iter_data.hw_macaddr = NULL;
3128 iter_data.any_assoc = false;
3129 iter_data.need_set_hw_addr = false;
3130 iter_data.found_active = true;
3132 ieee80211_iterate_active_interfaces_atomic(
3133 ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3134 ath5k_vif_iter, &iter_data);
3135 return iter_data.any_assoc;
3138 void
3139 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3141 struct ath5k_hw *ah = hw->priv;
3142 u32 rfilt;
3143 rfilt = ath5k_hw_get_rx_filter(ah);
3144 if (enable)
3145 rfilt |= AR5K_RX_FILTER_BEACON;
3146 else
3147 rfilt &= ~AR5K_RX_FILTER_BEACON;
3148 ath5k_hw_set_rx_filter(ah, rfilt);
3149 ah->filter_flags = rfilt;
3152 void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3153 const char *fmt, ...)
3155 struct va_format vaf;
3156 va_list args;
3158 va_start(args, fmt);
3160 vaf.fmt = fmt;
3161 vaf.va = &args;
3163 if (ah && ah->hw)
3164 printk("%s" pr_fmt("%s: %pV"),
3165 level, wiphy_name(ah->hw->wiphy), &vaf);
3166 else
3167 printk("%s" pr_fmt("%pV"), level, &vaf);
3169 va_end(args);