x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath5k / eeprom.c
blob94d34ee02265d11fed55b014b84058f39177c905
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 #include <linux/slab.h>
28 #include "ath5k.h"
29 #include "reg.h"
30 #include "debug.h"
33 /******************\
34 * Helper functions *
35 \******************/
38 * Translate binary channel representation in EEPROM to frequency
40 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
41 unsigned int mode)
43 u16 val;
45 if (bin == AR5K_EEPROM_CHANNEL_DIS)
46 return bin;
48 if (mode == AR5K_EEPROM_MODE_11A) {
49 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
50 val = (5 * bin) + 4800;
51 else
52 val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
53 (bin * 10) + 5100;
54 } else {
55 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
56 val = bin + 2300;
57 else
58 val = bin + 2400;
61 return val;
65 /*********\
66 * Parsers *
67 \*********/
70 * Initialize eeprom & capabilities structs
72 static int
73 ath5k_eeprom_init_header(struct ath5k_hw *ah)
75 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
76 u16 val;
77 u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
80 * Read values from EEPROM and store them in the capability structure
82 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
83 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
84 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
85 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
86 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
88 /* Return if we have an old EEPROM */
89 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
90 return 0;
93 * Validate the checksum of the EEPROM date. There are some
94 * devices with invalid EEPROMs.
96 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
97 if (val) {
98 eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
99 AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
100 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
101 eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
104 * Fail safe check to prevent stupid loops due
105 * to busted EEPROMs. XXX: This value is likely too
106 * big still, waiting on a better value.
108 if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
109 ATH5K_ERR(ah, "Invalid max custom EEPROM size: "
110 "%d (0x%04x) max expected: %d (0x%04x)\n",
111 eep_max, eep_max,
112 3 * AR5K_EEPROM_INFO_MAX,
113 3 * AR5K_EEPROM_INFO_MAX);
114 return -EIO;
118 for (cksum = 0, offset = 0; offset < eep_max; offset++) {
119 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
120 cksum ^= val;
122 if (cksum != AR5K_EEPROM_INFO_CKSUM) {
123 ATH5K_ERR(ah, "Invalid EEPROM "
124 "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
125 cksum, eep_max,
126 eep_max == AR5K_EEPROM_INFO_MAX ?
127 "default size" : "custom size");
128 return -EIO;
131 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
132 ee_ant_gain);
134 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
135 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
136 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
138 /* XXX: Don't know which versions include these two */
139 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
141 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
142 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
144 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
145 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
146 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
147 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
151 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
152 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
153 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
154 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
156 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
157 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
158 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
161 AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
163 if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
164 ee->ee_is_hb63 = true;
165 else
166 ee->ee_is_hb63 = false;
168 AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
169 ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
170 ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
172 /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
173 * and enable serdes programming if needed.
175 * XXX: Serdes values seem to be fixed so
176 * no need to read them here, we write them
177 * during ath5k_hw_init */
178 AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
179 ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
180 true : false;
182 return 0;
187 * Read antenna infos from eeprom
189 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
190 unsigned int mode)
192 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
193 u32 o = *offset;
194 u16 val;
195 int i = 0;
197 AR5K_EEPROM_READ(o++, val);
198 ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
199 ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
200 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
202 AR5K_EEPROM_READ(o++, val);
203 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
204 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
205 ee->ee_ant_control[mode][i++] = val & 0x3f;
207 AR5K_EEPROM_READ(o++, val);
208 ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
209 ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
210 ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
212 AR5K_EEPROM_READ(o++, val);
213 ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
214 ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
215 ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
216 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
218 AR5K_EEPROM_READ(o++, val);
219 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
220 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
221 ee->ee_ant_control[mode][i++] = val & 0x3f;
223 /* Get antenna switch tables */
224 ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
225 (ee->ee_ant_control[mode][0] << 4);
226 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
227 ee->ee_ant_control[mode][1] |
228 (ee->ee_ant_control[mode][2] << 6) |
229 (ee->ee_ant_control[mode][3] << 12) |
230 (ee->ee_ant_control[mode][4] << 18) |
231 (ee->ee_ant_control[mode][5] << 24);
232 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
233 ee->ee_ant_control[mode][6] |
234 (ee->ee_ant_control[mode][7] << 6) |
235 (ee->ee_ant_control[mode][8] << 12) |
236 (ee->ee_ant_control[mode][9] << 18) |
237 (ee->ee_ant_control[mode][10] << 24);
239 /* return new offset */
240 *offset = o;
242 return 0;
246 * Read supported modes and some mode-specific calibration data
247 * from eeprom
249 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
250 unsigned int mode)
252 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
253 u32 o = *offset;
254 u16 val;
256 ee->ee_n_piers[mode] = 0;
257 AR5K_EEPROM_READ(o++, val);
258 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
259 switch (mode) {
260 case AR5K_EEPROM_MODE_11A:
261 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
262 ee->ee_db[mode][3] = (val >> 2) & 0x7;
263 ee->ee_ob[mode][2] = (val << 1) & 0x7;
265 AR5K_EEPROM_READ(o++, val);
266 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
267 ee->ee_db[mode][2] = (val >> 12) & 0x7;
268 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
269 ee->ee_db[mode][1] = (val >> 6) & 0x7;
270 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
271 ee->ee_db[mode][0] = val & 0x7;
272 break;
273 case AR5K_EEPROM_MODE_11G:
274 case AR5K_EEPROM_MODE_11B:
275 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
276 ee->ee_db[mode][1] = val & 0x7;
277 break;
280 AR5K_EEPROM_READ(o++, val);
281 ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
282 ee->ee_thr_62[mode] = val & 0xff;
284 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
285 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
287 AR5K_EEPROM_READ(o++, val);
288 ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
289 ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
291 AR5K_EEPROM_READ(o++, val);
292 ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
294 if ((val & 0xff) & 0x80)
295 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
296 else
297 ee->ee_noise_floor_thr[mode] = val & 0xff;
299 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
300 ee->ee_noise_floor_thr[mode] =
301 mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
303 AR5K_EEPROM_READ(o++, val);
304 ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
305 ee->ee_x_gain[mode] = (val >> 1) & 0xf;
306 ee->ee_xpd[mode] = val & 0x1;
308 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
309 mode != AR5K_EEPROM_MODE_11B)
310 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
312 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
313 AR5K_EEPROM_READ(o++, val);
314 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
316 if (mode == AR5K_EEPROM_MODE_11A)
317 ee->ee_xr_power[mode] = val & 0x3f;
318 else {
319 /* b_DB_11[bg] and b_OB_11[bg] */
320 ee->ee_ob[mode][0] = val & 0x7;
321 ee->ee_db[mode][0] = (val >> 3) & 0x7;
325 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
326 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
327 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
328 } else {
329 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
331 AR5K_EEPROM_READ(o++, val);
332 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
334 if (mode == AR5K_EEPROM_MODE_11G) {
335 ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
336 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
337 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
341 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
342 mode == AR5K_EEPROM_MODE_11A) {
343 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
344 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
347 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
348 goto done;
350 /* Note: >= v5 have bg freq piers on another location
351 * so these freq piers are ignored for >= v5 (should be 0xff
352 * anyway) */
353 switch (mode) {
354 case AR5K_EEPROM_MODE_11A:
355 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
356 break;
358 AR5K_EEPROM_READ(o++, val);
359 ee->ee_margin_tx_rx[mode] = val & 0x3f;
360 break;
361 case AR5K_EEPROM_MODE_11B:
362 AR5K_EEPROM_READ(o++, val);
364 ee->ee_pwr_cal_b[0].freq =
365 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
366 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
367 ee->ee_n_piers[mode]++;
369 ee->ee_pwr_cal_b[1].freq =
370 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
371 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
372 ee->ee_n_piers[mode]++;
374 AR5K_EEPROM_READ(o++, val);
375 ee->ee_pwr_cal_b[2].freq =
376 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
377 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
378 ee->ee_n_piers[mode]++;
380 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
381 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
382 break;
383 case AR5K_EEPROM_MODE_11G:
384 AR5K_EEPROM_READ(o++, val);
386 ee->ee_pwr_cal_g[0].freq =
387 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
388 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
389 ee->ee_n_piers[mode]++;
391 ee->ee_pwr_cal_g[1].freq =
392 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
393 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
394 ee->ee_n_piers[mode]++;
396 AR5K_EEPROM_READ(o++, val);
397 ee->ee_turbo_max_power[mode] = val & 0x7f;
398 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
400 AR5K_EEPROM_READ(o++, val);
401 ee->ee_pwr_cal_g[2].freq =
402 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
403 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
404 ee->ee_n_piers[mode]++;
406 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
407 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
409 AR5K_EEPROM_READ(o++, val);
410 ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
411 ee->ee_q_cal[mode] = val & 0x1f;
413 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
414 AR5K_EEPROM_READ(o++, val);
415 ee->ee_cck_ofdm_gain_delta = val & 0xff;
417 break;
421 * Read turbo mode information on newer EEPROM versions
423 if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
424 goto done;
426 switch (mode) {
427 case AR5K_EEPROM_MODE_11A:
428 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
430 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
431 AR5K_EEPROM_READ(o++, val);
432 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
433 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
435 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
436 AR5K_EEPROM_READ(o++, val);
437 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
438 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
440 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >= 2)
441 ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
442 break;
443 case AR5K_EEPROM_MODE_11G:
444 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
446 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
447 AR5K_EEPROM_READ(o++, val);
448 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
449 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
451 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
452 AR5K_EEPROM_READ(o++, val);
453 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
454 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
455 break;
458 done:
459 /* return new offset */
460 *offset = o;
462 return 0;
465 /* Read mode-specific data (except power calibration data) */
466 static int
467 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
469 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
470 u32 mode_offset[3];
471 unsigned int mode;
472 u32 offset;
473 int ret;
476 * Get values for all modes
478 mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
479 mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
480 mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
482 ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
483 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
485 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
486 offset = mode_offset[mode];
488 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
489 if (ret)
490 return ret;
492 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
493 if (ret)
494 return ret;
497 /* override for older eeprom versions for better performance */
498 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
499 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
500 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
501 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
504 return 0;
507 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
508 * frequency mask) */
509 static inline int
510 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
511 struct ath5k_chan_pcal_info *pc, unsigned int mode)
513 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
514 int o = *offset;
515 int i = 0;
516 u8 freq1, freq2;
517 u16 val;
519 ee->ee_n_piers[mode] = 0;
520 while (i < max) {
521 AR5K_EEPROM_READ(o++, val);
523 freq1 = val & 0xff;
524 if (!freq1)
525 break;
527 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
528 freq1, mode);
529 ee->ee_n_piers[mode]++;
531 freq2 = (val >> 8) & 0xff;
532 if (!freq2)
533 break;
535 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
536 freq2, mode);
537 ee->ee_n_piers[mode]++;
540 /* return new offset */
541 *offset = o;
543 return 0;
546 /* Read frequency piers for 802.11a */
547 static int
548 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
550 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
551 struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
552 int i;
553 u16 val;
554 u8 mask;
556 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
557 ath5k_eeprom_read_freq_list(ah, &offset,
558 AR5K_EEPROM_N_5GHZ_CHAN, pcal,
559 AR5K_EEPROM_MODE_11A);
560 } else {
561 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
563 AR5K_EEPROM_READ(offset++, val);
564 pcal[0].freq = (val >> 9) & mask;
565 pcal[1].freq = (val >> 2) & mask;
566 pcal[2].freq = (val << 5) & mask;
568 AR5K_EEPROM_READ(offset++, val);
569 pcal[2].freq |= (val >> 11) & 0x1f;
570 pcal[3].freq = (val >> 4) & mask;
571 pcal[4].freq = (val << 3) & mask;
573 AR5K_EEPROM_READ(offset++, val);
574 pcal[4].freq |= (val >> 13) & 0x7;
575 pcal[5].freq = (val >> 6) & mask;
576 pcal[6].freq = (val << 1) & mask;
578 AR5K_EEPROM_READ(offset++, val);
579 pcal[6].freq |= (val >> 15) & 0x1;
580 pcal[7].freq = (val >> 8) & mask;
581 pcal[8].freq = (val >> 1) & mask;
582 pcal[9].freq = (val << 6) & mask;
584 AR5K_EEPROM_READ(offset++, val);
585 pcal[9].freq |= (val >> 10) & 0x3f;
587 /* Fixed number of piers */
588 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
590 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
591 pcal[i].freq = ath5k_eeprom_bin2freq(ee,
592 pcal[i].freq, AR5K_EEPROM_MODE_11A);
596 return 0;
599 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
600 static inline int
601 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
603 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
604 struct ath5k_chan_pcal_info *pcal;
606 switch (mode) {
607 case AR5K_EEPROM_MODE_11B:
608 pcal = ee->ee_pwr_cal_b;
609 break;
610 case AR5K_EEPROM_MODE_11G:
611 pcal = ee->ee_pwr_cal_g;
612 break;
613 default:
614 return -EINVAL;
617 ath5k_eeprom_read_freq_list(ah, &offset,
618 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
619 mode);
621 return 0;
626 * Read power calibration for RF5111 chips
628 * For RF5111 we have an XPD -eXternal Power Detector- curve
629 * for each calibrated channel. Each curve has 0,5dB Power steps
630 * on x axis and PCDAC steps (offsets) on y axis and looks like an
631 * exponential function. To recreate the curve we read 11 points
632 * here and interpolate later.
635 /* Used to match PCDAC steps with power values on RF5111 chips
636 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
637 * steps that match with the power values we read from eeprom. On
638 * older eeprom versions (< 3.2) these steps are equally spaced at
639 * 10% of the pcdac curve -until the curve reaches its maximum-
640 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
641 * these 11 steps are spaced in a different way. This function returns
642 * the pcdac steps based on eeprom version and curve min/max so that we
643 * can have pcdac/pwr points.
645 static inline void
646 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
648 static const u16 intercepts3[] = {
649 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100
651 static const u16 intercepts3_2[] = {
652 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
654 const u16 *ip;
655 int i;
657 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
658 ip = intercepts3_2;
659 else
660 ip = intercepts3;
662 for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
663 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
666 static int
667 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
669 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
670 struct ath5k_chan_pcal_info *chinfo;
671 u8 pier, pdg;
673 switch (mode) {
674 case AR5K_EEPROM_MODE_11A:
675 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
676 return 0;
677 chinfo = ee->ee_pwr_cal_a;
678 break;
679 case AR5K_EEPROM_MODE_11B:
680 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
681 return 0;
682 chinfo = ee->ee_pwr_cal_b;
683 break;
684 case AR5K_EEPROM_MODE_11G:
685 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
686 return 0;
687 chinfo = ee->ee_pwr_cal_g;
688 break;
689 default:
690 return -EINVAL;
693 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
694 if (!chinfo[pier].pd_curves)
695 continue;
697 for (pdg = 0; pdg < AR5K_EEPROM_N_PD_CURVES; pdg++) {
698 struct ath5k_pdgain_info *pd =
699 &chinfo[pier].pd_curves[pdg];
701 kfree(pd->pd_step);
702 kfree(pd->pd_pwr);
705 kfree(chinfo[pier].pd_curves);
708 return 0;
711 /* Convert RF5111 specific data to generic raw data
712 * used by interpolation code */
713 static int
714 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
715 struct ath5k_chan_pcal_info *chinfo)
717 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
718 struct ath5k_chan_pcal_info_rf5111 *pcinfo;
719 struct ath5k_pdgain_info *pd;
720 u8 pier, point, idx;
721 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
723 /* Fill raw data for each calibration pier */
724 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
726 pcinfo = &chinfo[pier].rf5111_info;
728 /* Allocate pd_curves for this cal pier */
729 chinfo[pier].pd_curves =
730 kcalloc(AR5K_EEPROM_N_PD_CURVES,
731 sizeof(struct ath5k_pdgain_info),
732 GFP_KERNEL);
734 if (!chinfo[pier].pd_curves)
735 goto err_out;
737 /* Only one curve for RF5111
738 * find out which one and place
739 * in pd_curves.
740 * Note: ee_x_gain is reversed here */
741 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
743 if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
744 pdgain_idx[0] = idx;
745 break;
749 ee->ee_pd_gains[mode] = 1;
751 pd = &chinfo[pier].pd_curves[idx];
753 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
755 /* Allocate pd points for this curve */
756 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
757 sizeof(u8), GFP_KERNEL);
758 if (!pd->pd_step)
759 goto err_out;
761 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
762 sizeof(s16), GFP_KERNEL);
763 if (!pd->pd_pwr)
764 goto err_out;
766 /* Fill raw dataset
767 * (convert power to 0.25dB units
768 * for RF5112 compatibility) */
769 for (point = 0; point < pd->pd_points; point++) {
771 /* Absolute values */
772 pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
774 /* Already sorted */
775 pd->pd_step[point] = pcinfo->pcdac[point];
778 /* Set min/max pwr */
779 chinfo[pier].min_pwr = pd->pd_pwr[0];
780 chinfo[pier].max_pwr = pd->pd_pwr[10];
784 return 0;
786 err_out:
787 ath5k_eeprom_free_pcal_info(ah, mode);
788 return -ENOMEM;
791 /* Parse EEPROM data */
792 static int
793 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
795 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
796 struct ath5k_chan_pcal_info *pcal;
797 int offset, ret;
798 int i;
799 u16 val;
801 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
802 switch (mode) {
803 case AR5K_EEPROM_MODE_11A:
804 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
805 return 0;
807 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
808 offset + AR5K_EEPROM_GROUP1_OFFSET);
809 if (ret < 0)
810 return ret;
812 offset += AR5K_EEPROM_GROUP2_OFFSET;
813 pcal = ee->ee_pwr_cal_a;
814 break;
815 case AR5K_EEPROM_MODE_11B:
816 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
817 !AR5K_EEPROM_HDR_11G(ee->ee_header))
818 return 0;
820 pcal = ee->ee_pwr_cal_b;
821 offset += AR5K_EEPROM_GROUP3_OFFSET;
823 /* fixed piers */
824 pcal[0].freq = 2412;
825 pcal[1].freq = 2447;
826 pcal[2].freq = 2484;
827 ee->ee_n_piers[mode] = 3;
828 break;
829 case AR5K_EEPROM_MODE_11G:
830 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
831 return 0;
833 pcal = ee->ee_pwr_cal_g;
834 offset += AR5K_EEPROM_GROUP4_OFFSET;
836 /* fixed piers */
837 pcal[0].freq = 2312;
838 pcal[1].freq = 2412;
839 pcal[2].freq = 2484;
840 ee->ee_n_piers[mode] = 3;
841 break;
842 default:
843 return -EINVAL;
846 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
847 struct ath5k_chan_pcal_info_rf5111 *cdata =
848 &pcal[i].rf5111_info;
850 AR5K_EEPROM_READ(offset++, val);
851 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
852 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
853 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
855 AR5K_EEPROM_READ(offset++, val);
856 cdata->pwr[0] |= ((val >> 14) & 0x3);
857 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
858 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
859 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
861 AR5K_EEPROM_READ(offset++, val);
862 cdata->pwr[3] |= ((val >> 12) & 0xf);
863 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
864 cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
866 AR5K_EEPROM_READ(offset++, val);
867 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
868 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
869 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
871 AR5K_EEPROM_READ(offset++, val);
872 cdata->pwr[8] |= ((val >> 14) & 0x3);
873 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
874 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
876 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
877 cdata->pcdac_max, cdata->pcdac);
880 return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
885 * Read power calibration for RF5112 chips
887 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
888 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
889 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
890 * power steps on x axis and PCDAC steps on y axis and looks like a
891 * linear function. To recreate the curve and pass the power values
892 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
893 * and 3 points for xpd 3 (higher gain -> lower power) here and
894 * interpolate later.
896 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
899 /* Convert RF5112 specific data to generic raw data
900 * used by interpolation code */
901 static int
902 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
903 struct ath5k_chan_pcal_info *chinfo)
905 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
906 struct ath5k_chan_pcal_info_rf5112 *pcinfo;
907 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
908 unsigned int pier, pdg, point;
910 /* Fill raw data for each calibration pier */
911 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
913 pcinfo = &chinfo[pier].rf5112_info;
915 /* Allocate pd_curves for this cal pier */
916 chinfo[pier].pd_curves =
917 kcalloc(AR5K_EEPROM_N_PD_CURVES,
918 sizeof(struct ath5k_pdgain_info),
919 GFP_KERNEL);
921 if (!chinfo[pier].pd_curves)
922 goto err_out;
924 /* Fill pd_curves */
925 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
927 u8 idx = pdgain_idx[pdg];
928 struct ath5k_pdgain_info *pd =
929 &chinfo[pier].pd_curves[idx];
931 /* Lowest gain curve (max power) */
932 if (pdg == 0) {
933 /* One more point for better accuracy */
934 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
936 /* Allocate pd points for this curve */
937 pd->pd_step = kcalloc(pd->pd_points,
938 sizeof(u8), GFP_KERNEL);
940 if (!pd->pd_step)
941 goto err_out;
943 pd->pd_pwr = kcalloc(pd->pd_points,
944 sizeof(s16), GFP_KERNEL);
946 if (!pd->pd_pwr)
947 goto err_out;
949 /* Fill raw dataset
950 * (all power levels are in 0.25dB units) */
951 pd->pd_step[0] = pcinfo->pcdac_x0[0];
952 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
954 for (point = 1; point < pd->pd_points;
955 point++) {
956 /* Absolute values */
957 pd->pd_pwr[point] =
958 pcinfo->pwr_x0[point];
960 /* Deltas */
961 pd->pd_step[point] =
962 pd->pd_step[point - 1] +
963 pcinfo->pcdac_x0[point];
966 /* Set min power for this frequency */
967 chinfo[pier].min_pwr = pd->pd_pwr[0];
969 /* Highest gain curve (min power) */
970 } else if (pdg == 1) {
972 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
974 /* Allocate pd points for this curve */
975 pd->pd_step = kcalloc(pd->pd_points,
976 sizeof(u8), GFP_KERNEL);
978 if (!pd->pd_step)
979 goto err_out;
981 pd->pd_pwr = kcalloc(pd->pd_points,
982 sizeof(s16), GFP_KERNEL);
984 if (!pd->pd_pwr)
985 goto err_out;
987 /* Fill raw dataset
988 * (all power levels are in 0.25dB units) */
989 for (point = 0; point < pd->pd_points;
990 point++) {
991 /* Absolute values */
992 pd->pd_pwr[point] =
993 pcinfo->pwr_x3[point];
995 /* Fixed points */
996 pd->pd_step[point] =
997 pcinfo->pcdac_x3[point];
1000 /* Since we have a higher gain curve
1001 * override min power */
1002 chinfo[pier].min_pwr = pd->pd_pwr[0];
1007 return 0;
1009 err_out:
1010 ath5k_eeprom_free_pcal_info(ah, mode);
1011 return -ENOMEM;
1014 /* Parse EEPROM data */
1015 static int
1016 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
1018 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1019 struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
1020 struct ath5k_chan_pcal_info *gen_chan_info;
1021 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1022 u32 offset;
1023 u8 i, c;
1024 u16 val;
1025 u8 pd_gains = 0;
1027 /* Count how many curves we have and
1028 * identify them (which one of the 4
1029 * available curves we have on each count).
1030 * Curves are stored from lower (x0) to
1031 * higher (x3) gain */
1032 for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
1033 /* ee_x_gain[mode] is x gain mask */
1034 if ((ee->ee_x_gain[mode] >> i) & 0x1)
1035 pdgain_idx[pd_gains++] = i;
1037 ee->ee_pd_gains[mode] = pd_gains;
1039 if (pd_gains == 0 || pd_gains > 2)
1040 return -EINVAL;
1042 switch (mode) {
1043 case AR5K_EEPROM_MODE_11A:
1045 * Read 5GHz EEPROM channels
1047 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1048 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1050 offset += AR5K_EEPROM_GROUP2_OFFSET;
1051 gen_chan_info = ee->ee_pwr_cal_a;
1052 break;
1053 case AR5K_EEPROM_MODE_11B:
1054 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1055 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1056 offset += AR5K_EEPROM_GROUP3_OFFSET;
1058 /* NB: frequency piers parsed during mode init */
1059 gen_chan_info = ee->ee_pwr_cal_b;
1060 break;
1061 case AR5K_EEPROM_MODE_11G:
1062 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1063 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1064 offset += AR5K_EEPROM_GROUP4_OFFSET;
1065 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1066 offset += AR5K_EEPROM_GROUP2_OFFSET;
1068 /* NB: frequency piers parsed during mode init */
1069 gen_chan_info = ee->ee_pwr_cal_g;
1070 break;
1071 default:
1072 return -EINVAL;
1075 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1076 chan_pcal_info = &gen_chan_info[i].rf5112_info;
1078 /* Power values in quarter dB
1079 * for the lower xpd gain curve
1080 * (0 dBm -> higher output power) */
1081 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1082 AR5K_EEPROM_READ(offset++, val);
1083 chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1084 chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1087 /* PCDAC steps
1088 * corresponding to the above power
1089 * measurements */
1090 AR5K_EEPROM_READ(offset++, val);
1091 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1092 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1093 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1095 /* Power values in quarter dB
1096 * for the higher xpd gain curve
1097 * (18 dBm -> lower output power) */
1098 AR5K_EEPROM_READ(offset++, val);
1099 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1100 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1102 AR5K_EEPROM_READ(offset++, val);
1103 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1105 /* PCDAC steps
1106 * corresponding to the above power
1107 * measurements (fixed) */
1108 chan_pcal_info->pcdac_x3[0] = 20;
1109 chan_pcal_info->pcdac_x3[1] = 35;
1110 chan_pcal_info->pcdac_x3[2] = 63;
1112 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1113 chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1115 /* Last xpd0 power level is also channel maximum */
1116 gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1117 } else {
1118 chan_pcal_info->pcdac_x0[0] = 1;
1119 gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1124 return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1129 * Read power calibration for RF2413 chips
1131 * For RF2413 we have a Power to PDDAC table (Power Detector)
1132 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1133 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1134 * axis and looks like an exponential function like the RF5111 curve.
1136 * To recreate the curves we read here the points and interpolate
1137 * later. Note that in most cases only 2 (higher and lower) curves are
1138 * used (like RF5112) but vendors have the opportunity to include all
1139 * 4 curves on eeprom. The final curve (higher power) has an extra
1140 * point for better accuracy like RF5112.
1143 /* For RF2413 power calibration data doesn't start on a fixed location and
1144 * if a mode is not supported, its section is missing -not zeroed-.
1145 * So we need to calculate the starting offset for each section by using
1146 * these two functions */
1148 /* Return the size of each section based on the mode and the number of pd
1149 * gains available (maximum 4). */
1150 static inline unsigned int
1151 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1153 static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1154 unsigned int sz;
1156 sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1157 sz *= ee->ee_n_piers[mode];
1159 return sz;
1162 /* Return the starting offset for a section based on the modes supported
1163 * and each section's size. */
1164 static unsigned int
1165 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1167 u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1169 switch (mode) {
1170 case AR5K_EEPROM_MODE_11G:
1171 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1172 offset += ath5k_pdgains_size_2413(ee,
1173 AR5K_EEPROM_MODE_11B) +
1174 AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1175 /* fall through */
1176 case AR5K_EEPROM_MODE_11B:
1177 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1178 offset += ath5k_pdgains_size_2413(ee,
1179 AR5K_EEPROM_MODE_11A) +
1180 AR5K_EEPROM_N_5GHZ_CHAN / 2;
1181 /* fall through */
1182 case AR5K_EEPROM_MODE_11A:
1183 break;
1184 default:
1185 break;
1188 return offset;
1191 /* Convert RF2413 specific data to generic raw data
1192 * used by interpolation code */
1193 static int
1194 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1195 struct ath5k_chan_pcal_info *chinfo)
1197 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1198 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1199 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1200 unsigned int pier, pdg, point;
1202 /* Fill raw data for each calibration pier */
1203 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1205 pcinfo = &chinfo[pier].rf2413_info;
1207 /* Allocate pd_curves for this cal pier */
1208 chinfo[pier].pd_curves =
1209 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1210 sizeof(struct ath5k_pdgain_info),
1211 GFP_KERNEL);
1213 if (!chinfo[pier].pd_curves)
1214 goto err_out;
1216 /* Fill pd_curves */
1217 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1219 u8 idx = pdgain_idx[pdg];
1220 struct ath5k_pdgain_info *pd =
1221 &chinfo[pier].pd_curves[idx];
1223 /* One more point for the highest power
1224 * curve (lowest gain) */
1225 if (pdg == ee->ee_pd_gains[mode] - 1)
1226 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1227 else
1228 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1230 /* Allocate pd points for this curve */
1231 pd->pd_step = kcalloc(pd->pd_points,
1232 sizeof(u8), GFP_KERNEL);
1234 if (!pd->pd_step)
1235 goto err_out;
1237 pd->pd_pwr = kcalloc(pd->pd_points,
1238 sizeof(s16), GFP_KERNEL);
1240 if (!pd->pd_pwr)
1241 goto err_out;
1243 /* Fill raw dataset
1244 * convert all pwr levels to
1245 * quarter dB for RF5112 compatibility */
1246 pd->pd_step[0] = pcinfo->pddac_i[pdg];
1247 pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1249 for (point = 1; point < pd->pd_points; point++) {
1251 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1252 2 * pcinfo->pwr[pdg][point - 1];
1254 pd->pd_step[point] = pd->pd_step[point - 1] +
1255 pcinfo->pddac[pdg][point - 1];
1259 /* Highest gain curve -> min power */
1260 if (pdg == 0)
1261 chinfo[pier].min_pwr = pd->pd_pwr[0];
1263 /* Lowest gain curve -> max power */
1264 if (pdg == ee->ee_pd_gains[mode] - 1)
1265 chinfo[pier].max_pwr =
1266 pd->pd_pwr[pd->pd_points - 1];
1270 return 0;
1272 err_out:
1273 ath5k_eeprom_free_pcal_info(ah, mode);
1274 return -ENOMEM;
1277 /* Parse EEPROM data */
1278 static int
1279 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1281 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1282 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1283 struct ath5k_chan_pcal_info *chinfo;
1284 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1285 u32 offset;
1286 int idx, i;
1287 u16 val;
1288 u8 pd_gains = 0;
1290 /* Count how many curves we have and
1291 * identify them (which one of the 4
1292 * available curves we have on each count).
1293 * Curves are stored from higher to
1294 * lower gain so we go backwards */
1295 for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1296 /* ee_x_gain[mode] is x gain mask */
1297 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1298 pdgain_idx[pd_gains++] = idx;
1301 ee->ee_pd_gains[mode] = pd_gains;
1303 if (pd_gains == 0)
1304 return -EINVAL;
1306 offset = ath5k_cal_data_offset_2413(ee, mode);
1307 switch (mode) {
1308 case AR5K_EEPROM_MODE_11A:
1309 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1310 return 0;
1312 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1313 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1314 chinfo = ee->ee_pwr_cal_a;
1315 break;
1316 case AR5K_EEPROM_MODE_11B:
1317 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1318 return 0;
1320 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1321 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1322 chinfo = ee->ee_pwr_cal_b;
1323 break;
1324 case AR5K_EEPROM_MODE_11G:
1325 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1326 return 0;
1328 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1329 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1330 chinfo = ee->ee_pwr_cal_g;
1331 break;
1332 default:
1333 return -EINVAL;
1336 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1337 pcinfo = &chinfo[i].rf2413_info;
1340 * Read pwr_i, pddac_i and the first
1341 * 2 pd points (pwr, pddac)
1343 AR5K_EEPROM_READ(offset++, val);
1344 pcinfo->pwr_i[0] = val & 0x1f;
1345 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1346 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1348 AR5K_EEPROM_READ(offset++, val);
1349 pcinfo->pddac[0][0] = val & 0x3f;
1350 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1351 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1353 AR5K_EEPROM_READ(offset++, val);
1354 pcinfo->pwr[0][2] = val & 0xf;
1355 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1357 pcinfo->pwr[0][3] = 0;
1358 pcinfo->pddac[0][3] = 0;
1360 if (pd_gains > 1) {
1362 * Pd gain 0 is not the last pd gain
1363 * so it only has 2 pd points.
1364 * Continue with pd gain 1.
1366 pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1368 pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1369 AR5K_EEPROM_READ(offset++, val);
1370 pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1372 pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1373 pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1375 AR5K_EEPROM_READ(offset++, val);
1376 pcinfo->pwr[1][1] = val & 0xf;
1377 pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1378 pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1380 pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1381 AR5K_EEPROM_READ(offset++, val);
1382 pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1384 pcinfo->pwr[1][3] = 0;
1385 pcinfo->pddac[1][3] = 0;
1386 } else if (pd_gains == 1) {
1388 * Pd gain 0 is the last one so
1389 * read the extra point.
1391 pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1393 pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1394 AR5K_EEPROM_READ(offset++, val);
1395 pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1399 * Proceed with the other pd_gains
1400 * as above.
1402 if (pd_gains > 2) {
1403 pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1404 pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1406 AR5K_EEPROM_READ(offset++, val);
1407 pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1408 pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1409 pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1411 pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1412 AR5K_EEPROM_READ(offset++, val);
1413 pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1415 pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1416 pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1418 pcinfo->pwr[2][3] = 0;
1419 pcinfo->pddac[2][3] = 0;
1420 } else if (pd_gains == 2) {
1421 pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1422 pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1425 if (pd_gains > 3) {
1426 pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1427 AR5K_EEPROM_READ(offset++, val);
1428 pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1430 pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1431 pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1432 pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1434 AR5K_EEPROM_READ(offset++, val);
1435 pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1436 pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1437 pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1439 pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1440 AR5K_EEPROM_READ(offset++, val);
1441 pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1443 pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1444 pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1446 pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1447 AR5K_EEPROM_READ(offset++, val);
1448 pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1449 } else if (pd_gains == 3) {
1450 pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1451 AR5K_EEPROM_READ(offset++, val);
1452 pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1454 pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1458 return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1463 * Read per rate target power (this is the maximum tx power
1464 * supported by the card). This info is used when setting
1465 * tx power, no matter the channel.
1467 * This also works for v5 EEPROMs.
1469 static int
1470 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1472 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1473 struct ath5k_rate_pcal_info *rate_pcal_info;
1474 u8 *rate_target_pwr_num;
1475 u32 offset;
1476 u16 val;
1477 int i;
1479 offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1480 rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1481 switch (mode) {
1482 case AR5K_EEPROM_MODE_11A:
1483 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1484 rate_pcal_info = ee->ee_rate_tpwr_a;
1485 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_RATE_CHAN;
1486 break;
1487 case AR5K_EEPROM_MODE_11B:
1488 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1489 rate_pcal_info = ee->ee_rate_tpwr_b;
1490 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1491 break;
1492 case AR5K_EEPROM_MODE_11G:
1493 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1494 rate_pcal_info = ee->ee_rate_tpwr_g;
1495 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1496 break;
1497 default:
1498 return -EINVAL;
1501 /* Different freq mask for older eeproms (<= v3.2) */
1502 if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1503 for (i = 0; i < (*rate_target_pwr_num); i++) {
1504 AR5K_EEPROM_READ(offset++, val);
1505 rate_pcal_info[i].freq =
1506 ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1508 rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1509 rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1511 AR5K_EEPROM_READ(offset++, val);
1513 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1514 val == 0) {
1515 (*rate_target_pwr_num) = i;
1516 break;
1519 rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1520 rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1521 rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1523 } else {
1524 for (i = 0; i < (*rate_target_pwr_num); i++) {
1525 AR5K_EEPROM_READ(offset++, val);
1526 rate_pcal_info[i].freq =
1527 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1529 rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1530 rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1532 AR5K_EEPROM_READ(offset++, val);
1534 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1535 val == 0) {
1536 (*rate_target_pwr_num) = i;
1537 break;
1540 rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1541 rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1542 rate_pcal_info[i].target_power_54 = (val & 0x3f);
1546 return 0;
1551 * Read per channel calibration info from EEPROM
1553 * This info is used to calibrate the baseband power table. Imagine
1554 * that for each channel there is a power curve that's hw specific
1555 * (depends on amplifier etc) and we try to "correct" this curve using
1556 * offsets we pass on to phy chip (baseband -> before amplifier) so that
1557 * it can use accurate power values when setting tx power (takes amplifier's
1558 * performance on each channel into account).
1560 * EEPROM provides us with the offsets for some pre-calibrated channels
1561 * and we have to interpolate to create the full table for these channels and
1562 * also the table for any channel.
1564 static int
1565 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1567 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1568 int (*read_pcal)(struct ath5k_hw *hw, int mode);
1569 int mode;
1570 int err;
1572 if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1573 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1574 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1575 else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1576 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1577 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1578 else
1579 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1582 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1583 mode++) {
1584 err = read_pcal(ah, mode);
1585 if (err)
1586 return err;
1588 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1589 if (err < 0)
1590 return err;
1593 return 0;
1596 /* Read conformance test limits used for regulatory control */
1597 static int
1598 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1600 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1601 struct ath5k_edge_power *rep;
1602 unsigned int fmask, pmask;
1603 unsigned int ctl_mode;
1604 int i, j;
1605 u32 offset;
1606 u16 val;
1608 pmask = AR5K_EEPROM_POWER_M;
1609 fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1610 offset = AR5K_EEPROM_CTL(ee->ee_version);
1611 ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1612 for (i = 0; i < ee->ee_ctls; i += 2) {
1613 AR5K_EEPROM_READ(offset++, val);
1614 ee->ee_ctl[i] = (val >> 8) & 0xff;
1615 ee->ee_ctl[i + 1] = val & 0xff;
1618 offset = AR5K_EEPROM_GROUP8_OFFSET;
1619 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1620 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1621 AR5K_EEPROM_GROUP5_OFFSET;
1622 else
1623 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1625 rep = ee->ee_ctl_pwr;
1626 for (i = 0; i < ee->ee_ctls; i++) {
1627 switch (ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1628 case AR5K_CTL_11A:
1629 case AR5K_CTL_TURBO:
1630 ctl_mode = AR5K_EEPROM_MODE_11A;
1631 break;
1632 default:
1633 ctl_mode = AR5K_EEPROM_MODE_11G;
1634 break;
1636 if (ee->ee_ctl[i] == 0) {
1637 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1638 offset += 8;
1639 else
1640 offset += 7;
1641 rep += AR5K_EEPROM_N_EDGES;
1642 continue;
1644 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1645 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1646 AR5K_EEPROM_READ(offset++, val);
1647 rep[j].freq = (val >> 8) & fmask;
1648 rep[j + 1].freq = val & fmask;
1650 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1651 AR5K_EEPROM_READ(offset++, val);
1652 rep[j].edge = (val >> 8) & pmask;
1653 rep[j].flag = (val >> 14) & 1;
1654 rep[j + 1].edge = val & pmask;
1655 rep[j + 1].flag = (val >> 6) & 1;
1657 } else {
1658 AR5K_EEPROM_READ(offset++, val);
1659 rep[0].freq = (val >> 9) & fmask;
1660 rep[1].freq = (val >> 2) & fmask;
1661 rep[2].freq = (val << 5) & fmask;
1663 AR5K_EEPROM_READ(offset++, val);
1664 rep[2].freq |= (val >> 11) & 0x1f;
1665 rep[3].freq = (val >> 4) & fmask;
1666 rep[4].freq = (val << 3) & fmask;
1668 AR5K_EEPROM_READ(offset++, val);
1669 rep[4].freq |= (val >> 13) & 0x7;
1670 rep[5].freq = (val >> 6) & fmask;
1671 rep[6].freq = (val << 1) & fmask;
1673 AR5K_EEPROM_READ(offset++, val);
1674 rep[6].freq |= (val >> 15) & 0x1;
1675 rep[7].freq = (val >> 8) & fmask;
1677 rep[0].edge = (val >> 2) & pmask;
1678 rep[1].edge = (val << 4) & pmask;
1680 AR5K_EEPROM_READ(offset++, val);
1681 rep[1].edge |= (val >> 12) & 0xf;
1682 rep[2].edge = (val >> 6) & pmask;
1683 rep[3].edge = val & pmask;
1685 AR5K_EEPROM_READ(offset++, val);
1686 rep[4].edge = (val >> 10) & pmask;
1687 rep[5].edge = (val >> 4) & pmask;
1688 rep[6].edge = (val << 2) & pmask;
1690 AR5K_EEPROM_READ(offset++, val);
1691 rep[6].edge |= (val >> 14) & 0x3;
1692 rep[7].edge = (val >> 8) & pmask;
1694 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1695 rep[j].freq = ath5k_eeprom_bin2freq(ee,
1696 rep[j].freq, ctl_mode);
1698 rep += AR5K_EEPROM_N_EDGES;
1701 return 0;
1704 static int
1705 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1707 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1708 u32 offset;
1709 u16 val;
1710 int ret = 0, i;
1712 offset = AR5K_EEPROM_CTL(ee->ee_version) +
1713 AR5K_EEPROM_N_CTLS(ee->ee_version);
1715 if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1716 /* No spur info for 5GHz */
1717 ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1718 /* 2 channels for 2GHz (2464/2420) */
1719 ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1720 ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1721 ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1722 } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1723 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1724 AR5K_EEPROM_READ(offset, val);
1725 ee->ee_spur_chans[i][0] = val;
1726 AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1727 val);
1728 ee->ee_spur_chans[i][1] = val;
1729 offset++;
1733 return ret;
1737 /***********************\
1738 * Init/Detach functions *
1739 \***********************/
1742 * Initialize eeprom data structure
1745 ath5k_eeprom_init(struct ath5k_hw *ah)
1747 int err;
1749 err = ath5k_eeprom_init_header(ah);
1750 if (err < 0)
1751 return err;
1753 err = ath5k_eeprom_init_modes(ah);
1754 if (err < 0)
1755 return err;
1757 err = ath5k_eeprom_read_pcal_info(ah);
1758 if (err < 0)
1759 return err;
1761 err = ath5k_eeprom_read_ctl_info(ah);
1762 if (err < 0)
1763 return err;
1765 err = ath5k_eeprom_read_spur_chans(ah);
1766 if (err < 0)
1767 return err;
1769 return 0;
1772 void
1773 ath5k_eeprom_detach(struct ath5k_hw *ah)
1775 u8 mode;
1777 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1778 ath5k_eeprom_free_pcal_info(ah, mode);
1782 ath5k_eeprom_mode_from_channel(struct ath5k_hw *ah,
1783 struct ieee80211_channel *channel)
1785 switch (channel->hw_value) {
1786 case AR5K_MODE_11A:
1787 return AR5K_EEPROM_MODE_11A;
1788 case AR5K_MODE_11G:
1789 return AR5K_EEPROM_MODE_11G;
1790 case AR5K_MODE_11B:
1791 return AR5K_EEPROM_MODE_11B;
1792 default:
1793 ATH5K_WARN(ah, "channel is not A/B/G!");
1794 return AR5K_EEPROM_MODE_11A;