x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath9k / eeprom_4k.c
blob9ea8e4b779c97c99b329619616e1ed232a1f5044
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
21 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
23 return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
26 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
28 return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
31 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
33 static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
35 u16 *eep_data = (u16 *)&ah->eeprom.map4k;
36 int addr, eep_start_loc = 64;
38 for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
39 if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data))
40 return false;
41 eep_data++;
44 return true;
47 static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
49 u16 *eep_data = (u16 *)&ah->eeprom.map4k;
51 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
53 return true;
56 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
58 struct ath_common *common = ath9k_hw_common(ah);
60 if (!ath9k_hw_use_flash(ah)) {
61 ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
64 if (common->bus_ops->ath_bus_type == ATH_USB)
65 return __ath9k_hw_usb_4k_fill_eeprom(ah);
66 else
67 return __ath9k_hw_4k_fill_eeprom(ah);
70 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
71 static u32 ath9k_dump_4k_modal_eeprom(char *buf, u32 len, u32 size,
72 struct modal_eep_4k_header *modal_hdr)
74 PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
75 PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
76 PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
77 PR_EEP("Switch Settle", modal_hdr->switchSettling);
78 PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
79 PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
80 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
81 PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
82 PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
83 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
84 PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
85 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
86 PR_EEP("CCA Threshold)", modal_hdr->thresh62);
87 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
88 PR_EEP("xpdGain", modal_hdr->xpdGain);
89 PR_EEP("External PD", modal_hdr->xpd);
90 PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
91 PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
92 PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
93 PR_EEP("O/D Bias Version", modal_hdr->version);
94 PR_EEP("CCK OutputBias", modal_hdr->ob_0);
95 PR_EEP("BPSK OutputBias", modal_hdr->ob_1);
96 PR_EEP("QPSK OutputBias", modal_hdr->ob_2);
97 PR_EEP("16QAM OutputBias", modal_hdr->ob_3);
98 PR_EEP("64QAM OutputBias", modal_hdr->ob_4);
99 PR_EEP("CCK Driver1_Bias", modal_hdr->db1_0);
100 PR_EEP("BPSK Driver1_Bias", modal_hdr->db1_1);
101 PR_EEP("QPSK Driver1_Bias", modal_hdr->db1_2);
102 PR_EEP("16QAM Driver1_Bias", modal_hdr->db1_3);
103 PR_EEP("64QAM Driver1_Bias", modal_hdr->db1_4);
104 PR_EEP("CCK Driver2_Bias", modal_hdr->db2_0);
105 PR_EEP("BPSK Driver2_Bias", modal_hdr->db2_1);
106 PR_EEP("QPSK Driver2_Bias", modal_hdr->db2_2);
107 PR_EEP("16QAM Driver2_Bias", modal_hdr->db2_3);
108 PR_EEP("64QAM Driver2_Bias", modal_hdr->db2_4);
109 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
110 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
111 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
112 PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
113 PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
114 PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
115 PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
116 PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
117 PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
118 PR_EEP("Ant. Diversity ctl1", modal_hdr->antdiv_ctl1);
119 PR_EEP("Ant. Diversity ctl2", modal_hdr->antdiv_ctl2);
120 PR_EEP("TX Diversity", modal_hdr->tx_diversity);
122 return len;
125 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
126 u8 *buf, u32 len, u32 size)
128 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
129 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
131 if (!dump_base_hdr) {
132 len += snprintf(buf + len, size - len,
133 "%20s :\n", "2GHz modal Header");
134 len = ath9k_dump_4k_modal_eeprom(buf, len, size,
135 &eep->modalHeader);
136 goto out;
139 PR_EEP("Major Version", pBase->version >> 12);
140 PR_EEP("Minor Version", pBase->version & 0xFFF);
141 PR_EEP("Checksum", pBase->checksum);
142 PR_EEP("Length", pBase->length);
143 PR_EEP("RegDomain1", pBase->regDmn[0]);
144 PR_EEP("RegDomain2", pBase->regDmn[1]);
145 PR_EEP("TX Mask", pBase->txMask);
146 PR_EEP("RX Mask", pBase->rxMask);
147 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
148 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
149 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
150 AR5416_OPFLAGS_N_2G_HT20));
151 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
152 AR5416_OPFLAGS_N_2G_HT40));
153 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
154 AR5416_OPFLAGS_N_5G_HT20));
155 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
156 AR5416_OPFLAGS_N_5G_HT40));
157 PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
158 PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
159 PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
160 PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
161 PR_EEP("TX Gain type", pBase->txGainType);
163 len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
164 pBase->macAddr);
166 out:
167 if (len > size)
168 len = size;
170 return len;
172 #else
173 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
174 u8 *buf, u32 len, u32 size)
176 return 0;
178 #endif
181 #undef SIZE_EEPROM_4K
183 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
185 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
186 struct ath_common *common = ath9k_hw_common(ah);
187 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
188 u16 *eepdata, temp, magic, magic2;
189 u32 sum = 0, el;
190 bool need_swap = false;
191 int i, addr;
194 if (!ath9k_hw_use_flash(ah)) {
195 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
196 &magic)) {
197 ath_err(common, "Reading Magic # failed\n");
198 return false;
201 ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
203 if (magic != AR5416_EEPROM_MAGIC) {
204 magic2 = swab16(magic);
206 if (magic2 == AR5416_EEPROM_MAGIC) {
207 need_swap = true;
208 eepdata = (u16 *) (&ah->eeprom);
210 for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
211 temp = swab16(*eepdata);
212 *eepdata = temp;
213 eepdata++;
215 } else {
216 ath_err(common,
217 "Invalid EEPROM Magic. Endianness mismatch.\n");
218 return -EINVAL;
223 ath_dbg(common, EEPROM, "need_swap = %s\n",
224 need_swap ? "True" : "False");
226 if (need_swap)
227 el = swab16(ah->eeprom.map4k.baseEepHeader.length);
228 else
229 el = ah->eeprom.map4k.baseEepHeader.length;
231 if (el > sizeof(struct ar5416_eeprom_4k))
232 el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
233 else
234 el = el / sizeof(u16);
236 eepdata = (u16 *)(&ah->eeprom);
238 for (i = 0; i < el; i++)
239 sum ^= *eepdata++;
241 if (need_swap) {
242 u32 integer;
243 u16 word;
245 ath_dbg(common, EEPROM,
246 "EEPROM Endianness is not native.. Changing\n");
248 word = swab16(eep->baseEepHeader.length);
249 eep->baseEepHeader.length = word;
251 word = swab16(eep->baseEepHeader.checksum);
252 eep->baseEepHeader.checksum = word;
254 word = swab16(eep->baseEepHeader.version);
255 eep->baseEepHeader.version = word;
257 word = swab16(eep->baseEepHeader.regDmn[0]);
258 eep->baseEepHeader.regDmn[0] = word;
260 word = swab16(eep->baseEepHeader.regDmn[1]);
261 eep->baseEepHeader.regDmn[1] = word;
263 word = swab16(eep->baseEepHeader.rfSilent);
264 eep->baseEepHeader.rfSilent = word;
266 word = swab16(eep->baseEepHeader.blueToothOptions);
267 eep->baseEepHeader.blueToothOptions = word;
269 word = swab16(eep->baseEepHeader.deviceCap);
270 eep->baseEepHeader.deviceCap = word;
272 integer = swab32(eep->modalHeader.antCtrlCommon);
273 eep->modalHeader.antCtrlCommon = integer;
275 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
276 integer = swab32(eep->modalHeader.antCtrlChain[i]);
277 eep->modalHeader.antCtrlChain[i] = integer;
280 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
281 word = swab16(eep->modalHeader.spurChans[i].spurChan);
282 eep->modalHeader.spurChans[i].spurChan = word;
286 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
287 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
288 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
289 sum, ah->eep_ops->get_eeprom_ver(ah));
290 return -EINVAL;
293 return 0;
294 #undef EEPROM_4K_SIZE
297 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
298 enum eeprom_param param)
300 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
301 struct modal_eep_4k_header *pModal = &eep->modalHeader;
302 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
303 u16 ver_minor;
305 ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
307 switch (param) {
308 case EEP_NFTHRESH_2:
309 return pModal->noiseFloorThreshCh[0];
310 case EEP_MAC_LSW:
311 return get_unaligned_be16(pBase->macAddr);
312 case EEP_MAC_MID:
313 return get_unaligned_be16(pBase->macAddr + 2);
314 case EEP_MAC_MSW:
315 return get_unaligned_be16(pBase->macAddr + 4);
316 case EEP_REG_0:
317 return pBase->regDmn[0];
318 case EEP_OP_CAP:
319 return pBase->deviceCap;
320 case EEP_OP_MODE:
321 return pBase->opCapFlags;
322 case EEP_RF_SILENT:
323 return pBase->rfSilent;
324 case EEP_OB_2:
325 return pModal->ob_0;
326 case EEP_DB_2:
327 return pModal->db1_1;
328 case EEP_MINOR_REV:
329 return ver_minor;
330 case EEP_TX_MASK:
331 return pBase->txMask;
332 case EEP_RX_MASK:
333 return pBase->rxMask;
334 case EEP_FRAC_N_5G:
335 return 0;
336 case EEP_PWR_TABLE_OFFSET:
337 return AR5416_PWR_TABLE_OFFSET_DB;
338 case EEP_MODAL_VER:
339 return pModal->version;
340 case EEP_ANT_DIV_CTL1:
341 return pModal->antdiv_ctl1;
342 case EEP_TXGAIN_TYPE:
343 return pBase->txGainType;
344 case EEP_ANTENNA_GAIN_2G:
345 return pModal->antennaGainCh[0];
346 default:
347 return 0;
351 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
352 struct ath9k_channel *chan)
354 struct ath_common *common = ath9k_hw_common(ah);
355 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
356 struct cal_data_per_freq_4k *pRawDataset;
357 u8 *pCalBChans = NULL;
358 u16 pdGainOverlap_t2;
359 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
360 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
361 u16 numPiers, i, j;
362 u16 numXpdGain, xpdMask;
363 u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
364 u32 reg32, regOffset, regChainOffset;
366 xpdMask = pEepData->modalHeader.xpdGain;
368 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
369 AR5416_EEP_MINOR_VER_2) {
370 pdGainOverlap_t2 =
371 pEepData->modalHeader.pdGainOverlap;
372 } else {
373 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
374 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
377 pCalBChans = pEepData->calFreqPier2G;
378 numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
380 numXpdGain = 0;
382 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
383 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
384 if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
385 break;
386 xpdGainValues[numXpdGain] =
387 (u16)(AR5416_PD_GAINS_IN_MASK - i);
388 numXpdGain++;
392 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
393 (numXpdGain - 1) & 0x3);
394 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
395 xpdGainValues[0]);
396 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
397 xpdGainValues[1]);
398 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
400 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
401 regChainOffset = i * 0x1000;
403 if (pEepData->baseEepHeader.txMask & (1 << i)) {
404 pRawDataset = pEepData->calPierData2G[i];
406 ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
407 pRawDataset, pCalBChans,
408 numPiers, pdGainOverlap_t2,
409 gainBoundaries,
410 pdadcValues, numXpdGain);
412 ENABLE_REGWRITE_BUFFER(ah);
414 REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
415 SM(pdGainOverlap_t2,
416 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
417 | SM(gainBoundaries[0],
418 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
419 | SM(gainBoundaries[1],
420 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
421 | SM(gainBoundaries[2],
422 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
423 | SM(gainBoundaries[3],
424 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
426 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
427 for (j = 0; j < 32; j++) {
428 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
429 REG_WRITE(ah, regOffset, reg32);
431 ath_dbg(common, EEPROM,
432 "PDADC (%d,%4x): %4.4x %8.8x\n",
433 i, regChainOffset, regOffset,
434 reg32);
435 ath_dbg(common, EEPROM,
436 "PDADC: Chain %d | "
437 "PDADC %3d Value %3d | "
438 "PDADC %3d Value %3d | "
439 "PDADC %3d Value %3d | "
440 "PDADC %3d Value %3d |\n",
441 i, 4 * j, pdadcValues[4 * j],
442 4 * j + 1, pdadcValues[4 * j + 1],
443 4 * j + 2, pdadcValues[4 * j + 2],
444 4 * j + 3, pdadcValues[4 * j + 3]);
446 regOffset += 4;
449 REGWRITE_BUFFER_FLUSH(ah);
454 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
455 struct ath9k_channel *chan,
456 int16_t *ratesArray,
457 u16 cfgCtl,
458 u16 antenna_reduction,
459 u16 powerLimit)
461 #define CMP_TEST_GRP \
462 (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
463 pEepData->ctlIndex[i]) \
464 || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
465 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
467 int i;
468 u16 twiceMinEdgePower;
469 u16 twiceMaxEdgePower;
470 u16 scaledPower = 0, minCtlPower;
471 u16 numCtlModes;
472 const u16 *pCtlMode;
473 u16 ctlMode, freq;
474 struct chan_centers centers;
475 struct cal_ctl_data_4k *rep;
476 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
477 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
478 0, { 0, 0, 0, 0}
480 struct cal_target_power_leg targetPowerOfdmExt = {
481 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
482 0, { 0, 0, 0, 0 }
484 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
485 0, {0, 0, 0, 0}
487 static const u16 ctlModesFor11g[] = {
488 CTL_11B, CTL_11G, CTL_2GHT20,
489 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
492 ath9k_hw_get_channel_centers(ah, chan, &centers);
494 scaledPower = powerLimit - antenna_reduction;
495 numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
496 pCtlMode = ctlModesFor11g;
498 ath9k_hw_get_legacy_target_powers(ah, chan,
499 pEepData->calTargetPowerCck,
500 AR5416_NUM_2G_CCK_TARGET_POWERS,
501 &targetPowerCck, 4, false);
502 ath9k_hw_get_legacy_target_powers(ah, chan,
503 pEepData->calTargetPower2G,
504 AR5416_NUM_2G_20_TARGET_POWERS,
505 &targetPowerOfdm, 4, false);
506 ath9k_hw_get_target_powers(ah, chan,
507 pEepData->calTargetPower2GHT20,
508 AR5416_NUM_2G_20_TARGET_POWERS,
509 &targetPowerHt20, 8, false);
511 if (IS_CHAN_HT40(chan)) {
512 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
513 ath9k_hw_get_target_powers(ah, chan,
514 pEepData->calTargetPower2GHT40,
515 AR5416_NUM_2G_40_TARGET_POWERS,
516 &targetPowerHt40, 8, true);
517 ath9k_hw_get_legacy_target_powers(ah, chan,
518 pEepData->calTargetPowerCck,
519 AR5416_NUM_2G_CCK_TARGET_POWERS,
520 &targetPowerCckExt, 4, true);
521 ath9k_hw_get_legacy_target_powers(ah, chan,
522 pEepData->calTargetPower2G,
523 AR5416_NUM_2G_20_TARGET_POWERS,
524 &targetPowerOfdmExt, 4, true);
527 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
528 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
529 (pCtlMode[ctlMode] == CTL_2GHT40);
531 if (isHt40CtlMode)
532 freq = centers.synth_center;
533 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
534 freq = centers.ext_center;
535 else
536 freq = centers.ctl_center;
538 twiceMaxEdgePower = MAX_RATE_POWER;
540 for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
541 pEepData->ctlIndex[i]; i++) {
543 if (CMP_TEST_GRP) {
544 rep = &(pEepData->ctlData[i]);
546 twiceMinEdgePower = ath9k_hw_get_max_edge_power(
547 freq,
548 rep->ctlEdges[
549 ar5416_get_ntxchains(ah->txchainmask) - 1],
550 IS_CHAN_2GHZ(chan),
551 AR5416_EEP4K_NUM_BAND_EDGES);
553 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
554 twiceMaxEdgePower =
555 min(twiceMaxEdgePower,
556 twiceMinEdgePower);
557 } else {
558 twiceMaxEdgePower = twiceMinEdgePower;
559 break;
564 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
566 switch (pCtlMode[ctlMode]) {
567 case CTL_11B:
568 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
569 targetPowerCck.tPow2x[i] =
570 min((u16)targetPowerCck.tPow2x[i],
571 minCtlPower);
573 break;
574 case CTL_11G:
575 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
576 targetPowerOfdm.tPow2x[i] =
577 min((u16)targetPowerOfdm.tPow2x[i],
578 minCtlPower);
580 break;
581 case CTL_2GHT20:
582 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
583 targetPowerHt20.tPow2x[i] =
584 min((u16)targetPowerHt20.tPow2x[i],
585 minCtlPower);
587 break;
588 case CTL_11B_EXT:
589 targetPowerCckExt.tPow2x[0] =
590 min((u16)targetPowerCckExt.tPow2x[0],
591 minCtlPower);
592 break;
593 case CTL_11G_EXT:
594 targetPowerOfdmExt.tPow2x[0] =
595 min((u16)targetPowerOfdmExt.tPow2x[0],
596 minCtlPower);
597 break;
598 case CTL_2GHT40:
599 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
600 targetPowerHt40.tPow2x[i] =
601 min((u16)targetPowerHt40.tPow2x[i],
602 minCtlPower);
604 break;
605 default:
606 break;
610 ratesArray[rate6mb] =
611 ratesArray[rate9mb] =
612 ratesArray[rate12mb] =
613 ratesArray[rate18mb] =
614 ratesArray[rate24mb] =
615 targetPowerOfdm.tPow2x[0];
617 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
618 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
619 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
620 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
622 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
623 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
625 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
626 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
627 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
628 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
630 if (IS_CHAN_HT40(chan)) {
631 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
632 ratesArray[rateHt40_0 + i] =
633 targetPowerHt40.tPow2x[i];
635 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
636 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
637 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
638 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
641 #undef CMP_TEST_GRP
644 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
645 struct ath9k_channel *chan,
646 u16 cfgCtl,
647 u8 twiceAntennaReduction,
648 u8 powerLimit, bool test)
650 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
651 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
652 struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
653 int16_t ratesArray[Ar5416RateSize];
654 u8 ht40PowerIncForPdadc = 2;
655 int i;
657 memset(ratesArray, 0, sizeof(ratesArray));
659 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
660 AR5416_EEP_MINOR_VER_2) {
661 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
664 ath9k_hw_set_4k_power_per_rate_table(ah, chan,
665 &ratesArray[0], cfgCtl,
666 twiceAntennaReduction,
667 powerLimit);
669 ath9k_hw_set_4k_power_cal_table(ah, chan);
671 regulatory->max_power_level = 0;
672 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
673 if (ratesArray[i] > MAX_RATE_POWER)
674 ratesArray[i] = MAX_RATE_POWER;
676 if (ratesArray[i] > regulatory->max_power_level)
677 regulatory->max_power_level = ratesArray[i];
680 if (test)
681 return;
683 for (i = 0; i < Ar5416RateSize; i++)
684 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
686 ENABLE_REGWRITE_BUFFER(ah);
688 /* OFDM power per rate */
689 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
690 ATH9K_POW_SM(ratesArray[rate18mb], 24)
691 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
692 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
693 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
694 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
695 ATH9K_POW_SM(ratesArray[rate54mb], 24)
696 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
697 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
698 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
700 /* CCK power per rate */
701 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
702 ATH9K_POW_SM(ratesArray[rate2s], 24)
703 | ATH9K_POW_SM(ratesArray[rate2l], 16)
704 | ATH9K_POW_SM(ratesArray[rateXr], 8)
705 | ATH9K_POW_SM(ratesArray[rate1l], 0));
706 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
707 ATH9K_POW_SM(ratesArray[rate11s], 24)
708 | ATH9K_POW_SM(ratesArray[rate11l], 16)
709 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
710 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
712 /* HT20 power per rate */
713 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
714 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
715 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
716 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
717 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
718 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
719 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
720 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
721 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
722 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
724 /* HT40 power per rate */
725 if (IS_CHAN_HT40(chan)) {
726 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
727 ATH9K_POW_SM(ratesArray[rateHt40_3] +
728 ht40PowerIncForPdadc, 24)
729 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
730 ht40PowerIncForPdadc, 16)
731 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
732 ht40PowerIncForPdadc, 8)
733 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
734 ht40PowerIncForPdadc, 0));
735 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
736 ATH9K_POW_SM(ratesArray[rateHt40_7] +
737 ht40PowerIncForPdadc, 24)
738 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
739 ht40PowerIncForPdadc, 16)
740 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
741 ht40PowerIncForPdadc, 8)
742 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
743 ht40PowerIncForPdadc, 0));
744 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
745 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
746 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
747 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
748 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
751 REGWRITE_BUFFER_FLUSH(ah);
754 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
755 struct modal_eep_4k_header *pModal,
756 struct ar5416_eeprom_4k *eep,
757 u8 txRxAttenLocal)
759 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
760 pModal->antCtrlChain[0]);
762 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
763 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
764 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
765 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
766 SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
767 SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
769 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
770 AR5416_EEP_MINOR_VER_3) {
771 txRxAttenLocal = pModal->txRxAttenCh[0];
773 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
774 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
775 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
776 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
777 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
778 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
779 pModal->xatten2Margin[0]);
780 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
781 AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
783 /* Set the block 1 value to block 0 value */
784 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
785 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
786 pModal->bswMargin[0]);
787 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
788 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
789 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
790 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
791 pModal->xatten2Margin[0]);
792 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
793 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
794 pModal->xatten2Db[0]);
797 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
798 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
799 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
800 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
802 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
803 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
804 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
805 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
809 * Read EEPROM header info and program the device for correct operation
810 * given the channel value.
812 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
813 struct ath9k_channel *chan)
815 struct ath9k_hw_capabilities *pCap = &ah->caps;
816 struct modal_eep_4k_header *pModal;
817 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
818 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
819 u8 txRxAttenLocal;
820 u8 ob[5], db1[5], db2[5];
821 u8 ant_div_control1, ant_div_control2;
822 u8 bb_desired_scale;
823 u32 regVal;
825 pModal = &eep->modalHeader;
826 txRxAttenLocal = 23;
828 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
830 /* Single chain for 4K EEPROM*/
831 ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
833 /* Initialize Ant Diversity settings from EEPROM */
834 if (pModal->version >= 3) {
835 ant_div_control1 = pModal->antdiv_ctl1;
836 ant_div_control2 = pModal->antdiv_ctl2;
838 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
839 regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
841 regVal |= SM(ant_div_control1,
842 AR_PHY_9285_ANT_DIV_CTL);
843 regVal |= SM(ant_div_control2,
844 AR_PHY_9285_ANT_DIV_ALT_LNACONF);
845 regVal |= SM((ant_div_control2 >> 2),
846 AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
847 regVal |= SM((ant_div_control1 >> 1),
848 AR_PHY_9285_ANT_DIV_ALT_GAINTB);
849 regVal |= SM((ant_div_control1 >> 2),
850 AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
853 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
854 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
855 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
856 regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
857 regVal |= SM((ant_div_control1 >> 3),
858 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
860 REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
861 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
863 if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
865 * If diversity combining is enabled,
866 * set MAIN to LNA1 and ALT to LNA2 initially.
868 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
869 regVal &= (~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
870 AR_PHY_9285_ANT_DIV_ALT_LNACONF));
872 regVal |= (ATH_ANT_DIV_COMB_LNA1 <<
873 AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S);
874 regVal |= (ATH_ANT_DIV_COMB_LNA2 <<
875 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S);
876 regVal &= (~(AR_PHY_9285_FAST_DIV_BIAS));
877 regVal |= (0 << AR_PHY_9285_FAST_DIV_BIAS_S);
878 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
882 if (pModal->version >= 2) {
883 ob[0] = pModal->ob_0;
884 ob[1] = pModal->ob_1;
885 ob[2] = pModal->ob_2;
886 ob[3] = pModal->ob_3;
887 ob[4] = pModal->ob_4;
889 db1[0] = pModal->db1_0;
890 db1[1] = pModal->db1_1;
891 db1[2] = pModal->db1_2;
892 db1[3] = pModal->db1_3;
893 db1[4] = pModal->db1_4;
895 db2[0] = pModal->db2_0;
896 db2[1] = pModal->db2_1;
897 db2[2] = pModal->db2_2;
898 db2[3] = pModal->db2_3;
899 db2[4] = pModal->db2_4;
900 } else if (pModal->version == 1) {
901 ob[0] = pModal->ob_0;
902 ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
903 db1[0] = pModal->db1_0;
904 db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
905 db2[0] = pModal->db2_0;
906 db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
907 } else {
908 int i;
910 for (i = 0; i < 5; i++) {
911 ob[i] = pModal->ob_0;
912 db1[i] = pModal->db1_0;
913 db2[i] = pModal->db1_0;
917 if (AR_SREV_9271(ah)) {
918 ath9k_hw_analog_shift_rmw(ah,
919 AR9285_AN_RF2G3,
920 AR9271_AN_RF2G3_OB_cck,
921 AR9271_AN_RF2G3_OB_cck_S,
922 ob[0]);
923 ath9k_hw_analog_shift_rmw(ah,
924 AR9285_AN_RF2G3,
925 AR9271_AN_RF2G3_OB_psk,
926 AR9271_AN_RF2G3_OB_psk_S,
927 ob[1]);
928 ath9k_hw_analog_shift_rmw(ah,
929 AR9285_AN_RF2G3,
930 AR9271_AN_RF2G3_OB_qam,
931 AR9271_AN_RF2G3_OB_qam_S,
932 ob[2]);
933 ath9k_hw_analog_shift_rmw(ah,
934 AR9285_AN_RF2G3,
935 AR9271_AN_RF2G3_DB_1,
936 AR9271_AN_RF2G3_DB_1_S,
937 db1[0]);
938 ath9k_hw_analog_shift_rmw(ah,
939 AR9285_AN_RF2G4,
940 AR9271_AN_RF2G4_DB_2,
941 AR9271_AN_RF2G4_DB_2_S,
942 db2[0]);
943 } else {
944 ath9k_hw_analog_shift_rmw(ah,
945 AR9285_AN_RF2G3,
946 AR9285_AN_RF2G3_OB_0,
947 AR9285_AN_RF2G3_OB_0_S,
948 ob[0]);
949 ath9k_hw_analog_shift_rmw(ah,
950 AR9285_AN_RF2G3,
951 AR9285_AN_RF2G3_OB_1,
952 AR9285_AN_RF2G3_OB_1_S,
953 ob[1]);
954 ath9k_hw_analog_shift_rmw(ah,
955 AR9285_AN_RF2G3,
956 AR9285_AN_RF2G3_OB_2,
957 AR9285_AN_RF2G3_OB_2_S,
958 ob[2]);
959 ath9k_hw_analog_shift_rmw(ah,
960 AR9285_AN_RF2G3,
961 AR9285_AN_RF2G3_OB_3,
962 AR9285_AN_RF2G3_OB_3_S,
963 ob[3]);
964 ath9k_hw_analog_shift_rmw(ah,
965 AR9285_AN_RF2G3,
966 AR9285_AN_RF2G3_OB_4,
967 AR9285_AN_RF2G3_OB_4_S,
968 ob[4]);
970 ath9k_hw_analog_shift_rmw(ah,
971 AR9285_AN_RF2G3,
972 AR9285_AN_RF2G3_DB1_0,
973 AR9285_AN_RF2G3_DB1_0_S,
974 db1[0]);
975 ath9k_hw_analog_shift_rmw(ah,
976 AR9285_AN_RF2G3,
977 AR9285_AN_RF2G3_DB1_1,
978 AR9285_AN_RF2G3_DB1_1_S,
979 db1[1]);
980 ath9k_hw_analog_shift_rmw(ah,
981 AR9285_AN_RF2G3,
982 AR9285_AN_RF2G3_DB1_2,
983 AR9285_AN_RF2G3_DB1_2_S,
984 db1[2]);
985 ath9k_hw_analog_shift_rmw(ah,
986 AR9285_AN_RF2G4,
987 AR9285_AN_RF2G4_DB1_3,
988 AR9285_AN_RF2G4_DB1_3_S,
989 db1[3]);
990 ath9k_hw_analog_shift_rmw(ah,
991 AR9285_AN_RF2G4,
992 AR9285_AN_RF2G4_DB1_4,
993 AR9285_AN_RF2G4_DB1_4_S, db1[4]);
995 ath9k_hw_analog_shift_rmw(ah,
996 AR9285_AN_RF2G4,
997 AR9285_AN_RF2G4_DB2_0,
998 AR9285_AN_RF2G4_DB2_0_S,
999 db2[0]);
1000 ath9k_hw_analog_shift_rmw(ah,
1001 AR9285_AN_RF2G4,
1002 AR9285_AN_RF2G4_DB2_1,
1003 AR9285_AN_RF2G4_DB2_1_S,
1004 db2[1]);
1005 ath9k_hw_analog_shift_rmw(ah,
1006 AR9285_AN_RF2G4,
1007 AR9285_AN_RF2G4_DB2_2,
1008 AR9285_AN_RF2G4_DB2_2_S,
1009 db2[2]);
1010 ath9k_hw_analog_shift_rmw(ah,
1011 AR9285_AN_RF2G4,
1012 AR9285_AN_RF2G4_DB2_3,
1013 AR9285_AN_RF2G4_DB2_3_S,
1014 db2[3]);
1015 ath9k_hw_analog_shift_rmw(ah,
1016 AR9285_AN_RF2G4,
1017 AR9285_AN_RF2G4_DB2_4,
1018 AR9285_AN_RF2G4_DB2_4_S,
1019 db2[4]);
1023 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1024 pModal->switchSettling);
1025 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
1026 pModal->adcDesiredSize);
1028 REG_WRITE(ah, AR_PHY_RF_CTL4,
1029 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
1030 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
1031 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
1032 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1034 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1035 pModal->txEndToRxOn);
1037 if (AR_SREV_9271_10(ah))
1038 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1039 pModal->txEndToRxOn);
1040 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1041 pModal->thresh62);
1042 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1043 pModal->thresh62);
1045 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1046 AR5416_EEP_MINOR_VER_2) {
1047 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
1048 pModal->txFrameToDataStart);
1049 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1050 pModal->txFrameToPaOn);
1053 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1054 AR5416_EEP_MINOR_VER_3) {
1055 if (IS_CHAN_HT40(chan))
1056 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1057 AR_PHY_SETTLING_SWITCH,
1058 pModal->swSettleHt40);
1061 bb_desired_scale = (pModal->bb_scale_smrt_antenna &
1062 EEP_4K_BB_DESIRED_SCALE_MASK);
1063 if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
1064 u32 pwrctrl, mask, clr;
1066 mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
1067 pwrctrl = mask * bb_desired_scale;
1068 clr = mask * 0x1f;
1069 REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
1070 REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
1071 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
1073 mask = BIT(0)|BIT(5)|BIT(15);
1074 pwrctrl = mask * bb_desired_scale;
1075 clr = mask * 0x1f;
1076 REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
1078 mask = BIT(0)|BIT(5);
1079 pwrctrl = mask * bb_desired_scale;
1080 clr = mask * 0x1f;
1081 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
1082 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
1086 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1088 #define EEP_MAP4K_SPURCHAN \
1089 (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
1090 struct ath_common *common = ath9k_hw_common(ah);
1092 u16 spur_val = AR_NO_SPUR;
1094 ath_dbg(common, ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n",
1095 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1097 switch (ah->config.spurmode) {
1098 case SPUR_DISABLE:
1099 break;
1100 case SPUR_ENABLE_IOCTL:
1101 spur_val = ah->config.spurchans[i][is2GHz];
1102 ath_dbg(common, ANI, "Getting spur val from new loc. %d\n",
1103 spur_val);
1104 break;
1105 case SPUR_ENABLE_EEPROM:
1106 spur_val = EEP_MAP4K_SPURCHAN;
1107 break;
1110 return spur_val;
1112 #undef EEP_MAP4K_SPURCHAN
1115 const struct eeprom_ops eep_4k_ops = {
1116 .check_eeprom = ath9k_hw_4k_check_eeprom,
1117 .get_eeprom = ath9k_hw_4k_get_eeprom,
1118 .fill_eeprom = ath9k_hw_4k_fill_eeprom,
1119 .dump_eeprom = ath9k_hw_4k_dump_eeprom,
1120 .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
1121 .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
1122 .set_board_values = ath9k_hw_4k_set_board_values,
1123 .set_txpower = ath9k_hw_4k_set_txpower,
1124 .get_spur_channel = ath9k_hw_4k_get_spur_channel