x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath9k / eeprom_def.c
blob1c25368b3836f756f39c7f17f884ba43a2fb233c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
21 static void ath9k_get_txgain_index(struct ath_hw *ah,
22 struct ath9k_channel *chan,
23 struct calDataPerFreqOpLoop *rawDatasetOpLoop,
24 u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
26 u8 pcdac, i = 0;
27 u16 idxL = 0, idxR = 0, numPiers;
28 bool match;
29 struct chan_centers centers;
31 ath9k_hw_get_channel_centers(ah, chan, &centers);
33 for (numPiers = 0; numPiers < availPiers; numPiers++)
34 if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
35 break;
37 match = ath9k_hw_get_lower_upper_index(
38 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
39 calChans, numPiers, &idxL, &idxR);
40 if (match) {
41 pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
42 *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
43 } else {
44 pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
45 *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
46 rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
49 while (pcdac > ah->originalGain[i] &&
50 i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
51 i++;
53 *pcdacIdx = i;
56 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
57 u32 initTxGain,
58 int txPower,
59 u8 *pPDADCValues)
61 u32 i;
62 u32 offset;
64 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
65 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
66 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
67 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
69 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
70 AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
72 offset = txPower;
73 for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
74 if (i < offset)
75 pPDADCValues[i] = 0x0;
76 else
77 pPDADCValues[i] = 0xFF;
80 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
82 return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
85 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
87 return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
90 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
92 static bool __ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
94 u16 *eep_data = (u16 *)&ah->eeprom.def;
95 int addr, ar5416_eep_start_loc = 0x100;
97 for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
98 if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
99 eep_data))
100 return false;
101 eep_data++;
103 return true;
106 static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw *ah)
108 u16 *eep_data = (u16 *)&ah->eeprom.def;
110 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
111 0x100, SIZE_EEPROM_DEF);
112 return true;
115 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
117 struct ath_common *common = ath9k_hw_common(ah);
119 if (!ath9k_hw_use_flash(ah)) {
120 ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
123 if (common->bus_ops->ath_bus_type == ATH_USB)
124 return __ath9k_hw_usb_def_fill_eeprom(ah);
125 else
126 return __ath9k_hw_def_fill_eeprom(ah);
129 #undef SIZE_EEPROM_DEF
131 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
132 static u32 ath9k_def_dump_modal_eeprom(char *buf, u32 len, u32 size,
133 struct modal_eep_header *modal_hdr)
135 PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
136 PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
137 PR_EEP("Chain2 Ant. Control", modal_hdr->antCtrlChain[2]);
138 PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
139 PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
140 PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
141 PR_EEP("Chain2 Ant. Gain", modal_hdr->antennaGainCh[2]);
142 PR_EEP("Switch Settle", modal_hdr->switchSettling);
143 PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
144 PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
145 PR_EEP("Chain2 TxRxAtten", modal_hdr->txRxAttenCh[2]);
146 PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
147 PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
148 PR_EEP("Chain2 RxTxMargin", modal_hdr->rxTxMarginCh[2]);
149 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
150 PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
151 PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
152 PR_EEP("Chain1 xlna Gain", modal_hdr->xlnaGainCh[1]);
153 PR_EEP("Chain2 xlna Gain", modal_hdr->xlnaGainCh[2]);
154 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
155 PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
156 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
157 PR_EEP("CCA Threshold)", modal_hdr->thresh62);
158 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
159 PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
160 PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
161 PR_EEP("xpdGain", modal_hdr->xpdGain);
162 PR_EEP("External PD", modal_hdr->xpd);
163 PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
164 PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
165 PR_EEP("Chain2 I Coefficient", modal_hdr->iqCalICh[2]);
166 PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
167 PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
168 PR_EEP("Chain2 Q Coefficient", modal_hdr->iqCalQCh[2]);
169 PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
170 PR_EEP("Chain0 OutputBias", modal_hdr->ob);
171 PR_EEP("Chain0 DriverBias", modal_hdr->db);
172 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
173 PR_EEP("2chain pwr decrease", modal_hdr->pwrDecreaseFor2Chain);
174 PR_EEP("3chain pwr decrease", modal_hdr->pwrDecreaseFor3Chain);
175 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
176 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
177 PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
178 PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
179 PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
180 PR_EEP("Chain2 bswAtten", modal_hdr->bswAtten[2]);
181 PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
182 PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
183 PR_EEP("Chain2 bswMargin", modal_hdr->bswMargin[2]);
184 PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
185 PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
186 PR_EEP("Chain1 xatten2Db", modal_hdr->xatten2Db[1]);
187 PR_EEP("Chain2 xatten2Db", modal_hdr->xatten2Db[2]);
188 PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
189 PR_EEP("Chain1 xatten2Margin", modal_hdr->xatten2Margin[1]);
190 PR_EEP("Chain2 xatten2Margin", modal_hdr->xatten2Margin[2]);
191 PR_EEP("Chain1 OutputBias", modal_hdr->ob_ch1);
192 PR_EEP("Chain1 DriverBias", modal_hdr->db_ch1);
193 PR_EEP("LNA Control", modal_hdr->lna_ctl);
194 PR_EEP("XPA Bias Freq0", modal_hdr->xpaBiasLvlFreq[0]);
195 PR_EEP("XPA Bias Freq1", modal_hdr->xpaBiasLvlFreq[1]);
196 PR_EEP("XPA Bias Freq2", modal_hdr->xpaBiasLvlFreq[2]);
198 return len;
201 static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
202 u8 *buf, u32 len, u32 size)
204 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
205 struct base_eep_header *pBase = &eep->baseEepHeader;
207 if (!dump_base_hdr) {
208 len += snprintf(buf + len, size - len,
209 "%20s :\n", "2GHz modal Header");
210 len = ath9k_def_dump_modal_eeprom(buf, len, size,
211 &eep->modalHeader[0]);
212 len += snprintf(buf + len, size - len,
213 "%20s :\n", "5GHz modal Header");
214 len = ath9k_def_dump_modal_eeprom(buf, len, size,
215 &eep->modalHeader[1]);
216 goto out;
219 PR_EEP("Major Version", pBase->version >> 12);
220 PR_EEP("Minor Version", pBase->version & 0xFFF);
221 PR_EEP("Checksum", pBase->checksum);
222 PR_EEP("Length", pBase->length);
223 PR_EEP("RegDomain1", pBase->regDmn[0]);
224 PR_EEP("RegDomain2", pBase->regDmn[1]);
225 PR_EEP("TX Mask", pBase->txMask);
226 PR_EEP("RX Mask", pBase->rxMask);
227 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
228 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
229 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
230 AR5416_OPFLAGS_N_2G_HT20));
231 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
232 AR5416_OPFLAGS_N_2G_HT40));
233 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
234 AR5416_OPFLAGS_N_5G_HT20));
235 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
236 AR5416_OPFLAGS_N_5G_HT40));
237 PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
238 PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
239 PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
240 PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
241 PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
243 len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
244 pBase->macAddr);
246 out:
247 if (len > size)
248 len = size;
250 return len;
252 #else
253 static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
254 u8 *buf, u32 len, u32 size)
256 return 0;
258 #endif
261 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
263 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
264 struct ath_common *common = ath9k_hw_common(ah);
265 u16 *eepdata, temp, magic, magic2;
266 u32 sum = 0, el;
267 bool need_swap = false;
268 int i, addr, size;
270 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
271 ath_err(common, "Reading Magic # failed\n");
272 return false;
275 if (!ath9k_hw_use_flash(ah)) {
276 ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
278 if (magic != AR5416_EEPROM_MAGIC) {
279 magic2 = swab16(magic);
281 if (magic2 == AR5416_EEPROM_MAGIC) {
282 size = sizeof(struct ar5416_eeprom_def);
283 need_swap = true;
284 eepdata = (u16 *) (&ah->eeprom);
286 for (addr = 0; addr < size / sizeof(u16); addr++) {
287 temp = swab16(*eepdata);
288 *eepdata = temp;
289 eepdata++;
291 } else {
292 ath_err(common,
293 "Invalid EEPROM Magic. Endianness mismatch.\n");
294 return -EINVAL;
299 ath_dbg(common, EEPROM, "need_swap = %s\n",
300 need_swap ? "True" : "False");
302 if (need_swap)
303 el = swab16(ah->eeprom.def.baseEepHeader.length);
304 else
305 el = ah->eeprom.def.baseEepHeader.length;
307 if (el > sizeof(struct ar5416_eeprom_def))
308 el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
309 else
310 el = el / sizeof(u16);
312 eepdata = (u16 *)(&ah->eeprom);
314 for (i = 0; i < el; i++)
315 sum ^= *eepdata++;
317 if (need_swap) {
318 u32 integer, j;
319 u16 word;
321 ath_dbg(common, EEPROM,
322 "EEPROM Endianness is not native.. Changing.\n");
324 word = swab16(eep->baseEepHeader.length);
325 eep->baseEepHeader.length = word;
327 word = swab16(eep->baseEepHeader.checksum);
328 eep->baseEepHeader.checksum = word;
330 word = swab16(eep->baseEepHeader.version);
331 eep->baseEepHeader.version = word;
333 word = swab16(eep->baseEepHeader.regDmn[0]);
334 eep->baseEepHeader.regDmn[0] = word;
336 word = swab16(eep->baseEepHeader.regDmn[1]);
337 eep->baseEepHeader.regDmn[1] = word;
339 word = swab16(eep->baseEepHeader.rfSilent);
340 eep->baseEepHeader.rfSilent = word;
342 word = swab16(eep->baseEepHeader.blueToothOptions);
343 eep->baseEepHeader.blueToothOptions = word;
345 word = swab16(eep->baseEepHeader.deviceCap);
346 eep->baseEepHeader.deviceCap = word;
348 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
349 struct modal_eep_header *pModal =
350 &eep->modalHeader[j];
351 integer = swab32(pModal->antCtrlCommon);
352 pModal->antCtrlCommon = integer;
354 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
355 integer = swab32(pModal->antCtrlChain[i]);
356 pModal->antCtrlChain[i] = integer;
358 for (i = 0; i < 3; i++) {
359 word = swab16(pModal->xpaBiasLvlFreq[i]);
360 pModal->xpaBiasLvlFreq[i] = word;
363 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
364 word = swab16(pModal->spurChans[i].spurChan);
365 pModal->spurChans[i].spurChan = word;
370 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
371 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
372 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
373 sum, ah->eep_ops->get_eeprom_ver(ah));
374 return -EINVAL;
377 /* Enable fixup for AR_AN_TOP2 if necessary */
378 if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
379 ((eep->baseEepHeader.version & 0xff) > 0x0a) &&
380 (eep->baseEepHeader.pwdclkind == 0))
381 ah->need_an_top2_fixup = true;
383 if ((common->bus_ops->ath_bus_type == ATH_USB) &&
384 (AR_SREV_9280(ah)))
385 eep->modalHeader[0].xpaBiasLvl = 0;
387 return 0;
390 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
391 enum eeprom_param param)
393 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
394 struct modal_eep_header *pModal = eep->modalHeader;
395 struct base_eep_header *pBase = &eep->baseEepHeader;
396 int band = 0;
398 switch (param) {
399 case EEP_NFTHRESH_5:
400 return pModal[0].noiseFloorThreshCh[0];
401 case EEP_NFTHRESH_2:
402 return pModal[1].noiseFloorThreshCh[0];
403 case EEP_MAC_LSW:
404 return get_unaligned_be16(pBase->macAddr);
405 case EEP_MAC_MID:
406 return get_unaligned_be16(pBase->macAddr + 2);
407 case EEP_MAC_MSW:
408 return get_unaligned_be16(pBase->macAddr + 4);
409 case EEP_REG_0:
410 return pBase->regDmn[0];
411 case EEP_OP_CAP:
412 return pBase->deviceCap;
413 case EEP_OP_MODE:
414 return pBase->opCapFlags;
415 case EEP_RF_SILENT:
416 return pBase->rfSilent;
417 case EEP_OB_5:
418 return pModal[0].ob;
419 case EEP_DB_5:
420 return pModal[0].db;
421 case EEP_OB_2:
422 return pModal[1].ob;
423 case EEP_DB_2:
424 return pModal[1].db;
425 case EEP_MINOR_REV:
426 return AR5416_VER_MASK;
427 case EEP_TX_MASK:
428 return pBase->txMask;
429 case EEP_RX_MASK:
430 return pBase->rxMask;
431 case EEP_FSTCLK_5G:
432 return pBase->fastClk5g;
433 case EEP_RXGAIN_TYPE:
434 return pBase->rxGainType;
435 case EEP_TXGAIN_TYPE:
436 return pBase->txGainType;
437 case EEP_OL_PWRCTRL:
438 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
439 return pBase->openLoopPwrCntl ? true : false;
440 else
441 return false;
442 case EEP_RC_CHAIN_MASK:
443 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
444 return pBase->rcChainMask;
445 else
446 return 0;
447 case EEP_DAC_HPWR_5G:
448 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
449 return pBase->dacHiPwrMode_5G;
450 else
451 return 0;
452 case EEP_FRAC_N_5G:
453 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
454 return pBase->frac_n_5g;
455 else
456 return 0;
457 case EEP_PWR_TABLE_OFFSET:
458 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
459 return pBase->pwr_table_offset;
460 else
461 return AR5416_PWR_TABLE_OFFSET_DB;
462 case EEP_ANTENNA_GAIN_2G:
463 band = 1;
464 /* fall through */
465 case EEP_ANTENNA_GAIN_5G:
466 return max_t(u8, max_t(u8,
467 pModal[band].antennaGainCh[0],
468 pModal[band].antennaGainCh[1]),
469 pModal[band].antennaGainCh[2]);
470 default:
471 return 0;
475 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
476 struct modal_eep_header *pModal,
477 struct ar5416_eeprom_def *eep,
478 u8 txRxAttenLocal, int regChainOffset, int i)
480 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
481 txRxAttenLocal = pModal->txRxAttenCh[i];
483 if (AR_SREV_9280_20_OR_LATER(ah)) {
484 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
485 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
486 pModal->bswMargin[i]);
487 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
488 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
489 pModal->bswAtten[i]);
490 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
491 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
492 pModal->xatten2Margin[i]);
493 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
494 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
495 pModal->xatten2Db[i]);
496 } else {
497 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
498 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
499 ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
500 | SM(pModal-> bswMargin[i],
501 AR_PHY_GAIN_2GHZ_BSW_MARGIN));
502 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
503 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
504 ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
505 | SM(pModal->bswAtten[i],
506 AR_PHY_GAIN_2GHZ_BSW_ATTEN));
510 if (AR_SREV_9280_20_OR_LATER(ah)) {
511 REG_RMW_FIELD(ah,
512 AR_PHY_RXGAIN + regChainOffset,
513 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
514 REG_RMW_FIELD(ah,
515 AR_PHY_RXGAIN + regChainOffset,
516 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
517 } else {
518 REG_WRITE(ah,
519 AR_PHY_RXGAIN + regChainOffset,
520 (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
521 ~AR_PHY_RXGAIN_TXRX_ATTEN)
522 | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
523 REG_WRITE(ah,
524 AR_PHY_GAIN_2GHZ + regChainOffset,
525 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
526 ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
527 SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
531 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
532 struct ath9k_channel *chan)
534 struct modal_eep_header *pModal;
535 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
536 int i, regChainOffset;
537 u8 txRxAttenLocal;
539 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
540 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
542 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff);
544 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
545 if (AR_SREV_9280(ah)) {
546 if (i >= 2)
547 break;
550 if ((ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
551 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
552 else
553 regChainOffset = i * 0x1000;
555 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
556 pModal->antCtrlChain[i]);
558 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
559 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
560 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
561 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
562 SM(pModal->iqCalICh[i],
563 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
564 SM(pModal->iqCalQCh[i],
565 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
567 ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
568 regChainOffset, i);
571 if (AR_SREV_9280_20_OR_LATER(ah)) {
572 if (IS_CHAN_2GHZ(chan)) {
573 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
574 AR_AN_RF2G1_CH0_OB,
575 AR_AN_RF2G1_CH0_OB_S,
576 pModal->ob);
577 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
578 AR_AN_RF2G1_CH0_DB,
579 AR_AN_RF2G1_CH0_DB_S,
580 pModal->db);
581 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
582 AR_AN_RF2G1_CH1_OB,
583 AR_AN_RF2G1_CH1_OB_S,
584 pModal->ob_ch1);
585 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
586 AR_AN_RF2G1_CH1_DB,
587 AR_AN_RF2G1_CH1_DB_S,
588 pModal->db_ch1);
589 } else {
590 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
591 AR_AN_RF5G1_CH0_OB5,
592 AR_AN_RF5G1_CH0_OB5_S,
593 pModal->ob);
594 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
595 AR_AN_RF5G1_CH0_DB5,
596 AR_AN_RF5G1_CH0_DB5_S,
597 pModal->db);
598 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
599 AR_AN_RF5G1_CH1_OB5,
600 AR_AN_RF5G1_CH1_OB5_S,
601 pModal->ob_ch1);
602 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
603 AR_AN_RF5G1_CH1_DB5,
604 AR_AN_RF5G1_CH1_DB5_S,
605 pModal->db_ch1);
607 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
608 AR_AN_TOP2_XPABIAS_LVL,
609 AR_AN_TOP2_XPABIAS_LVL_S,
610 pModal->xpaBiasLvl);
611 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
612 AR_AN_TOP2_LOCALBIAS,
613 AR_AN_TOP2_LOCALBIAS_S,
614 !!(pModal->lna_ctl &
615 LNA_CTL_LOCAL_BIAS));
616 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
617 !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
620 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
621 pModal->switchSettling);
622 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
623 pModal->adcDesiredSize);
625 if (!AR_SREV_9280_20_OR_LATER(ah))
626 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
627 AR_PHY_DESIRED_SZ_PGA,
628 pModal->pgaDesiredSize);
630 REG_WRITE(ah, AR_PHY_RF_CTL4,
631 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
632 | SM(pModal->txEndToXpaOff,
633 AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
634 | SM(pModal->txFrameToXpaOn,
635 AR_PHY_RF_CTL4_FRAME_XPAA_ON)
636 | SM(pModal->txFrameToXpaOn,
637 AR_PHY_RF_CTL4_FRAME_XPAB_ON));
639 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
640 pModal->txEndToRxOn);
642 if (AR_SREV_9280_20_OR_LATER(ah)) {
643 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
644 pModal->thresh62);
645 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
646 AR_PHY_EXT_CCA0_THRESH62,
647 pModal->thresh62);
648 } else {
649 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
650 pModal->thresh62);
651 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
652 AR_PHY_EXT_CCA_THRESH62,
653 pModal->thresh62);
656 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
657 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
658 AR_PHY_TX_END_DATA_START,
659 pModal->txFrameToDataStart);
660 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
661 pModal->txFrameToPaOn);
664 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
665 if (IS_CHAN_HT40(chan))
666 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
667 AR_PHY_SETTLING_SWITCH,
668 pModal->swSettleHt40);
671 if (AR_SREV_9280_20_OR_LATER(ah) &&
672 AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
673 REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
674 AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
675 pModal->miscBits);
678 if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
679 if (IS_CHAN_2GHZ(chan))
680 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
681 eep->baseEepHeader.dacLpMode);
682 else if (eep->baseEepHeader.dacHiPwrMode_5G)
683 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
684 else
685 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
686 eep->baseEepHeader.dacLpMode);
688 udelay(100);
690 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
691 pModal->miscBits >> 2);
693 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
694 AR_PHY_TX_DESIRED_SCALE_CCK,
695 eep->baseEepHeader.desiredScaleCCK);
699 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
700 struct ath9k_channel *chan)
702 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
703 struct modal_eep_header *pModal;
704 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
705 u8 biaslevel;
707 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
708 return;
710 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
711 return;
713 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
715 if (pModal->xpaBiasLvl != 0xff) {
716 biaslevel = pModal->xpaBiasLvl;
717 } else {
718 u16 resetFreqBin, freqBin, freqCount = 0;
719 struct chan_centers centers;
721 ath9k_hw_get_channel_centers(ah, chan, &centers);
723 resetFreqBin = FREQ2FBIN(centers.synth_center,
724 IS_CHAN_2GHZ(chan));
725 freqBin = XPA_LVL_FREQ(0) & 0xff;
726 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
728 freqCount++;
730 while (freqCount < 3) {
731 if (XPA_LVL_FREQ(freqCount) == 0x0)
732 break;
734 freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
735 if (resetFreqBin >= freqBin)
736 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
737 else
738 break;
739 freqCount++;
743 if (IS_CHAN_2GHZ(chan)) {
744 INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
745 7, 1) & (~0x18)) | biaslevel << 3;
746 } else {
747 INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
748 6, 1) & (~0xc0)) | biaslevel << 6;
750 #undef XPA_LVL_FREQ
753 static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
754 u16 *gb,
755 u16 numXpdGain,
756 u16 pdGainOverlap_t2,
757 int8_t pwr_table_offset,
758 int16_t *diff)
761 u16 k;
763 /* Prior to writing the boundaries or the pdadc vs. power table
764 * into the chip registers the default starting point on the pdadc
765 * vs. power table needs to be checked and the curve boundaries
766 * adjusted accordingly
768 if (AR_SREV_9280_20_OR_LATER(ah)) {
769 u16 gb_limit;
771 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
772 /* get the difference in dB */
773 *diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
774 /* get the number of half dB steps */
775 *diff *= 2;
776 /* change the original gain boundary settings
777 * by the number of half dB steps
779 for (k = 0; k < numXpdGain; k++)
780 gb[k] = (u16)(gb[k] - *diff);
782 /* Because of a hardware limitation, ensure the gain boundary
783 * is not larger than (63 - overlap)
785 gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2);
787 for (k = 0; k < numXpdGain; k++)
788 gb[k] = (u16)min(gb_limit, gb[k]);
791 return *diff;
794 static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
795 int8_t pwr_table_offset,
796 int16_t diff,
797 u8 *pdadcValues)
799 #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
800 u16 k;
802 /* If this is a board that has a pwrTableOffset that differs from
803 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
804 * pdadc vs pwr table needs to be adjusted prior to writing to the
805 * chip.
807 if (AR_SREV_9280_20_OR_LATER(ah)) {
808 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
809 /* shift the table to start at the new offset */
810 for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
811 pdadcValues[k] = pdadcValues[k + diff];
814 /* fill the back of the table */
815 for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
816 pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
820 #undef NUM_PDADC
823 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
824 struct ath9k_channel *chan)
826 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
827 #define SM_PDGAIN_B(x, y) \
828 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
829 struct ath_common *common = ath9k_hw_common(ah);
830 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
831 struct cal_data_per_freq *pRawDataset;
832 u8 *pCalBChans = NULL;
833 u16 pdGainOverlap_t2;
834 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
835 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
836 u16 numPiers, i, j;
837 int16_t diff = 0;
838 u16 numXpdGain, xpdMask;
839 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
840 u32 reg32, regOffset, regChainOffset;
841 int16_t modalIdx;
842 int8_t pwr_table_offset;
844 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
845 xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
847 pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
849 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
850 AR5416_EEP_MINOR_VER_2) {
851 pdGainOverlap_t2 =
852 pEepData->modalHeader[modalIdx].pdGainOverlap;
853 } else {
854 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
855 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
858 if (IS_CHAN_2GHZ(chan)) {
859 pCalBChans = pEepData->calFreqPier2G;
860 numPiers = AR5416_NUM_2G_CAL_PIERS;
861 } else {
862 pCalBChans = pEepData->calFreqPier5G;
863 numPiers = AR5416_NUM_5G_CAL_PIERS;
866 if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
867 pRawDataset = pEepData->calPierData2G[0];
868 ah->initPDADC = ((struct calDataPerFreqOpLoop *)
869 pRawDataset)->vpdPdg[0][0];
872 numXpdGain = 0;
874 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
875 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
876 if (numXpdGain >= AR5416_NUM_PD_GAINS)
877 break;
878 xpdGainValues[numXpdGain] =
879 (u16)(AR5416_PD_GAINS_IN_MASK - i);
880 numXpdGain++;
884 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
885 (numXpdGain - 1) & 0x3);
886 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
887 xpdGainValues[0]);
888 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
889 xpdGainValues[1]);
890 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
891 xpdGainValues[2]);
893 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
894 if ((ah->rxchainmask == 5 || ah->txchainmask == 5) &&
895 (i != 0)) {
896 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
897 } else
898 regChainOffset = i * 0x1000;
900 if (pEepData->baseEepHeader.txMask & (1 << i)) {
901 if (IS_CHAN_2GHZ(chan))
902 pRawDataset = pEepData->calPierData2G[i];
903 else
904 pRawDataset = pEepData->calPierData5G[i];
907 if (OLC_FOR_AR9280_20_LATER) {
908 u8 pcdacIdx;
909 u8 txPower;
911 ath9k_get_txgain_index(ah, chan,
912 (struct calDataPerFreqOpLoop *)pRawDataset,
913 pCalBChans, numPiers, &txPower, &pcdacIdx);
914 ath9k_olc_get_pdadcs(ah, pcdacIdx,
915 txPower/2, pdadcValues);
916 } else {
917 ath9k_hw_get_gain_boundaries_pdadcs(ah,
918 chan, pRawDataset,
919 pCalBChans, numPiers,
920 pdGainOverlap_t2,
921 gainBoundaries,
922 pdadcValues,
923 numXpdGain);
926 diff = ath9k_change_gain_boundary_setting(ah,
927 gainBoundaries,
928 numXpdGain,
929 pdGainOverlap_t2,
930 pwr_table_offset,
931 &diff);
933 ENABLE_REGWRITE_BUFFER(ah);
935 if (OLC_FOR_AR9280_20_LATER) {
936 REG_WRITE(ah,
937 AR_PHY_TPCRG5 + regChainOffset,
938 SM(0x6,
939 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
940 SM_PD_GAIN(1) | SM_PD_GAIN(2) |
941 SM_PD_GAIN(3) | SM_PD_GAIN(4));
942 } else {
943 REG_WRITE(ah,
944 AR_PHY_TPCRG5 + regChainOffset,
945 SM(pdGainOverlap_t2,
946 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
947 SM_PDGAIN_B(0, 1) |
948 SM_PDGAIN_B(1, 2) |
949 SM_PDGAIN_B(2, 3) |
950 SM_PDGAIN_B(3, 4));
953 ath9k_adjust_pdadc_values(ah, pwr_table_offset,
954 diff, pdadcValues);
956 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
957 for (j = 0; j < 32; j++) {
958 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
959 REG_WRITE(ah, regOffset, reg32);
961 ath_dbg(common, EEPROM,
962 "PDADC (%d,%4x): %4.4x %8.8x\n",
963 i, regChainOffset, regOffset,
964 reg32);
965 ath_dbg(common, EEPROM,
966 "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
967 i, 4 * j, pdadcValues[4 * j],
968 4 * j + 1, pdadcValues[4 * j + 1],
969 4 * j + 2, pdadcValues[4 * j + 2],
970 4 * j + 3, pdadcValues[4 * j + 3]);
972 regOffset += 4;
974 REGWRITE_BUFFER_FLUSH(ah);
978 #undef SM_PD_GAIN
979 #undef SM_PDGAIN_B
982 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
983 struct ath9k_channel *chan,
984 int16_t *ratesArray,
985 u16 cfgCtl,
986 u16 antenna_reduction,
987 u16 powerLimit)
989 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
990 u16 twiceMaxEdgePower;
991 int i;
992 struct cal_ctl_data *rep;
993 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
994 0, { 0, 0, 0, 0}
996 struct cal_target_power_leg targetPowerOfdmExt = {
997 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
998 0, { 0, 0, 0, 0 }
1000 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
1001 0, {0, 0, 0, 0}
1003 u16 scaledPower = 0, minCtlPower;
1004 static const u16 ctlModesFor11a[] = {
1005 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
1007 static const u16 ctlModesFor11g[] = {
1008 CTL_11B, CTL_11G, CTL_2GHT20,
1009 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
1011 u16 numCtlModes;
1012 const u16 *pCtlMode;
1013 u16 ctlMode, freq;
1014 struct chan_centers centers;
1015 int tx_chainmask;
1016 u16 twiceMinEdgePower;
1018 tx_chainmask = ah->txchainmask;
1020 ath9k_hw_get_channel_centers(ah, chan, &centers);
1022 scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
1023 antenna_reduction);
1025 if (IS_CHAN_2GHZ(chan)) {
1026 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
1027 SUB_NUM_CTL_MODES_AT_2G_40;
1028 pCtlMode = ctlModesFor11g;
1030 ath9k_hw_get_legacy_target_powers(ah, chan,
1031 pEepData->calTargetPowerCck,
1032 AR5416_NUM_2G_CCK_TARGET_POWERS,
1033 &targetPowerCck, 4, false);
1034 ath9k_hw_get_legacy_target_powers(ah, chan,
1035 pEepData->calTargetPower2G,
1036 AR5416_NUM_2G_20_TARGET_POWERS,
1037 &targetPowerOfdm, 4, false);
1038 ath9k_hw_get_target_powers(ah, chan,
1039 pEepData->calTargetPower2GHT20,
1040 AR5416_NUM_2G_20_TARGET_POWERS,
1041 &targetPowerHt20, 8, false);
1043 if (IS_CHAN_HT40(chan)) {
1044 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
1045 ath9k_hw_get_target_powers(ah, chan,
1046 pEepData->calTargetPower2GHT40,
1047 AR5416_NUM_2G_40_TARGET_POWERS,
1048 &targetPowerHt40, 8, true);
1049 ath9k_hw_get_legacy_target_powers(ah, chan,
1050 pEepData->calTargetPowerCck,
1051 AR5416_NUM_2G_CCK_TARGET_POWERS,
1052 &targetPowerCckExt, 4, true);
1053 ath9k_hw_get_legacy_target_powers(ah, chan,
1054 pEepData->calTargetPower2G,
1055 AR5416_NUM_2G_20_TARGET_POWERS,
1056 &targetPowerOfdmExt, 4, true);
1058 } else {
1059 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
1060 SUB_NUM_CTL_MODES_AT_5G_40;
1061 pCtlMode = ctlModesFor11a;
1063 ath9k_hw_get_legacy_target_powers(ah, chan,
1064 pEepData->calTargetPower5G,
1065 AR5416_NUM_5G_20_TARGET_POWERS,
1066 &targetPowerOfdm, 4, false);
1067 ath9k_hw_get_target_powers(ah, chan,
1068 pEepData->calTargetPower5GHT20,
1069 AR5416_NUM_5G_20_TARGET_POWERS,
1070 &targetPowerHt20, 8, false);
1072 if (IS_CHAN_HT40(chan)) {
1073 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1074 ath9k_hw_get_target_powers(ah, chan,
1075 pEepData->calTargetPower5GHT40,
1076 AR5416_NUM_5G_40_TARGET_POWERS,
1077 &targetPowerHt40, 8, true);
1078 ath9k_hw_get_legacy_target_powers(ah, chan,
1079 pEepData->calTargetPower5G,
1080 AR5416_NUM_5G_20_TARGET_POWERS,
1081 &targetPowerOfdmExt, 4, true);
1085 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1086 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1087 (pCtlMode[ctlMode] == CTL_2GHT40);
1088 if (isHt40CtlMode)
1089 freq = centers.synth_center;
1090 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1091 freq = centers.ext_center;
1092 else
1093 freq = centers.ctl_center;
1095 twiceMaxEdgePower = MAX_RATE_POWER;
1097 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1098 if ((((cfgCtl & ~CTL_MODE_M) |
1099 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1100 pEepData->ctlIndex[i]) ||
1101 (((cfgCtl & ~CTL_MODE_M) |
1102 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1103 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1104 rep = &(pEepData->ctlData[i]);
1106 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1107 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1108 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1110 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1111 twiceMaxEdgePower = min(twiceMaxEdgePower,
1112 twiceMinEdgePower);
1113 } else {
1114 twiceMaxEdgePower = twiceMinEdgePower;
1115 break;
1120 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1122 switch (pCtlMode[ctlMode]) {
1123 case CTL_11B:
1124 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1125 targetPowerCck.tPow2x[i] =
1126 min((u16)targetPowerCck.tPow2x[i],
1127 minCtlPower);
1129 break;
1130 case CTL_11A:
1131 case CTL_11G:
1132 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1133 targetPowerOfdm.tPow2x[i] =
1134 min((u16)targetPowerOfdm.tPow2x[i],
1135 minCtlPower);
1137 break;
1138 case CTL_5GHT20:
1139 case CTL_2GHT20:
1140 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1141 targetPowerHt20.tPow2x[i] =
1142 min((u16)targetPowerHt20.tPow2x[i],
1143 minCtlPower);
1145 break;
1146 case CTL_11B_EXT:
1147 targetPowerCckExt.tPow2x[0] = min((u16)
1148 targetPowerCckExt.tPow2x[0],
1149 minCtlPower);
1150 break;
1151 case CTL_11A_EXT:
1152 case CTL_11G_EXT:
1153 targetPowerOfdmExt.tPow2x[0] = min((u16)
1154 targetPowerOfdmExt.tPow2x[0],
1155 minCtlPower);
1156 break;
1157 case CTL_5GHT40:
1158 case CTL_2GHT40:
1159 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1160 targetPowerHt40.tPow2x[i] =
1161 min((u16)targetPowerHt40.tPow2x[i],
1162 minCtlPower);
1164 break;
1165 default:
1166 break;
1170 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1171 ratesArray[rate18mb] = ratesArray[rate24mb] =
1172 targetPowerOfdm.tPow2x[0];
1173 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1174 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1175 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1176 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1178 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1179 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1181 if (IS_CHAN_2GHZ(chan)) {
1182 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1183 ratesArray[rate2s] = ratesArray[rate2l] =
1184 targetPowerCck.tPow2x[1];
1185 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1186 targetPowerCck.tPow2x[2];
1187 ratesArray[rate11s] = ratesArray[rate11l] =
1188 targetPowerCck.tPow2x[3];
1190 if (IS_CHAN_HT40(chan)) {
1191 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1192 ratesArray[rateHt40_0 + i] =
1193 targetPowerHt40.tPow2x[i];
1195 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1196 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1197 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1198 if (IS_CHAN_2GHZ(chan)) {
1199 ratesArray[rateExtCck] =
1200 targetPowerCckExt.tPow2x[0];
1205 static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1206 struct ath9k_channel *chan,
1207 u16 cfgCtl,
1208 u8 twiceAntennaReduction,
1209 u8 powerLimit, bool test)
1211 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1212 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1213 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1214 struct modal_eep_header *pModal =
1215 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1216 int16_t ratesArray[Ar5416RateSize];
1217 u8 ht40PowerIncForPdadc = 2;
1218 int i, cck_ofdm_delta = 0;
1220 memset(ratesArray, 0, sizeof(ratesArray));
1222 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1223 AR5416_EEP_MINOR_VER_2) {
1224 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1227 ath9k_hw_set_def_power_per_rate_table(ah, chan,
1228 &ratesArray[0], cfgCtl,
1229 twiceAntennaReduction,
1230 powerLimit);
1232 ath9k_hw_set_def_power_cal_table(ah, chan);
1234 regulatory->max_power_level = 0;
1235 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1236 if (ratesArray[i] > MAX_RATE_POWER)
1237 ratesArray[i] = MAX_RATE_POWER;
1238 if (ratesArray[i] > regulatory->max_power_level)
1239 regulatory->max_power_level = ratesArray[i];
1242 ath9k_hw_update_regulatory_maxpower(ah);
1244 if (test)
1245 return;
1247 if (AR_SREV_9280_20_OR_LATER(ah)) {
1248 for (i = 0; i < Ar5416RateSize; i++) {
1249 int8_t pwr_table_offset;
1251 pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1252 EEP_PWR_TABLE_OFFSET);
1253 ratesArray[i] -= pwr_table_offset * 2;
1257 ENABLE_REGWRITE_BUFFER(ah);
1259 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1260 ATH9K_POW_SM(ratesArray[rate18mb], 24)
1261 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1262 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1263 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1264 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1265 ATH9K_POW_SM(ratesArray[rate54mb], 24)
1266 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1267 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1268 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1270 if (IS_CHAN_2GHZ(chan)) {
1271 if (OLC_FOR_AR9280_20_LATER) {
1272 cck_ofdm_delta = 2;
1273 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1274 ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1275 | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1276 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1277 | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1278 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1279 ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1280 | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1281 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1282 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1283 } else {
1284 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1285 ATH9K_POW_SM(ratesArray[rate2s], 24)
1286 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1287 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1288 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1289 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1290 ATH9K_POW_SM(ratesArray[rate11s], 24)
1291 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1292 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1293 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1297 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1298 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1299 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1300 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1301 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1302 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1303 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1304 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1305 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1306 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1308 if (IS_CHAN_HT40(chan)) {
1309 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1310 ATH9K_POW_SM(ratesArray[rateHt40_3] +
1311 ht40PowerIncForPdadc, 24)
1312 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1313 ht40PowerIncForPdadc, 16)
1314 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1315 ht40PowerIncForPdadc, 8)
1316 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1317 ht40PowerIncForPdadc, 0));
1318 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1319 ATH9K_POW_SM(ratesArray[rateHt40_7] +
1320 ht40PowerIncForPdadc, 24)
1321 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1322 ht40PowerIncForPdadc, 16)
1323 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1324 ht40PowerIncForPdadc, 8)
1325 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1326 ht40PowerIncForPdadc, 0));
1327 if (OLC_FOR_AR9280_20_LATER) {
1328 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1329 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1330 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1331 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1332 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1333 } else {
1334 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1335 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1336 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1337 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1338 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1342 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1343 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1344 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1346 REGWRITE_BUFFER_FLUSH(ah);
1349 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1351 #define EEP_DEF_SPURCHAN \
1352 (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
1353 struct ath_common *common = ath9k_hw_common(ah);
1355 u16 spur_val = AR_NO_SPUR;
1357 ath_dbg(common, ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n",
1358 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1360 switch (ah->config.spurmode) {
1361 case SPUR_DISABLE:
1362 break;
1363 case SPUR_ENABLE_IOCTL:
1364 spur_val = ah->config.spurchans[i][is2GHz];
1365 ath_dbg(common, ANI, "Getting spur val from new loc. %d\n",
1366 spur_val);
1367 break;
1368 case SPUR_ENABLE_EEPROM:
1369 spur_val = EEP_DEF_SPURCHAN;
1370 break;
1373 return spur_val;
1375 #undef EEP_DEF_SPURCHAN
1378 const struct eeprom_ops eep_def_ops = {
1379 .check_eeprom = ath9k_hw_def_check_eeprom,
1380 .get_eeprom = ath9k_hw_def_get_eeprom,
1381 .fill_eeprom = ath9k_hw_def_fill_eeprom,
1382 .dump_eeprom = ath9k_hw_def_dump_eeprom,
1383 .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
1384 .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
1385 .set_board_values = ath9k_hw_def_set_board_values,
1386 .set_addac = ath9k_hw_def_set_addac,
1387 .set_txpower = ath9k_hw_def_set_txpower,
1388 .get_spur_channel = ath9k_hw_def_get_spur_channel