2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/dma-mapping.h>
19 #include "ar9003_mac.h"
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t) ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
38 static u16 bits_per_symbol
[][2] = {
40 { 26, 54 }, /* 0: BPSK */
41 { 52, 108 }, /* 1: QPSK 1/2 */
42 { 78, 162 }, /* 2: QPSK 3/4 */
43 { 104, 216 }, /* 3: 16-QAM 1/2 */
44 { 156, 324 }, /* 4: 16-QAM 3/4 */
45 { 208, 432 }, /* 5: 64-QAM 2/3 */
46 { 234, 486 }, /* 6: 64-QAM 3/4 */
47 { 260, 540 }, /* 7: 64-QAM 5/6 */
50 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
52 static void ath_tx_send_normal(struct ath_softc
*sc
, struct ath_txq
*txq
,
53 struct ath_atx_tid
*tid
, struct sk_buff
*skb
);
54 static void ath_tx_complete(struct ath_softc
*sc
, struct sk_buff
*skb
,
55 int tx_flags
, struct ath_txq
*txq
);
56 static void ath_tx_complete_buf(struct ath_softc
*sc
, struct ath_buf
*bf
,
57 struct ath_txq
*txq
, struct list_head
*bf_q
,
58 struct ath_tx_status
*ts
, int txok
);
59 static void ath_tx_txqaddbuf(struct ath_softc
*sc
, struct ath_txq
*txq
,
60 struct list_head
*head
, bool internal
);
61 static void ath_tx_rc_status(struct ath_softc
*sc
, struct ath_buf
*bf
,
62 struct ath_tx_status
*ts
, int nframes
, int nbad
,
64 static void ath_tx_update_baw(struct ath_softc
*sc
, struct ath_atx_tid
*tid
,
66 static struct ath_buf
*ath_tx_setup_buffer(struct ath_softc
*sc
,
68 struct ath_atx_tid
*tid
,
78 /*********************/
79 /* Aggregation logic */
80 /*********************/
82 void ath_txq_lock(struct ath_softc
*sc
, struct ath_txq
*txq
)
83 __acquires(&txq
->axq_lock
)
85 spin_lock_bh(&txq
->axq_lock
);
88 void ath_txq_unlock(struct ath_softc
*sc
, struct ath_txq
*txq
)
89 __releases(&txq
->axq_lock
)
91 spin_unlock_bh(&txq
->axq_lock
);
94 void ath_txq_unlock_complete(struct ath_softc
*sc
, struct ath_txq
*txq
)
95 __releases(&txq
->axq_lock
)
97 struct sk_buff_head q
;
100 __skb_queue_head_init(&q
);
101 skb_queue_splice_init(&txq
->complete_q
, &q
);
102 spin_unlock_bh(&txq
->axq_lock
);
104 while ((skb
= __skb_dequeue(&q
)))
105 ieee80211_tx_status(sc
->hw
, skb
);
108 static void ath_tx_queue_tid(struct ath_txq
*txq
, struct ath_atx_tid
*tid
)
110 struct ath_atx_ac
*ac
= tid
->ac
;
119 list_add_tail(&tid
->list
, &ac
->tid_q
);
125 list_add_tail(&ac
->list
, &txq
->axq_acq
);
128 static struct ath_frame_info
*get_frame_info(struct sk_buff
*skb
)
130 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
131 BUILD_BUG_ON(sizeof(struct ath_frame_info
) >
132 sizeof(tx_info
->rate_driver_data
));
133 return (struct ath_frame_info
*) &tx_info
->rate_driver_data
[0];
136 static void ath_send_bar(struct ath_atx_tid
*tid
, u16 seqno
)
141 ieee80211_send_bar(tid
->an
->vif
, tid
->an
->sta
->addr
, tid
->tidno
,
142 seqno
<< IEEE80211_SEQ_SEQ_SHIFT
);
145 static void ath_set_rates(struct ieee80211_vif
*vif
, struct ieee80211_sta
*sta
,
148 ieee80211_get_tx_rates(vif
, sta
, bf
->bf_mpdu
, bf
->rates
,
149 ARRAY_SIZE(bf
->rates
));
152 static void ath_txq_skb_done(struct ath_softc
*sc
, struct ath_txq
*txq
,
157 q
= skb_get_queue_mapping(skb
);
158 if (txq
== sc
->tx
.uapsdq
)
159 txq
= sc
->tx
.txq_map
[q
];
161 if (txq
!= sc
->tx
.txq_map
[q
])
164 if (WARN_ON(--txq
->pending_frames
< 0))
165 txq
->pending_frames
= 0;
168 txq
->pending_frames
< sc
->tx
.txq_max_pending
[q
]) {
169 ieee80211_wake_queue(sc
->hw
, q
);
170 txq
->stopped
= false;
174 static struct ath_atx_tid
*
175 ath_get_skb_tid(struct ath_softc
*sc
, struct ath_node
*an
, struct sk_buff
*skb
)
177 struct ieee80211_hdr
*hdr
;
180 hdr
= (struct ieee80211_hdr
*) skb
->data
;
181 if (ieee80211_is_data_qos(hdr
->frame_control
))
182 tidno
= ieee80211_get_qos_ctl(hdr
)[0];
184 tidno
&= IEEE80211_QOS_CTL_TID_MASK
;
185 return ATH_AN_2_TID(an
, tidno
);
188 static bool ath_tid_has_buffered(struct ath_atx_tid
*tid
)
190 return !skb_queue_empty(&tid
->buf_q
) || !skb_queue_empty(&tid
->retry_q
);
193 static struct sk_buff
*ath_tid_dequeue(struct ath_atx_tid
*tid
)
197 skb
= __skb_dequeue(&tid
->retry_q
);
199 skb
= __skb_dequeue(&tid
->buf_q
);
205 * ath_tx_tid_change_state:
206 * - clears a-mpdu flag of previous session
207 * - force sequence number allocation to fix next BlockAck Window
210 ath_tx_tid_change_state(struct ath_softc
*sc
, struct ath_atx_tid
*tid
)
212 struct ath_txq
*txq
= tid
->ac
->txq
;
213 struct ieee80211_tx_info
*tx_info
;
214 struct sk_buff
*skb
, *tskb
;
216 struct ath_frame_info
*fi
;
218 skb_queue_walk_safe(&tid
->buf_q
, skb
, tskb
) {
219 fi
= get_frame_info(skb
);
222 tx_info
= IEEE80211_SKB_CB(skb
);
223 tx_info
->flags
&= ~IEEE80211_TX_CTL_AMPDU
;
228 bf
= ath_tx_setup_buffer(sc
, txq
, tid
, skb
);
230 __skb_unlink(skb
, &tid
->buf_q
);
231 ath_txq_skb_done(sc
, txq
, skb
);
232 ieee80211_free_txskb(sc
->hw
, skb
);
239 static void ath_tx_flush_tid(struct ath_softc
*sc
, struct ath_atx_tid
*tid
)
241 struct ath_txq
*txq
= tid
->ac
->txq
;
244 struct list_head bf_head
;
245 struct ath_tx_status ts
;
246 struct ath_frame_info
*fi
;
247 bool sendbar
= false;
249 INIT_LIST_HEAD(&bf_head
);
251 memset(&ts
, 0, sizeof(ts
));
253 while ((skb
= __skb_dequeue(&tid
->retry_q
))) {
254 fi
= get_frame_info(skb
);
257 ath_txq_skb_done(sc
, txq
, skb
);
258 ieee80211_free_txskb(sc
->hw
, skb
);
262 if (fi
->baw_tracked
) {
263 ath_tx_update_baw(sc
, tid
, bf
->bf_state
.seqno
);
267 list_add_tail(&bf
->list
, &bf_head
);
268 ath_tx_complete_buf(sc
, bf
, txq
, &bf_head
, &ts
, 0);
272 ath_txq_unlock(sc
, txq
);
273 ath_send_bar(tid
, tid
->seq_start
);
274 ath_txq_lock(sc
, txq
);
278 static void ath_tx_update_baw(struct ath_softc
*sc
, struct ath_atx_tid
*tid
,
283 index
= ATH_BA_INDEX(tid
->seq_start
, seqno
);
284 cindex
= (tid
->baw_head
+ index
) & (ATH_TID_MAX_BUFS
- 1);
286 __clear_bit(cindex
, tid
->tx_buf
);
288 while (tid
->baw_head
!= tid
->baw_tail
&& !test_bit(tid
->baw_head
, tid
->tx_buf
)) {
289 INCR(tid
->seq_start
, IEEE80211_SEQ_MAX
);
290 INCR(tid
->baw_head
, ATH_TID_MAX_BUFS
);
291 if (tid
->bar_index
>= 0)
296 static void ath_tx_addto_baw(struct ath_softc
*sc
, struct ath_atx_tid
*tid
,
299 struct ath_frame_info
*fi
= get_frame_info(bf
->bf_mpdu
);
300 u16 seqno
= bf
->bf_state
.seqno
;
303 index
= ATH_BA_INDEX(tid
->seq_start
, seqno
);
304 cindex
= (tid
->baw_head
+ index
) & (ATH_TID_MAX_BUFS
- 1);
305 __set_bit(cindex
, tid
->tx_buf
);
308 if (index
>= ((tid
->baw_tail
- tid
->baw_head
) &
309 (ATH_TID_MAX_BUFS
- 1))) {
310 tid
->baw_tail
= cindex
;
311 INCR(tid
->baw_tail
, ATH_TID_MAX_BUFS
);
315 static void ath_tid_drain(struct ath_softc
*sc
, struct ath_txq
*txq
,
316 struct ath_atx_tid
*tid
)
321 struct list_head bf_head
;
322 struct ath_tx_status ts
;
323 struct ath_frame_info
*fi
;
325 memset(&ts
, 0, sizeof(ts
));
326 INIT_LIST_HEAD(&bf_head
);
328 while ((skb
= ath_tid_dequeue(tid
))) {
329 fi
= get_frame_info(skb
);
333 ath_tx_complete(sc
, skb
, ATH_TX_ERROR
, txq
);
337 list_add_tail(&bf
->list
, &bf_head
);
338 ath_tx_complete_buf(sc
, bf
, txq
, &bf_head
, &ts
, 0);
342 static void ath_tx_set_retry(struct ath_softc
*sc
, struct ath_txq
*txq
,
343 struct sk_buff
*skb
, int count
)
345 struct ath_frame_info
*fi
= get_frame_info(skb
);
346 struct ath_buf
*bf
= fi
->bf
;
347 struct ieee80211_hdr
*hdr
;
348 int prev
= fi
->retries
;
350 TX_STAT_INC(txq
->axq_qnum
, a_retries
);
351 fi
->retries
+= count
;
356 hdr
= (struct ieee80211_hdr
*)skb
->data
;
357 hdr
->frame_control
|= cpu_to_le16(IEEE80211_FCTL_RETRY
);
358 dma_sync_single_for_device(sc
->dev
, bf
->bf_buf_addr
,
359 sizeof(*hdr
), DMA_TO_DEVICE
);
362 static struct ath_buf
*ath_tx_get_buffer(struct ath_softc
*sc
)
364 struct ath_buf
*bf
= NULL
;
366 spin_lock_bh(&sc
->tx
.txbuflock
);
368 if (unlikely(list_empty(&sc
->tx
.txbuf
))) {
369 spin_unlock_bh(&sc
->tx
.txbuflock
);
373 bf
= list_first_entry(&sc
->tx
.txbuf
, struct ath_buf
, list
);
376 spin_unlock_bh(&sc
->tx
.txbuflock
);
381 static void ath_tx_return_buffer(struct ath_softc
*sc
, struct ath_buf
*bf
)
383 spin_lock_bh(&sc
->tx
.txbuflock
);
384 list_add_tail(&bf
->list
, &sc
->tx
.txbuf
);
385 spin_unlock_bh(&sc
->tx
.txbuflock
);
388 static struct ath_buf
* ath_clone_txbuf(struct ath_softc
*sc
, struct ath_buf
*bf
)
392 tbf
= ath_tx_get_buffer(sc
);
396 ATH_TXBUF_RESET(tbf
);
398 tbf
->bf_mpdu
= bf
->bf_mpdu
;
399 tbf
->bf_buf_addr
= bf
->bf_buf_addr
;
400 memcpy(tbf
->bf_desc
, bf
->bf_desc
, sc
->sc_ah
->caps
.tx_desc_len
);
401 tbf
->bf_state
= bf
->bf_state
;
402 tbf
->bf_state
.stale
= false;
407 static void ath_tx_count_frames(struct ath_softc
*sc
, struct ath_buf
*bf
,
408 struct ath_tx_status
*ts
, int txok
,
409 int *nframes
, int *nbad
)
411 struct ath_frame_info
*fi
;
413 u32 ba
[WME_BA_BMP_SIZE
>> 5];
420 isaggr
= bf_isaggr(bf
);
422 seq_st
= ts
->ts_seqnum
;
423 memcpy(ba
, &ts
->ba_low
, WME_BA_BMP_SIZE
>> 3);
427 fi
= get_frame_info(bf
->bf_mpdu
);
428 ba_index
= ATH_BA_INDEX(seq_st
, bf
->bf_state
.seqno
);
431 if (!txok
|| (isaggr
&& !ATH_BA_ISSET(ba
, ba_index
)))
439 static void ath_tx_complete_aggr(struct ath_softc
*sc
, struct ath_txq
*txq
,
440 struct ath_buf
*bf
, struct list_head
*bf_q
,
441 struct ath_tx_status
*ts
, int txok
)
443 struct ath_node
*an
= NULL
;
445 struct ieee80211_sta
*sta
;
446 struct ieee80211_hw
*hw
= sc
->hw
;
447 struct ieee80211_hdr
*hdr
;
448 struct ieee80211_tx_info
*tx_info
;
449 struct ath_atx_tid
*tid
= NULL
;
450 struct ath_buf
*bf_next
, *bf_last
= bf
->bf_lastbf
;
451 struct list_head bf_head
;
452 struct sk_buff_head bf_pending
;
453 u16 seq_st
= 0, acked_cnt
= 0, txfail_cnt
= 0, seq_first
;
454 u32 ba
[WME_BA_BMP_SIZE
>> 5];
455 int isaggr
, txfail
, txpending
, sendbar
= 0, needreset
= 0, nbad
= 0;
456 bool rc_update
= true, isba
;
457 struct ieee80211_tx_rate rates
[4];
458 struct ath_frame_info
*fi
;
460 bool flush
= !!(ts
->ts_status
& ATH9K_TX_FLUSH
);
465 hdr
= (struct ieee80211_hdr
*)skb
->data
;
467 tx_info
= IEEE80211_SKB_CB(skb
);
469 memcpy(rates
, bf
->rates
, sizeof(rates
));
471 retries
= ts
->ts_longretry
+ 1;
472 for (i
= 0; i
< ts
->ts_rateindex
; i
++)
473 retries
+= rates
[i
].count
;
477 sta
= ieee80211_find_sta_by_ifaddr(hw
, hdr
->addr1
, hdr
->addr2
);
481 INIT_LIST_HEAD(&bf_head
);
483 bf_next
= bf
->bf_next
;
485 if (!bf
->bf_state
.stale
|| bf_next
!= NULL
)
486 list_move_tail(&bf
->list
, &bf_head
);
488 ath_tx_complete_buf(sc
, bf
, txq
, &bf_head
, ts
, 0);
495 an
= (struct ath_node
*)sta
->drv_priv
;
496 tid
= ath_get_skb_tid(sc
, an
, skb
);
497 seq_first
= tid
->seq_start
;
498 isba
= ts
->ts_flags
& ATH9K_TX_BA
;
501 * The hardware occasionally sends a tx status for the wrong TID.
502 * In this case, the BA status cannot be considered valid and all
503 * subframes need to be retransmitted
505 * Only BlockAcks have a TID and therefore normal Acks cannot be
508 if (isba
&& tid
->tidno
!= ts
->tid
)
511 isaggr
= bf_isaggr(bf
);
512 memset(ba
, 0, WME_BA_BMP_SIZE
>> 3);
514 if (isaggr
&& txok
) {
515 if (ts
->ts_flags
& ATH9K_TX_BA
) {
516 seq_st
= ts
->ts_seqnum
;
517 memcpy(ba
, &ts
->ba_low
, WME_BA_BMP_SIZE
>> 3);
520 * AR5416 can become deaf/mute when BA
521 * issue happens. Chip needs to be reset.
522 * But AP code may have sychronization issues
523 * when perform internal reset in this routine.
524 * Only enable reset in STA mode for now.
526 if (sc
->sc_ah
->opmode
== NL80211_IFTYPE_STATION
)
531 __skb_queue_head_init(&bf_pending
);
533 ath_tx_count_frames(sc
, bf
, ts
, txok
, &nframes
, &nbad
);
535 u16 seqno
= bf
->bf_state
.seqno
;
537 txfail
= txpending
= sendbar
= 0;
538 bf_next
= bf
->bf_next
;
541 tx_info
= IEEE80211_SKB_CB(skb
);
542 fi
= get_frame_info(skb
);
544 if (!BAW_WITHIN(tid
->seq_start
, tid
->baw_size
, seqno
) ||
547 * Outside of the current BlockAck window,
548 * maybe part of a previous session
551 } else if (ATH_BA_ISSET(ba
, ATH_BA_INDEX(seq_st
, seqno
))) {
552 /* transmit completion, subframe is
553 * acked by block ack */
555 } else if (!isaggr
&& txok
) {
556 /* transmit completion */
560 } else if (fi
->retries
< ATH_MAX_SW_RETRIES
) {
561 if (txok
|| !an
->sleeping
)
562 ath_tx_set_retry(sc
, txq
, bf
->bf_mpdu
,
569 bar_index
= max_t(int, bar_index
,
570 ATH_BA_INDEX(seq_first
, seqno
));
574 * Make sure the last desc is reclaimed if it
575 * not a holding desc.
577 INIT_LIST_HEAD(&bf_head
);
578 if (bf_next
!= NULL
|| !bf_last
->bf_state
.stale
)
579 list_move_tail(&bf
->list
, &bf_head
);
583 * complete the acked-ones/xretried ones; update
586 ath_tx_update_baw(sc
, tid
, seqno
);
588 if (rc_update
&& (acked_cnt
== 1 || txfail_cnt
== 1)) {
589 memcpy(tx_info
->control
.rates
, rates
, sizeof(rates
));
590 ath_tx_rc_status(sc
, bf
, ts
, nframes
, nbad
, txok
);
594 ath_tx_complete_buf(sc
, bf
, txq
, &bf_head
, ts
,
597 if (tx_info
->flags
& IEEE80211_TX_STATUS_EOSP
) {
598 tx_info
->flags
&= ~IEEE80211_TX_STATUS_EOSP
;
599 ieee80211_sta_eosp(sta
);
601 /* retry the un-acked ones */
602 if (bf
->bf_next
== NULL
&& bf_last
->bf_state
.stale
) {
605 tbf
= ath_clone_txbuf(sc
, bf_last
);
607 * Update tx baw and complete the
608 * frame with failed status if we
612 ath_tx_update_baw(sc
, tid
, seqno
);
614 ath_tx_complete_buf(sc
, bf
, txq
,
616 bar_index
= max_t(int, bar_index
,
617 ATH_BA_INDEX(seq_first
, seqno
));
625 * Put this buffer to the temporary pending
626 * queue to retain ordering
628 __skb_queue_tail(&bf_pending
, skb
);
634 /* prepend un-acked frames to the beginning of the pending frame queue */
635 if (!skb_queue_empty(&bf_pending
)) {
637 ieee80211_sta_set_buffered(sta
, tid
->tidno
, true);
639 skb_queue_splice_tail(&bf_pending
, &tid
->retry_q
);
641 ath_tx_queue_tid(txq
, tid
);
643 if (ts
->ts_status
& (ATH9K_TXERR_FILT
| ATH9K_TXERR_XRETRY
))
644 tid
->ac
->clear_ps_filter
= true;
648 if (bar_index
>= 0) {
649 u16 bar_seq
= ATH_BA_INDEX2SEQ(seq_first
, bar_index
);
651 if (BAW_WITHIN(tid
->seq_start
, tid
->baw_size
, bar_seq
))
652 tid
->bar_index
= ATH_BA_INDEX(tid
->seq_start
, bar_seq
);
654 ath_txq_unlock(sc
, txq
);
655 ath_send_bar(tid
, ATH_BA_INDEX2SEQ(seq_first
, bar_index
+ 1));
656 ath_txq_lock(sc
, txq
);
662 ath9k_queue_reset(sc
, RESET_TYPE_TX_ERROR
);
665 static bool bf_is_ampdu_not_probing(struct ath_buf
*bf
)
667 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(bf
->bf_mpdu
);
668 return bf_isampdu(bf
) && !(info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
);
671 static void ath_tx_process_buffer(struct ath_softc
*sc
, struct ath_txq
*txq
,
672 struct ath_tx_status
*ts
, struct ath_buf
*bf
,
673 struct list_head
*bf_head
)
675 struct ieee80211_tx_info
*info
;
678 txok
= !(ts
->ts_status
& ATH9K_TXERR_MASK
);
679 flush
= !!(ts
->ts_status
& ATH9K_TX_FLUSH
);
680 txq
->axq_tx_inprogress
= false;
683 if (bf_is_ampdu_not_probing(bf
))
684 txq
->axq_ampdu_depth
--;
686 if (!bf_isampdu(bf
)) {
688 info
= IEEE80211_SKB_CB(bf
->bf_mpdu
);
689 memcpy(info
->control
.rates
, bf
->rates
,
690 sizeof(info
->control
.rates
));
691 ath_tx_rc_status(sc
, bf
, ts
, 1, txok
? 0 : 1, txok
);
693 ath_tx_complete_buf(sc
, bf
, txq
, bf_head
, ts
, txok
);
695 ath_tx_complete_aggr(sc
, txq
, bf
, bf_head
, ts
, txok
);
698 ath_txq_schedule(sc
, txq
);
701 static bool ath_lookup_legacy(struct ath_buf
*bf
)
704 struct ieee80211_tx_info
*tx_info
;
705 struct ieee80211_tx_rate
*rates
;
709 tx_info
= IEEE80211_SKB_CB(skb
);
710 rates
= tx_info
->control
.rates
;
712 for (i
= 0; i
< 4; i
++) {
713 if (!rates
[i
].count
|| rates
[i
].idx
< 0)
716 if (!(rates
[i
].flags
& IEEE80211_TX_RC_MCS
))
723 static u32
ath_lookup_rate(struct ath_softc
*sc
, struct ath_buf
*bf
,
724 struct ath_atx_tid
*tid
)
727 struct ieee80211_tx_info
*tx_info
;
728 struct ieee80211_tx_rate
*rates
;
729 u32 max_4ms_framelen
, frmlen
;
730 u16 aggr_limit
, bt_aggr_limit
, legacy
= 0;
731 int q
= tid
->ac
->txq
->mac80211_qnum
;
735 tx_info
= IEEE80211_SKB_CB(skb
);
739 * Find the lowest frame length among the rate series that will have a
740 * 4ms (or TXOP limited) transmit duration.
742 max_4ms_framelen
= ATH_AMPDU_LIMIT_MAX
;
744 for (i
= 0; i
< 4; i
++) {
750 if (!(rates
[i
].flags
& IEEE80211_TX_RC_MCS
)) {
755 if (rates
[i
].flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
)
760 if (rates
[i
].flags
& IEEE80211_TX_RC_SHORT_GI
)
763 frmlen
= sc
->tx
.max_aggr_framelen
[q
][modeidx
][rates
[i
].idx
];
764 max_4ms_framelen
= min(max_4ms_framelen
, frmlen
);
768 * limit aggregate size by the minimum rate if rate selected is
769 * not a probe rate, if rate selected is a probe rate then
770 * avoid aggregation of this packet.
772 if (tx_info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
|| legacy
)
775 aggr_limit
= min(max_4ms_framelen
, (u32
)ATH_AMPDU_LIMIT_MAX
);
778 * Override the default aggregation limit for BTCOEX.
780 bt_aggr_limit
= ath9k_btcoex_aggr_limit(sc
, max_4ms_framelen
);
782 aggr_limit
= bt_aggr_limit
;
785 * h/w can accept aggregates up to 16 bit lengths (65535).
786 * The IE, however can hold up to 65536, which shows up here
787 * as zero. Ignore 65536 since we are constrained by hw.
789 if (tid
->an
->maxampdu
)
790 aggr_limit
= min(aggr_limit
, tid
->an
->maxampdu
);
796 * Returns the number of delimiters to be added to
797 * meet the minimum required mpdudensity.
799 static int ath_compute_num_delims(struct ath_softc
*sc
, struct ath_atx_tid
*tid
,
800 struct ath_buf
*bf
, u16 frmlen
,
803 #define FIRST_DESC_NDELIMS 60
804 u32 nsymbits
, nsymbols
;
807 int width
, streams
, half_gi
, ndelim
, mindelim
;
808 struct ath_frame_info
*fi
= get_frame_info(bf
->bf_mpdu
);
810 /* Select standard number of delimiters based on frame length alone */
811 ndelim
= ATH_AGGR_GET_NDELIM(frmlen
);
814 * If encryption enabled, hardware requires some more padding between
816 * TODO - this could be improved to be dependent on the rate.
817 * The hardware can keep up at lower rates, but not higher rates
819 if ((fi
->keyix
!= ATH9K_TXKEYIX_INVALID
) &&
820 !(sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
))
821 ndelim
+= ATH_AGGR_ENCRYPTDELIM
;
824 * Add delimiter when using RTS/CTS with aggregation
825 * and non enterprise AR9003 card
827 if (first_subfrm
&& !AR_SREV_9580_10_OR_LATER(sc
->sc_ah
) &&
828 (sc
->sc_ah
->ent_mode
& AR_ENT_OTP_MIN_PKT_SIZE_DISABLE
))
829 ndelim
= max(ndelim
, FIRST_DESC_NDELIMS
);
832 * Convert desired mpdu density from microeconds to bytes based
833 * on highest rate in rate series (i.e. first rate) to determine
834 * required minimum length for subframe. Take into account
835 * whether high rate is 20 or 40Mhz and half or full GI.
837 * If there is no mpdu density restriction, no further calculation
841 if (tid
->an
->mpdudensity
== 0)
844 rix
= bf
->rates
[0].idx
;
845 flags
= bf
->rates
[0].flags
;
846 width
= (flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
) ? 1 : 0;
847 half_gi
= (flags
& IEEE80211_TX_RC_SHORT_GI
) ? 1 : 0;
850 nsymbols
= NUM_SYMBOLS_PER_USEC_HALFGI(tid
->an
->mpdudensity
);
852 nsymbols
= NUM_SYMBOLS_PER_USEC(tid
->an
->mpdudensity
);
857 streams
= HT_RC_2_STREAMS(rix
);
858 nsymbits
= bits_per_symbol
[rix
% 8][width
] * streams
;
859 minlen
= (nsymbols
* nsymbits
) / BITS_PER_BYTE
;
861 if (frmlen
< minlen
) {
862 mindelim
= (minlen
- frmlen
) / ATH_AGGR_DELIM_SZ
;
863 ndelim
= max(mindelim
, ndelim
);
869 static struct ath_buf
*
870 ath_tx_get_tid_subframe(struct ath_softc
*sc
, struct ath_txq
*txq
,
871 struct ath_atx_tid
*tid
, struct sk_buff_head
**q
)
873 struct ieee80211_tx_info
*tx_info
;
874 struct ath_frame_info
*fi
;
881 if (skb_queue_empty(*q
))
888 fi
= get_frame_info(skb
);
891 bf
= ath_tx_setup_buffer(sc
, txq
, tid
, skb
);
893 bf
->bf_state
.stale
= false;
896 __skb_unlink(skb
, *q
);
897 ath_txq_skb_done(sc
, txq
, skb
);
898 ieee80211_free_txskb(sc
->hw
, skb
);
905 tx_info
= IEEE80211_SKB_CB(skb
);
906 tx_info
->flags
&= ~IEEE80211_TX_CTL_CLEAR_PS_FILT
;
909 * No aggregation session is running, but there may be frames
910 * from a previous session or a failed attempt in the queue.
911 * Send them out as normal data frames
914 tx_info
->flags
&= ~IEEE80211_TX_CTL_AMPDU
;
916 if (!(tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
)) {
917 bf
->bf_state
.bf_type
= 0;
921 bf
->bf_state
.bf_type
= BUF_AMPDU
| BUF_AGGR
;
922 seqno
= bf
->bf_state
.seqno
;
924 /* do not step over block-ack window */
925 if (!BAW_WITHIN(tid
->seq_start
, tid
->baw_size
, seqno
))
928 if (tid
->bar_index
> ATH_BA_INDEX(tid
->seq_start
, seqno
)) {
929 struct ath_tx_status ts
= {};
930 struct list_head bf_head
;
932 INIT_LIST_HEAD(&bf_head
);
933 list_add(&bf
->list
, &bf_head
);
934 __skb_unlink(skb
, *q
);
935 ath_tx_update_baw(sc
, tid
, seqno
);
936 ath_tx_complete_buf(sc
, bf
, txq
, &bf_head
, &ts
, 0);
947 ath_tx_form_aggr(struct ath_softc
*sc
, struct ath_txq
*txq
,
948 struct ath_atx_tid
*tid
, struct list_head
*bf_q
,
949 struct ath_buf
*bf_first
, struct sk_buff_head
*tid_q
,
952 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
953 struct ath_buf
*bf
= bf_first
, *bf_prev
= NULL
;
954 int nframes
= 0, ndelim
;
955 u16 aggr_limit
= 0, al
= 0, bpad
= 0,
956 al_delta
, h_baw
= tid
->baw_size
/ 2;
957 struct ieee80211_tx_info
*tx_info
;
958 struct ath_frame_info
*fi
;
963 aggr_limit
= ath_lookup_rate(sc
, bf
, tid
);
967 fi
= get_frame_info(skb
);
969 /* do not exceed aggregation limit */
970 al_delta
= ATH_AGGR_DELIM_SZ
+ fi
->framelen
;
972 if (aggr_limit
< al
+ bpad
+ al_delta
||
973 ath_lookup_legacy(bf
) || nframes
>= h_baw
)
976 tx_info
= IEEE80211_SKB_CB(bf
->bf_mpdu
);
977 if ((tx_info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
) ||
978 !(tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
))
982 /* add padding for previous frame to aggregation length */
983 al
+= bpad
+ al_delta
;
986 * Get the delimiters needed to meet the MPDU
987 * density for this node.
989 ndelim
= ath_compute_num_delims(sc
, tid
, bf_first
, fi
->framelen
,
991 bpad
= PADBYTES(al_delta
) + (ndelim
<< 2);
996 /* link buffers of this frame to the aggregate */
997 if (!fi
->baw_tracked
)
998 ath_tx_addto_baw(sc
, tid
, bf
);
999 bf
->bf_state
.ndelim
= ndelim
;
1001 __skb_unlink(skb
, tid_q
);
1002 list_add_tail(&bf
->list
, bf_q
);
1004 bf_prev
->bf_next
= bf
;
1008 bf
= ath_tx_get_tid_subframe(sc
, txq
, tid
, &tid_q
);
1013 } while (ath_tid_has_buffered(tid
));
1016 bf
->bf_lastbf
= bf_prev
;
1018 if (bf
== bf_prev
) {
1019 al
= get_frame_info(bf
->bf_mpdu
)->framelen
;
1020 bf
->bf_state
.bf_type
= BUF_AMPDU
;
1022 TX_STAT_INC(txq
->axq_qnum
, a_aggr
);
1033 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1034 * width - 0 for 20 MHz, 1 for 40 MHz
1035 * half_gi - to use 4us v/s 3.6 us for symbol time
1037 static u32
ath_pkt_duration(struct ath_softc
*sc
, u8 rix
, int pktlen
,
1038 int width
, int half_gi
, bool shortPreamble
)
1040 u32 nbits
, nsymbits
, duration
, nsymbols
;
1043 /* find number of symbols: PLCP + data */
1044 streams
= HT_RC_2_STREAMS(rix
);
1045 nbits
= (pktlen
<< 3) + OFDM_PLCP_BITS
;
1046 nsymbits
= bits_per_symbol
[rix
% 8][width
] * streams
;
1047 nsymbols
= (nbits
+ nsymbits
- 1) / nsymbits
;
1050 duration
= SYMBOL_TIME(nsymbols
);
1052 duration
= SYMBOL_TIME_HALFGI(nsymbols
);
1054 /* addup duration for legacy/ht training and signal fields */
1055 duration
+= L_STF
+ L_LTF
+ L_SIG
+ HT_SIG
+ HT_STF
+ HT_LTF(streams
);
1060 static int ath_max_framelen(int usec
, int mcs
, bool ht40
, bool sgi
)
1062 int streams
= HT_RC_2_STREAMS(mcs
);
1066 symbols
= sgi
? TIME_SYMBOLS_HALFGI(usec
) : TIME_SYMBOLS(usec
);
1067 bits
= symbols
* bits_per_symbol
[mcs
% 8][ht40
] * streams
;
1068 bits
-= OFDM_PLCP_BITS
;
1070 bytes
-= L_STF
+ L_LTF
+ L_SIG
+ HT_SIG
+ HT_STF
+ HT_LTF(streams
);
1077 void ath_update_max_aggr_framelen(struct ath_softc
*sc
, int queue
, int txop
)
1079 u16
*cur_ht20
, *cur_ht20_sgi
, *cur_ht40
, *cur_ht40_sgi
;
1082 /* 4ms is the default (and maximum) duration */
1083 if (!txop
|| txop
> 4096)
1086 cur_ht20
= sc
->tx
.max_aggr_framelen
[queue
][MCS_HT20
];
1087 cur_ht20_sgi
= sc
->tx
.max_aggr_framelen
[queue
][MCS_HT20_SGI
];
1088 cur_ht40
= sc
->tx
.max_aggr_framelen
[queue
][MCS_HT40
];
1089 cur_ht40_sgi
= sc
->tx
.max_aggr_framelen
[queue
][MCS_HT40_SGI
];
1090 for (mcs
= 0; mcs
< 32; mcs
++) {
1091 cur_ht20
[mcs
] = ath_max_framelen(txop
, mcs
, false, false);
1092 cur_ht20_sgi
[mcs
] = ath_max_framelen(txop
, mcs
, false, true);
1093 cur_ht40
[mcs
] = ath_max_framelen(txop
, mcs
, true, false);
1094 cur_ht40_sgi
[mcs
] = ath_max_framelen(txop
, mcs
, true, true);
1098 static void ath_buf_set_rate(struct ath_softc
*sc
, struct ath_buf
*bf
,
1099 struct ath_tx_info
*info
, int len
, bool rts
)
1101 struct ath_hw
*ah
= sc
->sc_ah
;
1102 struct sk_buff
*skb
;
1103 struct ieee80211_tx_info
*tx_info
;
1104 struct ieee80211_tx_rate
*rates
;
1105 const struct ieee80211_rate
*rate
;
1106 struct ieee80211_hdr
*hdr
;
1107 struct ath_frame_info
*fi
= get_frame_info(bf
->bf_mpdu
);
1108 u32 rts_thresh
= sc
->hw
->wiphy
->rts_threshold
;
1113 tx_info
= IEEE80211_SKB_CB(skb
);
1115 hdr
= (struct ieee80211_hdr
*)skb
->data
;
1117 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1118 info
->dur_update
= !ieee80211_is_pspoll(hdr
->frame_control
);
1119 info
->rtscts_rate
= fi
->rtscts_rate
;
1121 for (i
= 0; i
< ARRAY_SIZE(bf
->rates
); i
++) {
1122 bool is_40
, is_sgi
, is_sp
;
1125 if (!rates
[i
].count
|| (rates
[i
].idx
< 0))
1129 info
->rates
[i
].Tries
= rates
[i
].count
;
1132 * Handle RTS threshold for unaggregated HT frames.
1134 if (bf_isampdu(bf
) && !bf_isaggr(bf
) &&
1135 (rates
[i
].flags
& IEEE80211_TX_RC_MCS
) &&
1136 unlikely(rts_thresh
!= (u32
) -1)) {
1137 if (!rts_thresh
|| (len
> rts_thresh
))
1141 if (rts
|| rates
[i
].flags
& IEEE80211_TX_RC_USE_RTS_CTS
) {
1142 info
->rates
[i
].RateFlags
|= ATH9K_RATESERIES_RTS_CTS
;
1143 info
->flags
|= ATH9K_TXDESC_RTSENA
;
1144 } else if (rates
[i
].flags
& IEEE80211_TX_RC_USE_CTS_PROTECT
) {
1145 info
->rates
[i
].RateFlags
|= ATH9K_RATESERIES_RTS_CTS
;
1146 info
->flags
|= ATH9K_TXDESC_CTSENA
;
1149 if (rates
[i
].flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
)
1150 info
->rates
[i
].RateFlags
|= ATH9K_RATESERIES_2040
;
1151 if (rates
[i
].flags
& IEEE80211_TX_RC_SHORT_GI
)
1152 info
->rates
[i
].RateFlags
|= ATH9K_RATESERIES_HALFGI
;
1154 is_sgi
= !!(rates
[i
].flags
& IEEE80211_TX_RC_SHORT_GI
);
1155 is_40
= !!(rates
[i
].flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
);
1156 is_sp
= !!(rates
[i
].flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
);
1158 if (rates
[i
].flags
& IEEE80211_TX_RC_MCS
) {
1160 info
->rates
[i
].Rate
= rix
| 0x80;
1161 info
->rates
[i
].ChSel
= ath_txchainmask_reduction(sc
,
1162 ah
->txchainmask
, info
->rates
[i
].Rate
);
1163 info
->rates
[i
].PktDuration
= ath_pkt_duration(sc
, rix
, len
,
1164 is_40
, is_sgi
, is_sp
);
1165 if (rix
< 8 && (tx_info
->flags
& IEEE80211_TX_CTL_STBC
))
1166 info
->rates
[i
].RateFlags
|= ATH9K_RATESERIES_STBC
;
1171 rate
= &sc
->sbands
[tx_info
->band
].bitrates
[rates
[i
].idx
];
1172 if ((tx_info
->band
== IEEE80211_BAND_2GHZ
) &&
1173 !(rate
->flags
& IEEE80211_RATE_ERP_G
))
1174 phy
= WLAN_RC_PHY_CCK
;
1176 phy
= WLAN_RC_PHY_OFDM
;
1178 info
->rates
[i
].Rate
= rate
->hw_value
;
1179 if (rate
->hw_value_short
) {
1180 if (rates
[i
].flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
1181 info
->rates
[i
].Rate
|= rate
->hw_value_short
;
1186 if (bf
->bf_state
.bfs_paprd
)
1187 info
->rates
[i
].ChSel
= ah
->txchainmask
;
1189 info
->rates
[i
].ChSel
= ath_txchainmask_reduction(sc
,
1190 ah
->txchainmask
, info
->rates
[i
].Rate
);
1192 info
->rates
[i
].PktDuration
= ath9k_hw_computetxtime(sc
->sc_ah
,
1193 phy
, rate
->bitrate
* 100, len
, rix
, is_sp
);
1196 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1197 if (bf_isaggr(bf
) && (len
> sc
->sc_ah
->caps
.rts_aggr_limit
))
1198 info
->flags
&= ~ATH9K_TXDESC_RTSENA
;
1200 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1201 if (info
->flags
& ATH9K_TXDESC_RTSENA
)
1202 info
->flags
&= ~ATH9K_TXDESC_CTSENA
;
1205 static enum ath9k_pkt_type
get_hw_packet_type(struct sk_buff
*skb
)
1207 struct ieee80211_hdr
*hdr
;
1208 enum ath9k_pkt_type htype
;
1211 hdr
= (struct ieee80211_hdr
*)skb
->data
;
1212 fc
= hdr
->frame_control
;
1214 if (ieee80211_is_beacon(fc
))
1215 htype
= ATH9K_PKT_TYPE_BEACON
;
1216 else if (ieee80211_is_probe_resp(fc
))
1217 htype
= ATH9K_PKT_TYPE_PROBE_RESP
;
1218 else if (ieee80211_is_atim(fc
))
1219 htype
= ATH9K_PKT_TYPE_ATIM
;
1220 else if (ieee80211_is_pspoll(fc
))
1221 htype
= ATH9K_PKT_TYPE_PSPOLL
;
1223 htype
= ATH9K_PKT_TYPE_NORMAL
;
1228 static void ath_tx_fill_desc(struct ath_softc
*sc
, struct ath_buf
*bf
,
1229 struct ath_txq
*txq
, int len
)
1231 struct ath_hw
*ah
= sc
->sc_ah
;
1232 struct ath_buf
*bf_first
= NULL
;
1233 struct ath_tx_info info
;
1234 u32 rts_thresh
= sc
->hw
->wiphy
->rts_threshold
;
1237 memset(&info
, 0, sizeof(info
));
1238 info
.is_first
= true;
1239 info
.is_last
= true;
1240 info
.txpower
= MAX_RATE_POWER
;
1241 info
.qcu
= txq
->axq_qnum
;
1244 struct sk_buff
*skb
= bf
->bf_mpdu
;
1245 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
1246 struct ath_frame_info
*fi
= get_frame_info(skb
);
1247 bool aggr
= !!(bf
->bf_state
.bf_type
& BUF_AGGR
);
1249 info
.type
= get_hw_packet_type(skb
);
1251 info
.link
= bf
->bf_next
->bf_daddr
;
1258 info
.flags
= ATH9K_TXDESC_INTREQ
;
1259 if ((tx_info
->flags
& IEEE80211_TX_CTL_CLEAR_PS_FILT
) ||
1260 txq
== sc
->tx
.uapsdq
)
1261 info
.flags
|= ATH9K_TXDESC_CLRDMASK
;
1263 if (tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
)
1264 info
.flags
|= ATH9K_TXDESC_NOACK
;
1265 if (tx_info
->flags
& IEEE80211_TX_CTL_LDPC
)
1266 info
.flags
|= ATH9K_TXDESC_LDPC
;
1268 if (bf
->bf_state
.bfs_paprd
)
1269 info
.flags
|= (u32
) bf
->bf_state
.bfs_paprd
<<
1270 ATH9K_TXDESC_PAPRD_S
;
1273 * mac80211 doesn't handle RTS threshold for HT because
1274 * the decision has to be taken based on AMPDU length
1275 * and aggregation is done entirely inside ath9k.
1276 * Set the RTS/CTS flag for the first subframe based
1279 if (aggr
&& (bf
== bf_first
) &&
1280 unlikely(rts_thresh
!= (u32
) -1)) {
1282 * "len" is the size of the entire AMPDU.
1284 if (!rts_thresh
|| (len
> rts_thresh
))
1291 ath_buf_set_rate(sc
, bf
, &info
, len
, rts
);
1294 info
.buf_addr
[0] = bf
->bf_buf_addr
;
1295 info
.buf_len
[0] = skb
->len
;
1296 info
.pkt_len
= fi
->framelen
;
1297 info
.keyix
= fi
->keyix
;
1298 info
.keytype
= fi
->keytype
;
1302 info
.aggr
= AGGR_BUF_FIRST
;
1303 else if (bf
== bf_first
->bf_lastbf
)
1304 info
.aggr
= AGGR_BUF_LAST
;
1306 info
.aggr
= AGGR_BUF_MIDDLE
;
1308 info
.ndelim
= bf
->bf_state
.ndelim
;
1309 info
.aggr_len
= len
;
1312 if (bf
== bf_first
->bf_lastbf
)
1315 ath9k_hw_set_txdesc(ah
, bf
->bf_desc
, &info
);
1321 ath_tx_form_burst(struct ath_softc
*sc
, struct ath_txq
*txq
,
1322 struct ath_atx_tid
*tid
, struct list_head
*bf_q
,
1323 struct ath_buf
*bf_first
, struct sk_buff_head
*tid_q
)
1325 struct ath_buf
*bf
= bf_first
, *bf_prev
= NULL
;
1326 struct sk_buff
*skb
;
1330 struct ieee80211_tx_info
*tx_info
;
1334 __skb_unlink(skb
, tid_q
);
1335 list_add_tail(&bf
->list
, bf_q
);
1337 bf_prev
->bf_next
= bf
;
1343 bf
= ath_tx_get_tid_subframe(sc
, txq
, tid
, &tid_q
);
1347 tx_info
= IEEE80211_SKB_CB(bf
->bf_mpdu
);
1348 if (tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
)
1351 ath_set_rates(tid
->an
->vif
, tid
->an
->sta
, bf
);
1355 static bool ath_tx_sched_aggr(struct ath_softc
*sc
, struct ath_txq
*txq
,
1356 struct ath_atx_tid
*tid
, bool *stop
)
1359 struct ieee80211_tx_info
*tx_info
;
1360 struct sk_buff_head
*tid_q
;
1361 struct list_head bf_q
;
1363 bool aggr
, last
= true;
1365 if (!ath_tid_has_buffered(tid
))
1368 INIT_LIST_HEAD(&bf_q
);
1370 bf
= ath_tx_get_tid_subframe(sc
, txq
, tid
, &tid_q
);
1374 tx_info
= IEEE80211_SKB_CB(bf
->bf_mpdu
);
1375 aggr
= !!(tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
);
1376 if ((aggr
&& txq
->axq_ampdu_depth
>= ATH_AGGR_MIN_QDEPTH
) ||
1377 (!aggr
&& txq
->axq_depth
>= ATH_NON_AGGR_MIN_QDEPTH
)) {
1382 ath_set_rates(tid
->an
->vif
, tid
->an
->sta
, bf
);
1384 last
= ath_tx_form_aggr(sc
, txq
, tid
, &bf_q
, bf
,
1387 ath_tx_form_burst(sc
, txq
, tid
, &bf_q
, bf
, tid_q
);
1389 if (list_empty(&bf_q
))
1392 if (tid
->ac
->clear_ps_filter
|| tid
->an
->no_ps_filter
) {
1393 tid
->ac
->clear_ps_filter
= false;
1394 tx_info
->flags
|= IEEE80211_TX_CTL_CLEAR_PS_FILT
;
1397 ath_tx_fill_desc(sc
, bf
, txq
, aggr_len
);
1398 ath_tx_txqaddbuf(sc
, txq
, &bf_q
, false);
1402 int ath_tx_aggr_start(struct ath_softc
*sc
, struct ieee80211_sta
*sta
,
1405 struct ath_atx_tid
*txtid
;
1406 struct ath_txq
*txq
;
1407 struct ath_node
*an
;
1410 an
= (struct ath_node
*)sta
->drv_priv
;
1411 txtid
= ATH_AN_2_TID(an
, tid
);
1412 txq
= txtid
->ac
->txq
;
1414 ath_txq_lock(sc
, txq
);
1416 /* update ampdu factor/density, they may have changed. This may happen
1417 * in HT IBSS when a beacon with HT-info is received after the station
1418 * has already been added.
1420 if (sta
->ht_cap
.ht_supported
) {
1421 an
->maxampdu
= 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR
+
1422 sta
->ht_cap
.ampdu_factor
);
1423 density
= ath9k_parse_mpdudensity(sta
->ht_cap
.ampdu_density
);
1424 an
->mpdudensity
= density
;
1427 /* force sequence number allocation for pending frames */
1428 ath_tx_tid_change_state(sc
, txtid
);
1430 txtid
->active
= true;
1431 txtid
->paused
= true;
1432 *ssn
= txtid
->seq_start
= txtid
->seq_next
;
1433 txtid
->bar_index
= -1;
1435 memset(txtid
->tx_buf
, 0, sizeof(txtid
->tx_buf
));
1436 txtid
->baw_head
= txtid
->baw_tail
= 0;
1438 ath_txq_unlock_complete(sc
, txq
);
1443 void ath_tx_aggr_stop(struct ath_softc
*sc
, struct ieee80211_sta
*sta
, u16 tid
)
1445 struct ath_node
*an
= (struct ath_node
*)sta
->drv_priv
;
1446 struct ath_atx_tid
*txtid
= ATH_AN_2_TID(an
, tid
);
1447 struct ath_txq
*txq
= txtid
->ac
->txq
;
1449 ath_txq_lock(sc
, txq
);
1450 txtid
->active
= false;
1451 txtid
->paused
= false;
1452 ath_tx_flush_tid(sc
, txtid
);
1453 ath_tx_tid_change_state(sc
, txtid
);
1454 ath_txq_unlock_complete(sc
, txq
);
1457 void ath_tx_aggr_sleep(struct ieee80211_sta
*sta
, struct ath_softc
*sc
,
1458 struct ath_node
*an
)
1460 struct ath_atx_tid
*tid
;
1461 struct ath_atx_ac
*ac
;
1462 struct ath_txq
*txq
;
1466 for (tidno
= 0, tid
= &an
->tid
[tidno
];
1467 tidno
< IEEE80211_NUM_TIDS
; tidno
++, tid
++) {
1472 ath_txq_lock(sc
, txq
);
1475 ath_txq_unlock(sc
, txq
);
1479 buffered
= ath_tid_has_buffered(tid
);
1482 list_del(&tid
->list
);
1486 list_del(&ac
->list
);
1489 ath_txq_unlock(sc
, txq
);
1491 ieee80211_sta_set_buffered(sta
, tidno
, buffered
);
1495 void ath_tx_aggr_wakeup(struct ath_softc
*sc
, struct ath_node
*an
)
1497 struct ath_atx_tid
*tid
;
1498 struct ath_atx_ac
*ac
;
1499 struct ath_txq
*txq
;
1502 for (tidno
= 0, tid
= &an
->tid
[tidno
];
1503 tidno
< IEEE80211_NUM_TIDS
; tidno
++, tid
++) {
1508 ath_txq_lock(sc
, txq
);
1509 ac
->clear_ps_filter
= true;
1511 if (!tid
->paused
&& ath_tid_has_buffered(tid
)) {
1512 ath_tx_queue_tid(txq
, tid
);
1513 ath_txq_schedule(sc
, txq
);
1516 ath_txq_unlock_complete(sc
, txq
);
1520 void ath_tx_aggr_resume(struct ath_softc
*sc
, struct ieee80211_sta
*sta
,
1523 struct ath_atx_tid
*tid
;
1524 struct ath_node
*an
;
1525 struct ath_txq
*txq
;
1527 an
= (struct ath_node
*)sta
->drv_priv
;
1528 tid
= ATH_AN_2_TID(an
, tidno
);
1531 ath_txq_lock(sc
, txq
);
1533 tid
->baw_size
= IEEE80211_MIN_AMPDU_BUF
<< sta
->ht_cap
.ampdu_factor
;
1534 tid
->paused
= false;
1536 if (ath_tid_has_buffered(tid
)) {
1537 ath_tx_queue_tid(txq
, tid
);
1538 ath_txq_schedule(sc
, txq
);
1541 ath_txq_unlock_complete(sc
, txq
);
1544 void ath9k_release_buffered_frames(struct ieee80211_hw
*hw
,
1545 struct ieee80211_sta
*sta
,
1546 u16 tids
, int nframes
,
1547 enum ieee80211_frame_release_type reason
,
1550 struct ath_softc
*sc
= hw
->priv
;
1551 struct ath_node
*an
= (struct ath_node
*)sta
->drv_priv
;
1552 struct ath_txq
*txq
= sc
->tx
.uapsdq
;
1553 struct ieee80211_tx_info
*info
;
1554 struct list_head bf_q
;
1555 struct ath_buf
*bf_tail
= NULL
, *bf
;
1556 struct sk_buff_head
*tid_q
;
1560 INIT_LIST_HEAD(&bf_q
);
1561 for (i
= 0; tids
&& nframes
; i
++, tids
>>= 1) {
1562 struct ath_atx_tid
*tid
;
1567 tid
= ATH_AN_2_TID(an
, i
);
1571 ath_txq_lock(sc
, tid
->ac
->txq
);
1572 while (nframes
> 0) {
1573 bf
= ath_tx_get_tid_subframe(sc
, sc
->tx
.uapsdq
, tid
, &tid_q
);
1577 __skb_unlink(bf
->bf_mpdu
, tid_q
);
1578 list_add_tail(&bf
->list
, &bf_q
);
1579 ath_set_rates(tid
->an
->vif
, tid
->an
->sta
, bf
);
1580 if (bf_isampdu(bf
)) {
1581 ath_tx_addto_baw(sc
, tid
, bf
);
1582 bf
->bf_state
.bf_type
&= ~BUF_AGGR
;
1585 bf_tail
->bf_next
= bf
;
1590 TX_STAT_INC(txq
->axq_qnum
, a_queued_hw
);
1592 if (an
->sta
&& !ath_tid_has_buffered(tid
))
1593 ieee80211_sta_set_buffered(an
->sta
, i
, false);
1595 ath_txq_unlock_complete(sc
, tid
->ac
->txq
);
1598 if (list_empty(&bf_q
))
1601 info
= IEEE80211_SKB_CB(bf_tail
->bf_mpdu
);
1602 info
->flags
|= IEEE80211_TX_STATUS_EOSP
;
1604 bf
= list_first_entry(&bf_q
, struct ath_buf
, list
);
1605 ath_txq_lock(sc
, txq
);
1606 ath_tx_fill_desc(sc
, bf
, txq
, 0);
1607 ath_tx_txqaddbuf(sc
, txq
, &bf_q
, false);
1608 ath_txq_unlock(sc
, txq
);
1611 /********************/
1612 /* Queue Management */
1613 /********************/
1615 struct ath_txq
*ath_txq_setup(struct ath_softc
*sc
, int qtype
, int subtype
)
1617 struct ath_hw
*ah
= sc
->sc_ah
;
1618 struct ath9k_tx_queue_info qi
;
1619 static const int subtype_txq_to_hwq
[] = {
1620 [IEEE80211_AC_BE
] = ATH_TXQ_AC_BE
,
1621 [IEEE80211_AC_BK
] = ATH_TXQ_AC_BK
,
1622 [IEEE80211_AC_VI
] = ATH_TXQ_AC_VI
,
1623 [IEEE80211_AC_VO
] = ATH_TXQ_AC_VO
,
1627 memset(&qi
, 0, sizeof(qi
));
1628 qi
.tqi_subtype
= subtype_txq_to_hwq
[subtype
];
1629 qi
.tqi_aifs
= ATH9K_TXQ_USEDEFAULT
;
1630 qi
.tqi_cwmin
= ATH9K_TXQ_USEDEFAULT
;
1631 qi
.tqi_cwmax
= ATH9K_TXQ_USEDEFAULT
;
1632 qi
.tqi_physCompBuf
= 0;
1635 * Enable interrupts only for EOL and DESC conditions.
1636 * We mark tx descriptors to receive a DESC interrupt
1637 * when a tx queue gets deep; otherwise waiting for the
1638 * EOL to reap descriptors. Note that this is done to
1639 * reduce interrupt load and this only defers reaping
1640 * descriptors, never transmitting frames. Aside from
1641 * reducing interrupts this also permits more concurrency.
1642 * The only potential downside is if the tx queue backs
1643 * up in which case the top half of the kernel may backup
1644 * due to a lack of tx descriptors.
1646 * The UAPSD queue is an exception, since we take a desc-
1647 * based intr on the EOSP frames.
1649 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
) {
1650 qi
.tqi_qflags
= TXQ_FLAG_TXINT_ENABLE
;
1652 if (qtype
== ATH9K_TX_QUEUE_UAPSD
)
1653 qi
.tqi_qflags
= TXQ_FLAG_TXDESCINT_ENABLE
;
1655 qi
.tqi_qflags
= TXQ_FLAG_TXEOLINT_ENABLE
|
1656 TXQ_FLAG_TXDESCINT_ENABLE
;
1658 axq_qnum
= ath9k_hw_setuptxqueue(ah
, qtype
, &qi
);
1659 if (axq_qnum
== -1) {
1661 * NB: don't print a message, this happens
1662 * normally on parts with too few tx queues
1666 if (!ATH_TXQ_SETUP(sc
, axq_qnum
)) {
1667 struct ath_txq
*txq
= &sc
->tx
.txq
[axq_qnum
];
1669 txq
->axq_qnum
= axq_qnum
;
1670 txq
->mac80211_qnum
= -1;
1671 txq
->axq_link
= NULL
;
1672 __skb_queue_head_init(&txq
->complete_q
);
1673 INIT_LIST_HEAD(&txq
->axq_q
);
1674 INIT_LIST_HEAD(&txq
->axq_acq
);
1675 spin_lock_init(&txq
->axq_lock
);
1677 txq
->axq_ampdu_depth
= 0;
1678 txq
->axq_tx_inprogress
= false;
1679 sc
->tx
.txqsetup
|= 1<<axq_qnum
;
1681 txq
->txq_headidx
= txq
->txq_tailidx
= 0;
1682 for (i
= 0; i
< ATH_TXFIFO_DEPTH
; i
++)
1683 INIT_LIST_HEAD(&txq
->txq_fifo
[i
]);
1685 return &sc
->tx
.txq
[axq_qnum
];
1688 int ath_txq_update(struct ath_softc
*sc
, int qnum
,
1689 struct ath9k_tx_queue_info
*qinfo
)
1691 struct ath_hw
*ah
= sc
->sc_ah
;
1693 struct ath9k_tx_queue_info qi
;
1695 BUG_ON(sc
->tx
.txq
[qnum
].axq_qnum
!= qnum
);
1697 ath9k_hw_get_txq_props(ah
, qnum
, &qi
);
1698 qi
.tqi_aifs
= qinfo
->tqi_aifs
;
1699 qi
.tqi_cwmin
= qinfo
->tqi_cwmin
;
1700 qi
.tqi_cwmax
= qinfo
->tqi_cwmax
;
1701 qi
.tqi_burstTime
= qinfo
->tqi_burstTime
;
1702 qi
.tqi_readyTime
= qinfo
->tqi_readyTime
;
1704 if (!ath9k_hw_set_txq_props(ah
, qnum
, &qi
)) {
1705 ath_err(ath9k_hw_common(sc
->sc_ah
),
1706 "Unable to update hardware queue %u!\n", qnum
);
1709 ath9k_hw_resettxqueue(ah
, qnum
);
1715 int ath_cabq_update(struct ath_softc
*sc
)
1717 struct ath9k_tx_queue_info qi
;
1718 struct ath_beacon_config
*cur_conf
= &sc
->cur_beacon_conf
;
1719 int qnum
= sc
->beacon
.cabq
->axq_qnum
;
1721 ath9k_hw_get_txq_props(sc
->sc_ah
, qnum
, &qi
);
1723 * Ensure the readytime % is within the bounds.
1725 if (sc
->config
.cabqReadytime
< ATH9K_READY_TIME_LO_BOUND
)
1726 sc
->config
.cabqReadytime
= ATH9K_READY_TIME_LO_BOUND
;
1727 else if (sc
->config
.cabqReadytime
> ATH9K_READY_TIME_HI_BOUND
)
1728 sc
->config
.cabqReadytime
= ATH9K_READY_TIME_HI_BOUND
;
1730 qi
.tqi_readyTime
= (TU_TO_USEC(cur_conf
->beacon_interval
) *
1731 sc
->config
.cabqReadytime
) / 100;
1732 ath_txq_update(sc
, qnum
, &qi
);
1737 static void ath_drain_txq_list(struct ath_softc
*sc
, struct ath_txq
*txq
,
1738 struct list_head
*list
)
1740 struct ath_buf
*bf
, *lastbf
;
1741 struct list_head bf_head
;
1742 struct ath_tx_status ts
;
1744 memset(&ts
, 0, sizeof(ts
));
1745 ts
.ts_status
= ATH9K_TX_FLUSH
;
1746 INIT_LIST_HEAD(&bf_head
);
1748 while (!list_empty(list
)) {
1749 bf
= list_first_entry(list
, struct ath_buf
, list
);
1751 if (bf
->bf_state
.stale
) {
1752 list_del(&bf
->list
);
1754 ath_tx_return_buffer(sc
, bf
);
1758 lastbf
= bf
->bf_lastbf
;
1759 list_cut_position(&bf_head
, list
, &lastbf
->list
);
1760 ath_tx_process_buffer(sc
, txq
, &ts
, bf
, &bf_head
);
1765 * Drain a given TX queue (could be Beacon or Data)
1767 * This assumes output has been stopped and
1768 * we do not need to block ath_tx_tasklet.
1770 void ath_draintxq(struct ath_softc
*sc
, struct ath_txq
*txq
)
1772 ath_txq_lock(sc
, txq
);
1774 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
) {
1775 int idx
= txq
->txq_tailidx
;
1777 while (!list_empty(&txq
->txq_fifo
[idx
])) {
1778 ath_drain_txq_list(sc
, txq
, &txq
->txq_fifo
[idx
]);
1780 INCR(idx
, ATH_TXFIFO_DEPTH
);
1782 txq
->txq_tailidx
= idx
;
1785 txq
->axq_link
= NULL
;
1786 txq
->axq_tx_inprogress
= false;
1787 ath_drain_txq_list(sc
, txq
, &txq
->axq_q
);
1789 ath_txq_unlock_complete(sc
, txq
);
1792 bool ath_drain_all_txq(struct ath_softc
*sc
)
1794 struct ath_hw
*ah
= sc
->sc_ah
;
1795 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
1796 struct ath_txq
*txq
;
1800 if (test_bit(SC_OP_INVALID
, &sc
->sc_flags
))
1803 ath9k_hw_abort_tx_dma(ah
);
1805 /* Check if any queue remains active */
1806 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++) {
1807 if (!ATH_TXQ_SETUP(sc
, i
))
1810 if (ath9k_hw_numtxpending(ah
, sc
->tx
.txq
[i
].axq_qnum
))
1815 ath_err(common
, "Failed to stop TX DMA, queues=0x%03x!\n", npend
);
1817 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++) {
1818 if (!ATH_TXQ_SETUP(sc
, i
))
1822 * The caller will resume queues with ieee80211_wake_queues.
1823 * Mark the queue as not stopped to prevent ath_tx_complete
1824 * from waking the queue too early.
1826 txq
= &sc
->tx
.txq
[i
];
1827 txq
->stopped
= false;
1828 ath_draintxq(sc
, txq
);
1834 void ath_tx_cleanupq(struct ath_softc
*sc
, struct ath_txq
*txq
)
1836 ath9k_hw_releasetxqueue(sc
->sc_ah
, txq
->axq_qnum
);
1837 sc
->tx
.txqsetup
&= ~(1<<txq
->axq_qnum
);
1840 /* For each axq_acq entry, for each tid, try to schedule packets
1841 * for transmit until ampdu_depth has reached min Q depth.
1843 void ath_txq_schedule(struct ath_softc
*sc
, struct ath_txq
*txq
)
1845 struct ath_atx_ac
*ac
, *last_ac
;
1846 struct ath_atx_tid
*tid
, *last_tid
;
1849 if (test_bit(SC_OP_HW_RESET
, &sc
->sc_flags
) ||
1850 list_empty(&txq
->axq_acq
))
1855 last_ac
= list_entry(txq
->axq_acq
.prev
, struct ath_atx_ac
, list
);
1856 while (!list_empty(&txq
->axq_acq
)) {
1859 ac
= list_first_entry(&txq
->axq_acq
, struct ath_atx_ac
, list
);
1860 last_tid
= list_entry(ac
->tid_q
.prev
, struct ath_atx_tid
, list
);
1861 list_del(&ac
->list
);
1864 while (!list_empty(&ac
->tid_q
)) {
1866 tid
= list_first_entry(&ac
->tid_q
, struct ath_atx_tid
,
1868 list_del(&tid
->list
);
1874 if (ath_tx_sched_aggr(sc
, txq
, tid
, &stop
))
1878 * add tid to round-robin queue if more frames
1879 * are pending for the tid
1881 if (ath_tid_has_buffered(tid
))
1882 ath_tx_queue_tid(txq
, tid
);
1884 if (stop
|| tid
== last_tid
)
1888 if (!list_empty(&ac
->tid_q
) && !ac
->sched
) {
1890 list_add_tail(&ac
->list
, &txq
->axq_acq
);
1896 if (ac
== last_ac
) {
1901 last_ac
= list_entry(txq
->axq_acq
.prev
,
1902 struct ath_atx_ac
, list
);
1914 * Insert a chain of ath_buf (descriptors) on a txq and
1915 * assume the descriptors are already chained together by caller.
1917 static void ath_tx_txqaddbuf(struct ath_softc
*sc
, struct ath_txq
*txq
,
1918 struct list_head
*head
, bool internal
)
1920 struct ath_hw
*ah
= sc
->sc_ah
;
1921 struct ath_common
*common
= ath9k_hw_common(ah
);
1922 struct ath_buf
*bf
, *bf_last
;
1923 bool puttxbuf
= false;
1927 * Insert the frame on the outbound list and
1928 * pass it on to the hardware.
1931 if (list_empty(head
))
1934 edma
= !!(ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
);
1935 bf
= list_first_entry(head
, struct ath_buf
, list
);
1936 bf_last
= list_entry(head
->prev
, struct ath_buf
, list
);
1938 ath_dbg(common
, QUEUE
, "qnum: %d, txq depth: %d\n",
1939 txq
->axq_qnum
, txq
->axq_depth
);
1941 if (edma
&& list_empty(&txq
->txq_fifo
[txq
->txq_headidx
])) {
1942 list_splice_tail_init(head
, &txq
->txq_fifo
[txq
->txq_headidx
]);
1943 INCR(txq
->txq_headidx
, ATH_TXFIFO_DEPTH
);
1946 list_splice_tail_init(head
, &txq
->axq_q
);
1948 if (txq
->axq_link
) {
1949 ath9k_hw_set_desc_link(ah
, txq
->axq_link
, bf
->bf_daddr
);
1950 ath_dbg(common
, XMIT
, "link[%u] (%p)=%llx (%p)\n",
1951 txq
->axq_qnum
, txq
->axq_link
,
1952 ito64(bf
->bf_daddr
), bf
->bf_desc
);
1956 txq
->axq_link
= bf_last
->bf_desc
;
1960 TX_STAT_INC(txq
->axq_qnum
, puttxbuf
);
1961 ath9k_hw_puttxbuf(ah
, txq
->axq_qnum
, bf
->bf_daddr
);
1962 ath_dbg(common
, XMIT
, "TXDP[%u] = %llx (%p)\n",
1963 txq
->axq_qnum
, ito64(bf
->bf_daddr
), bf
->bf_desc
);
1967 TX_STAT_INC(txq
->axq_qnum
, txstart
);
1968 ath9k_hw_txstart(ah
, txq
->axq_qnum
);
1974 if (bf_is_ampdu_not_probing(bf
))
1975 txq
->axq_ampdu_depth
++;
1977 bf_last
= bf
->bf_lastbf
;
1978 bf
= bf_last
->bf_next
;
1979 bf_last
->bf_next
= NULL
;
1984 static void ath_tx_send_normal(struct ath_softc
*sc
, struct ath_txq
*txq
,
1985 struct ath_atx_tid
*tid
, struct sk_buff
*skb
)
1987 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
1988 struct ath_frame_info
*fi
= get_frame_info(skb
);
1989 struct list_head bf_head
;
1990 struct ath_buf
*bf
= fi
->bf
;
1992 INIT_LIST_HEAD(&bf_head
);
1993 list_add_tail(&bf
->list
, &bf_head
);
1994 bf
->bf_state
.bf_type
= 0;
1995 if (tid
&& (tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
)) {
1996 bf
->bf_state
.bf_type
= BUF_AMPDU
;
1997 ath_tx_addto_baw(sc
, tid
, bf
);
2002 ath_tx_fill_desc(sc
, bf
, txq
, fi
->framelen
);
2003 ath_tx_txqaddbuf(sc
, txq
, &bf_head
, false);
2004 TX_STAT_INC(txq
->axq_qnum
, queued
);
2007 static void setup_frame_info(struct ieee80211_hw
*hw
,
2008 struct ieee80211_sta
*sta
,
2009 struct sk_buff
*skb
,
2012 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
2013 struct ieee80211_key_conf
*hw_key
= tx_info
->control
.hw_key
;
2014 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
2015 const struct ieee80211_rate
*rate
;
2016 struct ath_frame_info
*fi
= get_frame_info(skb
);
2017 struct ath_node
*an
= NULL
;
2018 enum ath9k_key_type keytype
;
2019 bool short_preamble
= false;
2022 * We check if Short Preamble is needed for the CTS rate by
2023 * checking the BSS's global flag.
2024 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2026 if (tx_info
->control
.vif
&&
2027 tx_info
->control
.vif
->bss_conf
.use_short_preamble
)
2028 short_preamble
= true;
2030 rate
= ieee80211_get_rts_cts_rate(hw
, tx_info
);
2031 keytype
= ath9k_cmn_get_hw_crypto_keytype(skb
);
2034 an
= (struct ath_node
*) sta
->drv_priv
;
2036 memset(fi
, 0, sizeof(*fi
));
2038 fi
->keyix
= hw_key
->hw_key_idx
;
2039 else if (an
&& ieee80211_is_data(hdr
->frame_control
) && an
->ps_key
> 0)
2040 fi
->keyix
= an
->ps_key
;
2042 fi
->keyix
= ATH9K_TXKEYIX_INVALID
;
2043 fi
->keytype
= keytype
;
2044 fi
->framelen
= framelen
;
2045 fi
->rtscts_rate
= rate
->hw_value
;
2047 fi
->rtscts_rate
|= rate
->hw_value_short
;
2050 u8
ath_txchainmask_reduction(struct ath_softc
*sc
, u8 chainmask
, u32 rate
)
2052 struct ath_hw
*ah
= sc
->sc_ah
;
2053 struct ath9k_channel
*curchan
= ah
->curchan
;
2055 if ((ah
->caps
.hw_caps
& ATH9K_HW_CAP_APM
) &&
2056 (curchan
->channelFlags
& CHANNEL_5GHZ
) &&
2057 (chainmask
== 0x7) && (rate
< 0x90))
2059 else if (AR_SREV_9462(ah
) && ath9k_hw_btcoex_is_enabled(ah
) &&
2067 * Assign a descriptor (and sequence number if necessary,
2068 * and map buffer for DMA. Frees skb on error
2070 static struct ath_buf
*ath_tx_setup_buffer(struct ath_softc
*sc
,
2071 struct ath_txq
*txq
,
2072 struct ath_atx_tid
*tid
,
2073 struct sk_buff
*skb
)
2075 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
2076 struct ath_frame_info
*fi
= get_frame_info(skb
);
2077 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
2082 bf
= ath_tx_get_buffer(sc
);
2084 ath_dbg(common
, XMIT
, "TX buffers are full\n");
2088 ATH_TXBUF_RESET(bf
);
2090 if (tid
&& ieee80211_is_data_present(hdr
->frame_control
)) {
2091 fragno
= le16_to_cpu(hdr
->seq_ctrl
) & IEEE80211_SCTL_FRAG
;
2092 seqno
= tid
->seq_next
;
2093 hdr
->seq_ctrl
= cpu_to_le16(tid
->seq_next
<< IEEE80211_SEQ_SEQ_SHIFT
);
2096 hdr
->seq_ctrl
|= cpu_to_le16(fragno
);
2098 if (!ieee80211_has_morefrags(hdr
->frame_control
))
2099 INCR(tid
->seq_next
, IEEE80211_SEQ_MAX
);
2101 bf
->bf_state
.seqno
= seqno
;
2106 bf
->bf_buf_addr
= dma_map_single(sc
->dev
, skb
->data
,
2107 skb
->len
, DMA_TO_DEVICE
);
2108 if (unlikely(dma_mapping_error(sc
->dev
, bf
->bf_buf_addr
))) {
2110 bf
->bf_buf_addr
= 0;
2111 ath_err(ath9k_hw_common(sc
->sc_ah
),
2112 "dma_mapping_error() on TX\n");
2113 ath_tx_return_buffer(sc
, bf
);
2122 static int ath_tx_prepare(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
2123 struct ath_tx_control
*txctl
)
2125 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
2126 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
2127 struct ieee80211_sta
*sta
= txctl
->sta
;
2128 struct ieee80211_vif
*vif
= info
->control
.vif
;
2129 struct ath_vif
*avp
;
2130 struct ath_softc
*sc
= hw
->priv
;
2131 int frmlen
= skb
->len
+ FCS_LEN
;
2132 int padpos
, padsize
;
2134 /* NOTE: sta can be NULL according to net/mac80211.h */
2136 txctl
->an
= (struct ath_node
*)sta
->drv_priv
;
2137 else if (vif
&& ieee80211_is_data(hdr
->frame_control
)) {
2138 avp
= (void *)vif
->drv_priv
;
2139 txctl
->an
= &avp
->mcast_node
;
2142 if (info
->control
.hw_key
)
2143 frmlen
+= info
->control
.hw_key
->icv_len
;
2146 * As a temporary workaround, assign seq# here; this will likely need
2147 * to be cleaned up to work better with Beacon transmission and virtual
2150 if (info
->flags
& IEEE80211_TX_CTL_ASSIGN_SEQ
) {
2151 if (info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
)
2152 sc
->tx
.seq_no
+= 0x10;
2153 hdr
->seq_ctrl
&= cpu_to_le16(IEEE80211_SCTL_FRAG
);
2154 hdr
->seq_ctrl
|= cpu_to_le16(sc
->tx
.seq_no
);
2157 if ((vif
&& vif
->type
!= NL80211_IFTYPE_AP
&&
2158 vif
->type
!= NL80211_IFTYPE_AP_VLAN
) ||
2159 !ieee80211_is_data(hdr
->frame_control
))
2160 info
->flags
|= IEEE80211_TX_CTL_CLEAR_PS_FILT
;
2162 /* Add the padding after the header if this is not already done */
2163 padpos
= ieee80211_hdrlen(hdr
->frame_control
);
2164 padsize
= padpos
& 3;
2165 if (padsize
&& skb
->len
> padpos
) {
2166 if (skb_headroom(skb
) < padsize
)
2169 skb_push(skb
, padsize
);
2170 memmove(skb
->data
, skb
->data
+ padsize
, padpos
);
2173 setup_frame_info(hw
, sta
, skb
, frmlen
);
2178 /* Upon failure caller should free skb */
2179 int ath_tx_start(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
2180 struct ath_tx_control
*txctl
)
2182 struct ieee80211_hdr
*hdr
;
2183 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
2184 struct ieee80211_sta
*sta
= txctl
->sta
;
2185 struct ieee80211_vif
*vif
= info
->control
.vif
;
2186 struct ath_softc
*sc
= hw
->priv
;
2187 struct ath_txq
*txq
= txctl
->txq
;
2188 struct ath_atx_tid
*tid
= NULL
;
2193 ret
= ath_tx_prepare(hw
, skb
, txctl
);
2197 hdr
= (struct ieee80211_hdr
*) skb
->data
;
2199 * At this point, the vif, hw_key and sta pointers in the tx control
2200 * info are no longer valid (overwritten by the ath_frame_info data.
2203 q
= skb_get_queue_mapping(skb
);
2205 ath_txq_lock(sc
, txq
);
2206 if (txq
== sc
->tx
.txq_map
[q
] &&
2207 ++txq
->pending_frames
> sc
->tx
.txq_max_pending
[q
] &&
2209 ieee80211_stop_queue(sc
->hw
, q
);
2210 txq
->stopped
= true;
2213 if (txctl
->an
&& ieee80211_is_data_present(hdr
->frame_control
))
2214 tid
= ath_get_skb_tid(sc
, txctl
->an
, skb
);
2216 if (info
->flags
& IEEE80211_TX_CTL_PS_RESPONSE
) {
2217 ath_txq_unlock(sc
, txq
);
2218 txq
= sc
->tx
.uapsdq
;
2219 ath_txq_lock(sc
, txq
);
2220 } else if (txctl
->an
&&
2221 ieee80211_is_data_present(hdr
->frame_control
)) {
2222 WARN_ON(tid
->ac
->txq
!= txctl
->txq
);
2224 if (info
->flags
& IEEE80211_TX_CTL_CLEAR_PS_FILT
)
2225 tid
->ac
->clear_ps_filter
= true;
2228 * Add this frame to software queue for scheduling later
2231 TX_STAT_INC(txq
->axq_qnum
, a_queued_sw
);
2232 __skb_queue_tail(&tid
->buf_q
, skb
);
2233 if (!txctl
->an
->sleeping
)
2234 ath_tx_queue_tid(txq
, tid
);
2236 ath_txq_schedule(sc
, txq
);
2240 bf
= ath_tx_setup_buffer(sc
, txq
, tid
, skb
);
2242 ath_txq_skb_done(sc
, txq
, skb
);
2244 dev_kfree_skb_any(skb
);
2246 ieee80211_free_txskb(sc
->hw
, skb
);
2250 bf
->bf_state
.bfs_paprd
= txctl
->paprd
;
2253 bf
->bf_state
.bfs_paprd_timestamp
= jiffies
;
2255 ath_set_rates(vif
, sta
, bf
);
2256 ath_tx_send_normal(sc
, txq
, tid
, skb
);
2259 ath_txq_unlock(sc
, txq
);
2264 void ath_tx_cabq(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
,
2265 struct sk_buff
*skb
)
2267 struct ath_softc
*sc
= hw
->priv
;
2268 struct ath_tx_control txctl
= {
2269 .txq
= sc
->beacon
.cabq
2271 struct ath_tx_info info
= {};
2272 struct ieee80211_hdr
*hdr
;
2273 struct ath_buf
*bf_tail
= NULL
;
2280 sc
->cur_beacon_conf
.beacon_interval
* 1000 *
2281 sc
->cur_beacon_conf
.dtim_period
/ ATH_BCBUF
;
2284 struct ath_frame_info
*fi
= get_frame_info(skb
);
2286 if (ath_tx_prepare(hw
, skb
, &txctl
))
2289 bf
= ath_tx_setup_buffer(sc
, txctl
.txq
, NULL
, skb
);
2294 ath_set_rates(vif
, NULL
, bf
);
2295 ath_buf_set_rate(sc
, bf
, &info
, fi
->framelen
, false);
2296 duration
+= info
.rates
[0].PktDuration
;
2298 bf_tail
->bf_next
= bf
;
2300 list_add_tail(&bf
->list
, &bf_q
);
2304 if (duration
> max_duration
)
2307 skb
= ieee80211_get_buffered_bc(hw
, vif
);
2311 ieee80211_free_txskb(hw
, skb
);
2313 if (list_empty(&bf_q
))
2316 bf
= list_first_entry(&bf_q
, struct ath_buf
, list
);
2317 hdr
= (struct ieee80211_hdr
*) bf
->bf_mpdu
->data
;
2319 if (hdr
->frame_control
& IEEE80211_FCTL_MOREDATA
) {
2320 hdr
->frame_control
&= ~IEEE80211_FCTL_MOREDATA
;
2321 dma_sync_single_for_device(sc
->dev
, bf
->bf_buf_addr
,
2322 sizeof(*hdr
), DMA_TO_DEVICE
);
2325 ath_txq_lock(sc
, txctl
.txq
);
2326 ath_tx_fill_desc(sc
, bf
, txctl
.txq
, 0);
2327 ath_tx_txqaddbuf(sc
, txctl
.txq
, &bf_q
, false);
2328 TX_STAT_INC(txctl
.txq
->axq_qnum
, queued
);
2329 ath_txq_unlock(sc
, txctl
.txq
);
2336 static void ath_tx_complete(struct ath_softc
*sc
, struct sk_buff
*skb
,
2337 int tx_flags
, struct ath_txq
*txq
)
2339 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
2340 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
2341 struct ieee80211_hdr
* hdr
= (struct ieee80211_hdr
*)skb
->data
;
2342 int padpos
, padsize
;
2343 unsigned long flags
;
2345 ath_dbg(common
, XMIT
, "TX complete: skb: %p\n", skb
);
2347 if (sc
->sc_ah
->caldata
)
2348 sc
->sc_ah
->caldata
->paprd_packet_sent
= true;
2350 if (!(tx_flags
& ATH_TX_ERROR
))
2351 /* Frame was ACKed */
2352 tx_info
->flags
|= IEEE80211_TX_STAT_ACK
;
2354 padpos
= ieee80211_hdrlen(hdr
->frame_control
);
2355 padsize
= padpos
& 3;
2356 if (padsize
&& skb
->len
>padpos
+padsize
) {
2358 * Remove MAC header padding before giving the frame back to
2361 memmove(skb
->data
+ padsize
, skb
->data
, padpos
);
2362 skb_pull(skb
, padsize
);
2365 spin_lock_irqsave(&sc
->sc_pm_lock
, flags
);
2366 if ((sc
->ps_flags
& PS_WAIT_FOR_TX_ACK
) && !txq
->axq_depth
) {
2367 sc
->ps_flags
&= ~PS_WAIT_FOR_TX_ACK
;
2369 "Going back to sleep after having received TX status (0x%lx)\n",
2370 sc
->ps_flags
& (PS_WAIT_FOR_BEACON
|
2372 PS_WAIT_FOR_PSPOLL_DATA
|
2373 PS_WAIT_FOR_TX_ACK
));
2375 spin_unlock_irqrestore(&sc
->sc_pm_lock
, flags
);
2377 __skb_queue_tail(&txq
->complete_q
, skb
);
2378 ath_txq_skb_done(sc
, txq
, skb
);
2381 static void ath_tx_complete_buf(struct ath_softc
*sc
, struct ath_buf
*bf
,
2382 struct ath_txq
*txq
, struct list_head
*bf_q
,
2383 struct ath_tx_status
*ts
, int txok
)
2385 struct sk_buff
*skb
= bf
->bf_mpdu
;
2386 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
2387 unsigned long flags
;
2391 tx_flags
|= ATH_TX_ERROR
;
2393 if (ts
->ts_status
& ATH9K_TXERR_FILT
)
2394 tx_info
->flags
|= IEEE80211_TX_STAT_TX_FILTERED
;
2396 dma_unmap_single(sc
->dev
, bf
->bf_buf_addr
, skb
->len
, DMA_TO_DEVICE
);
2397 bf
->bf_buf_addr
= 0;
2399 if (bf
->bf_state
.bfs_paprd
) {
2400 if (time_after(jiffies
,
2401 bf
->bf_state
.bfs_paprd_timestamp
+
2402 msecs_to_jiffies(ATH_PAPRD_TIMEOUT
)))
2403 dev_kfree_skb_any(skb
);
2405 complete(&sc
->paprd_complete
);
2407 ath_debug_stat_tx(sc
, bf
, ts
, txq
, tx_flags
);
2408 ath_tx_complete(sc
, skb
, tx_flags
, txq
);
2410 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2411 * accidentally reference it later.
2416 * Return the list of ath_buf of this mpdu to free queue
2418 spin_lock_irqsave(&sc
->tx
.txbuflock
, flags
);
2419 list_splice_tail_init(bf_q
, &sc
->tx
.txbuf
);
2420 spin_unlock_irqrestore(&sc
->tx
.txbuflock
, flags
);
2423 static void ath_tx_rc_status(struct ath_softc
*sc
, struct ath_buf
*bf
,
2424 struct ath_tx_status
*ts
, int nframes
, int nbad
,
2427 struct sk_buff
*skb
= bf
->bf_mpdu
;
2428 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
2429 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
2430 struct ieee80211_hw
*hw
= sc
->hw
;
2431 struct ath_hw
*ah
= sc
->sc_ah
;
2435 tx_info
->status
.ack_signal
= ts
->ts_rssi
;
2437 tx_rateindex
= ts
->ts_rateindex
;
2438 WARN_ON(tx_rateindex
>= hw
->max_rates
);
2440 if (tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
) {
2441 tx_info
->flags
|= IEEE80211_TX_STAT_AMPDU
;
2443 BUG_ON(nbad
> nframes
);
2445 tx_info
->status
.ampdu_len
= nframes
;
2446 tx_info
->status
.ampdu_ack_len
= nframes
- nbad
;
2448 if ((ts
->ts_status
& ATH9K_TXERR_FILT
) == 0 &&
2449 (tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
) == 0) {
2451 * If an underrun error is seen assume it as an excessive
2452 * retry only if max frame trigger level has been reached
2453 * (2 KB for single stream, and 4 KB for dual stream).
2454 * Adjust the long retry as if the frame was tried
2455 * hw->max_rate_tries times to affect how rate control updates
2456 * PER for the failed rate.
2457 * In case of congestion on the bus penalizing this type of
2458 * underruns should help hardware actually transmit new frames
2459 * successfully by eventually preferring slower rates.
2460 * This itself should also alleviate congestion on the bus.
2462 if (unlikely(ts
->ts_flags
& (ATH9K_TX_DATA_UNDERRUN
|
2463 ATH9K_TX_DELIM_UNDERRUN
)) &&
2464 ieee80211_is_data(hdr
->frame_control
) &&
2465 ah
->tx_trig_level
>= sc
->sc_ah
->config
.max_txtrig_level
)
2466 tx_info
->status
.rates
[tx_rateindex
].count
=
2470 for (i
= tx_rateindex
+ 1; i
< hw
->max_rates
; i
++) {
2471 tx_info
->status
.rates
[i
].count
= 0;
2472 tx_info
->status
.rates
[i
].idx
= -1;
2475 tx_info
->status
.rates
[tx_rateindex
].count
= ts
->ts_longretry
+ 1;
2478 static void ath_tx_processq(struct ath_softc
*sc
, struct ath_txq
*txq
)
2480 struct ath_hw
*ah
= sc
->sc_ah
;
2481 struct ath_common
*common
= ath9k_hw_common(ah
);
2482 struct ath_buf
*bf
, *lastbf
, *bf_held
= NULL
;
2483 struct list_head bf_head
;
2484 struct ath_desc
*ds
;
2485 struct ath_tx_status ts
;
2488 ath_dbg(common
, QUEUE
, "tx queue %d (%x), link %p\n",
2489 txq
->axq_qnum
, ath9k_hw_gettxbuf(sc
->sc_ah
, txq
->axq_qnum
),
2492 ath_txq_lock(sc
, txq
);
2494 if (test_bit(SC_OP_HW_RESET
, &sc
->sc_flags
))
2497 if (list_empty(&txq
->axq_q
)) {
2498 txq
->axq_link
= NULL
;
2499 ath_txq_schedule(sc
, txq
);
2502 bf
= list_first_entry(&txq
->axq_q
, struct ath_buf
, list
);
2505 * There is a race condition that a BH gets scheduled
2506 * after sw writes TxE and before hw re-load the last
2507 * descriptor to get the newly chained one.
2508 * Software must keep the last DONE descriptor as a
2509 * holding descriptor - software does so by marking
2510 * it with the STALE flag.
2513 if (bf
->bf_state
.stale
) {
2515 if (list_is_last(&bf_held
->list
, &txq
->axq_q
))
2518 bf
= list_entry(bf_held
->list
.next
, struct ath_buf
,
2522 lastbf
= bf
->bf_lastbf
;
2523 ds
= lastbf
->bf_desc
;
2525 memset(&ts
, 0, sizeof(ts
));
2526 status
= ath9k_hw_txprocdesc(ah
, ds
, &ts
);
2527 if (status
== -EINPROGRESS
)
2530 TX_STAT_INC(txq
->axq_qnum
, txprocdesc
);
2533 * Remove ath_buf's of the same transmit unit from txq,
2534 * however leave the last descriptor back as the holding
2535 * descriptor for hw.
2537 lastbf
->bf_state
.stale
= true;
2538 INIT_LIST_HEAD(&bf_head
);
2539 if (!list_is_singular(&lastbf
->list
))
2540 list_cut_position(&bf_head
,
2541 &txq
->axq_q
, lastbf
->list
.prev
);
2544 list_del(&bf_held
->list
);
2545 ath_tx_return_buffer(sc
, bf_held
);
2548 ath_tx_process_buffer(sc
, txq
, &ts
, bf
, &bf_head
);
2550 ath_txq_unlock_complete(sc
, txq
);
2553 void ath_tx_tasklet(struct ath_softc
*sc
)
2555 struct ath_hw
*ah
= sc
->sc_ah
;
2556 u32 qcumask
= ((1 << ATH9K_NUM_TX_QUEUES
) - 1) & ah
->intr_txqs
;
2559 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++) {
2560 if (ATH_TXQ_SETUP(sc
, i
) && (qcumask
& (1 << i
)))
2561 ath_tx_processq(sc
, &sc
->tx
.txq
[i
]);
2565 void ath_tx_edma_tasklet(struct ath_softc
*sc
)
2567 struct ath_tx_status ts
;
2568 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
2569 struct ath_hw
*ah
= sc
->sc_ah
;
2570 struct ath_txq
*txq
;
2571 struct ath_buf
*bf
, *lastbf
;
2572 struct list_head bf_head
;
2573 struct list_head
*fifo_list
;
2577 if (test_bit(SC_OP_HW_RESET
, &sc
->sc_flags
))
2580 status
= ath9k_hw_txprocdesc(ah
, NULL
, (void *)&ts
);
2581 if (status
== -EINPROGRESS
)
2583 if (status
== -EIO
) {
2584 ath_dbg(common
, XMIT
, "Error processing tx status\n");
2588 /* Process beacon completions separately */
2589 if (ts
.qid
== sc
->beacon
.beaconq
) {
2590 sc
->beacon
.tx_processed
= true;
2591 sc
->beacon
.tx_last
= !(ts
.ts_status
& ATH9K_TXERR_MASK
);
2593 ath9k_csa_is_finished(sc
);
2597 txq
= &sc
->tx
.txq
[ts
.qid
];
2599 ath_txq_lock(sc
, txq
);
2601 TX_STAT_INC(txq
->axq_qnum
, txprocdesc
);
2603 fifo_list
= &txq
->txq_fifo
[txq
->txq_tailidx
];
2604 if (list_empty(fifo_list
)) {
2605 ath_txq_unlock(sc
, txq
);
2609 bf
= list_first_entry(fifo_list
, struct ath_buf
, list
);
2610 if (bf
->bf_state
.stale
) {
2611 list_del(&bf
->list
);
2612 ath_tx_return_buffer(sc
, bf
);
2613 bf
= list_first_entry(fifo_list
, struct ath_buf
, list
);
2616 lastbf
= bf
->bf_lastbf
;
2618 INIT_LIST_HEAD(&bf_head
);
2619 if (list_is_last(&lastbf
->list
, fifo_list
)) {
2620 list_splice_tail_init(fifo_list
, &bf_head
);
2621 INCR(txq
->txq_tailidx
, ATH_TXFIFO_DEPTH
);
2623 if (!list_empty(&txq
->axq_q
)) {
2624 struct list_head bf_q
;
2626 INIT_LIST_HEAD(&bf_q
);
2627 txq
->axq_link
= NULL
;
2628 list_splice_tail_init(&txq
->axq_q
, &bf_q
);
2629 ath_tx_txqaddbuf(sc
, txq
, &bf_q
, true);
2632 lastbf
->bf_state
.stale
= true;
2634 list_cut_position(&bf_head
, fifo_list
,
2638 ath_tx_process_buffer(sc
, txq
, &ts
, bf
, &bf_head
);
2639 ath_txq_unlock_complete(sc
, txq
);
2647 static int ath_txstatus_setup(struct ath_softc
*sc
, int size
)
2649 struct ath_descdma
*dd
= &sc
->txsdma
;
2650 u8 txs_len
= sc
->sc_ah
->caps
.txs_len
;
2652 dd
->dd_desc_len
= size
* txs_len
;
2653 dd
->dd_desc
= dmam_alloc_coherent(sc
->dev
, dd
->dd_desc_len
,
2654 &dd
->dd_desc_paddr
, GFP_KERNEL
);
2661 static int ath_tx_edma_init(struct ath_softc
*sc
)
2665 err
= ath_txstatus_setup(sc
, ATH_TXSTATUS_RING_SIZE
);
2667 ath9k_hw_setup_statusring(sc
->sc_ah
, sc
->txsdma
.dd_desc
,
2668 sc
->txsdma
.dd_desc_paddr
,
2669 ATH_TXSTATUS_RING_SIZE
);
2674 int ath_tx_init(struct ath_softc
*sc
, int nbufs
)
2676 struct ath_common
*common
= ath9k_hw_common(sc
->sc_ah
);
2679 spin_lock_init(&sc
->tx
.txbuflock
);
2681 error
= ath_descdma_setup(sc
, &sc
->tx
.txdma
, &sc
->tx
.txbuf
,
2685 "Failed to allocate tx descriptors: %d\n", error
);
2689 error
= ath_descdma_setup(sc
, &sc
->beacon
.bdma
, &sc
->beacon
.bbuf
,
2690 "beacon", ATH_BCBUF
, 1, 1);
2693 "Failed to allocate beacon descriptors: %d\n", error
);
2697 INIT_DELAYED_WORK(&sc
->tx_complete_work
, ath_tx_complete_poll_work
);
2699 if (sc
->sc_ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
)
2700 error
= ath_tx_edma_init(sc
);
2705 void ath_tx_node_init(struct ath_softc
*sc
, struct ath_node
*an
)
2707 struct ath_atx_tid
*tid
;
2708 struct ath_atx_ac
*ac
;
2711 for (tidno
= 0, tid
= &an
->tid
[tidno
];
2712 tidno
< IEEE80211_NUM_TIDS
;
2716 tid
->seq_start
= tid
->seq_next
= 0;
2717 tid
->baw_size
= WME_MAX_BA
;
2718 tid
->baw_head
= tid
->baw_tail
= 0;
2720 tid
->paused
= false;
2721 tid
->active
= false;
2722 __skb_queue_head_init(&tid
->buf_q
);
2723 __skb_queue_head_init(&tid
->retry_q
);
2724 acno
= TID_TO_WME_AC(tidno
);
2725 tid
->ac
= &an
->ac
[acno
];
2728 for (acno
= 0, ac
= &an
->ac
[acno
];
2729 acno
< IEEE80211_NUM_ACS
; acno
++, ac
++) {
2731 ac
->clear_ps_filter
= true;
2732 ac
->txq
= sc
->tx
.txq_map
[acno
];
2733 INIT_LIST_HEAD(&ac
->tid_q
);
2737 void ath_tx_node_cleanup(struct ath_softc
*sc
, struct ath_node
*an
)
2739 struct ath_atx_ac
*ac
;
2740 struct ath_atx_tid
*tid
;
2741 struct ath_txq
*txq
;
2744 for (tidno
= 0, tid
= &an
->tid
[tidno
];
2745 tidno
< IEEE80211_NUM_TIDS
; tidno
++, tid
++) {
2750 ath_txq_lock(sc
, txq
);
2753 list_del(&tid
->list
);
2758 list_del(&ac
->list
);
2759 tid
->ac
->sched
= false;
2762 ath_tid_drain(sc
, txq
, tid
);
2763 tid
->active
= false;
2765 ath_txq_unlock(sc
, txq
);