x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / net / wireless / rt2x00 / rt73usb.c
blob1d3880e09a13eabb73e93c77b7af948ca12421f8
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt73usb
23 Abstract: rt73usb device specific routines.
24 Supported chipsets: rt2571W & rt2671.
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 #include <linux/usb.h>
36 #include "rt2x00.h"
37 #include "rt2x00usb.h"
38 #include "rt73usb.h"
41 * Allow hardware encryption to be disabled.
43 static bool modparam_nohwcrypt;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
48 * Register access.
49 * All access to the CSR registers will go through the methods
50 * rt2x00usb_register_read and rt2x00usb_register_write.
51 * BBP and RF register require indirect register access,
52 * and use the CSR registers BBPCSR and RFCSR to achieve this.
53 * These indirect registers work with busy bits,
54 * and we will try maximal REGISTER_BUSY_COUNT times to access
55 * the register while taking a REGISTER_BUSY_DELAY us delay
56 * between each attampt. When the busy bit is still set at that time,
57 * the access attempt is considered to have failed,
58 * and we will print an error.
59 * The _lock versions must be used if you already hold the csr_mutex
61 #define WAIT_FOR_BBP(__dev, __reg) \
62 rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
63 #define WAIT_FOR_RF(__dev, __reg) \
64 rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
66 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
67 const unsigned int word, const u8 value)
69 u32 reg;
71 mutex_lock(&rt2x00dev->csr_mutex);
74 * Wait until the BBP becomes available, afterwards we
75 * can safely write the new data into the register.
77 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
78 reg = 0;
79 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
80 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
81 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
82 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
84 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
87 mutex_unlock(&rt2x00dev->csr_mutex);
90 static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
91 const unsigned int word, u8 *value)
93 u32 reg;
95 mutex_lock(&rt2x00dev->csr_mutex);
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
105 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106 reg = 0;
107 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
111 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
113 WAIT_FOR_BBP(rt2x00dev, &reg);
116 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
118 mutex_unlock(&rt2x00dev->csr_mutex);
121 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
122 const unsigned int word, const u32 value)
124 u32 reg;
126 mutex_lock(&rt2x00dev->csr_mutex);
129 * Wait until the RF becomes available, afterwards we
130 * can safely write the new data into the register.
132 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
133 reg = 0;
134 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
136 * RF5225 and RF2527 contain 21 bits per RF register value,
137 * all others contain 20 bits.
139 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
140 20 + (rt2x00_rf(rt2x00dev, RF5225) ||
141 rt2x00_rf(rt2x00dev, RF2527)));
142 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
143 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
145 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
146 rt2x00_rf_write(rt2x00dev, word, value);
149 mutex_unlock(&rt2x00dev->csr_mutex);
152 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
153 static const struct rt2x00debug rt73usb_rt2x00debug = {
154 .owner = THIS_MODULE,
155 .csr = {
156 .read = rt2x00usb_register_read,
157 .write = rt2x00usb_register_write,
158 .flags = RT2X00DEBUGFS_OFFSET,
159 .word_base = CSR_REG_BASE,
160 .word_size = sizeof(u32),
161 .word_count = CSR_REG_SIZE / sizeof(u32),
163 .eeprom = {
164 .read = rt2x00_eeprom_read,
165 .write = rt2x00_eeprom_write,
166 .word_base = EEPROM_BASE,
167 .word_size = sizeof(u16),
168 .word_count = EEPROM_SIZE / sizeof(u16),
170 .bbp = {
171 .read = rt73usb_bbp_read,
172 .write = rt73usb_bbp_write,
173 .word_base = BBP_BASE,
174 .word_size = sizeof(u8),
175 .word_count = BBP_SIZE / sizeof(u8),
177 .rf = {
178 .read = rt2x00_rf_read,
179 .write = rt73usb_rf_write,
180 .word_base = RF_BASE,
181 .word_size = sizeof(u32),
182 .word_count = RF_SIZE / sizeof(u32),
185 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
187 static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
189 u32 reg;
191 rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
192 return rt2x00_get_field32(reg, MAC_CSR13_VAL7);
195 #ifdef CONFIG_RT2X00_LIB_LEDS
196 static void rt73usb_brightness_set(struct led_classdev *led_cdev,
197 enum led_brightness brightness)
199 struct rt2x00_led *led =
200 container_of(led_cdev, struct rt2x00_led, led_dev);
201 unsigned int enabled = brightness != LED_OFF;
202 unsigned int a_mode =
203 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
204 unsigned int bg_mode =
205 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
207 if (led->type == LED_TYPE_RADIO) {
208 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
209 MCU_LEDCS_RADIO_STATUS, enabled);
211 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
212 0, led->rt2x00dev->led_mcu_reg,
213 REGISTER_TIMEOUT);
214 } else if (led->type == LED_TYPE_ASSOC) {
215 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
216 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
217 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
218 MCU_LEDCS_LINK_A_STATUS, a_mode);
220 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
221 0, led->rt2x00dev->led_mcu_reg,
222 REGISTER_TIMEOUT);
223 } else if (led->type == LED_TYPE_QUALITY) {
225 * The brightness is divided into 6 levels (0 - 5),
226 * this means we need to convert the brightness
227 * argument into the matching level within that range.
229 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
230 brightness / (LED_FULL / 6),
231 led->rt2x00dev->led_mcu_reg,
232 REGISTER_TIMEOUT);
236 static int rt73usb_blink_set(struct led_classdev *led_cdev,
237 unsigned long *delay_on,
238 unsigned long *delay_off)
240 struct rt2x00_led *led =
241 container_of(led_cdev, struct rt2x00_led, led_dev);
242 u32 reg;
244 rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
245 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
246 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
247 rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
249 return 0;
252 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
253 struct rt2x00_led *led,
254 enum led_type type)
256 led->rt2x00dev = rt2x00dev;
257 led->type = type;
258 led->led_dev.brightness_set = rt73usb_brightness_set;
259 led->led_dev.blink_set = rt73usb_blink_set;
260 led->flags = LED_INITIALIZED;
262 #endif /* CONFIG_RT2X00_LIB_LEDS */
265 * Configuration handlers.
267 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
268 struct rt2x00lib_crypto *crypto,
269 struct ieee80211_key_conf *key)
271 struct hw_key_entry key_entry;
272 struct rt2x00_field32 field;
273 u32 mask;
274 u32 reg;
276 if (crypto->cmd == SET_KEY) {
278 * rt2x00lib can't determine the correct free
279 * key_idx for shared keys. We have 1 register
280 * with key valid bits. The goal is simple, read
281 * the register, if that is full we have no slots
282 * left.
283 * Note that each BSS is allowed to have up to 4
284 * shared keys, so put a mask over the allowed
285 * entries.
287 mask = (0xf << crypto->bssidx);
289 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
290 reg &= mask;
292 if (reg && reg == mask)
293 return -ENOSPC;
295 key->hw_key_idx += reg ? ffz(reg) : 0;
298 * Upload key to hardware
300 memcpy(key_entry.key, crypto->key,
301 sizeof(key_entry.key));
302 memcpy(key_entry.tx_mic, crypto->tx_mic,
303 sizeof(key_entry.tx_mic));
304 memcpy(key_entry.rx_mic, crypto->rx_mic,
305 sizeof(key_entry.rx_mic));
307 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
308 rt2x00usb_register_multiwrite(rt2x00dev, reg,
309 &key_entry, sizeof(key_entry));
312 * The cipher types are stored over 2 registers.
313 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
314 * bssidx 1 and 2 keys are stored in SEC_CSR5.
315 * Using the correct defines correctly will cause overhead,
316 * so just calculate the correct offset.
318 if (key->hw_key_idx < 8) {
319 field.bit_offset = (3 * key->hw_key_idx);
320 field.bit_mask = 0x7 << field.bit_offset;
322 rt2x00usb_register_read(rt2x00dev, SEC_CSR1, &reg);
323 rt2x00_set_field32(&reg, field, crypto->cipher);
324 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
325 } else {
326 field.bit_offset = (3 * (key->hw_key_idx - 8));
327 field.bit_mask = 0x7 << field.bit_offset;
329 rt2x00usb_register_read(rt2x00dev, SEC_CSR5, &reg);
330 rt2x00_set_field32(&reg, field, crypto->cipher);
331 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
335 * The driver does not support the IV/EIV generation
336 * in hardware. However it doesn't support the IV/EIV
337 * inside the ieee80211 frame either, but requires it
338 * to be provided separately for the descriptor.
339 * rt2x00lib will cut the IV/EIV data out of all frames
340 * given to us by mac80211, but we must tell mac80211
341 * to generate the IV/EIV data.
343 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
347 * SEC_CSR0 contains only single-bit fields to indicate
348 * a particular key is valid. Because using the FIELD32()
349 * defines directly will cause a lot of overhead we use
350 * a calculation to determine the correct bit directly.
352 mask = 1 << key->hw_key_idx;
354 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
355 if (crypto->cmd == SET_KEY)
356 reg |= mask;
357 else if (crypto->cmd == DISABLE_KEY)
358 reg &= ~mask;
359 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
361 return 0;
364 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
365 struct rt2x00lib_crypto *crypto,
366 struct ieee80211_key_conf *key)
368 struct hw_pairwise_ta_entry addr_entry;
369 struct hw_key_entry key_entry;
370 u32 mask;
371 u32 reg;
373 if (crypto->cmd == SET_KEY) {
375 * rt2x00lib can't determine the correct free
376 * key_idx for pairwise keys. We have 2 registers
377 * with key valid bits. The goal is simple, read
378 * the first register, if that is full move to
379 * the next register.
380 * When both registers are full, we drop the key,
381 * otherwise we use the first invalid entry.
383 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
384 if (reg && reg == ~0) {
385 key->hw_key_idx = 32;
386 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
387 if (reg && reg == ~0)
388 return -ENOSPC;
391 key->hw_key_idx += reg ? ffz(reg) : 0;
394 * Upload key to hardware
396 memcpy(key_entry.key, crypto->key,
397 sizeof(key_entry.key));
398 memcpy(key_entry.tx_mic, crypto->tx_mic,
399 sizeof(key_entry.tx_mic));
400 memcpy(key_entry.rx_mic, crypto->rx_mic,
401 sizeof(key_entry.rx_mic));
403 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
404 rt2x00usb_register_multiwrite(rt2x00dev, reg,
405 &key_entry, sizeof(key_entry));
408 * Send the address and cipher type to the hardware register.
410 memset(&addr_entry, 0, sizeof(addr_entry));
411 memcpy(&addr_entry, crypto->address, ETH_ALEN);
412 addr_entry.cipher = crypto->cipher;
414 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
415 rt2x00usb_register_multiwrite(rt2x00dev, reg,
416 &addr_entry, sizeof(addr_entry));
419 * Enable pairwise lookup table for given BSS idx,
420 * without this received frames will not be decrypted
421 * by the hardware.
423 rt2x00usb_register_read(rt2x00dev, SEC_CSR4, &reg);
424 reg |= (1 << crypto->bssidx);
425 rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
428 * The driver does not support the IV/EIV generation
429 * in hardware. However it doesn't support the IV/EIV
430 * inside the ieee80211 frame either, but requires it
431 * to be provided separately for the descriptor.
432 * rt2x00lib will cut the IV/EIV data out of all frames
433 * given to us by mac80211, but we must tell mac80211
434 * to generate the IV/EIV data.
436 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
440 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
441 * a particular key is valid. Because using the FIELD32()
442 * defines directly will cause a lot of overhead we use
443 * a calculation to determine the correct bit directly.
445 if (key->hw_key_idx < 32) {
446 mask = 1 << key->hw_key_idx;
448 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
449 if (crypto->cmd == SET_KEY)
450 reg |= mask;
451 else if (crypto->cmd == DISABLE_KEY)
452 reg &= ~mask;
453 rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
454 } else {
455 mask = 1 << (key->hw_key_idx - 32);
457 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
458 if (crypto->cmd == SET_KEY)
459 reg |= mask;
460 else if (crypto->cmd == DISABLE_KEY)
461 reg &= ~mask;
462 rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
465 return 0;
468 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
469 const unsigned int filter_flags)
471 u32 reg;
474 * Start configuration steps.
475 * Note that the version error will always be dropped
476 * and broadcast frames will always be accepted since
477 * there is no filter for it at this time.
479 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
480 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
481 !(filter_flags & FIF_FCSFAIL));
482 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
483 !(filter_flags & FIF_PLCPFAIL));
484 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
485 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
486 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
487 !(filter_flags & FIF_PROMISC_IN_BSS));
488 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
489 !(filter_flags & FIF_PROMISC_IN_BSS) &&
490 !rt2x00dev->intf_ap_count);
491 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
492 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
493 !(filter_flags & FIF_ALLMULTI));
494 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
495 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
496 !(filter_flags & FIF_CONTROL));
497 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
500 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
501 struct rt2x00_intf *intf,
502 struct rt2x00intf_conf *conf,
503 const unsigned int flags)
505 u32 reg;
507 if (flags & CONFIG_UPDATE_TYPE) {
509 * Enable synchronisation.
511 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
512 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
513 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
516 if (flags & CONFIG_UPDATE_MAC) {
517 reg = le32_to_cpu(conf->mac[1]);
518 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
519 conf->mac[1] = cpu_to_le32(reg);
521 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
522 conf->mac, sizeof(conf->mac));
525 if (flags & CONFIG_UPDATE_BSSID) {
526 reg = le32_to_cpu(conf->bssid[1]);
527 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
528 conf->bssid[1] = cpu_to_le32(reg);
530 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
531 conf->bssid, sizeof(conf->bssid));
535 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
536 struct rt2x00lib_erp *erp,
537 u32 changed)
539 u32 reg;
541 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
542 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
543 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
544 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
546 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
547 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
548 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
549 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
550 !!erp->short_preamble);
551 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
554 if (changed & BSS_CHANGED_BASIC_RATES)
555 rt2x00usb_register_write(rt2x00dev, TXRX_CSR5,
556 erp->basic_rates);
558 if (changed & BSS_CHANGED_BEACON_INT) {
559 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
560 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
561 erp->beacon_int * 16);
562 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
565 if (changed & BSS_CHANGED_ERP_SLOT) {
566 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
567 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
568 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
570 rt2x00usb_register_read(rt2x00dev, MAC_CSR8, &reg);
571 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
572 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
573 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
574 rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
578 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
579 struct antenna_setup *ant)
581 u8 r3;
582 u8 r4;
583 u8 r77;
584 u8 temp;
586 rt73usb_bbp_read(rt2x00dev, 3, &r3);
587 rt73usb_bbp_read(rt2x00dev, 4, &r4);
588 rt73usb_bbp_read(rt2x00dev, 77, &r77);
590 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
593 * Configure the RX antenna.
595 switch (ant->rx) {
596 case ANTENNA_HW_DIVERSITY:
597 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
598 temp = !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags)
599 && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
600 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
601 break;
602 case ANTENNA_A:
603 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
604 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
605 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
606 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
607 else
608 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
609 break;
610 case ANTENNA_B:
611 default:
612 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
613 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
614 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
615 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
616 else
617 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
618 break;
621 rt73usb_bbp_write(rt2x00dev, 77, r77);
622 rt73usb_bbp_write(rt2x00dev, 3, r3);
623 rt73usb_bbp_write(rt2x00dev, 4, r4);
626 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
627 struct antenna_setup *ant)
629 u8 r3;
630 u8 r4;
631 u8 r77;
633 rt73usb_bbp_read(rt2x00dev, 3, &r3);
634 rt73usb_bbp_read(rt2x00dev, 4, &r4);
635 rt73usb_bbp_read(rt2x00dev, 77, &r77);
637 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
638 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
639 !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags));
642 * Configure the RX antenna.
644 switch (ant->rx) {
645 case ANTENNA_HW_DIVERSITY:
646 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
647 break;
648 case ANTENNA_A:
649 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
650 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
651 break;
652 case ANTENNA_B:
653 default:
654 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
655 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
656 break;
659 rt73usb_bbp_write(rt2x00dev, 77, r77);
660 rt73usb_bbp_write(rt2x00dev, 3, r3);
661 rt73usb_bbp_write(rt2x00dev, 4, r4);
664 struct antenna_sel {
665 u8 word;
667 * value[0] -> non-LNA
668 * value[1] -> LNA
670 u8 value[2];
673 static const struct antenna_sel antenna_sel_a[] = {
674 { 96, { 0x58, 0x78 } },
675 { 104, { 0x38, 0x48 } },
676 { 75, { 0xfe, 0x80 } },
677 { 86, { 0xfe, 0x80 } },
678 { 88, { 0xfe, 0x80 } },
679 { 35, { 0x60, 0x60 } },
680 { 97, { 0x58, 0x58 } },
681 { 98, { 0x58, 0x58 } },
684 static const struct antenna_sel antenna_sel_bg[] = {
685 { 96, { 0x48, 0x68 } },
686 { 104, { 0x2c, 0x3c } },
687 { 75, { 0xfe, 0x80 } },
688 { 86, { 0xfe, 0x80 } },
689 { 88, { 0xfe, 0x80 } },
690 { 35, { 0x50, 0x50 } },
691 { 97, { 0x48, 0x48 } },
692 { 98, { 0x48, 0x48 } },
695 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
696 struct antenna_setup *ant)
698 const struct antenna_sel *sel;
699 unsigned int lna;
700 unsigned int i;
701 u32 reg;
704 * We should never come here because rt2x00lib is supposed
705 * to catch this and send us the correct antenna explicitely.
707 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
708 ant->tx == ANTENNA_SW_DIVERSITY);
710 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
711 sel = antenna_sel_a;
712 lna = test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
713 } else {
714 sel = antenna_sel_bg;
715 lna = test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
718 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
719 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
721 rt2x00usb_register_read(rt2x00dev, PHY_CSR0, &reg);
723 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
724 (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
725 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
726 (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
728 rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
730 if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225))
731 rt73usb_config_antenna_5x(rt2x00dev, ant);
732 else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527))
733 rt73usb_config_antenna_2x(rt2x00dev, ant);
736 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
737 struct rt2x00lib_conf *libconf)
739 u16 eeprom;
740 short lna_gain = 0;
742 if (libconf->conf->chandef.chan->band == IEEE80211_BAND_2GHZ) {
743 if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags))
744 lna_gain += 14;
746 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
747 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
748 } else {
749 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
750 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
753 rt2x00dev->lna_gain = lna_gain;
756 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
757 struct rf_channel *rf, const int txpower)
759 u8 r3;
760 u8 r94;
761 u8 smart;
763 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
764 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
766 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
768 rt73usb_bbp_read(rt2x00dev, 3, &r3);
769 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
770 rt73usb_bbp_write(rt2x00dev, 3, r3);
772 r94 = 6;
773 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
774 r94 += txpower - MAX_TXPOWER;
775 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
776 r94 += txpower;
777 rt73usb_bbp_write(rt2x00dev, 94, r94);
779 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
780 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
781 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
782 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
784 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
785 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
786 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
787 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
789 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
790 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
791 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
792 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
794 udelay(10);
797 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
798 const int txpower)
800 struct rf_channel rf;
802 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
803 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
804 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
805 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
807 rt73usb_config_channel(rt2x00dev, &rf, txpower);
810 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
811 struct rt2x00lib_conf *libconf)
813 u32 reg;
815 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
816 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
817 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
818 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
819 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
820 libconf->conf->long_frame_max_tx_count);
821 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
822 libconf->conf->short_frame_max_tx_count);
823 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
826 static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
827 struct rt2x00lib_conf *libconf)
829 enum dev_state state =
830 (libconf->conf->flags & IEEE80211_CONF_PS) ?
831 STATE_SLEEP : STATE_AWAKE;
832 u32 reg;
834 if (state == STATE_SLEEP) {
835 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
836 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
837 rt2x00dev->beacon_int - 10);
838 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
839 libconf->conf->listen_interval - 1);
840 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
842 /* We must first disable autowake before it can be enabled */
843 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
844 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
846 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
847 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
849 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
850 USB_MODE_SLEEP, REGISTER_TIMEOUT);
851 } else {
852 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
853 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
854 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
855 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
856 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
857 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
859 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
860 USB_MODE_WAKEUP, REGISTER_TIMEOUT);
864 static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
865 struct rt2x00lib_conf *libconf,
866 const unsigned int flags)
868 /* Always recalculate LNA gain before changing configuration */
869 rt73usb_config_lna_gain(rt2x00dev, libconf);
871 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
872 rt73usb_config_channel(rt2x00dev, &libconf->rf,
873 libconf->conf->power_level);
874 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
875 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
876 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
877 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
878 rt73usb_config_retry_limit(rt2x00dev, libconf);
879 if (flags & IEEE80211_CONF_CHANGE_PS)
880 rt73usb_config_ps(rt2x00dev, libconf);
884 * Link tuning
886 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
887 struct link_qual *qual)
889 u32 reg;
892 * Update FCS error count from register.
894 rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
895 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
898 * Update False CCA count from register.
900 rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
901 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
904 static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
905 struct link_qual *qual, u8 vgc_level)
907 if (qual->vgc_level != vgc_level) {
908 rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
909 qual->vgc_level = vgc_level;
910 qual->vgc_level_reg = vgc_level;
914 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
915 struct link_qual *qual)
917 rt73usb_set_vgc(rt2x00dev, qual, 0x20);
920 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
921 struct link_qual *qual, const u32 count)
923 u8 up_bound;
924 u8 low_bound;
927 * Determine r17 bounds.
929 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
930 low_bound = 0x28;
931 up_bound = 0x48;
933 if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) {
934 low_bound += 0x10;
935 up_bound += 0x10;
937 } else {
938 if (qual->rssi > -82) {
939 low_bound = 0x1c;
940 up_bound = 0x40;
941 } else if (qual->rssi > -84) {
942 low_bound = 0x1c;
943 up_bound = 0x20;
944 } else {
945 low_bound = 0x1c;
946 up_bound = 0x1c;
949 if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) {
950 low_bound += 0x14;
951 up_bound += 0x10;
956 * If we are not associated, we should go straight to the
957 * dynamic CCA tuning.
959 if (!rt2x00dev->intf_associated)
960 goto dynamic_cca_tune;
963 * Special big-R17 for very short distance
965 if (qual->rssi > -35) {
966 rt73usb_set_vgc(rt2x00dev, qual, 0x60);
967 return;
971 * Special big-R17 for short distance
973 if (qual->rssi >= -58) {
974 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
975 return;
979 * Special big-R17 for middle-short distance
981 if (qual->rssi >= -66) {
982 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
983 return;
987 * Special mid-R17 for middle distance
989 if (qual->rssi >= -74) {
990 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
991 return;
995 * Special case: Change up_bound based on the rssi.
996 * Lower up_bound when rssi is weaker then -74 dBm.
998 up_bound -= 2 * (-74 - qual->rssi);
999 if (low_bound > up_bound)
1000 up_bound = low_bound;
1002 if (qual->vgc_level > up_bound) {
1003 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
1004 return;
1007 dynamic_cca_tune:
1010 * r17 does not yet exceed upper limit, continue and base
1011 * the r17 tuning on the false CCA count.
1013 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1014 rt73usb_set_vgc(rt2x00dev, qual,
1015 min_t(u8, qual->vgc_level + 4, up_bound));
1016 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1017 rt73usb_set_vgc(rt2x00dev, qual,
1018 max_t(u8, qual->vgc_level - 4, low_bound));
1022 * Queue handlers.
1024 static void rt73usb_start_queue(struct data_queue *queue)
1026 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1027 u32 reg;
1029 switch (queue->qid) {
1030 case QID_RX:
1031 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1032 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1033 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1034 break;
1035 case QID_BEACON:
1036 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1037 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1038 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1039 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1040 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1041 break;
1042 default:
1043 break;
1047 static void rt73usb_stop_queue(struct data_queue *queue)
1049 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1050 u32 reg;
1052 switch (queue->qid) {
1053 case QID_RX:
1054 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1055 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1056 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1057 break;
1058 case QID_BEACON:
1059 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1060 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1061 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1062 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1063 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1064 break;
1065 default:
1066 break;
1071 * Firmware functions
1073 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1075 return FIRMWARE_RT2571;
1078 static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev,
1079 const u8 *data, const size_t len)
1081 u16 fw_crc;
1082 u16 crc;
1085 * Only support 2kb firmware files.
1087 if (len != 2048)
1088 return FW_BAD_LENGTH;
1091 * The last 2 bytes in the firmware array are the crc checksum itself,
1092 * this means that we should never pass those 2 bytes to the crc
1093 * algorithm.
1095 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1098 * Use the crc itu-t algorithm.
1100 crc = crc_itu_t(0, data, len - 2);
1101 crc = crc_itu_t_byte(crc, 0);
1102 crc = crc_itu_t_byte(crc, 0);
1104 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1107 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev,
1108 const u8 *data, const size_t len)
1110 unsigned int i;
1111 int status;
1112 u32 reg;
1115 * Wait for stable hardware.
1117 for (i = 0; i < 100; i++) {
1118 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1119 if (reg)
1120 break;
1121 msleep(1);
1124 if (!reg) {
1125 rt2x00_err(rt2x00dev, "Unstable hardware\n");
1126 return -EBUSY;
1130 * Write firmware to device.
1132 rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len);
1135 * Send firmware request to device to load firmware,
1136 * we need to specify a long timeout time.
1138 status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1139 0, USB_MODE_FIRMWARE,
1140 REGISTER_TIMEOUT_FIRMWARE);
1141 if (status < 0) {
1142 rt2x00_err(rt2x00dev, "Failed to write Firmware to device\n");
1143 return status;
1146 return 0;
1150 * Initialization functions.
1152 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1154 u32 reg;
1156 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1157 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1158 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1159 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1160 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1162 rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
1163 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1164 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1165 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1166 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1167 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1168 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1169 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1170 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1171 rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1174 * CCK TXD BBP registers
1176 rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1177 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1178 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1179 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1180 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1181 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1182 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1183 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1184 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1185 rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1188 * OFDM TXD BBP registers
1190 rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
1191 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1192 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1193 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1194 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1195 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1196 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1197 rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1199 rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
1200 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1201 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1202 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1203 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1204 rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1206 rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
1207 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1208 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1209 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1210 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1211 rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1213 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1214 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1215 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1216 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1217 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1218 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1219 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1220 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1222 rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1224 rt2x00usb_register_read(rt2x00dev, MAC_CSR6, &reg);
1225 rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1226 rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1228 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1230 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1231 return -EBUSY;
1233 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1236 * Invalidate all Shared Keys (SEC_CSR0),
1237 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1239 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1240 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1241 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1243 reg = 0x000023b0;
1244 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527))
1245 rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1246 rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1248 rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1249 rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1250 rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1252 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
1253 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1254 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1257 * Clear all beacons
1258 * For the Beacon base registers we only need to clear
1259 * the first byte since that byte contains the VALID and OWNER
1260 * bits which (when set to 0) will invalidate the entire beacon.
1262 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1263 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1264 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1265 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1268 * We must clear the error counters.
1269 * These registers are cleared on read,
1270 * so we may pass a useless variable to store the value.
1272 rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
1273 rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
1274 rt2x00usb_register_read(rt2x00dev, STA_CSR2, &reg);
1277 * Reset MAC and BBP registers.
1279 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1280 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1281 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1282 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1284 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1285 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1286 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1287 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1289 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1290 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1291 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1293 return 0;
1296 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1298 unsigned int i;
1299 u8 value;
1301 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1302 rt73usb_bbp_read(rt2x00dev, 0, &value);
1303 if ((value != 0xff) && (value != 0x00))
1304 return 0;
1305 udelay(REGISTER_BUSY_DELAY);
1308 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1309 return -EACCES;
1312 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1314 unsigned int i;
1315 u16 eeprom;
1316 u8 reg_id;
1317 u8 value;
1319 if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1320 return -EACCES;
1322 rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1323 rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1324 rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1325 rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1326 rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1327 rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1328 rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1329 rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1330 rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1331 rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1332 rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1333 rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1334 rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1335 rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1336 rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1337 rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1338 rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1339 rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1340 rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1341 rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1342 rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1343 rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1344 rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1345 rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1346 rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1348 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1349 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1351 if (eeprom != 0xffff && eeprom != 0x0000) {
1352 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1353 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1354 rt73usb_bbp_write(rt2x00dev, reg_id, value);
1358 return 0;
1362 * Device state switch handlers.
1364 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1367 * Initialize all registers.
1369 if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1370 rt73usb_init_bbp(rt2x00dev)))
1371 return -EIO;
1373 return 0;
1376 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1378 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1381 * Disable synchronisation.
1383 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1385 rt2x00usb_disable_radio(rt2x00dev);
1388 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1390 u32 reg, reg2;
1391 unsigned int i;
1392 char put_to_sleep;
1394 put_to_sleep = (state != STATE_AWAKE);
1396 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1397 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1398 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1399 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1402 * Device is not guaranteed to be in the requested state yet.
1403 * We must wait until the register indicates that the
1404 * device has entered the correct state.
1406 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1407 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg2);
1408 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1409 if (state == !put_to_sleep)
1410 return 0;
1411 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1412 msleep(10);
1415 return -EBUSY;
1418 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1419 enum dev_state state)
1421 int retval = 0;
1423 switch (state) {
1424 case STATE_RADIO_ON:
1425 retval = rt73usb_enable_radio(rt2x00dev);
1426 break;
1427 case STATE_RADIO_OFF:
1428 rt73usb_disable_radio(rt2x00dev);
1429 break;
1430 case STATE_RADIO_IRQ_ON:
1431 case STATE_RADIO_IRQ_OFF:
1432 /* No support, but no error either */
1433 break;
1434 case STATE_DEEP_SLEEP:
1435 case STATE_SLEEP:
1436 case STATE_STANDBY:
1437 case STATE_AWAKE:
1438 retval = rt73usb_set_state(rt2x00dev, state);
1439 break;
1440 default:
1441 retval = -ENOTSUPP;
1442 break;
1445 if (unlikely(retval))
1446 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1447 state, retval);
1449 return retval;
1453 * TX descriptor initialization
1455 static void rt73usb_write_tx_desc(struct queue_entry *entry,
1456 struct txentry_desc *txdesc)
1458 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1459 __le32 *txd = (__le32 *) entry->skb->data;
1460 u32 word;
1463 * Start writing the descriptor words.
1465 rt2x00_desc_read(txd, 0, &word);
1466 rt2x00_set_field32(&word, TXD_W0_BURST,
1467 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1468 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1469 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1470 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1471 rt2x00_set_field32(&word, TXD_W0_ACK,
1472 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1473 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1474 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1475 rt2x00_set_field32(&word, TXD_W0_OFDM,
1476 (txdesc->rate_mode == RATE_MODE_OFDM));
1477 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1478 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1479 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1480 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1481 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1482 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1483 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1484 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1485 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1486 rt2x00_set_field32(&word, TXD_W0_BURST2,
1487 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1488 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1489 rt2x00_desc_write(txd, 0, word);
1491 rt2x00_desc_read(txd, 1, &word);
1492 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1493 rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1494 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1495 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1496 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1497 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1498 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1499 rt2x00_desc_write(txd, 1, word);
1501 rt2x00_desc_read(txd, 2, &word);
1502 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1503 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1504 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1505 txdesc->u.plcp.length_low);
1506 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1507 txdesc->u.plcp.length_high);
1508 rt2x00_desc_write(txd, 2, word);
1510 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1511 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1512 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1515 rt2x00_desc_read(txd, 5, &word);
1516 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1517 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1518 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1519 rt2x00_desc_write(txd, 5, word);
1522 * Register descriptor details in skb frame descriptor.
1524 skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1525 skbdesc->desc = txd;
1526 skbdesc->desc_len = TXD_DESC_SIZE;
1530 * TX data initialization
1532 static void rt73usb_write_beacon(struct queue_entry *entry,
1533 struct txentry_desc *txdesc)
1535 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1536 unsigned int beacon_base;
1537 unsigned int padding_len;
1538 u32 orig_reg, reg;
1541 * Disable beaconing while we are reloading the beacon data,
1542 * otherwise we might be sending out invalid data.
1544 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1545 orig_reg = reg;
1546 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1547 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1550 * Add space for the descriptor in front of the skb.
1552 skb_push(entry->skb, TXD_DESC_SIZE);
1553 memset(entry->skb->data, 0, TXD_DESC_SIZE);
1556 * Write the TX descriptor for the beacon.
1558 rt73usb_write_tx_desc(entry, txdesc);
1561 * Dump beacon to userspace through debugfs.
1563 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1566 * Write entire beacon with descriptor and padding to register.
1568 padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1569 if (padding_len && skb_pad(entry->skb, padding_len)) {
1570 rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
1571 /* skb freed by skb_pad() on failure */
1572 entry->skb = NULL;
1573 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1574 return;
1577 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1578 rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
1579 entry->skb->len + padding_len);
1582 * Enable beaconing again.
1584 * For Wi-Fi faily generated beacons between participating stations.
1585 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1587 rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1589 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1590 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1593 * Clean up the beacon skb.
1595 dev_kfree_skb(entry->skb);
1596 entry->skb = NULL;
1599 static void rt73usb_clear_beacon(struct queue_entry *entry)
1601 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1602 unsigned int beacon_base;
1603 u32 reg;
1606 * Disable beaconing while we are reloading the beacon data,
1607 * otherwise we might be sending out invalid data.
1609 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1610 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1611 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1614 * Clear beacon.
1616 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1617 rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
1620 * Enable beaconing again.
1622 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1623 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1626 static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1628 int length;
1631 * The length _must_ be a multiple of 4,
1632 * but it must _not_ be a multiple of the USB packet size.
1634 length = roundup(entry->skb->len, 4);
1635 length += (4 * !(length % entry->queue->usb_maxpacket));
1637 return length;
1641 * RX control handlers
1643 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1645 u8 offset = rt2x00dev->lna_gain;
1646 u8 lna;
1648 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1649 switch (lna) {
1650 case 3:
1651 offset += 90;
1652 break;
1653 case 2:
1654 offset += 74;
1655 break;
1656 case 1:
1657 offset += 64;
1658 break;
1659 default:
1660 return 0;
1663 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1664 if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) {
1665 if (lna == 3 || lna == 2)
1666 offset += 10;
1667 } else {
1668 if (lna == 3)
1669 offset += 6;
1670 else if (lna == 2)
1671 offset += 8;
1675 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1678 static void rt73usb_fill_rxdone(struct queue_entry *entry,
1679 struct rxdone_entry_desc *rxdesc)
1681 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1682 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1683 __le32 *rxd = (__le32 *)entry->skb->data;
1684 u32 word0;
1685 u32 word1;
1688 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1689 * frame data in rt2x00usb.
1691 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1692 rxd = (__le32 *)skbdesc->desc;
1695 * It is now safe to read the descriptor on all architectures.
1697 rt2x00_desc_read(rxd, 0, &word0);
1698 rt2x00_desc_read(rxd, 1, &word1);
1700 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1701 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1703 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1704 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1706 if (rxdesc->cipher != CIPHER_NONE) {
1707 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1708 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1709 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1711 _rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1712 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1715 * Hardware has stripped IV/EIV data from 802.11 frame during
1716 * decryption. It has provided the data separately but rt2x00lib
1717 * should decide if it should be reinserted.
1719 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1722 * The hardware has already checked the Michael Mic and has
1723 * stripped it from the frame. Signal this to mac80211.
1725 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1727 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1728 rxdesc->flags |= RX_FLAG_DECRYPTED;
1729 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1730 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1734 * Obtain the status about this packet.
1735 * When frame was received with an OFDM bitrate,
1736 * the signal is the PLCP value. If it was received with
1737 * a CCK bitrate the signal is the rate in 100kbit/s.
1739 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1740 rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1741 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1743 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1744 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1745 else
1746 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1747 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1748 rxdesc->dev_flags |= RXDONE_MY_BSS;
1751 * Set skb pointers, and update frame information.
1753 skb_pull(entry->skb, entry->queue->desc_size);
1754 skb_trim(entry->skb, rxdesc->size);
1758 * Device probe functions.
1760 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1762 u16 word;
1763 u8 *mac;
1764 s8 value;
1766 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1769 * Start validation of the data that has been read.
1771 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1772 if (!is_valid_ether_addr(mac)) {
1773 eth_random_addr(mac);
1774 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1777 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1778 if (word == 0xffff) {
1779 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1780 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1781 ANTENNA_B);
1782 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1783 ANTENNA_B);
1784 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1785 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1786 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1787 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1788 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1789 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1792 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1793 if (word == 0xffff) {
1794 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1795 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1796 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1799 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1800 if (word == 0xffff) {
1801 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1802 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1803 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1804 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1805 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1806 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1807 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1808 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1809 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1810 LED_MODE_DEFAULT);
1811 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1812 rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
1815 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1816 if (word == 0xffff) {
1817 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1818 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1819 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1820 rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
1823 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1824 if (word == 0xffff) {
1825 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1826 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1827 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1828 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1829 } else {
1830 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1831 if (value < -10 || value > 10)
1832 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1833 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1834 if (value < -10 || value > 10)
1835 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1836 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1839 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1840 if (word == 0xffff) {
1841 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1842 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1843 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1844 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1845 } else {
1846 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1847 if (value < -10 || value > 10)
1848 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1849 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1850 if (value < -10 || value > 10)
1851 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1852 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1855 return 0;
1858 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1860 u32 reg;
1861 u16 value;
1862 u16 eeprom;
1865 * Read EEPROM word for configuration.
1867 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1870 * Identify RF chipset.
1872 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1873 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1874 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
1875 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
1877 if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) {
1878 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1879 return -ENODEV;
1882 if (!rt2x00_rf(rt2x00dev, RF5226) &&
1883 !rt2x00_rf(rt2x00dev, RF2528) &&
1884 !rt2x00_rf(rt2x00dev, RF5225) &&
1885 !rt2x00_rf(rt2x00dev, RF2527)) {
1886 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1887 return -ENODEV;
1891 * Identify default antenna configuration.
1893 rt2x00dev->default_ant.tx =
1894 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1895 rt2x00dev->default_ant.rx =
1896 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1899 * Read the Frame type.
1901 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1902 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
1905 * Detect if this device has an hardware controlled radio.
1907 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1908 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1911 * Read frequency offset.
1913 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1914 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1917 * Read external LNA informations.
1919 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1921 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1922 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
1923 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
1927 * Store led settings, for correct led behaviour.
1929 #ifdef CONFIG_RT2X00_LIB_LEDS
1930 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1932 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1933 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1934 if (value == LED_MODE_SIGNAL_STRENGTH)
1935 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1936 LED_TYPE_QUALITY);
1938 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1939 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1940 rt2x00_get_field16(eeprom,
1941 EEPROM_LED_POLARITY_GPIO_0));
1942 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1943 rt2x00_get_field16(eeprom,
1944 EEPROM_LED_POLARITY_GPIO_1));
1945 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1946 rt2x00_get_field16(eeprom,
1947 EEPROM_LED_POLARITY_GPIO_2));
1948 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1949 rt2x00_get_field16(eeprom,
1950 EEPROM_LED_POLARITY_GPIO_3));
1951 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1952 rt2x00_get_field16(eeprom,
1953 EEPROM_LED_POLARITY_GPIO_4));
1954 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1955 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1956 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1957 rt2x00_get_field16(eeprom,
1958 EEPROM_LED_POLARITY_RDY_G));
1959 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1960 rt2x00_get_field16(eeprom,
1961 EEPROM_LED_POLARITY_RDY_A));
1962 #endif /* CONFIG_RT2X00_LIB_LEDS */
1964 return 0;
1968 * RF value list for RF2528
1969 * Supports: 2.4 GHz
1971 static const struct rf_channel rf_vals_bg_2528[] = {
1972 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1973 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1974 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1975 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1976 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1977 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1978 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1979 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1980 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1981 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1982 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1983 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1984 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1985 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1989 * RF value list for RF5226
1990 * Supports: 2.4 GHz & 5.2 GHz
1992 static const struct rf_channel rf_vals_5226[] = {
1993 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1994 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1995 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1996 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1997 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1998 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1999 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
2000 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
2001 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
2002 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
2003 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
2004 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
2005 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
2006 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
2008 /* 802.11 UNI / HyperLan 2 */
2009 { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
2010 { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
2011 { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
2012 { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
2013 { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
2014 { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
2015 { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
2016 { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
2018 /* 802.11 HyperLan 2 */
2019 { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
2020 { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
2021 { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
2022 { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
2023 { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
2024 { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
2025 { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
2026 { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
2027 { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
2028 { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
2030 /* 802.11 UNII */
2031 { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
2032 { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
2033 { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
2034 { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
2035 { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
2036 { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
2038 /* MMAC(Japan)J52 ch 34,38,42,46 */
2039 { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2040 { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2041 { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2042 { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2046 * RF value list for RF5225 & RF2527
2047 * Supports: 2.4 GHz & 5.2 GHz
2049 static const struct rf_channel rf_vals_5225_2527[] = {
2050 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2051 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2052 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2053 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2054 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2055 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2056 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2057 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2058 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2059 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2060 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2061 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2062 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2063 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2065 /* 802.11 UNI / HyperLan 2 */
2066 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2067 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2068 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2069 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2070 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2071 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2072 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2073 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2075 /* 802.11 HyperLan 2 */
2076 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2077 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2078 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2079 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2080 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2081 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2082 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2083 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2084 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2085 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2087 /* 802.11 UNII */
2088 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2089 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2090 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2091 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2092 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2093 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2095 /* MMAC(Japan)J52 ch 34,38,42,46 */
2096 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2097 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2098 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2099 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2103 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2105 struct hw_mode_spec *spec = &rt2x00dev->spec;
2106 struct channel_info *info;
2107 char *tx_power;
2108 unsigned int i;
2111 * Initialize all hw fields.
2113 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
2114 * capable of sending the buffered frames out after the DTIM
2115 * transmission using rt2x00lib_beacondone. This will send out
2116 * multicast and broadcast traffic immediately instead of buffering it
2117 * infinitly and thus dropping it after some time.
2119 rt2x00dev->hw->flags =
2120 IEEE80211_HW_SIGNAL_DBM |
2121 IEEE80211_HW_SUPPORTS_PS |
2122 IEEE80211_HW_PS_NULLFUNC_STACK;
2124 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2125 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2126 rt2x00_eeprom_addr(rt2x00dev,
2127 EEPROM_MAC_ADDR_0));
2130 * Initialize hw_mode information.
2132 spec->supported_bands = SUPPORT_BAND_2GHZ;
2133 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2135 if (rt2x00_rf(rt2x00dev, RF2528)) {
2136 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2137 spec->channels = rf_vals_bg_2528;
2138 } else if (rt2x00_rf(rt2x00dev, RF5226)) {
2139 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2140 spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2141 spec->channels = rf_vals_5226;
2142 } else if (rt2x00_rf(rt2x00dev, RF2527)) {
2143 spec->num_channels = 14;
2144 spec->channels = rf_vals_5225_2527;
2145 } else if (rt2x00_rf(rt2x00dev, RF5225)) {
2146 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2147 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2148 spec->channels = rf_vals_5225_2527;
2152 * Create channel information array
2154 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2155 if (!info)
2156 return -ENOMEM;
2158 spec->channels_info = info;
2160 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2161 for (i = 0; i < 14; i++) {
2162 info[i].max_power = MAX_TXPOWER;
2163 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2166 if (spec->num_channels > 14) {
2167 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2168 for (i = 14; i < spec->num_channels; i++) {
2169 info[i].max_power = MAX_TXPOWER;
2170 info[i].default_power1 =
2171 TXPOWER_FROM_DEV(tx_power[i - 14]);
2175 return 0;
2178 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2180 int retval;
2181 u32 reg;
2184 * Allocate eeprom data.
2186 retval = rt73usb_validate_eeprom(rt2x00dev);
2187 if (retval)
2188 return retval;
2190 retval = rt73usb_init_eeprom(rt2x00dev);
2191 if (retval)
2192 return retval;
2195 * Enable rfkill polling by setting GPIO direction of the
2196 * rfkill switch GPIO pin correctly.
2198 rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
2199 rt2x00_set_field32(&reg, MAC_CSR13_DIR7, 0);
2200 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, reg);
2203 * Initialize hw specifications.
2205 retval = rt73usb_probe_hw_mode(rt2x00dev);
2206 if (retval)
2207 return retval;
2210 * This device has multiple filters for control frames,
2211 * but has no a separate filter for PS Poll frames.
2213 __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2216 * This device requires firmware.
2218 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2219 if (!modparam_nohwcrypt)
2220 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2221 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2222 __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
2225 * Set the rssi offset.
2227 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2229 return 0;
2233 * IEEE80211 stack callback functions.
2235 static int rt73usb_conf_tx(struct ieee80211_hw *hw,
2236 struct ieee80211_vif *vif, u16 queue_idx,
2237 const struct ieee80211_tx_queue_params *params)
2239 struct rt2x00_dev *rt2x00dev = hw->priv;
2240 struct data_queue *queue;
2241 struct rt2x00_field32 field;
2242 int retval;
2243 u32 reg;
2244 u32 offset;
2247 * First pass the configuration through rt2x00lib, that will
2248 * update the queue settings and validate the input. After that
2249 * we are free to update the registers based on the value
2250 * in the queue parameter.
2252 retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2253 if (retval)
2254 return retval;
2257 * We only need to perform additional register initialization
2258 * for WMM queues/
2260 if (queue_idx >= 4)
2261 return 0;
2263 queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2265 /* Update WMM TXOP register */
2266 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2267 field.bit_offset = (queue_idx & 1) * 16;
2268 field.bit_mask = 0xffff << field.bit_offset;
2270 rt2x00usb_register_read(rt2x00dev, offset, &reg);
2271 rt2x00_set_field32(&reg, field, queue->txop);
2272 rt2x00usb_register_write(rt2x00dev, offset, reg);
2274 /* Update WMM registers */
2275 field.bit_offset = queue_idx * 4;
2276 field.bit_mask = 0xf << field.bit_offset;
2278 rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, &reg);
2279 rt2x00_set_field32(&reg, field, queue->aifs);
2280 rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2282 rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, &reg);
2283 rt2x00_set_field32(&reg, field, queue->cw_min);
2284 rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2286 rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, &reg);
2287 rt2x00_set_field32(&reg, field, queue->cw_max);
2288 rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2290 return 0;
2293 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2295 struct rt2x00_dev *rt2x00dev = hw->priv;
2296 u64 tsf;
2297 u32 reg;
2299 rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
2300 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2301 rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
2302 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2304 return tsf;
2307 static const struct ieee80211_ops rt73usb_mac80211_ops = {
2308 .tx = rt2x00mac_tx,
2309 .start = rt2x00mac_start,
2310 .stop = rt2x00mac_stop,
2311 .add_interface = rt2x00mac_add_interface,
2312 .remove_interface = rt2x00mac_remove_interface,
2313 .config = rt2x00mac_config,
2314 .configure_filter = rt2x00mac_configure_filter,
2315 .set_tim = rt2x00mac_set_tim,
2316 .set_key = rt2x00mac_set_key,
2317 .sw_scan_start = rt2x00mac_sw_scan_start,
2318 .sw_scan_complete = rt2x00mac_sw_scan_complete,
2319 .get_stats = rt2x00mac_get_stats,
2320 .bss_info_changed = rt2x00mac_bss_info_changed,
2321 .conf_tx = rt73usb_conf_tx,
2322 .get_tsf = rt73usb_get_tsf,
2323 .rfkill_poll = rt2x00mac_rfkill_poll,
2324 .flush = rt2x00mac_flush,
2325 .set_antenna = rt2x00mac_set_antenna,
2326 .get_antenna = rt2x00mac_get_antenna,
2327 .get_ringparam = rt2x00mac_get_ringparam,
2328 .tx_frames_pending = rt2x00mac_tx_frames_pending,
2331 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2332 .probe_hw = rt73usb_probe_hw,
2333 .get_firmware_name = rt73usb_get_firmware_name,
2334 .check_firmware = rt73usb_check_firmware,
2335 .load_firmware = rt73usb_load_firmware,
2336 .initialize = rt2x00usb_initialize,
2337 .uninitialize = rt2x00usb_uninitialize,
2338 .clear_entry = rt2x00usb_clear_entry,
2339 .set_device_state = rt73usb_set_device_state,
2340 .rfkill_poll = rt73usb_rfkill_poll,
2341 .link_stats = rt73usb_link_stats,
2342 .reset_tuner = rt73usb_reset_tuner,
2343 .link_tuner = rt73usb_link_tuner,
2344 .watchdog = rt2x00usb_watchdog,
2345 .start_queue = rt73usb_start_queue,
2346 .kick_queue = rt2x00usb_kick_queue,
2347 .stop_queue = rt73usb_stop_queue,
2348 .flush_queue = rt2x00usb_flush_queue,
2349 .write_tx_desc = rt73usb_write_tx_desc,
2350 .write_beacon = rt73usb_write_beacon,
2351 .clear_beacon = rt73usb_clear_beacon,
2352 .get_tx_data_len = rt73usb_get_tx_data_len,
2353 .fill_rxdone = rt73usb_fill_rxdone,
2354 .config_shared_key = rt73usb_config_shared_key,
2355 .config_pairwise_key = rt73usb_config_pairwise_key,
2356 .config_filter = rt73usb_config_filter,
2357 .config_intf = rt73usb_config_intf,
2358 .config_erp = rt73usb_config_erp,
2359 .config_ant = rt73usb_config_ant,
2360 .config = rt73usb_config,
2363 static void rt73usb_queue_init(struct data_queue *queue)
2365 switch (queue->qid) {
2366 case QID_RX:
2367 queue->limit = 32;
2368 queue->data_size = DATA_FRAME_SIZE;
2369 queue->desc_size = RXD_DESC_SIZE;
2370 queue->priv_size = sizeof(struct queue_entry_priv_usb);
2371 break;
2373 case QID_AC_VO:
2374 case QID_AC_VI:
2375 case QID_AC_BE:
2376 case QID_AC_BK:
2377 queue->limit = 32;
2378 queue->data_size = DATA_FRAME_SIZE;
2379 queue->desc_size = TXD_DESC_SIZE;
2380 queue->priv_size = sizeof(struct queue_entry_priv_usb);
2381 break;
2383 case QID_BEACON:
2384 queue->limit = 4;
2385 queue->data_size = MGMT_FRAME_SIZE;
2386 queue->desc_size = TXINFO_SIZE;
2387 queue->priv_size = sizeof(struct queue_entry_priv_usb);
2388 break;
2390 case QID_ATIM:
2391 /* fallthrough */
2392 default:
2393 BUG();
2394 break;
2398 static const struct rt2x00_ops rt73usb_ops = {
2399 .name = KBUILD_MODNAME,
2400 .max_ap_intf = 4,
2401 .eeprom_size = EEPROM_SIZE,
2402 .rf_size = RF_SIZE,
2403 .tx_queues = NUM_TX_QUEUES,
2404 .queue_init = rt73usb_queue_init,
2405 .lib = &rt73usb_rt2x00_ops,
2406 .hw = &rt73usb_mac80211_ops,
2407 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2408 .debugfs = &rt73usb_rt2x00debug,
2409 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2413 * rt73usb module information.
2415 static struct usb_device_id rt73usb_device_table[] = {
2416 /* AboCom */
2417 { USB_DEVICE(0x07b8, 0xb21b) },
2418 { USB_DEVICE(0x07b8, 0xb21c) },
2419 { USB_DEVICE(0x07b8, 0xb21d) },
2420 { USB_DEVICE(0x07b8, 0xb21e) },
2421 { USB_DEVICE(0x07b8, 0xb21f) },
2422 /* AL */
2423 { USB_DEVICE(0x14b2, 0x3c10) },
2424 /* Amigo */
2425 { USB_DEVICE(0x148f, 0x9021) },
2426 { USB_DEVICE(0x0eb0, 0x9021) },
2427 /* AMIT */
2428 { USB_DEVICE(0x18c5, 0x0002) },
2429 /* Askey */
2430 { USB_DEVICE(0x1690, 0x0722) },
2431 /* ASUS */
2432 { USB_DEVICE(0x0b05, 0x1723) },
2433 { USB_DEVICE(0x0b05, 0x1724) },
2434 /* Belkin */
2435 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050B ver. 3.x */
2436 { USB_DEVICE(0x050d, 0x705a) },
2437 { USB_DEVICE(0x050d, 0x905b) },
2438 { USB_DEVICE(0x050d, 0x905c) },
2439 /* Billionton */
2440 { USB_DEVICE(0x1631, 0xc019) },
2441 { USB_DEVICE(0x08dd, 0x0120) },
2442 /* Buffalo */
2443 { USB_DEVICE(0x0411, 0x00d8) },
2444 { USB_DEVICE(0x0411, 0x00d9) },
2445 { USB_DEVICE(0x0411, 0x00e6) },
2446 { USB_DEVICE(0x0411, 0x00f4) },
2447 { USB_DEVICE(0x0411, 0x0116) },
2448 { USB_DEVICE(0x0411, 0x0119) },
2449 { USB_DEVICE(0x0411, 0x0137) },
2450 /* CEIVA */
2451 { USB_DEVICE(0x178d, 0x02be) },
2452 /* CNet */
2453 { USB_DEVICE(0x1371, 0x9022) },
2454 { USB_DEVICE(0x1371, 0x9032) },
2455 /* Conceptronic */
2456 { USB_DEVICE(0x14b2, 0x3c22) },
2457 /* Corega */
2458 { USB_DEVICE(0x07aa, 0x002e) },
2459 /* D-Link */
2460 { USB_DEVICE(0x07d1, 0x3c03) },
2461 { USB_DEVICE(0x07d1, 0x3c04) },
2462 { USB_DEVICE(0x07d1, 0x3c06) },
2463 { USB_DEVICE(0x07d1, 0x3c07) },
2464 /* Edimax */
2465 { USB_DEVICE(0x7392, 0x7318) },
2466 { USB_DEVICE(0x7392, 0x7618) },
2467 /* EnGenius */
2468 { USB_DEVICE(0x1740, 0x3701) },
2469 /* Gemtek */
2470 { USB_DEVICE(0x15a9, 0x0004) },
2471 /* Gigabyte */
2472 { USB_DEVICE(0x1044, 0x8008) },
2473 { USB_DEVICE(0x1044, 0x800a) },
2474 /* Huawei-3Com */
2475 { USB_DEVICE(0x1472, 0x0009) },
2476 /* Hercules */
2477 { USB_DEVICE(0x06f8, 0xe002) },
2478 { USB_DEVICE(0x06f8, 0xe010) },
2479 { USB_DEVICE(0x06f8, 0xe020) },
2480 /* Linksys */
2481 { USB_DEVICE(0x13b1, 0x0020) },
2482 { USB_DEVICE(0x13b1, 0x0023) },
2483 { USB_DEVICE(0x13b1, 0x0028) },
2484 /* MSI */
2485 { USB_DEVICE(0x0db0, 0x4600) },
2486 { USB_DEVICE(0x0db0, 0x6877) },
2487 { USB_DEVICE(0x0db0, 0x6874) },
2488 { USB_DEVICE(0x0db0, 0xa861) },
2489 { USB_DEVICE(0x0db0, 0xa874) },
2490 /* Ovislink */
2491 { USB_DEVICE(0x1b75, 0x7318) },
2492 /* Ralink */
2493 { USB_DEVICE(0x04bb, 0x093d) },
2494 { USB_DEVICE(0x148f, 0x2573) },
2495 { USB_DEVICE(0x148f, 0x2671) },
2496 { USB_DEVICE(0x0812, 0x3101) },
2497 /* Qcom */
2498 { USB_DEVICE(0x18e8, 0x6196) },
2499 { USB_DEVICE(0x18e8, 0x6229) },
2500 { USB_DEVICE(0x18e8, 0x6238) },
2501 /* Samsung */
2502 { USB_DEVICE(0x04e8, 0x4471) },
2503 /* Senao */
2504 { USB_DEVICE(0x1740, 0x7100) },
2505 /* Sitecom */
2506 { USB_DEVICE(0x0df6, 0x0024) },
2507 { USB_DEVICE(0x0df6, 0x0027) },
2508 { USB_DEVICE(0x0df6, 0x002f) },
2509 { USB_DEVICE(0x0df6, 0x90ac) },
2510 { USB_DEVICE(0x0df6, 0x9712) },
2511 /* Surecom */
2512 { USB_DEVICE(0x0769, 0x31f3) },
2513 /* Tilgin */
2514 { USB_DEVICE(0x6933, 0x5001) },
2515 /* Philips */
2516 { USB_DEVICE(0x0471, 0x200a) },
2517 /* Planex */
2518 { USB_DEVICE(0x2019, 0xab01) },
2519 { USB_DEVICE(0x2019, 0xab50) },
2520 /* WideTell */
2521 { USB_DEVICE(0x7167, 0x3840) },
2522 /* Zcom */
2523 { USB_DEVICE(0x0cde, 0x001c) },
2524 /* ZyXEL */
2525 { USB_DEVICE(0x0586, 0x3415) },
2526 { 0, }
2529 MODULE_AUTHOR(DRV_PROJECT);
2530 MODULE_VERSION(DRV_VERSION);
2531 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2532 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2533 MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2534 MODULE_FIRMWARE(FIRMWARE_RT2571);
2535 MODULE_LICENSE("GPL");
2537 static int rt73usb_probe(struct usb_interface *usb_intf,
2538 const struct usb_device_id *id)
2540 return rt2x00usb_probe(usb_intf, &rt73usb_ops);
2543 static struct usb_driver rt73usb_driver = {
2544 .name = KBUILD_MODNAME,
2545 .id_table = rt73usb_device_table,
2546 .probe = rt73usb_probe,
2547 .disconnect = rt2x00usb_disconnect,
2548 .suspend = rt2x00usb_suspend,
2549 .resume = rt2x00usb_resume,
2550 .reset_resume = rt2x00usb_resume,
2551 .disable_hub_initiated_lpm = 1,
2554 module_usb_driver(rt73usb_driver);