1 /******************************************************************************
3 * Copyright(c) 2009-2012 Realtek Corporation.
5 * Tmis program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * Tmis program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * tmis program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
18 * Tme full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
21 * Contact Information:
22 * wlanfae <wlanfae@realtek.com>
23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24 * Hsinchu 300, Taiwan.
26 * Larry Finger <Larry.Finger@lwfinger.net>
28 *****************************************************************************/
30 #include <linux/export.h>
34 static const u8 MAX_PGPKT_SIZE
= 9;
35 static const u8 PGPKT_DATA_SIZE
= 8;
36 static const int EFUSE_MAX_SIZE
= 512;
38 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE
[] = {
54 static void efuse_shadow_read_1byte(struct ieee80211_hw
*hw
, u16 offset
,
56 static void efuse_shadow_read_2byte(struct ieee80211_hw
*hw
, u16 offset
,
58 static void efuse_shadow_read_4byte(struct ieee80211_hw
*hw
, u16 offset
,
60 static void efuse_shadow_write_1byte(struct ieee80211_hw
*hw
, u16 offset
,
62 static void efuse_shadow_write_2byte(struct ieee80211_hw
*hw
, u16 offset
,
64 static void efuse_shadow_write_4byte(struct ieee80211_hw
*hw
, u16 offset
,
66 static int efuse_one_byte_read(struct ieee80211_hw
*hw
, u16 addr
,
68 static int efuse_one_byte_write(struct ieee80211_hw
*hw
, u16 addr
,
70 static void efuse_read_all_map(struct ieee80211_hw
*hw
, u8
*efuse
);
71 static int efuse_pg_packet_read(struct ieee80211_hw
*hw
, u8 offset
,
73 static int efuse_pg_packet_write(struct ieee80211_hw
*hw
, u8 offset
,
74 u8 word_en
, u8
*data
);
75 static void efuse_word_enable_data_read(u8 word_en
, u8
*sourdata
,
77 static u8
efuse_word_enable_data_write(struct ieee80211_hw
*hw
,
78 u16 efuse_addr
, u8 word_en
, u8
*data
);
79 static void efuse_power_switch(struct ieee80211_hw
*hw
, u8 write
,
81 static u16
efuse_get_current_size(struct ieee80211_hw
*hw
);
82 static u8
efuse_calculate_word_cnts(u8 word_en
);
84 void efuse_initialize(struct ieee80211_hw
*hw
)
86 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
90 bytetemp
= rtl_read_byte(rtlpriv
, rtlpriv
->cfg
->maps
[SYS_FUNC_EN
] + 1);
91 temp
= bytetemp
| 0x20;
92 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[SYS_FUNC_EN
] + 1, temp
);
94 bytetemp
= rtl_read_byte(rtlpriv
, rtlpriv
->cfg
->maps
[SYS_ISO_CTRL
] + 1);
95 temp
= bytetemp
& 0xFE;
96 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[SYS_ISO_CTRL
] + 1, temp
);
98 bytetemp
= rtl_read_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_TEST
] + 3);
99 temp
= bytetemp
| 0x80;
100 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_TEST
] + 3, temp
);
102 rtl_write_byte(rtlpriv
, 0x2F8, 0x3);
104 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3, 0x72);
108 u8
efuse_read_1byte(struct ieee80211_hw
*hw
, u16 address
)
110 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
115 const u32 efuse_len
=
116 rtlpriv
->cfg
->maps
[EFUSE_REAL_CONTENT_SIZE
];
118 if (address
< efuse_len
) {
119 temp
= address
& 0xFF;
120 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 1,
122 bytetemp
= rtl_read_byte(rtlpriv
,
123 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2);
124 temp
= ((address
>> 8) & 0x03) | (bytetemp
& 0xFC);
125 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2,
128 bytetemp
= rtl_read_byte(rtlpriv
,
129 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3);
130 temp
= bytetemp
& 0x7F;
131 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3,
134 bytetemp
= rtl_read_byte(rtlpriv
,
135 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3);
136 while (!(bytetemp
& 0x80)) {
137 bytetemp
= rtl_read_byte(rtlpriv
,
139 maps
[EFUSE_CTRL
] + 3);
146 data
= rtl_read_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
]);
152 EXPORT_SYMBOL(efuse_read_1byte
);
154 void efuse_write_1byte(struct ieee80211_hw
*hw
, u16 address
, u8 value
)
156 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
160 const u32 efuse_len
=
161 rtlpriv
->cfg
->maps
[EFUSE_REAL_CONTENT_SIZE
];
163 RT_TRACE(rtlpriv
, COMP_EFUSE
, DBG_LOUD
, "Addr=%x Data =%x\n",
166 if (address
< efuse_len
) {
167 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
], value
);
169 temp
= address
& 0xFF;
170 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 1,
172 bytetemp
= rtl_read_byte(rtlpriv
,
173 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2);
175 temp
= ((address
>> 8) & 0x03) | (bytetemp
& 0xFC);
176 rtl_write_byte(rtlpriv
,
177 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2, temp
);
179 bytetemp
= rtl_read_byte(rtlpriv
,
180 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3);
181 temp
= bytetemp
| 0x80;
182 rtl_write_byte(rtlpriv
,
183 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3, temp
);
185 bytetemp
= rtl_read_byte(rtlpriv
,
186 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3);
188 while (bytetemp
& 0x80) {
189 bytetemp
= rtl_read_byte(rtlpriv
,
191 maps
[EFUSE_CTRL
] + 3);
202 void read_efuse_byte(struct ieee80211_hw
*hw
, u16 _offset
, u8
*pbuf
)
204 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
209 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 1,
211 readbyte
= rtl_read_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2);
212 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2,
213 ((_offset
>> 8) & 0x03) | (readbyte
& 0xfc));
215 readbyte
= rtl_read_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3);
216 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3,
220 value32
= rtl_read_dword(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
]);
221 while (!(((value32
>> 24) & 0xff) & 0x80) && (retry
< 10000)) {
222 value32
= rtl_read_dword(rtlpriv
,
223 rtlpriv
->cfg
->maps
[EFUSE_CTRL
]);
228 value32
= rtl_read_dword(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
]);
230 *pbuf
= (u8
) (value32
& 0xff);
232 EXPORT_SYMBOL_GPL(read_efuse_byte
);
234 void read_efuse(struct ieee80211_hw
*hw
, u16 _offset
, u16 _size_byte
, u8
*pbuf
)
236 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
237 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
245 const u16 efuse_max_section
=
246 rtlpriv
->cfg
->maps
[EFUSE_MAX_SECTION_MAP
];
247 const u32 efuse_len
=
248 rtlpriv
->cfg
->maps
[EFUSE_REAL_CONTENT_SIZE
];
250 u16 efuse_utilized
= 0;
253 if ((_offset
+ _size_byte
) > rtlpriv
->cfg
->maps
[EFUSE_HWSET_MAX_SIZE
]) {
254 RT_TRACE(rtlpriv
, COMP_EFUSE
, DBG_LOUD
,
255 "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n",
256 _offset
, _size_byte
);
260 /* allocate memory for efuse_tbl and efuse_word */
261 efuse_tbl
= kmalloc(rtlpriv
->cfg
->maps
[EFUSE_HWSET_MAX_SIZE
] *
262 sizeof(u8
), GFP_ATOMIC
);
265 efuse_word
= kmalloc(EFUSE_MAX_WORD_UNIT
* sizeof(u16
*), GFP_ATOMIC
);
268 for (i
= 0; i
< EFUSE_MAX_WORD_UNIT
; i
++) {
269 efuse_word
[i
] = kmalloc(efuse_max_section
* sizeof(u16
),
275 for (i
= 0; i
< efuse_max_section
; i
++)
276 for (j
= 0; j
< EFUSE_MAX_WORD_UNIT
; j
++)
277 efuse_word
[j
][i
] = 0xFFFF;
279 read_efuse_byte(hw
, efuse_addr
, rtemp8
);
280 if (*rtemp8
!= 0xFF) {
282 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_READ_ALL
,
283 "Addr=%d\n", efuse_addr
);
287 while ((*rtemp8
!= 0xFF) && (efuse_addr
< efuse_len
)) {
288 /* Check PG header for section num. */
289 if ((*rtemp8
& 0x1F) == 0x0F) {/* extended header */
290 u1temp
= ((*rtemp8
& 0xE0) >> 5);
291 read_efuse_byte(hw
, efuse_addr
, rtemp8
);
293 if ((*rtemp8
& 0x0F) == 0x0F) {
295 read_efuse_byte(hw
, efuse_addr
, rtemp8
);
297 if (*rtemp8
!= 0xFF &&
298 (efuse_addr
< efuse_len
)) {
303 offset
= ((*rtemp8
& 0xF0) >> 1) | u1temp
;
304 wren
= (*rtemp8
& 0x0F);
308 offset
= ((*rtemp8
>> 4) & 0x0f);
309 wren
= (*rtemp8
& 0x0f);
312 if (offset
< efuse_max_section
) {
313 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_READ_ALL
,
314 "offset-%d Worden=%x\n", offset
, wren
);
316 for (i
= 0; i
< EFUSE_MAX_WORD_UNIT
; i
++) {
317 if (!(wren
& 0x01)) {
318 RTPRINT(rtlpriv
, FEEPROM
,
320 "Addr=%d\n", efuse_addr
);
322 read_efuse_byte(hw
, efuse_addr
, rtemp8
);
325 efuse_word
[i
][offset
] =
328 if (efuse_addr
>= efuse_len
)
331 RTPRINT(rtlpriv
, FEEPROM
,
333 "Addr=%d\n", efuse_addr
);
335 read_efuse_byte(hw
, efuse_addr
, rtemp8
);
338 efuse_word
[i
][offset
] |=
339 (((u16
)*rtemp8
<< 8) & 0xff00);
341 if (efuse_addr
>= efuse_len
)
349 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_READ_ALL
,
350 "Addr=%d\n", efuse_addr
);
351 read_efuse_byte(hw
, efuse_addr
, rtemp8
);
352 if (*rtemp8
!= 0xFF && (efuse_addr
< efuse_len
)) {
358 for (i
= 0; i
< efuse_max_section
; i
++) {
359 for (j
= 0; j
< EFUSE_MAX_WORD_UNIT
; j
++) {
360 efuse_tbl
[(i
* 8) + (j
* 2)] =
361 (efuse_word
[j
][i
] & 0xff);
362 efuse_tbl
[(i
* 8) + ((j
* 2) + 1)] =
363 ((efuse_word
[j
][i
] >> 8) & 0xff);
367 for (i
= 0; i
< _size_byte
; i
++)
368 pbuf
[i
] = efuse_tbl
[_offset
+ i
];
370 rtlefuse
->efuse_usedbytes
= efuse_utilized
;
371 efuse_usage
= (u8
) ((efuse_utilized
* 100) / efuse_len
);
372 rtlefuse
->efuse_usedpercentage
= efuse_usage
;
373 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_EFUSE_BYTES
,
374 (u8
*)&efuse_utilized
);
375 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_EFUSE_USAGE
,
378 for (i
= 0; i
< EFUSE_MAX_WORD_UNIT
; i
++)
379 kfree(efuse_word
[i
]);
384 bool efuse_shadow_update_chk(struct ieee80211_hw
*hw
)
386 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
387 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
388 u8 section_idx
, i
, Base
;
389 u16 words_need
= 0, hdr_num
= 0, totalbytes
, efuse_used
;
390 bool wordchanged
, result
= true;
392 for (section_idx
= 0; section_idx
< 16; section_idx
++) {
393 Base
= section_idx
* 8;
396 for (i
= 0; i
< 8; i
= i
+ 2) {
397 if ((rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][Base
+ i
] !=
398 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][Base
+ i
]) ||
399 (rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][Base
+ i
+ 1] !=
400 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][Base
+ i
+
411 totalbytes
= hdr_num
+ words_need
* 2;
412 efuse_used
= rtlefuse
->efuse_usedbytes
;
414 if ((totalbytes
+ efuse_used
) >=
416 rtlpriv
->cfg
->maps
[EFUSE_OOB_PROTECT_BYTES_LEN
]))
419 RT_TRACE(rtlpriv
, COMP_EFUSE
, DBG_LOUD
,
420 "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
421 totalbytes
, hdr_num
, words_need
, efuse_used
);
426 void efuse_shadow_read(struct ieee80211_hw
*hw
, u8 type
,
427 u16 offset
, u32
*value
)
430 efuse_shadow_read_1byte(hw
, offset
, (u8
*) value
);
432 efuse_shadow_read_2byte(hw
, offset
, (u16
*) value
);
434 efuse_shadow_read_4byte(hw
, offset
, value
);
438 void efuse_shadow_write(struct ieee80211_hw
*hw
, u8 type
, u16 offset
,
442 efuse_shadow_write_1byte(hw
, offset
, (u8
) value
);
444 efuse_shadow_write_2byte(hw
, offset
, (u16
) value
);
446 efuse_shadow_write_4byte(hw
, offset
, value
);
450 bool efuse_shadow_update(struct ieee80211_hw
*hw
)
452 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
453 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
458 RT_TRACE(rtlpriv
, COMP_EFUSE
, DBG_LOUD
, "--->\n");
460 if (!efuse_shadow_update_chk(hw
)) {
461 efuse_read_all_map(hw
, &rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0]);
462 memcpy(&rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][0],
463 &rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0],
464 rtlpriv
->cfg
->maps
[EFUSE_HWSET_MAX_SIZE
]);
466 RT_TRACE(rtlpriv
, COMP_EFUSE
, DBG_LOUD
,
467 "<---efuse out of capacity!!\n");
470 efuse_power_switch(hw
, true, true);
472 for (offset
= 0; offset
< 16; offset
++) {
477 for (i
= 0; i
< 8; i
++) {
480 word_en
&= ~(BIT(i
/ 2));
482 rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][base
+ i
] =
483 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][base
+ i
];
486 if (rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][base
+ i
] !=
487 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][base
+ i
]) {
488 word_en
&= ~(BIT(i
/ 2));
490 rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][base
+ i
] =
491 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][base
+ i
];
496 if (word_en
!= 0x0F) {
499 &rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][base
],
501 RT_PRINT_DATA(rtlpriv
, COMP_INIT
, DBG_LOUD
,
502 "U-efuse", tmpdata
, 8);
504 if (!efuse_pg_packet_write(hw
, (u8
) offset
, word_en
,
506 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_WARNING
,
507 "PG section(%#x) fail!!\n", offset
);
514 efuse_power_switch(hw
, true, false);
515 efuse_read_all_map(hw
, &rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0]);
517 memcpy(&rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][0],
518 &rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0],
519 rtlpriv
->cfg
->maps
[EFUSE_HWSET_MAX_SIZE
]);
521 RT_TRACE(rtlpriv
, COMP_EFUSE
, DBG_LOUD
, "<---\n");
525 void rtl_efuse_shadow_map_update(struct ieee80211_hw
*hw
)
527 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
528 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
530 if (rtlefuse
->autoload_failflag
)
531 memset(&rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0], 0xFF,
532 rtlpriv
->cfg
->maps
[EFUSE_HWSET_MAX_SIZE
]);
534 efuse_read_all_map(hw
, &rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0]);
536 memcpy(&rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][0],
537 &rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0],
538 rtlpriv
->cfg
->maps
[EFUSE_HWSET_MAX_SIZE
]);
541 EXPORT_SYMBOL(rtl_efuse_shadow_map_update
);
543 void efuse_force_write_vendor_Id(struct ieee80211_hw
*hw
)
545 u8 tmpdata
[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
547 efuse_power_switch(hw
, true, true);
549 efuse_pg_packet_write(hw
, 1, 0xD, tmpdata
);
551 efuse_power_switch(hw
, true, false);
555 void efuse_re_pg_section(struct ieee80211_hw
*hw
, u8 section_idx
)
559 static void efuse_shadow_read_1byte(struct ieee80211_hw
*hw
,
560 u16 offset
, u8
*value
)
562 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
563 *value
= rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
];
566 static void efuse_shadow_read_2byte(struct ieee80211_hw
*hw
,
567 u16 offset
, u16
*value
)
569 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
571 *value
= rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
];
572 *value
|= rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 1] << 8;
576 static void efuse_shadow_read_4byte(struct ieee80211_hw
*hw
,
577 u16 offset
, u32
*value
)
579 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
581 *value
= rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
];
582 *value
|= rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 1] << 8;
583 *value
|= rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 2] << 16;
584 *value
|= rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 3] << 24;
587 static void efuse_shadow_write_1byte(struct ieee80211_hw
*hw
,
588 u16 offset
, u8 value
)
590 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
592 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
] = value
;
595 static void efuse_shadow_write_2byte(struct ieee80211_hw
*hw
,
596 u16 offset
, u16 value
)
598 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
600 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
] = value
& 0x00FF;
601 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 1] = value
>> 8;
605 static void efuse_shadow_write_4byte(struct ieee80211_hw
*hw
,
606 u16 offset
, u32 value
)
608 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
610 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
] =
611 (u8
) (value
& 0x000000FF);
612 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 1] =
613 (u8
) ((value
>> 8) & 0x0000FF);
614 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 2] =
615 (u8
) ((value
>> 16) & 0x00FF);
616 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 3] =
617 (u8
) ((value
>> 24) & 0xFF);
621 static int efuse_one_byte_read(struct ieee80211_hw
*hw
, u16 addr
, u8
*data
)
623 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
627 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 1,
629 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2,
630 ((u8
) ((addr
>> 8) & 0x03)) |
631 (rtl_read_byte(rtlpriv
,
632 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2) &
635 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3, 0x72);
637 while (!(0x80 & rtl_read_byte(rtlpriv
,
638 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3))
644 *data
= rtl_read_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
]);
653 static int efuse_one_byte_write(struct ieee80211_hw
*hw
, u16 addr
, u8 data
)
655 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
658 RT_TRACE(rtlpriv
, COMP_EFUSE
, DBG_LOUD
, "Addr = %x Data=%x\n",
661 rtl_write_byte(rtlpriv
,
662 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 1, (u8
) (addr
& 0xff));
663 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2,
664 (rtl_read_byte(rtlpriv
,
665 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] +
666 2) & 0xFC) | (u8
) ((addr
>> 8) & 0x03));
668 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
], data
);
669 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3, 0xF2);
671 while ((0x80 & rtl_read_byte(rtlpriv
,
672 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3))
683 static void efuse_read_all_map(struct ieee80211_hw
*hw
, u8
* efuse
)
685 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
686 efuse_power_switch(hw
, false, true);
687 read_efuse(hw
, 0, rtlpriv
->cfg
->maps
[EFUSE_HWSET_MAX_SIZE
], efuse
);
688 efuse_power_switch(hw
, false, false);
691 static void efuse_read_data_case1(struct ieee80211_hw
*hw
, u16
*efuse_addr
,
692 u8 efuse_data
, u8 offset
, u8
*tmpdata
,
695 bool dataempty
= true;
701 hoffset
= (efuse_data
>> 4) & 0x0F;
702 hworden
= efuse_data
& 0x0F;
703 word_cnts
= efuse_calculate_word_cnts(hworden
);
705 if (hoffset
== offset
) {
706 for (tmpidx
= 0; tmpidx
< word_cnts
* 2; tmpidx
++) {
707 if (efuse_one_byte_read(hw
, *efuse_addr
+ 1 + tmpidx
,
709 tmpdata
[tmpidx
] = efuse_data
;
710 if (efuse_data
!= 0xff)
716 *readstate
= PG_STATE_DATA
;
718 *efuse_addr
= *efuse_addr
+ (word_cnts
* 2) + 1;
719 *readstate
= PG_STATE_HEADER
;
723 *efuse_addr
= *efuse_addr
+ (word_cnts
* 2) + 1;
724 *readstate
= PG_STATE_HEADER
;
728 static int efuse_pg_packet_read(struct ieee80211_hw
*hw
, u8 offset
, u8
*data
)
730 u8 readstate
= PG_STATE_HEADER
;
731 bool continual
= true;
732 u8 efuse_data
, word_cnts
= 0;
741 memset(data
, 0xff, PGPKT_DATA_SIZE
* sizeof(u8
));
742 memset(tmpdata
, 0xff, PGPKT_DATA_SIZE
* sizeof(u8
));
744 while (continual
&& (efuse_addr
< EFUSE_MAX_SIZE
)) {
745 if (readstate
& PG_STATE_HEADER
) {
746 if (efuse_one_byte_read(hw
, efuse_addr
, &efuse_data
)
747 && (efuse_data
!= 0xFF))
748 efuse_read_data_case1(hw
, &efuse_addr
,
754 } else if (readstate
& PG_STATE_DATA
) {
755 efuse_word_enable_data_read(0, tmpdata
, data
);
756 efuse_addr
= efuse_addr
+ (word_cnts
* 2) + 1;
757 readstate
= PG_STATE_HEADER
;
762 if ((data
[0] == 0xff) && (data
[1] == 0xff) &&
763 (data
[2] == 0xff) && (data
[3] == 0xff) &&
764 (data
[4] == 0xff) && (data
[5] == 0xff) &&
765 (data
[6] == 0xff) && (data
[7] == 0xff))
772 static void efuse_write_data_case1(struct ieee80211_hw
*hw
, u16
*efuse_addr
,
773 u8 efuse_data
, u8 offset
, int *continual
,
774 u8
*write_state
, struct pgpkt_struct
*target_pkt
,
775 int *repeat_times
, int *result
, u8 word_en
)
777 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
778 struct pgpkt_struct tmp_pkt
;
779 bool dataempty
= true;
780 u8 originaldata
[8 * sizeof(u8
)];
782 u8 match_word_en
, tmp_word_en
;
784 u8 tmp_header
= efuse_data
;
787 tmp_pkt
.offset
= (tmp_header
>> 4) & 0x0F;
788 tmp_pkt
.word_en
= tmp_header
& 0x0F;
789 tmp_word_cnts
= efuse_calculate_word_cnts(tmp_pkt
.word_en
);
791 if (tmp_pkt
.offset
!= target_pkt
->offset
) {
792 *efuse_addr
= *efuse_addr
+ (tmp_word_cnts
* 2) + 1;
793 *write_state
= PG_STATE_HEADER
;
795 for (tmpindex
= 0; tmpindex
< (tmp_word_cnts
* 2); tmpindex
++) {
796 u16 address
= *efuse_addr
+ 1 + tmpindex
;
797 if (efuse_one_byte_read(hw
, address
,
798 &efuse_data
) && (efuse_data
!= 0xFF))
803 *efuse_addr
= *efuse_addr
+ (tmp_word_cnts
* 2) + 1;
804 *write_state
= PG_STATE_HEADER
;
806 match_word_en
= 0x0F;
807 if (!((target_pkt
->word_en
& BIT(0)) |
808 (tmp_pkt
.word_en
& BIT(0))))
809 match_word_en
&= (~BIT(0));
811 if (!((target_pkt
->word_en
& BIT(1)) |
812 (tmp_pkt
.word_en
& BIT(1))))
813 match_word_en
&= (~BIT(1));
815 if (!((target_pkt
->word_en
& BIT(2)) |
816 (tmp_pkt
.word_en
& BIT(2))))
817 match_word_en
&= (~BIT(2));
819 if (!((target_pkt
->word_en
& BIT(3)) |
820 (tmp_pkt
.word_en
& BIT(3))))
821 match_word_en
&= (~BIT(3));
823 if ((match_word_en
& 0x0F) != 0x0F) {
824 badworden
= efuse_word_enable_data_write(
829 if (0x0F != (badworden
& 0x0F)) {
830 u8 reorg_offset
= offset
;
831 u8 reorg_worden
= badworden
;
832 efuse_pg_packet_write(hw
, reorg_offset
,
838 if ((target_pkt
->word_en
& BIT(0)) ^
839 (match_word_en
& BIT(0)))
840 tmp_word_en
&= (~BIT(0));
842 if ((target_pkt
->word_en
& BIT(1)) ^
843 (match_word_en
& BIT(1)))
844 tmp_word_en
&= (~BIT(1));
846 if ((target_pkt
->word_en
& BIT(2)) ^
847 (match_word_en
& BIT(2)))
848 tmp_word_en
&= (~BIT(2));
850 if ((target_pkt
->word_en
& BIT(3)) ^
851 (match_word_en
& BIT(3)))
852 tmp_word_en
&= (~BIT(3));
854 if ((tmp_word_en
& 0x0F) != 0x0F) {
855 *efuse_addr
= efuse_get_current_size(hw
);
856 target_pkt
->offset
= offset
;
857 target_pkt
->word_en
= tmp_word_en
;
861 *write_state
= PG_STATE_HEADER
;
863 if (*repeat_times
> EFUSE_REPEAT_THRESHOLD_
) {
868 *efuse_addr
+= (2 * tmp_word_cnts
) + 1;
869 target_pkt
->offset
= offset
;
870 target_pkt
->word_en
= word_en
;
871 *write_state
= PG_STATE_HEADER
;
875 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_PG
, "efuse PG_STATE_HEADER-1\n");
878 static void efuse_write_data_case2(struct ieee80211_hw
*hw
, u16
*efuse_addr
,
879 int *continual
, u8
*write_state
,
880 struct pgpkt_struct target_pkt
,
881 int *repeat_times
, int *result
)
883 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
884 struct pgpkt_struct tmp_pkt
;
887 u8 originaldata
[8 * sizeof(u8
)];
891 pg_header
= ((target_pkt
.offset
<< 4) & 0xf0) | target_pkt
.word_en
;
892 efuse_one_byte_write(hw
, *efuse_addr
, pg_header
);
893 efuse_one_byte_read(hw
, *efuse_addr
, &tmp_header
);
895 if (tmp_header
== pg_header
) {
896 *write_state
= PG_STATE_DATA
;
897 } else if (tmp_header
== 0xFF) {
898 *write_state
= PG_STATE_HEADER
;
900 if (*repeat_times
> EFUSE_REPEAT_THRESHOLD_
) {
905 tmp_pkt
.offset
= (tmp_header
>> 4) & 0x0F;
906 tmp_pkt
.word_en
= tmp_header
& 0x0F;
908 tmp_word_cnts
= efuse_calculate_word_cnts(tmp_pkt
.word_en
);
910 memset(originaldata
, 0xff, 8 * sizeof(u8
));
912 if (efuse_pg_packet_read(hw
, tmp_pkt
.offset
, originaldata
)) {
913 badworden
= efuse_word_enable_data_write(hw
,
914 *efuse_addr
+ 1, tmp_pkt
.word_en
,
917 if (0x0F != (badworden
& 0x0F)) {
918 u8 reorg_offset
= tmp_pkt
.offset
;
919 u8 reorg_worden
= badworden
;
920 efuse_pg_packet_write(hw
, reorg_offset
,
923 *efuse_addr
= efuse_get_current_size(hw
);
925 *efuse_addr
= *efuse_addr
+ (tmp_word_cnts
* 2)
929 *efuse_addr
= *efuse_addr
+ (tmp_word_cnts
* 2) + 1;
932 *write_state
= PG_STATE_HEADER
;
934 if (*repeat_times
> EFUSE_REPEAT_THRESHOLD_
) {
939 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_PG
,
940 "efuse PG_STATE_HEADER-2\n");
944 static int efuse_pg_packet_write(struct ieee80211_hw
*hw
,
945 u8 offset
, u8 word_en
, u8
*data
)
947 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
948 struct pgpkt_struct target_pkt
;
949 u8 write_state
= PG_STATE_HEADER
;
950 int continual
= true, result
= true;
953 u8 target_word_cnts
= 0;
955 static int repeat_times
;
957 if (efuse_get_current_size(hw
) >= (EFUSE_MAX_SIZE
-
958 rtlpriv
->cfg
->maps
[EFUSE_OOB_PROTECT_BYTES_LEN
])) {
959 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_PG
,
960 "efuse_pg_packet_write error\n");
964 target_pkt
.offset
= offset
;
965 target_pkt
.word_en
= word_en
;
967 memset(target_pkt
.data
, 0xFF, 8 * sizeof(u8
));
969 efuse_word_enable_data_read(word_en
, data
, target_pkt
.data
);
970 target_word_cnts
= efuse_calculate_word_cnts(target_pkt
.word_en
);
972 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_PG
, "efuse Power ON\n");
974 while (continual
&& (efuse_addr
< (EFUSE_MAX_SIZE
-
975 rtlpriv
->cfg
->maps
[EFUSE_OOB_PROTECT_BYTES_LEN
]))) {
977 if (write_state
== PG_STATE_HEADER
) {
979 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_PG
,
980 "efuse PG_STATE_HEADER\n");
982 if (efuse_one_byte_read(hw
, efuse_addr
, &efuse_data
) &&
983 (efuse_data
!= 0xFF))
984 efuse_write_data_case1(hw
, &efuse_addr
,
987 &write_state
, &target_pkt
,
988 &repeat_times
, &result
,
991 efuse_write_data_case2(hw
, &efuse_addr
,
998 } else if (write_state
== PG_STATE_DATA
) {
999 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_PG
,
1000 "efuse PG_STATE_DATA\n");
1002 efuse_word_enable_data_write(hw
, efuse_addr
+ 1,
1006 if ((badworden
& 0x0F) == 0x0F) {
1009 efuse_addr
+= (2 * target_word_cnts
) + 1;
1011 target_pkt
.offset
= offset
;
1012 target_pkt
.word_en
= badworden
;
1014 efuse_calculate_word_cnts(target_pkt
.
1016 write_state
= PG_STATE_HEADER
;
1018 if (repeat_times
> EFUSE_REPEAT_THRESHOLD_
) {
1022 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_PG
,
1023 "efuse PG_STATE_HEADER-3\n");
1028 if (efuse_addr
>= (EFUSE_MAX_SIZE
-
1029 rtlpriv
->cfg
->maps
[EFUSE_OOB_PROTECT_BYTES_LEN
])) {
1030 RT_TRACE(rtlpriv
, COMP_EFUSE
, DBG_LOUD
,
1031 "efuse_addr(%#x) Out of size!!\n", efuse_addr
);
1037 static void efuse_word_enable_data_read(u8 word_en
,
1038 u8
*sourdata
, u8
*targetdata
)
1040 if (!(word_en
& BIT(0))) {
1041 targetdata
[0] = sourdata
[0];
1042 targetdata
[1] = sourdata
[1];
1045 if (!(word_en
& BIT(1))) {
1046 targetdata
[2] = sourdata
[2];
1047 targetdata
[3] = sourdata
[3];
1050 if (!(word_en
& BIT(2))) {
1051 targetdata
[4] = sourdata
[4];
1052 targetdata
[5] = sourdata
[5];
1055 if (!(word_en
& BIT(3))) {
1056 targetdata
[6] = sourdata
[6];
1057 targetdata
[7] = sourdata
[7];
1061 static u8
efuse_word_enable_data_write(struct ieee80211_hw
*hw
,
1062 u16 efuse_addr
, u8 word_en
, u8
*data
)
1064 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1066 u16 start_addr
= efuse_addr
;
1067 u8 badworden
= 0x0F;
1070 memset(tmpdata
, 0xff, PGPKT_DATA_SIZE
);
1071 RT_TRACE(rtlpriv
, COMP_EFUSE
, DBG_LOUD
, "word_en = %x efuse_addr=%x\n",
1072 word_en
, efuse_addr
);
1074 if (!(word_en
& BIT(0))) {
1075 tmpaddr
= start_addr
;
1076 efuse_one_byte_write(hw
, start_addr
++, data
[0]);
1077 efuse_one_byte_write(hw
, start_addr
++, data
[1]);
1079 efuse_one_byte_read(hw
, tmpaddr
, &tmpdata
[0]);
1080 efuse_one_byte_read(hw
, tmpaddr
+ 1, &tmpdata
[1]);
1081 if ((data
[0] != tmpdata
[0]) || (data
[1] != tmpdata
[1]))
1082 badworden
&= (~BIT(0));
1085 if (!(word_en
& BIT(1))) {
1086 tmpaddr
= start_addr
;
1087 efuse_one_byte_write(hw
, start_addr
++, data
[2]);
1088 efuse_one_byte_write(hw
, start_addr
++, data
[3]);
1090 efuse_one_byte_read(hw
, tmpaddr
, &tmpdata
[2]);
1091 efuse_one_byte_read(hw
, tmpaddr
+ 1, &tmpdata
[3]);
1092 if ((data
[2] != tmpdata
[2]) || (data
[3] != tmpdata
[3]))
1093 badworden
&= (~BIT(1));
1096 if (!(word_en
& BIT(2))) {
1097 tmpaddr
= start_addr
;
1098 efuse_one_byte_write(hw
, start_addr
++, data
[4]);
1099 efuse_one_byte_write(hw
, start_addr
++, data
[5]);
1101 efuse_one_byte_read(hw
, tmpaddr
, &tmpdata
[4]);
1102 efuse_one_byte_read(hw
, tmpaddr
+ 1, &tmpdata
[5]);
1103 if ((data
[4] != tmpdata
[4]) || (data
[5] != tmpdata
[5]))
1104 badworden
&= (~BIT(2));
1107 if (!(word_en
& BIT(3))) {
1108 tmpaddr
= start_addr
;
1109 efuse_one_byte_write(hw
, start_addr
++, data
[6]);
1110 efuse_one_byte_write(hw
, start_addr
++, data
[7]);
1112 efuse_one_byte_read(hw
, tmpaddr
, &tmpdata
[6]);
1113 efuse_one_byte_read(hw
, tmpaddr
+ 1, &tmpdata
[7]);
1114 if ((data
[6] != tmpdata
[6]) || (data
[7] != tmpdata
[7]))
1115 badworden
&= (~BIT(3));
1121 static void efuse_power_switch(struct ieee80211_hw
*hw
, u8 write
, u8 pwrstate
)
1123 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1124 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
1128 if (pwrstate
&& (rtlhal
->hw_type
!= HARDWARE_TYPE_RTL8192SE
)) {
1129 if (rtlhal
->hw_type
== HARDWARE_TYPE_RTL8188EE
)
1130 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_ACCESS
],
1133 tmpV16
= rtl_read_word(rtlpriv
,
1134 rtlpriv
->cfg
->maps
[SYS_ISO_CTRL
]);
1135 if (!(tmpV16
& rtlpriv
->cfg
->maps
[EFUSE_PWC_EV12V
])) {
1136 tmpV16
|= rtlpriv
->cfg
->maps
[EFUSE_PWC_EV12V
];
1137 rtl_write_word(rtlpriv
,
1138 rtlpriv
->cfg
->maps
[SYS_ISO_CTRL
],
1142 tmpV16
= rtl_read_word(rtlpriv
,
1143 rtlpriv
->cfg
->maps
[SYS_FUNC_EN
]);
1144 if (!(tmpV16
& rtlpriv
->cfg
->maps
[EFUSE_FEN_ELDR
])) {
1145 tmpV16
|= rtlpriv
->cfg
->maps
[EFUSE_FEN_ELDR
];
1146 rtl_write_word(rtlpriv
,
1147 rtlpriv
->cfg
->maps
[SYS_FUNC_EN
], tmpV16
);
1150 tmpV16
= rtl_read_word(rtlpriv
, rtlpriv
->cfg
->maps
[SYS_CLK
]);
1151 if ((!(tmpV16
& rtlpriv
->cfg
->maps
[EFUSE_LOADER_CLK_EN
])) ||
1152 (!(tmpV16
& rtlpriv
->cfg
->maps
[EFUSE_ANA8M
]))) {
1153 tmpV16
|= (rtlpriv
->cfg
->maps
[EFUSE_LOADER_CLK_EN
] |
1154 rtlpriv
->cfg
->maps
[EFUSE_ANA8M
]);
1155 rtl_write_word(rtlpriv
,
1156 rtlpriv
->cfg
->maps
[SYS_CLK
], tmpV16
);
1162 tempval
= rtl_read_byte(rtlpriv
,
1163 rtlpriv
->cfg
->maps
[EFUSE_TEST
] +
1166 if (rtlhal
->hw_type
!= HARDWARE_TYPE_RTL8192SE
) {
1168 tempval
|= (VOLTAGE_V25
<< 4);
1171 rtl_write_byte(rtlpriv
,
1172 rtlpriv
->cfg
->maps
[EFUSE_TEST
] + 3,
1176 if (rtlhal
->hw_type
== HARDWARE_TYPE_RTL8192SE
) {
1177 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CLK
],
1182 if (rtlhal
->hw_type
== HARDWARE_TYPE_RTL8188EE
)
1183 rtl_write_byte(rtlpriv
,
1184 rtlpriv
->cfg
->maps
[EFUSE_ACCESS
], 0);
1187 tempval
= rtl_read_byte(rtlpriv
,
1188 rtlpriv
->cfg
->maps
[EFUSE_TEST
] +
1190 rtl_write_byte(rtlpriv
,
1191 rtlpriv
->cfg
->maps
[EFUSE_TEST
] + 3,
1195 if (rtlhal
->hw_type
== HARDWARE_TYPE_RTL8192SE
) {
1196 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CLK
],
1204 static u16
efuse_get_current_size(struct ieee80211_hw
*hw
)
1206 int continual
= true;
1209 u8 efuse_data
, word_cnts
;
1211 while (continual
&& efuse_one_byte_read(hw
, efuse_addr
, &efuse_data
)
1212 && (efuse_addr
< EFUSE_MAX_SIZE
)) {
1213 if (efuse_data
!= 0xFF) {
1214 hworden
= efuse_data
& 0x0F;
1215 word_cnts
= efuse_calculate_word_cnts(hworden
);
1216 efuse_addr
= efuse_addr
+ (word_cnts
* 2) + 1;
1225 static u8
efuse_calculate_word_cnts(u8 word_en
)
1228 if (!(word_en
& BIT(0)))
1230 if (!(word_en
& BIT(1)))
1232 if (!(word_en
& BIT(2)))
1234 if (!(word_en
& BIT(3)))