1 /* ZD1211 USB-WLAN driver for Linux
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 /* This file implements all the hardware specific functions for the ZD1211
22 * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
23 * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/slab.h>
35 void zd_chip_init(struct zd_chip
*chip
,
36 struct ieee80211_hw
*hw
,
37 struct usb_interface
*intf
)
39 memset(chip
, 0, sizeof(*chip
));
40 mutex_init(&chip
->mutex
);
41 zd_usb_init(&chip
->usb
, hw
, intf
);
42 zd_rf_init(&chip
->rf
);
45 void zd_chip_clear(struct zd_chip
*chip
)
47 ZD_ASSERT(!mutex_is_locked(&chip
->mutex
));
48 zd_usb_clear(&chip
->usb
);
49 zd_rf_clear(&chip
->rf
);
50 mutex_destroy(&chip
->mutex
);
51 ZD_MEMCLEAR(chip
, sizeof(*chip
));
54 static int scnprint_mac_oui(struct zd_chip
*chip
, char *buffer
, size_t size
)
56 u8
*addr
= zd_mac_get_perm_addr(zd_chip_to_mac(chip
));
57 return scnprintf(buffer
, size
, "%02x-%02x-%02x",
58 addr
[0], addr
[1], addr
[2]);
61 /* Prints an identifier line, which will support debugging. */
62 static int scnprint_id(struct zd_chip
*chip
, char *buffer
, size_t size
)
66 i
= scnprintf(buffer
, size
, "zd1211%s chip ",
67 zd_chip_is_zd1211b(chip
) ? "b" : "");
68 i
+= zd_usb_scnprint_id(&chip
->usb
, buffer
+i
, size
-i
);
69 i
+= scnprintf(buffer
+i
, size
-i
, " ");
70 i
+= scnprint_mac_oui(chip
, buffer
+i
, size
-i
);
71 i
+= scnprintf(buffer
+i
, size
-i
, " ");
72 i
+= zd_rf_scnprint_id(&chip
->rf
, buffer
+i
, size
-i
);
73 i
+= scnprintf(buffer
+i
, size
-i
, " pa%1x %c%c%c%c%c", chip
->pa_type
,
74 chip
->patch_cck_gain
? 'g' : '-',
75 chip
->patch_cr157
? '7' : '-',
76 chip
->patch_6m_band_edge
? '6' : '-',
77 chip
->new_phy_layout
? 'N' : '-',
78 chip
->al2230s_bit
? 'S' : '-');
82 static void print_id(struct zd_chip
*chip
)
86 scnprint_id(chip
, buffer
, sizeof(buffer
));
87 buffer
[sizeof(buffer
)-1] = 0;
88 dev_info(zd_chip_dev(chip
), "%s\n", buffer
);
91 static zd_addr_t
inc_addr(zd_addr_t addr
)
94 /* Control registers use byte addressing, but everything else uses word
96 if ((a
& 0xf000) == CR_START
)
103 /* Read a variable number of 32-bit values. Parameter count is not allowed to
104 * exceed USB_MAX_IOREAD32_COUNT.
106 int zd_ioread32v_locked(struct zd_chip
*chip
, u32
*values
, const zd_addr_t
*addr
,
111 zd_addr_t a16
[USB_MAX_IOREAD32_COUNT
* 2];
112 u16 v16
[USB_MAX_IOREAD32_COUNT
* 2];
113 unsigned int count16
;
115 if (count
> USB_MAX_IOREAD32_COUNT
)
118 /* Use stack for values and addresses. */
120 BUG_ON(count16
* sizeof(zd_addr_t
) > sizeof(a16
));
121 BUG_ON(count16
* sizeof(u16
) > sizeof(v16
));
123 for (i
= 0; i
< count
; i
++) {
125 /* We read the high word always first. */
126 a16
[j
] = inc_addr(addr
[i
]);
130 r
= zd_ioread16v_locked(chip
, v16
, a16
, count16
);
132 dev_dbg_f(zd_chip_dev(chip
),
133 "error: zd_ioread16v_locked. Error number %d\n", r
);
137 for (i
= 0; i
< count
; i
++) {
139 values
[i
] = (v16
[j
] << 16) | v16
[j
+1];
145 static int _zd_iowrite32v_async_locked(struct zd_chip
*chip
,
146 const struct zd_ioreq32
*ioreqs
,
150 struct zd_ioreq16 ioreqs16
[USB_MAX_IOWRITE32_COUNT
* 2];
151 unsigned int count16
;
153 /* Use stack for values and addresses. */
155 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
159 if (count
> USB_MAX_IOWRITE32_COUNT
)
163 BUG_ON(count16
* sizeof(struct zd_ioreq16
) > sizeof(ioreqs16
));
165 for (i
= 0; i
< count
; i
++) {
167 /* We write the high word always first. */
168 ioreqs16
[j
].value
= ioreqs
[i
].value
>> 16;
169 ioreqs16
[j
].addr
= inc_addr(ioreqs
[i
].addr
);
170 ioreqs16
[j
+1].value
= ioreqs
[i
].value
;
171 ioreqs16
[j
+1].addr
= ioreqs
[i
].addr
;
174 r
= zd_usb_iowrite16v_async(&chip
->usb
, ioreqs16
, count16
);
177 dev_dbg_f(zd_chip_dev(chip
),
178 "error %d in zd_usb_write16v\n", r
);
184 int _zd_iowrite32v_locked(struct zd_chip
*chip
, const struct zd_ioreq32
*ioreqs
,
189 zd_usb_iowrite16v_async_start(&chip
->usb
);
190 r
= _zd_iowrite32v_async_locked(chip
, ioreqs
, count
);
192 zd_usb_iowrite16v_async_end(&chip
->usb
, 0);
195 return zd_usb_iowrite16v_async_end(&chip
->usb
, 50 /* ms */);
198 int zd_iowrite16a_locked(struct zd_chip
*chip
,
199 const struct zd_ioreq16
*ioreqs
, unsigned int count
)
202 unsigned int i
, j
, t
, max
;
204 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
205 zd_usb_iowrite16v_async_start(&chip
->usb
);
207 for (i
= 0; i
< count
; i
+= j
+ t
) {
210 if (max
> USB_MAX_IOWRITE16_COUNT
)
211 max
= USB_MAX_IOWRITE16_COUNT
;
212 for (j
= 0; j
< max
; j
++) {
213 if (!ioreqs
[i
+j
].addr
) {
219 r
= zd_usb_iowrite16v_async(&chip
->usb
, &ioreqs
[i
], j
);
221 zd_usb_iowrite16v_async_end(&chip
->usb
, 0);
222 dev_dbg_f(zd_chip_dev(chip
),
223 "error zd_usb_iowrite16v. Error number %d\n",
229 return zd_usb_iowrite16v_async_end(&chip
->usb
, 50 /* ms */);
232 /* Writes a variable number of 32 bit registers. The functions will split
233 * that in several USB requests. A split can be forced by inserting an IO
234 * request with an zero address field.
236 int zd_iowrite32a_locked(struct zd_chip
*chip
,
237 const struct zd_ioreq32
*ioreqs
, unsigned int count
)
240 unsigned int i
, j
, t
, max
;
242 zd_usb_iowrite16v_async_start(&chip
->usb
);
244 for (i
= 0; i
< count
; i
+= j
+ t
) {
247 if (max
> USB_MAX_IOWRITE32_COUNT
)
248 max
= USB_MAX_IOWRITE32_COUNT
;
249 for (j
= 0; j
< max
; j
++) {
250 if (!ioreqs
[i
+j
].addr
) {
256 r
= _zd_iowrite32v_async_locked(chip
, &ioreqs
[i
], j
);
258 zd_usb_iowrite16v_async_end(&chip
->usb
, 0);
259 dev_dbg_f(zd_chip_dev(chip
),
260 "error _zd_iowrite32v_locked."
261 " Error number %d\n", r
);
266 return zd_usb_iowrite16v_async_end(&chip
->usb
, 50 /* ms */);
269 int zd_ioread16(struct zd_chip
*chip
, zd_addr_t addr
, u16
*value
)
273 mutex_lock(&chip
->mutex
);
274 r
= zd_ioread16_locked(chip
, value
, addr
);
275 mutex_unlock(&chip
->mutex
);
279 int zd_ioread32(struct zd_chip
*chip
, zd_addr_t addr
, u32
*value
)
283 mutex_lock(&chip
->mutex
);
284 r
= zd_ioread32_locked(chip
, value
, addr
);
285 mutex_unlock(&chip
->mutex
);
289 int zd_iowrite16(struct zd_chip
*chip
, zd_addr_t addr
, u16 value
)
293 mutex_lock(&chip
->mutex
);
294 r
= zd_iowrite16_locked(chip
, value
, addr
);
295 mutex_unlock(&chip
->mutex
);
299 int zd_iowrite32(struct zd_chip
*chip
, zd_addr_t addr
, u32 value
)
303 mutex_lock(&chip
->mutex
);
304 r
= zd_iowrite32_locked(chip
, value
, addr
);
305 mutex_unlock(&chip
->mutex
);
309 int zd_ioread32v(struct zd_chip
*chip
, const zd_addr_t
*addresses
,
310 u32
*values
, unsigned int count
)
314 mutex_lock(&chip
->mutex
);
315 r
= zd_ioread32v_locked(chip
, values
, addresses
, count
);
316 mutex_unlock(&chip
->mutex
);
320 int zd_iowrite32a(struct zd_chip
*chip
, const struct zd_ioreq32
*ioreqs
,
325 mutex_lock(&chip
->mutex
);
326 r
= zd_iowrite32a_locked(chip
, ioreqs
, count
);
327 mutex_unlock(&chip
->mutex
);
331 static int read_pod(struct zd_chip
*chip
, u8
*rf_type
)
336 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
337 r
= zd_ioread32_locked(chip
, &value
, E2P_POD
);
340 dev_dbg_f(zd_chip_dev(chip
), "E2P_POD %#010x\n", value
);
342 /* FIXME: AL2230 handling (Bit 7 in POD) */
343 *rf_type
= value
& 0x0f;
344 chip
->pa_type
= (value
>> 16) & 0x0f;
345 chip
->patch_cck_gain
= (value
>> 8) & 0x1;
346 chip
->patch_cr157
= (value
>> 13) & 0x1;
347 chip
->patch_6m_band_edge
= (value
>> 21) & 0x1;
348 chip
->new_phy_layout
= (value
>> 31) & 0x1;
349 chip
->al2230s_bit
= (value
>> 7) & 0x1;
350 chip
->link_led
= ((value
>> 4) & 1) ? LED1
: LED2
;
351 chip
->supports_tx_led
= 1;
352 if (value
& (1 << 24)) { /* LED scenario */
353 if (value
& (1 << 29))
354 chip
->supports_tx_led
= 0;
357 dev_dbg_f(zd_chip_dev(chip
),
358 "RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
359 "patch 6M %d new PHY %d link LED%d tx led %d\n",
360 zd_rf_name(*rf_type
), *rf_type
,
361 chip
->pa_type
, chip
->patch_cck_gain
,
362 chip
->patch_cr157
, chip
->patch_6m_band_edge
,
363 chip
->new_phy_layout
,
364 chip
->link_led
== LED1
? 1 : 2,
365 chip
->supports_tx_led
);
370 chip
->patch_cck_gain
= 0;
371 chip
->patch_cr157
= 0;
372 chip
->patch_6m_band_edge
= 0;
373 chip
->new_phy_layout
= 0;
377 static int zd_write_mac_addr_common(struct zd_chip
*chip
, const u8
*mac_addr
,
378 const struct zd_ioreq32
*in_reqs
,
382 struct zd_ioreq32 reqs
[2] = {in_reqs
[0], in_reqs
[1]};
385 reqs
[0].value
= (mac_addr
[3] << 24)
386 | (mac_addr
[2] << 16)
389 reqs
[1].value
= (mac_addr
[5] << 8)
391 dev_dbg_f(zd_chip_dev(chip
), "%s addr %pM\n", type
, mac_addr
);
393 dev_dbg_f(zd_chip_dev(chip
), "set NULL %s\n", type
);
396 mutex_lock(&chip
->mutex
);
397 r
= zd_iowrite32a_locked(chip
, reqs
, ARRAY_SIZE(reqs
));
398 mutex_unlock(&chip
->mutex
);
402 /* MAC address: if custom mac addresses are to be used CR_MAC_ADDR_P1 and
403 * CR_MAC_ADDR_P2 must be overwritten
405 int zd_write_mac_addr(struct zd_chip
*chip
, const u8
*mac_addr
)
407 static const struct zd_ioreq32 reqs
[2] = {
408 [0] = { .addr
= CR_MAC_ADDR_P1
},
409 [1] = { .addr
= CR_MAC_ADDR_P2
},
412 return zd_write_mac_addr_common(chip
, mac_addr
, reqs
, "mac");
415 int zd_write_bssid(struct zd_chip
*chip
, const u8
*bssid
)
417 static const struct zd_ioreq32 reqs
[2] = {
418 [0] = { .addr
= CR_BSSID_P1
},
419 [1] = { .addr
= CR_BSSID_P2
},
422 return zd_write_mac_addr_common(chip
, bssid
, reqs
, "bssid");
425 int zd_read_regdomain(struct zd_chip
*chip
, u8
*regdomain
)
430 mutex_lock(&chip
->mutex
);
431 r
= zd_ioread32_locked(chip
, &value
, E2P_SUBID
);
432 mutex_unlock(&chip
->mutex
);
436 *regdomain
= value
>> 16;
437 dev_dbg_f(zd_chip_dev(chip
), "regdomain: %#04x\n", *regdomain
);
442 static int read_values(struct zd_chip
*chip
, u8
*values
, size_t count
,
443 zd_addr_t e2p_addr
, u32 guard
)
449 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
451 r
= zd_ioread32_locked(chip
, &v
,
452 (zd_addr_t
)((u16
)e2p_addr
+i
/2));
458 values
[i
++] = v
>> 8;
459 values
[i
++] = v
>> 16;
460 values
[i
++] = v
>> 24;
463 for (;i
< count
; i
++)
464 values
[i
] = v
>> (8*(i
%3));
469 static int read_pwr_cal_values(struct zd_chip
*chip
)
471 return read_values(chip
, chip
->pwr_cal_values
,
472 E2P_CHANNEL_COUNT
, E2P_PWR_CAL_VALUE1
,
476 static int read_pwr_int_values(struct zd_chip
*chip
)
478 return read_values(chip
, chip
->pwr_int_values
,
479 E2P_CHANNEL_COUNT
, E2P_PWR_INT_VALUE1
,
483 static int read_ofdm_cal_values(struct zd_chip
*chip
)
487 static const zd_addr_t addresses
[] = {
493 for (i
= 0; i
< 3; i
++) {
494 r
= read_values(chip
, chip
->ofdm_cal_values
[i
],
495 E2P_CHANNEL_COUNT
, addresses
[i
], 0);
502 static int read_cal_int_tables(struct zd_chip
*chip
)
506 r
= read_pwr_cal_values(chip
);
509 r
= read_pwr_int_values(chip
);
512 r
= read_ofdm_cal_values(chip
);
518 /* phy means physical registers */
519 int zd_chip_lock_phy_regs(struct zd_chip
*chip
)
524 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
525 r
= zd_ioread32_locked(chip
, &tmp
, CR_REG1
);
527 dev_err(zd_chip_dev(chip
), "error ioread32(CR_REG1): %d\n", r
);
531 tmp
&= ~UNLOCK_PHY_REGS
;
533 r
= zd_iowrite32_locked(chip
, tmp
, CR_REG1
);
535 dev_err(zd_chip_dev(chip
), "error iowrite32(CR_REG1): %d\n", r
);
539 int zd_chip_unlock_phy_regs(struct zd_chip
*chip
)
544 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
545 r
= zd_ioread32_locked(chip
, &tmp
, CR_REG1
);
547 dev_err(zd_chip_dev(chip
),
548 "error ioread32(CR_REG1): %d\n", r
);
552 tmp
|= UNLOCK_PHY_REGS
;
554 r
= zd_iowrite32_locked(chip
, tmp
, CR_REG1
);
556 dev_err(zd_chip_dev(chip
), "error iowrite32(CR_REG1): %d\n", r
);
560 /* ZD_CR157 can be optionally patched by the EEPROM for original ZD1211 */
561 static int patch_cr157(struct zd_chip
*chip
)
566 if (!chip
->patch_cr157
)
569 r
= zd_ioread16_locked(chip
, &value
, E2P_PHY_REG
);
573 dev_dbg_f(zd_chip_dev(chip
), "patching value %x\n", value
>> 8);
574 return zd_iowrite32_locked(chip
, value
>> 8, ZD_CR157
);
578 * 6M band edge can be optionally overwritten for certain RF's
579 * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
580 * bit (for AL2230, AL2230S)
582 static int patch_6m_band_edge(struct zd_chip
*chip
, u8 channel
)
584 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
585 if (!chip
->patch_6m_band_edge
)
588 return zd_rf_patch_6m_band_edge(&chip
->rf
, channel
);
591 /* Generic implementation of 6M band edge patching, used by most RFs via
592 * zd_rf_generic_patch_6m() */
593 int zd_chip_generic_patch_6m_band(struct zd_chip
*chip
, int channel
)
595 struct zd_ioreq16 ioreqs
[] = {
596 { ZD_CR128
, 0x14 }, { ZD_CR129
, 0x12 }, { ZD_CR130
, 0x10 },
600 /* FIXME: Channel 11 is not the edge for all regulatory domains. */
601 if (channel
== 1 || channel
== 11)
602 ioreqs
[0].value
= 0x12;
604 dev_dbg_f(zd_chip_dev(chip
), "patching for channel %d\n", channel
);
605 return zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
608 static int zd1211_hw_reset_phy(struct zd_chip
*chip
)
610 static const struct zd_ioreq16 ioreqs
[] = {
611 { ZD_CR0
, 0x0a }, { ZD_CR1
, 0x06 }, { ZD_CR2
, 0x26 },
612 { ZD_CR3
, 0x38 }, { ZD_CR4
, 0x80 }, { ZD_CR9
, 0xa0 },
613 { ZD_CR10
, 0x81 }, { ZD_CR11
, 0x00 }, { ZD_CR12
, 0x7f },
614 { ZD_CR13
, 0x8c }, { ZD_CR14
, 0x80 }, { ZD_CR15
, 0x3d },
615 { ZD_CR16
, 0x20 }, { ZD_CR17
, 0x1e }, { ZD_CR18
, 0x0a },
616 { ZD_CR19
, 0x48 }, { ZD_CR20
, 0x0c }, { ZD_CR21
, 0x0c },
617 { ZD_CR22
, 0x23 }, { ZD_CR23
, 0x90 }, { ZD_CR24
, 0x14 },
618 { ZD_CR25
, 0x40 }, { ZD_CR26
, 0x10 }, { ZD_CR27
, 0x19 },
619 { ZD_CR28
, 0x7f }, { ZD_CR29
, 0x80 }, { ZD_CR30
, 0x4b },
620 { ZD_CR31
, 0x60 }, { ZD_CR32
, 0x43 }, { ZD_CR33
, 0x08 },
621 { ZD_CR34
, 0x06 }, { ZD_CR35
, 0x0a }, { ZD_CR36
, 0x00 },
622 { ZD_CR37
, 0x00 }, { ZD_CR38
, 0x38 }, { ZD_CR39
, 0x0c },
623 { ZD_CR40
, 0x84 }, { ZD_CR41
, 0x2a }, { ZD_CR42
, 0x80 },
624 { ZD_CR43
, 0x10 }, { ZD_CR44
, 0x12 }, { ZD_CR46
, 0xff },
625 { ZD_CR47
, 0x1E }, { ZD_CR48
, 0x26 }, { ZD_CR49
, 0x5b },
626 { ZD_CR64
, 0xd0 }, { ZD_CR65
, 0x04 }, { ZD_CR66
, 0x58 },
627 { ZD_CR67
, 0xc9 }, { ZD_CR68
, 0x88 }, { ZD_CR69
, 0x41 },
628 { ZD_CR70
, 0x23 }, { ZD_CR71
, 0x10 }, { ZD_CR72
, 0xff },
629 { ZD_CR73
, 0x32 }, { ZD_CR74
, 0x30 }, { ZD_CR75
, 0x65 },
630 { ZD_CR76
, 0x41 }, { ZD_CR77
, 0x1b }, { ZD_CR78
, 0x30 },
631 { ZD_CR79
, 0x68 }, { ZD_CR80
, 0x64 }, { ZD_CR81
, 0x64 },
632 { ZD_CR82
, 0x00 }, { ZD_CR83
, 0x00 }, { ZD_CR84
, 0x00 },
633 { ZD_CR85
, 0x02 }, { ZD_CR86
, 0x00 }, { ZD_CR87
, 0x00 },
634 { ZD_CR88
, 0xff }, { ZD_CR89
, 0xfc }, { ZD_CR90
, 0x00 },
635 { ZD_CR91
, 0x00 }, { ZD_CR92
, 0x00 }, { ZD_CR93
, 0x08 },
636 { ZD_CR94
, 0x00 }, { ZD_CR95
, 0x00 }, { ZD_CR96
, 0xff },
637 { ZD_CR97
, 0xe7 }, { ZD_CR98
, 0x00 }, { ZD_CR99
, 0x00 },
638 { ZD_CR100
, 0x00 }, { ZD_CR101
, 0xae }, { ZD_CR102
, 0x02 },
639 { ZD_CR103
, 0x00 }, { ZD_CR104
, 0x03 }, { ZD_CR105
, 0x65 },
640 { ZD_CR106
, 0x04 }, { ZD_CR107
, 0x00 }, { ZD_CR108
, 0x0a },
641 { ZD_CR109
, 0xaa }, { ZD_CR110
, 0xaa }, { ZD_CR111
, 0x25 },
642 { ZD_CR112
, 0x25 }, { ZD_CR113
, 0x00 }, { ZD_CR119
, 0x1e },
643 { ZD_CR125
, 0x90 }, { ZD_CR126
, 0x00 }, { ZD_CR127
, 0x00 },
645 { ZD_CR5
, 0x00 }, { ZD_CR6
, 0x00 }, { ZD_CR7
, 0x00 },
646 { ZD_CR8
, 0x00 }, { ZD_CR9
, 0x20 }, { ZD_CR12
, 0xf0 },
647 { ZD_CR20
, 0x0e }, { ZD_CR21
, 0x0e }, { ZD_CR27
, 0x10 },
648 { ZD_CR44
, 0x33 }, { ZD_CR47
, 0x1E }, { ZD_CR83
, 0x24 },
649 { ZD_CR84
, 0x04 }, { ZD_CR85
, 0x00 }, { ZD_CR86
, 0x0C },
650 { ZD_CR87
, 0x12 }, { ZD_CR88
, 0x0C }, { ZD_CR89
, 0x00 },
651 { ZD_CR90
, 0x10 }, { ZD_CR91
, 0x08 }, { ZD_CR93
, 0x00 },
652 { ZD_CR94
, 0x01 }, { ZD_CR95
, 0x00 }, { ZD_CR96
, 0x50 },
653 { ZD_CR97
, 0x37 }, { ZD_CR98
, 0x35 }, { ZD_CR101
, 0x13 },
654 { ZD_CR102
, 0x27 }, { ZD_CR103
, 0x27 }, { ZD_CR104
, 0x18 },
655 { ZD_CR105
, 0x12 }, { ZD_CR109
, 0x27 }, { ZD_CR110
, 0x27 },
656 { ZD_CR111
, 0x27 }, { ZD_CR112
, 0x27 }, { ZD_CR113
, 0x27 },
657 { ZD_CR114
, 0x27 }, { ZD_CR115
, 0x26 }, { ZD_CR116
, 0x24 },
658 { ZD_CR117
, 0xfc }, { ZD_CR118
, 0xfa }, { ZD_CR120
, 0x4f },
659 { ZD_CR125
, 0xaa }, { ZD_CR127
, 0x03 }, { ZD_CR128
, 0x14 },
660 { ZD_CR129
, 0x12 }, { ZD_CR130
, 0x10 }, { ZD_CR131
, 0x0C },
661 { ZD_CR136
, 0xdf }, { ZD_CR137
, 0x40 }, { ZD_CR138
, 0xa0 },
662 { ZD_CR139
, 0xb0 }, { ZD_CR140
, 0x99 }, { ZD_CR141
, 0x82 },
663 { ZD_CR142
, 0x54 }, { ZD_CR143
, 0x1c }, { ZD_CR144
, 0x6c },
664 { ZD_CR147
, 0x07 }, { ZD_CR148
, 0x4c }, { ZD_CR149
, 0x50 },
665 { ZD_CR150
, 0x0e }, { ZD_CR151
, 0x18 }, { ZD_CR160
, 0xfe },
666 { ZD_CR161
, 0xee }, { ZD_CR162
, 0xaa }, { ZD_CR163
, 0xfa },
667 { ZD_CR164
, 0xfa }, { ZD_CR165
, 0xea }, { ZD_CR166
, 0xbe },
668 { ZD_CR167
, 0xbe }, { ZD_CR168
, 0x6a }, { ZD_CR169
, 0xba },
669 { ZD_CR170
, 0xba }, { ZD_CR171
, 0xba },
670 /* Note: ZD_CR204 must lead the ZD_CR203 */
678 dev_dbg_f(zd_chip_dev(chip
), "\n");
680 r
= zd_chip_lock_phy_regs(chip
);
684 r
= zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
688 r
= patch_cr157(chip
);
690 t
= zd_chip_unlock_phy_regs(chip
);
697 static int zd1211b_hw_reset_phy(struct zd_chip
*chip
)
699 static const struct zd_ioreq16 ioreqs
[] = {
700 { ZD_CR0
, 0x14 }, { ZD_CR1
, 0x06 }, { ZD_CR2
, 0x26 },
701 { ZD_CR3
, 0x38 }, { ZD_CR4
, 0x80 }, { ZD_CR9
, 0xe0 },
703 /* power control { { ZD_CR11, 1 << 6 }, */
705 { ZD_CR12
, 0xf0 }, { ZD_CR13
, 0x8c }, { ZD_CR14
, 0x80 },
706 { ZD_CR15
, 0x3d }, { ZD_CR16
, 0x20 }, { ZD_CR17
, 0x1e },
707 { ZD_CR18
, 0x0a }, { ZD_CR19
, 0x48 },
708 { ZD_CR20
, 0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
709 { ZD_CR21
, 0x0e }, { ZD_CR22
, 0x23 }, { ZD_CR23
, 0x90 },
710 { ZD_CR24
, 0x14 }, { ZD_CR25
, 0x40 }, { ZD_CR26
, 0x10 },
711 { ZD_CR27
, 0x10 }, { ZD_CR28
, 0x7f }, { ZD_CR29
, 0x80 },
712 { ZD_CR30
, 0x4b }, /* ASIC/FWT, no jointly decoder */
713 { ZD_CR31
, 0x60 }, { ZD_CR32
, 0x43 }, { ZD_CR33
, 0x08 },
714 { ZD_CR34
, 0x06 }, { ZD_CR35
, 0x0a }, { ZD_CR36
, 0x00 },
715 { ZD_CR37
, 0x00 }, { ZD_CR38
, 0x38 }, { ZD_CR39
, 0x0c },
716 { ZD_CR40
, 0x84 }, { ZD_CR41
, 0x2a }, { ZD_CR42
, 0x80 },
717 { ZD_CR43
, 0x10 }, { ZD_CR44
, 0x33 }, { ZD_CR46
, 0xff },
718 { ZD_CR47
, 0x1E }, { ZD_CR48
, 0x26 }, { ZD_CR49
, 0x5b },
719 { ZD_CR64
, 0xd0 }, { ZD_CR65
, 0x04 }, { ZD_CR66
, 0x58 },
720 { ZD_CR67
, 0xc9 }, { ZD_CR68
, 0x88 }, { ZD_CR69
, 0x41 },
721 { ZD_CR70
, 0x23 }, { ZD_CR71
, 0x10 }, { ZD_CR72
, 0xff },
722 { ZD_CR73
, 0x32 }, { ZD_CR74
, 0x30 }, { ZD_CR75
, 0x65 },
723 { ZD_CR76
, 0x41 }, { ZD_CR77
, 0x1b }, { ZD_CR78
, 0x30 },
724 { ZD_CR79
, 0xf0 }, { ZD_CR80
, 0x64 }, { ZD_CR81
, 0x64 },
725 { ZD_CR82
, 0x00 }, { ZD_CR83
, 0x24 }, { ZD_CR84
, 0x04 },
726 { ZD_CR85
, 0x00 }, { ZD_CR86
, 0x0c }, { ZD_CR87
, 0x12 },
727 { ZD_CR88
, 0x0c }, { ZD_CR89
, 0x00 }, { ZD_CR90
, 0x58 },
728 { ZD_CR91
, 0x04 }, { ZD_CR92
, 0x00 }, { ZD_CR93
, 0x00 },
730 { ZD_CR95
, 0x20 }, /* ZD1211B */
731 { ZD_CR96
, 0x50 }, { ZD_CR97
, 0x37 }, { ZD_CR98
, 0x35 },
732 { ZD_CR99
, 0x00 }, { ZD_CR100
, 0x01 }, { ZD_CR101
, 0x13 },
733 { ZD_CR102
, 0x27 }, { ZD_CR103
, 0x27 }, { ZD_CR104
, 0x18 },
734 { ZD_CR105
, 0x12 }, { ZD_CR106
, 0x04 }, { ZD_CR107
, 0x00 },
735 { ZD_CR108
, 0x0a }, { ZD_CR109
, 0x27 }, { ZD_CR110
, 0x27 },
736 { ZD_CR111
, 0x27 }, { ZD_CR112
, 0x27 }, { ZD_CR113
, 0x27 },
737 { ZD_CR114
, 0x27 }, { ZD_CR115
, 0x26 }, { ZD_CR116
, 0x24 },
738 { ZD_CR117
, 0xfc }, { ZD_CR118
, 0xfa }, { ZD_CR119
, 0x1e },
739 { ZD_CR125
, 0x90 }, { ZD_CR126
, 0x00 }, { ZD_CR127
, 0x00 },
740 { ZD_CR128
, 0x14 }, { ZD_CR129
, 0x12 }, { ZD_CR130
, 0x10 },
741 { ZD_CR131
, 0x0c }, { ZD_CR136
, 0xdf }, { ZD_CR137
, 0xa0 },
742 { ZD_CR138
, 0xa8 }, { ZD_CR139
, 0xb4 }, { ZD_CR140
, 0x98 },
743 { ZD_CR141
, 0x82 }, { ZD_CR142
, 0x53 }, { ZD_CR143
, 0x1c },
744 { ZD_CR144
, 0x6c }, { ZD_CR147
, 0x07 }, { ZD_CR148
, 0x40 },
745 { ZD_CR149
, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
746 { ZD_CR150
, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
747 { ZD_CR151
, 0x18 }, { ZD_CR159
, 0x70 }, { ZD_CR160
, 0xfe },
748 { ZD_CR161
, 0xee }, { ZD_CR162
, 0xaa }, { ZD_CR163
, 0xfa },
749 { ZD_CR164
, 0xfa }, { ZD_CR165
, 0xea }, { ZD_CR166
, 0xbe },
750 { ZD_CR167
, 0xbe }, { ZD_CR168
, 0x6a }, { ZD_CR169
, 0xba },
751 { ZD_CR170
, 0xba }, { ZD_CR171
, 0xba },
752 /* Note: ZD_CR204 must lead the ZD_CR203 */
760 dev_dbg_f(zd_chip_dev(chip
), "\n");
762 r
= zd_chip_lock_phy_regs(chip
);
766 r
= zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
767 t
= zd_chip_unlock_phy_regs(chip
);
774 static int hw_reset_phy(struct zd_chip
*chip
)
776 return zd_chip_is_zd1211b(chip
) ? zd1211b_hw_reset_phy(chip
) :
777 zd1211_hw_reset_phy(chip
);
780 static int zd1211_hw_init_hmac(struct zd_chip
*chip
)
782 static const struct zd_ioreq32 ioreqs
[] = {
783 { CR_ZD1211_RETRY_MAX
, ZD1211_RETRY_COUNT
},
784 { CR_RX_THRESHOLD
, 0x000c0640 },
787 dev_dbg_f(zd_chip_dev(chip
), "\n");
788 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
789 return zd_iowrite32a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
792 static int zd1211b_hw_init_hmac(struct zd_chip
*chip
)
794 static const struct zd_ioreq32 ioreqs
[] = {
795 { CR_ZD1211B_RETRY_MAX
, ZD1211B_RETRY_COUNT
},
796 { CR_ZD1211B_CWIN_MAX_MIN_AC0
, 0x007f003f },
797 { CR_ZD1211B_CWIN_MAX_MIN_AC1
, 0x007f003f },
798 { CR_ZD1211B_CWIN_MAX_MIN_AC2
, 0x003f001f },
799 { CR_ZD1211B_CWIN_MAX_MIN_AC3
, 0x001f000f },
800 { CR_ZD1211B_AIFS_CTL1
, 0x00280028 },
801 { CR_ZD1211B_AIFS_CTL2
, 0x008C003C },
802 { CR_ZD1211B_TXOP
, 0x01800824 },
803 { CR_RX_THRESHOLD
, 0x000c0eff, },
806 dev_dbg_f(zd_chip_dev(chip
), "\n");
807 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
808 return zd_iowrite32a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
811 static int hw_init_hmac(struct zd_chip
*chip
)
814 static const struct zd_ioreq32 ioreqs
[] = {
815 { CR_ACK_TIMEOUT_EXT
, 0x20 },
816 { CR_ADDA_MBIAS_WARMTIME
, 0x30000808 },
817 { CR_SNIFFER_ON
, 0 },
818 { CR_RX_FILTER
, STA_RX_FILTER
},
819 { CR_GROUP_HASH_P1
, 0x00 },
820 { CR_GROUP_HASH_P2
, 0x80000000 },
822 { CR_ADDA_PWR_DWN
, 0x7f },
823 { CR_BCN_PLCP_CFG
, 0x00f00401 },
824 { CR_PHY_DELAY
, 0x00 },
825 { CR_ACK_TIMEOUT_EXT
, 0x80 },
826 { CR_ADDA_PWR_DWN
, 0x00 },
827 { CR_ACK_TIME_80211
, 0x100 },
828 { CR_RX_PE_DELAY
, 0x70 },
829 { CR_PS_CTRL
, 0x10000000 },
830 { CR_RTS_CTS_RATE
, 0x02030203 },
831 { CR_AFTER_PNP
, 0x1 },
832 { CR_WEP_PROTECT
, 0x114 },
833 { CR_IFS_VALUE
, IFS_VALUE_DEFAULT
},
834 { CR_CAM_MODE
, MODE_AP_WDS
},
837 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
838 r
= zd_iowrite32a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
842 return zd_chip_is_zd1211b(chip
) ?
843 zd1211b_hw_init_hmac(chip
) : zd1211_hw_init_hmac(chip
);
852 static int get_aw_pt_bi(struct zd_chip
*chip
, struct aw_pt_bi
*s
)
855 static const zd_addr_t aw_pt_bi_addr
[] =
856 { CR_ATIM_WND_PERIOD
, CR_PRE_TBTT
, CR_BCN_INTERVAL
};
859 r
= zd_ioread32v_locked(chip
, values
, (const zd_addr_t
*)aw_pt_bi_addr
,
860 ARRAY_SIZE(aw_pt_bi_addr
));
862 memset(s
, 0, sizeof(*s
));
866 s
->atim_wnd_period
= values
[0];
867 s
->pre_tbtt
= values
[1];
868 s
->beacon_interval
= values
[2];
872 static int set_aw_pt_bi(struct zd_chip
*chip
, struct aw_pt_bi
*s
)
874 struct zd_ioreq32 reqs
[3];
875 u16 b_interval
= s
->beacon_interval
& 0xffff;
879 if (s
->pre_tbtt
< 4 || s
->pre_tbtt
>= b_interval
)
880 s
->pre_tbtt
= b_interval
- 1;
881 if (s
->atim_wnd_period
>= s
->pre_tbtt
)
882 s
->atim_wnd_period
= s
->pre_tbtt
- 1;
884 reqs
[0].addr
= CR_ATIM_WND_PERIOD
;
885 reqs
[0].value
= s
->atim_wnd_period
;
886 reqs
[1].addr
= CR_PRE_TBTT
;
887 reqs
[1].value
= s
->pre_tbtt
;
888 reqs
[2].addr
= CR_BCN_INTERVAL
;
889 reqs
[2].value
= (s
->beacon_interval
& ~0xffff) | b_interval
;
891 return zd_iowrite32a_locked(chip
, reqs
, ARRAY_SIZE(reqs
));
895 static int set_beacon_interval(struct zd_chip
*chip
, u16 interval
,
896 u8 dtim_period
, int type
)
900 u32 b_interval
, mode_flag
;
902 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
906 case NL80211_IFTYPE_ADHOC
:
907 case NL80211_IFTYPE_MESH_POINT
:
908 mode_flag
= BCN_MODE_IBSS
;
910 case NL80211_IFTYPE_AP
:
911 mode_flag
= BCN_MODE_AP
;
922 b_interval
= mode_flag
| (dtim_period
<< 16) | interval
;
924 r
= zd_iowrite32_locked(chip
, b_interval
, CR_BCN_INTERVAL
);
927 r
= get_aw_pt_bi(chip
, &s
);
930 return set_aw_pt_bi(chip
, &s
);
933 int zd_set_beacon_interval(struct zd_chip
*chip
, u16 interval
, u8 dtim_period
,
938 mutex_lock(&chip
->mutex
);
939 r
= set_beacon_interval(chip
, interval
, dtim_period
, type
);
940 mutex_unlock(&chip
->mutex
);
944 static int hw_init(struct zd_chip
*chip
)
948 dev_dbg_f(zd_chip_dev(chip
), "\n");
949 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
950 r
= hw_reset_phy(chip
);
954 r
= hw_init_hmac(chip
);
958 return set_beacon_interval(chip
, 100, 0, NL80211_IFTYPE_UNSPECIFIED
);
961 static zd_addr_t
fw_reg_addr(struct zd_chip
*chip
, u16 offset
)
963 return (zd_addr_t
)((u16
)chip
->fw_regs_base
+ offset
);
967 static int dump_cr(struct zd_chip
*chip
, const zd_addr_t addr
,
968 const char *addr_string
)
973 r
= zd_ioread32_locked(chip
, &value
, addr
);
975 dev_dbg_f(zd_chip_dev(chip
),
976 "error reading %s. Error number %d\n", addr_string
, r
);
980 dev_dbg_f(zd_chip_dev(chip
), "%s %#010x\n",
981 addr_string
, (unsigned int)value
);
985 static int test_init(struct zd_chip
*chip
)
989 r
= dump_cr(chip
, CR_AFTER_PNP
, "CR_AFTER_PNP");
992 r
= dump_cr(chip
, CR_GPI_EN
, "CR_GPI_EN");
995 return dump_cr(chip
, CR_INTERRUPT
, "CR_INTERRUPT");
998 static void dump_fw_registers(struct zd_chip
*chip
)
1000 const zd_addr_t addr
[4] = {
1001 fw_reg_addr(chip
, FW_REG_FIRMWARE_VER
),
1002 fw_reg_addr(chip
, FW_REG_USB_SPEED
),
1003 fw_reg_addr(chip
, FW_REG_FIX_TX_RATE
),
1004 fw_reg_addr(chip
, FW_REG_LED_LINK_STATUS
),
1010 r
= zd_ioread16v_locked(chip
, values
, (const zd_addr_t
*)addr
,
1013 dev_dbg_f(zd_chip_dev(chip
), "error %d zd_ioread16v_locked\n",
1018 dev_dbg_f(zd_chip_dev(chip
), "FW_FIRMWARE_VER %#06hx\n", values
[0]);
1019 dev_dbg_f(zd_chip_dev(chip
), "FW_USB_SPEED %#06hx\n", values
[1]);
1020 dev_dbg_f(zd_chip_dev(chip
), "FW_FIX_TX_RATE %#06hx\n", values
[2]);
1021 dev_dbg_f(zd_chip_dev(chip
), "FW_LINK_STATUS %#06hx\n", values
[3]);
1025 static int print_fw_version(struct zd_chip
*chip
)
1027 struct wiphy
*wiphy
= zd_chip_to_mac(chip
)->hw
->wiphy
;
1031 r
= zd_ioread16_locked(chip
, &version
,
1032 fw_reg_addr(chip
, FW_REG_FIRMWARE_VER
));
1036 dev_info(zd_chip_dev(chip
),"firmware version %04hx\n", version
);
1038 snprintf(wiphy
->fw_version
, sizeof(wiphy
->fw_version
),
1044 static int set_mandatory_rates(struct zd_chip
*chip
, int gmode
)
1047 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
1048 /* This sets the mandatory rates, which only depend from the standard
1049 * that the device is supporting. Until further notice we should try
1050 * to support 802.11g also for full speed USB.
1053 rates
= CR_RATE_1M
|CR_RATE_2M
|CR_RATE_5_5M
|CR_RATE_11M
;
1055 rates
= CR_RATE_1M
|CR_RATE_2M
|CR_RATE_5_5M
|CR_RATE_11M
|
1056 CR_RATE_6M
|CR_RATE_12M
|CR_RATE_24M
;
1058 return zd_iowrite32_locked(chip
, rates
, CR_MANDATORY_RATE_TBL
);
1061 int zd_chip_set_rts_cts_rate_locked(struct zd_chip
*chip
,
1066 dev_dbg_f(zd_chip_dev(chip
), "preamble=%x\n", preamble
);
1067 value
|= preamble
<< RTSCTS_SH_RTS_PMB_TYPE
;
1068 value
|= preamble
<< RTSCTS_SH_CTS_PMB_TYPE
;
1070 /* We always send 11M RTS/self-CTS messages, like the vendor driver. */
1071 value
|= ZD_PURE_RATE(ZD_CCK_RATE_11M
) << RTSCTS_SH_RTS_RATE
;
1072 value
|= ZD_RX_CCK
<< RTSCTS_SH_RTS_MOD_TYPE
;
1073 value
|= ZD_PURE_RATE(ZD_CCK_RATE_11M
) << RTSCTS_SH_CTS_RATE
;
1074 value
|= ZD_RX_CCK
<< RTSCTS_SH_CTS_MOD_TYPE
;
1076 return zd_iowrite32_locked(chip
, value
, CR_RTS_CTS_RATE
);
1079 int zd_chip_enable_hwint(struct zd_chip
*chip
)
1083 mutex_lock(&chip
->mutex
);
1084 r
= zd_iowrite32_locked(chip
, HWINT_ENABLED
, CR_INTERRUPT
);
1085 mutex_unlock(&chip
->mutex
);
1089 static int disable_hwint(struct zd_chip
*chip
)
1091 return zd_iowrite32_locked(chip
, HWINT_DISABLED
, CR_INTERRUPT
);
1094 int zd_chip_disable_hwint(struct zd_chip
*chip
)
1098 mutex_lock(&chip
->mutex
);
1099 r
= disable_hwint(chip
);
1100 mutex_unlock(&chip
->mutex
);
1104 static int read_fw_regs_offset(struct zd_chip
*chip
)
1108 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
1109 r
= zd_ioread16_locked(chip
, (u16
*)&chip
->fw_regs_base
,
1113 dev_dbg_f(zd_chip_dev(chip
), "fw_regs_base: %#06hx\n",
1114 (u16
)chip
->fw_regs_base
);
1119 /* Read mac address using pre-firmware interface */
1120 int zd_chip_read_mac_addr_fw(struct zd_chip
*chip
, u8
*addr
)
1122 dev_dbg_f(zd_chip_dev(chip
), "\n");
1123 return zd_usb_read_fw(&chip
->usb
, E2P_MAC_ADDR_P1
, addr
,
1127 int zd_chip_init_hw(struct zd_chip
*chip
)
1132 dev_dbg_f(zd_chip_dev(chip
), "\n");
1134 mutex_lock(&chip
->mutex
);
1137 r
= test_init(chip
);
1141 r
= zd_iowrite32_locked(chip
, 1, CR_AFTER_PNP
);
1145 r
= read_fw_regs_offset(chip
);
1149 /* GPI is always disabled, also in the other driver.
1151 r
= zd_iowrite32_locked(chip
, 0, CR_GPI_EN
);
1154 r
= zd_iowrite32_locked(chip
, CWIN_SIZE
, CR_CWMIN_CWMAX
);
1157 /* Currently we support IEEE 802.11g for full and high speed USB.
1158 * It might be discussed, whether we should support pure b mode for
1161 r
= set_mandatory_rates(chip
, 1);
1164 /* Disabling interrupts is certainly a smart thing here.
1166 r
= disable_hwint(chip
);
1169 r
= read_pod(chip
, &rf_type
);
1175 r
= zd_rf_init_hw(&chip
->rf
, rf_type
);
1179 r
= print_fw_version(chip
);
1184 dump_fw_registers(chip
);
1185 r
= test_init(chip
);
1190 r
= read_cal_int_tables(chip
);
1196 mutex_unlock(&chip
->mutex
);
1200 static int update_pwr_int(struct zd_chip
*chip
, u8 channel
)
1202 u8 value
= chip
->pwr_int_values
[channel
- 1];
1203 return zd_iowrite16_locked(chip
, value
, ZD_CR31
);
1206 static int update_pwr_cal(struct zd_chip
*chip
, u8 channel
)
1208 u8 value
= chip
->pwr_cal_values
[channel
-1];
1209 return zd_iowrite16_locked(chip
, value
, ZD_CR68
);
1212 static int update_ofdm_cal(struct zd_chip
*chip
, u8 channel
)
1214 struct zd_ioreq16 ioreqs
[3];
1216 ioreqs
[0].addr
= ZD_CR67
;
1217 ioreqs
[0].value
= chip
->ofdm_cal_values
[OFDM_36M_INDEX
][channel
-1];
1218 ioreqs
[1].addr
= ZD_CR66
;
1219 ioreqs
[1].value
= chip
->ofdm_cal_values
[OFDM_48M_INDEX
][channel
-1];
1220 ioreqs
[2].addr
= ZD_CR65
;
1221 ioreqs
[2].value
= chip
->ofdm_cal_values
[OFDM_54M_INDEX
][channel
-1];
1223 return zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
1226 static int update_channel_integration_and_calibration(struct zd_chip
*chip
,
1231 if (!zd_rf_should_update_pwr_int(&chip
->rf
))
1234 r
= update_pwr_int(chip
, channel
);
1237 if (zd_chip_is_zd1211b(chip
)) {
1238 static const struct zd_ioreq16 ioreqs
[] = {
1244 r
= update_ofdm_cal(chip
, channel
);
1247 r
= update_pwr_cal(chip
, channel
);
1250 r
= zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
1258 /* The CCK baseband gain can be optionally patched by the EEPROM */
1259 static int patch_cck_gain(struct zd_chip
*chip
)
1264 if (!chip
->patch_cck_gain
|| !zd_rf_should_patch_cck_gain(&chip
->rf
))
1267 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
1268 r
= zd_ioread32_locked(chip
, &value
, E2P_PHY_REG
);
1271 dev_dbg_f(zd_chip_dev(chip
), "patching value %x\n", value
& 0xff);
1272 return zd_iowrite16_locked(chip
, value
& 0xff, ZD_CR47
);
1275 int zd_chip_set_channel(struct zd_chip
*chip
, u8 channel
)
1279 mutex_lock(&chip
->mutex
);
1280 r
= zd_chip_lock_phy_regs(chip
);
1283 r
= zd_rf_set_channel(&chip
->rf
, channel
);
1286 r
= update_channel_integration_and_calibration(chip
, channel
);
1289 r
= patch_cck_gain(chip
);
1292 r
= patch_6m_band_edge(chip
, channel
);
1295 r
= zd_iowrite32_locked(chip
, 0, CR_CONFIG_PHILIPS
);
1297 t
= zd_chip_unlock_phy_regs(chip
);
1301 mutex_unlock(&chip
->mutex
);
1305 u8
zd_chip_get_channel(struct zd_chip
*chip
)
1309 mutex_lock(&chip
->mutex
);
1310 channel
= chip
->rf
.channel
;
1311 mutex_unlock(&chip
->mutex
);
1315 int zd_chip_control_leds(struct zd_chip
*chip
, enum led_status status
)
1317 const zd_addr_t a
[] = {
1318 fw_reg_addr(chip
, FW_REG_LED_LINK_STATUS
),
1323 u16 v
[ARRAY_SIZE(a
)];
1324 struct zd_ioreq16 ioreqs
[ARRAY_SIZE(a
)] = {
1325 [0] = { fw_reg_addr(chip
, FW_REG_LED_LINK_STATUS
) },
1330 mutex_lock(&chip
->mutex
);
1331 r
= zd_ioread16v_locked(chip
, v
, (const zd_addr_t
*)a
, ARRAY_SIZE(a
));
1335 other_led
= chip
->link_led
== LED1
? LED2
: LED1
;
1339 ioreqs
[0].value
= FW_LINK_OFF
;
1340 ioreqs
[1].value
= v
[1] & ~(LED1
|LED2
);
1342 case ZD_LED_SCANNING
:
1343 ioreqs
[0].value
= FW_LINK_OFF
;
1344 ioreqs
[1].value
= v
[1] & ~other_led
;
1345 if (get_seconds() % 3 == 0) {
1346 ioreqs
[1].value
&= ~chip
->link_led
;
1348 ioreqs
[1].value
|= chip
->link_led
;
1351 case ZD_LED_ASSOCIATED
:
1352 ioreqs
[0].value
= FW_LINK_TX
;
1353 ioreqs
[1].value
= v
[1] & ~other_led
;
1354 ioreqs
[1].value
|= chip
->link_led
;
1361 if (v
[0] != ioreqs
[0].value
|| v
[1] != ioreqs
[1].value
) {
1362 r
= zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
1368 mutex_unlock(&chip
->mutex
);
1372 int zd_chip_set_basic_rates(struct zd_chip
*chip
, u16 cr_rates
)
1376 if (cr_rates
& ~(CR_RATES_80211B
|CR_RATES_80211G
))
1379 mutex_lock(&chip
->mutex
);
1380 r
= zd_iowrite32_locked(chip
, cr_rates
, CR_BASIC_RATE_TBL
);
1381 mutex_unlock(&chip
->mutex
);
1385 static inline u8
zd_rate_from_ofdm_plcp_header(const void *rx_frame
)
1387 return ZD_OFDM
| zd_ofdm_plcp_header_rate(rx_frame
);
1391 * zd_rx_rate - report zd-rate
1392 * @rx_frame - received frame
1393 * @rx_status - rx_status as given by the device
1395 * This function converts the rate as encoded in the received packet to the
1396 * zd-rate, we are using on other places in the driver.
1398 u8
zd_rx_rate(const void *rx_frame
, const struct rx_status
*status
)
1401 if (status
->frame_status
& ZD_RX_OFDM
) {
1402 zd_rate
= zd_rate_from_ofdm_plcp_header(rx_frame
);
1404 switch (zd_cck_plcp_header_signal(rx_frame
)) {
1405 case ZD_CCK_PLCP_SIGNAL_1M
:
1406 zd_rate
= ZD_CCK_RATE_1M
;
1408 case ZD_CCK_PLCP_SIGNAL_2M
:
1409 zd_rate
= ZD_CCK_RATE_2M
;
1411 case ZD_CCK_PLCP_SIGNAL_5M5
:
1412 zd_rate
= ZD_CCK_RATE_5_5M
;
1414 case ZD_CCK_PLCP_SIGNAL_11M
:
1415 zd_rate
= ZD_CCK_RATE_11M
;
1425 int zd_chip_switch_radio_on(struct zd_chip
*chip
)
1429 mutex_lock(&chip
->mutex
);
1430 r
= zd_switch_radio_on(&chip
->rf
);
1431 mutex_unlock(&chip
->mutex
);
1435 int zd_chip_switch_radio_off(struct zd_chip
*chip
)
1439 mutex_lock(&chip
->mutex
);
1440 r
= zd_switch_radio_off(&chip
->rf
);
1441 mutex_unlock(&chip
->mutex
);
1445 int zd_chip_enable_int(struct zd_chip
*chip
)
1449 mutex_lock(&chip
->mutex
);
1450 r
= zd_usb_enable_int(&chip
->usb
);
1451 mutex_unlock(&chip
->mutex
);
1455 void zd_chip_disable_int(struct zd_chip
*chip
)
1457 mutex_lock(&chip
->mutex
);
1458 zd_usb_disable_int(&chip
->usb
);
1459 mutex_unlock(&chip
->mutex
);
1461 /* cancel pending interrupt work */
1462 cancel_work_sync(&zd_chip_to_mac(chip
)->process_intr
);
1465 int zd_chip_enable_rxtx(struct zd_chip
*chip
)
1469 mutex_lock(&chip
->mutex
);
1470 zd_usb_enable_tx(&chip
->usb
);
1471 r
= zd_usb_enable_rx(&chip
->usb
);
1472 zd_tx_watchdog_enable(&chip
->usb
);
1473 mutex_unlock(&chip
->mutex
);
1477 void zd_chip_disable_rxtx(struct zd_chip
*chip
)
1479 mutex_lock(&chip
->mutex
);
1480 zd_tx_watchdog_disable(&chip
->usb
);
1481 zd_usb_disable_rx(&chip
->usb
);
1482 zd_usb_disable_tx(&chip
->usb
);
1483 mutex_unlock(&chip
->mutex
);
1486 int zd_rfwritev_locked(struct zd_chip
*chip
,
1487 const u32
* values
, unsigned int count
, u8 bits
)
1492 for (i
= 0; i
< count
; i
++) {
1493 r
= zd_rfwrite_locked(chip
, values
[i
], bits
);
1502 * We can optionally program the RF directly through CR regs, if supported by
1503 * the hardware. This is much faster than the older method.
1505 int zd_rfwrite_cr_locked(struct zd_chip
*chip
, u32 value
)
1507 const struct zd_ioreq16 ioreqs
[] = {
1508 { ZD_CR244
, (value
>> 16) & 0xff },
1509 { ZD_CR243
, (value
>> 8) & 0xff },
1510 { ZD_CR242
, value
& 0xff },
1512 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
1513 return zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
1516 int zd_rfwritev_cr_locked(struct zd_chip
*chip
,
1517 const u32
*values
, unsigned int count
)
1522 for (i
= 0; i
< count
; i
++) {
1523 r
= zd_rfwrite_cr_locked(chip
, values
[i
]);
1531 int zd_chip_set_multicast_hash(struct zd_chip
*chip
,
1532 struct zd_mc_hash
*hash
)
1534 const struct zd_ioreq32 ioreqs
[] = {
1535 { CR_GROUP_HASH_P1
, hash
->low
},
1536 { CR_GROUP_HASH_P2
, hash
->high
},
1539 return zd_iowrite32a(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
1542 u64
zd_chip_get_tsf(struct zd_chip
*chip
)
1545 static const zd_addr_t aw_pt_bi_addr
[] =
1546 { CR_TSF_LOW_PART
, CR_TSF_HIGH_PART
};
1550 mutex_lock(&chip
->mutex
);
1551 r
= zd_ioread32v_locked(chip
, values
, (const zd_addr_t
*)aw_pt_bi_addr
,
1552 ARRAY_SIZE(aw_pt_bi_addr
));
1553 mutex_unlock(&chip
->mutex
);
1558 tsf
= (tsf
<< 32) | values
[0];