1 /* ZD1211 USB-WLAN driver for Linux
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6 * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/usb.h>
27 #include <linux/jiffies.h>
28 #include <net/ieee80211_radiotap.h>
35 struct zd_reg_alpha2_map
{
40 static struct zd_reg_alpha2_map reg_alpha2_map
[] = {
41 { ZD_REGDOMAIN_FCC
, "US" },
42 { ZD_REGDOMAIN_IC
, "CA" },
43 { ZD_REGDOMAIN_ETSI
, "DE" }, /* Generic ETSI, use most restrictive */
44 { ZD_REGDOMAIN_JAPAN
, "JP" },
45 { ZD_REGDOMAIN_JAPAN_2
, "JP" },
46 { ZD_REGDOMAIN_JAPAN_3
, "JP" },
47 { ZD_REGDOMAIN_SPAIN
, "ES" },
48 { ZD_REGDOMAIN_FRANCE
, "FR" },
51 /* This table contains the hardware specific values for the modulation rates. */
52 static const struct ieee80211_rate zd_rates
[] = {
54 .hw_value
= ZD_CCK_RATE_1M
, },
56 .hw_value
= ZD_CCK_RATE_2M
,
57 .hw_value_short
= ZD_CCK_RATE_2M
| ZD_CCK_PREA_SHORT
,
58 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
60 .hw_value
= ZD_CCK_RATE_5_5M
,
61 .hw_value_short
= ZD_CCK_RATE_5_5M
| ZD_CCK_PREA_SHORT
,
62 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
64 .hw_value
= ZD_CCK_RATE_11M
,
65 .hw_value_short
= ZD_CCK_RATE_11M
| ZD_CCK_PREA_SHORT
,
66 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
68 .hw_value
= ZD_OFDM_RATE_6M
,
71 .hw_value
= ZD_OFDM_RATE_9M
,
74 .hw_value
= ZD_OFDM_RATE_12M
,
77 .hw_value
= ZD_OFDM_RATE_18M
,
80 .hw_value
= ZD_OFDM_RATE_24M
,
83 .hw_value
= ZD_OFDM_RATE_36M
,
86 .hw_value
= ZD_OFDM_RATE_48M
,
89 .hw_value
= ZD_OFDM_RATE_54M
,
94 * Zydas retry rates table. Each line is listed in the same order as
95 * in zd_rates[] and contains all the rate used when a packet is sent
96 * starting with a given rates. Let's consider an example :
98 * "11 Mbits : 4, 3, 2, 1, 0" means :
99 * - packet is sent using 4 different rates
100 * - 1st rate is index 3 (ie 11 Mbits)
101 * - 2nd rate is index 2 (ie 5.5 Mbits)
102 * - 3rd rate is index 1 (ie 2 Mbits)
103 * - 4th rate is index 0 (ie 1 Mbits)
106 static const struct tx_retry_rate zd_retry_rates
[] = {
107 { /* 1 Mbits */ 1, { 0 }},
108 { /* 2 Mbits */ 2, { 1, 0 }},
109 { /* 5.5 Mbits */ 3, { 2, 1, 0 }},
110 { /* 11 Mbits */ 4, { 3, 2, 1, 0 }},
111 { /* 6 Mbits */ 5, { 4, 3, 2, 1, 0 }},
112 { /* 9 Mbits */ 6, { 5, 4, 3, 2, 1, 0}},
113 { /* 12 Mbits */ 5, { 6, 3, 2, 1, 0 }},
114 { /* 18 Mbits */ 6, { 7, 6, 3, 2, 1, 0 }},
115 { /* 24 Mbits */ 6, { 8, 6, 3, 2, 1, 0 }},
116 { /* 36 Mbits */ 7, { 9, 8, 6, 3, 2, 1, 0 }},
117 { /* 48 Mbits */ 8, {10, 9, 8, 6, 3, 2, 1, 0 }},
118 { /* 54 Mbits */ 9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
121 static const struct ieee80211_channel zd_channels
[] = {
122 { .center_freq
= 2412, .hw_value
= 1 },
123 { .center_freq
= 2417, .hw_value
= 2 },
124 { .center_freq
= 2422, .hw_value
= 3 },
125 { .center_freq
= 2427, .hw_value
= 4 },
126 { .center_freq
= 2432, .hw_value
= 5 },
127 { .center_freq
= 2437, .hw_value
= 6 },
128 { .center_freq
= 2442, .hw_value
= 7 },
129 { .center_freq
= 2447, .hw_value
= 8 },
130 { .center_freq
= 2452, .hw_value
= 9 },
131 { .center_freq
= 2457, .hw_value
= 10 },
132 { .center_freq
= 2462, .hw_value
= 11 },
133 { .center_freq
= 2467, .hw_value
= 12 },
134 { .center_freq
= 2472, .hw_value
= 13 },
135 { .center_freq
= 2484, .hw_value
= 14 },
138 static void housekeeping_init(struct zd_mac
*mac
);
139 static void housekeeping_enable(struct zd_mac
*mac
);
140 static void housekeeping_disable(struct zd_mac
*mac
);
141 static void beacon_init(struct zd_mac
*mac
);
142 static void beacon_enable(struct zd_mac
*mac
);
143 static void beacon_disable(struct zd_mac
*mac
);
144 static void set_rts_cts(struct zd_mac
*mac
, unsigned int short_preamble
);
145 static int zd_mac_config_beacon(struct ieee80211_hw
*hw
,
146 struct sk_buff
*beacon
, bool in_intr
);
148 static int zd_reg2alpha2(u8 regdomain
, char *alpha2
)
151 struct zd_reg_alpha2_map
*reg_map
;
152 for (i
= 0; i
< ARRAY_SIZE(reg_alpha2_map
); i
++) {
153 reg_map
= ®_alpha2_map
[i
];
154 if (regdomain
== reg_map
->reg
) {
155 alpha2
[0] = reg_map
->alpha2
[0];
156 alpha2
[1] = reg_map
->alpha2
[1];
163 static int zd_check_signal(struct ieee80211_hw
*hw
, int signal
)
165 struct zd_mac
*mac
= zd_hw_mac(hw
);
167 dev_dbg_f_cond(zd_mac_dev(mac
), signal
< 0 || signal
> 100,
168 "%s: signal value from device not in range 0..100, "
169 "but %d.\n", __func__
, signal
);
173 else if (signal
> 100)
179 int zd_mac_preinit_hw(struct ieee80211_hw
*hw
)
183 struct zd_mac
*mac
= zd_hw_mac(hw
);
185 r
= zd_chip_read_mac_addr_fw(&mac
->chip
, addr
);
189 SET_IEEE80211_PERM_ADDR(hw
, addr
);
194 int zd_mac_init_hw(struct ieee80211_hw
*hw
)
197 struct zd_mac
*mac
= zd_hw_mac(hw
);
198 struct zd_chip
*chip
= &mac
->chip
;
200 u8 default_regdomain
;
202 r
= zd_chip_enable_int(chip
);
205 r
= zd_chip_init_hw(chip
);
209 ZD_ASSERT(!irqs_disabled());
211 r
= zd_read_regdomain(chip
, &default_regdomain
);
214 spin_lock_irq(&mac
->lock
);
215 mac
->regdomain
= mac
->default_regdomain
= default_regdomain
;
216 spin_unlock_irq(&mac
->lock
);
218 /* We must inform the device that we are doing encryption/decryption in
219 * software at the moment. */
220 r
= zd_set_encryption_type(chip
, ENC_SNIFFER
);
224 r
= zd_reg2alpha2(mac
->regdomain
, alpha2
);
228 r
= regulatory_hint(hw
->wiphy
, alpha2
);
230 zd_chip_disable_int(chip
);
235 void zd_mac_clear(struct zd_mac
*mac
)
237 flush_workqueue(zd_workqueue
);
238 zd_chip_clear(&mac
->chip
);
239 ZD_ASSERT(!spin_is_locked(&mac
->lock
));
240 ZD_MEMCLEAR(mac
, sizeof(struct zd_mac
));
243 static int set_rx_filter(struct zd_mac
*mac
)
246 u32 filter
= STA_RX_FILTER
;
248 spin_lock_irqsave(&mac
->lock
, flags
);
250 filter
|= RX_FILTER_CTRL
;
251 spin_unlock_irqrestore(&mac
->lock
, flags
);
253 return zd_iowrite32(&mac
->chip
, CR_RX_FILTER
, filter
);
256 static int set_mac_and_bssid(struct zd_mac
*mac
)
263 r
= zd_write_mac_addr(&mac
->chip
, mac
->vif
->addr
);
267 /* Vendor driver after setting MAC either sets BSSID for AP or
268 * filter for other modes.
270 if (mac
->type
!= NL80211_IFTYPE_AP
)
271 return set_rx_filter(mac
);
273 return zd_write_bssid(&mac
->chip
, mac
->vif
->addr
);
276 static int set_mc_hash(struct zd_mac
*mac
)
278 struct zd_mc_hash hash
;
280 return zd_chip_set_multicast_hash(&mac
->chip
, &hash
);
283 int zd_op_start(struct ieee80211_hw
*hw
)
285 struct zd_mac
*mac
= zd_hw_mac(hw
);
286 struct zd_chip
*chip
= &mac
->chip
;
287 struct zd_usb
*usb
= &chip
->usb
;
290 if (!usb
->initialized
) {
291 r
= zd_usb_init_hw(usb
);
296 r
= zd_chip_enable_int(chip
);
300 r
= zd_chip_set_basic_rates(chip
, CR_RATES_80211B
| CR_RATES_80211G
);
303 r
= set_rx_filter(mac
);
306 r
= set_mc_hash(mac
);
310 /* Wait after setting the multicast hash table and powering on
311 * the radio otherwise interface bring up will fail. This matches
312 * what the vendor driver did.
316 r
= zd_chip_switch_radio_on(chip
);
318 dev_err(zd_chip_dev(chip
),
319 "%s: failed to set radio on\n", __func__
);
322 r
= zd_chip_enable_rxtx(chip
);
325 r
= zd_chip_enable_hwint(chip
);
329 housekeeping_enable(mac
);
331 set_bit(ZD_DEVICE_RUNNING
, &mac
->flags
);
334 zd_chip_disable_rxtx(chip
);
336 zd_chip_switch_radio_off(chip
);
338 zd_chip_disable_int(chip
);
343 void zd_op_stop(struct ieee80211_hw
*hw
)
345 struct zd_mac
*mac
= zd_hw_mac(hw
);
346 struct zd_chip
*chip
= &mac
->chip
;
348 struct sk_buff_head
*ack_wait_queue
= &mac
->ack_wait_queue
;
350 clear_bit(ZD_DEVICE_RUNNING
, &mac
->flags
);
352 /* The order here deliberately is a little different from the open()
353 * method, since we need to make sure there is no opportunity for RX
354 * frames to be processed by mac80211 after we have stopped it.
357 zd_chip_disable_rxtx(chip
);
359 housekeeping_disable(mac
);
360 flush_workqueue(zd_workqueue
);
362 zd_chip_disable_hwint(chip
);
363 zd_chip_switch_radio_off(chip
);
364 zd_chip_disable_int(chip
);
367 while ((skb
= skb_dequeue(ack_wait_queue
)))
368 dev_kfree_skb_any(skb
);
371 int zd_restore_settings(struct zd_mac
*mac
)
373 struct sk_buff
*beacon
;
374 struct zd_mc_hash multicast_hash
;
375 unsigned int short_preamble
;
376 int r
, beacon_interval
, beacon_period
;
379 dev_dbg_f(zd_mac_dev(mac
), "\n");
381 spin_lock_irq(&mac
->lock
);
382 multicast_hash
= mac
->multicast_hash
;
383 short_preamble
= mac
->short_preamble
;
384 beacon_interval
= mac
->beacon
.interval
;
385 beacon_period
= mac
->beacon
.period
;
386 channel
= mac
->channel
;
387 spin_unlock_irq(&mac
->lock
);
389 r
= set_mac_and_bssid(mac
);
391 dev_dbg_f(zd_mac_dev(mac
), "set_mac_and_bssid failed, %d\n", r
);
395 r
= zd_chip_set_channel(&mac
->chip
, channel
);
397 dev_dbg_f(zd_mac_dev(mac
), "zd_chip_set_channel failed, %d\n",
402 set_rts_cts(mac
, short_preamble
);
404 r
= zd_chip_set_multicast_hash(&mac
->chip
, &multicast_hash
);
406 dev_dbg_f(zd_mac_dev(mac
),
407 "zd_chip_set_multicast_hash failed, %d\n", r
);
411 if (mac
->type
== NL80211_IFTYPE_MESH_POINT
||
412 mac
->type
== NL80211_IFTYPE_ADHOC
||
413 mac
->type
== NL80211_IFTYPE_AP
) {
414 if (mac
->vif
!= NULL
) {
415 beacon
= ieee80211_beacon_get(mac
->hw
, mac
->vif
);
417 zd_mac_config_beacon(mac
->hw
, beacon
, false);
420 zd_set_beacon_interval(&mac
->chip
, beacon_interval
,
421 beacon_period
, mac
->type
);
423 spin_lock_irq(&mac
->lock
);
424 mac
->beacon
.last_update
= jiffies
;
425 spin_unlock_irq(&mac
->lock
);
432 * zd_mac_tx_status - reports tx status of a packet if required
433 * @hw - a &struct ieee80211_hw pointer
435 * @flags: extra flags to set in the TX status info
436 * @ackssi: ACK signal strength
437 * @success - True for successful transmission of the frame
439 * This information calls ieee80211_tx_status_irqsafe() if required by the
440 * control information. It copies the control information into the status
443 * If no status information has been requested, the skb is freed.
445 static void zd_mac_tx_status(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
446 int ackssi
, struct tx_status
*tx_status
)
448 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
450 int success
= 1, retry
= 1;
452 const struct tx_retry_rate
*retries
;
454 ieee80211_tx_info_clear_status(info
);
457 success
= !tx_status
->failure
;
458 retry
= tx_status
->retry
+ success
;
463 info
->flags
|= IEEE80211_TX_STAT_ACK
;
466 info
->flags
&= ~IEEE80211_TX_STAT_ACK
;
469 first_idx
= info
->status
.rates
[0].idx
;
470 ZD_ASSERT(0<=first_idx
&& first_idx
<ARRAY_SIZE(zd_retry_rates
));
471 retries
= &zd_retry_rates
[first_idx
];
472 ZD_ASSERT(1 <= retry
&& retry
<= retries
->count
);
474 info
->status
.rates
[0].idx
= retries
->rate
[0];
475 info
->status
.rates
[0].count
= 1; // (retry > 1 ? 2 : 1);
477 for (i
=1; i
<IEEE80211_TX_MAX_RATES
-1 && i
<retry
; i
++) {
478 info
->status
.rates
[i
].idx
= retries
->rate
[i
];
479 info
->status
.rates
[i
].count
= 1; // ((i==retry-1) && success ? 1:2);
481 for (; i
<IEEE80211_TX_MAX_RATES
&& i
<retry
; i
++) {
482 info
->status
.rates
[i
].idx
= retries
->rate
[retry
- 1];
483 info
->status
.rates
[i
].count
= 1; // (success ? 1:2);
485 if (i
<IEEE80211_TX_MAX_RATES
)
486 info
->status
.rates
[i
].idx
= -1; /* terminate */
488 info
->status
.ack_signal
= zd_check_signal(hw
, ackssi
);
489 ieee80211_tx_status_irqsafe(hw
, skb
);
493 * zd_mac_tx_failed - callback for failed frames
494 * @dev: the mac80211 wireless device
496 * This function is called if a frame couldn't be successfully
497 * transferred. The first frame from the tx queue, will be selected and
498 * reported as error to the upper layers.
500 void zd_mac_tx_failed(struct urb
*urb
)
502 struct ieee80211_hw
* hw
= zd_usb_to_hw(urb
->context
);
503 struct zd_mac
*mac
= zd_hw_mac(hw
);
504 struct sk_buff_head
*q
= &mac
->ack_wait_queue
;
506 struct tx_status
*tx_status
= (struct tx_status
*)urb
->transfer_buffer
;
508 int success
= !tx_status
->failure
;
509 int retry
= tx_status
->retry
+ success
;
513 q
= &mac
->ack_wait_queue
;
514 spin_lock_irqsave(&q
->lock
, flags
);
516 skb_queue_walk(q
, skb
) {
517 struct ieee80211_hdr
*tx_hdr
;
518 struct ieee80211_tx_info
*info
;
519 int first_idx
, final_idx
;
520 const struct tx_retry_rate
*retries
;
525 /* if the hardware reports a failure and we had a 802.11 ACK
526 * pending, then we skip the first skb when searching for a
528 if (tx_status
->failure
&& mac
->ack_pending
&&
529 skb_queue_is_first(q
, skb
)) {
533 tx_hdr
= (struct ieee80211_hdr
*)skb
->data
;
535 /* we skip all frames not matching the reported destination */
536 if (unlikely(memcmp(tx_hdr
->addr1
, tx_status
->mac
, ETH_ALEN
))) {
540 /* we skip all frames not matching the reported final rate */
542 info
= IEEE80211_SKB_CB(skb
);
543 first_idx
= info
->status
.rates
[0].idx
;
544 ZD_ASSERT(0<=first_idx
&& first_idx
<ARRAY_SIZE(zd_retry_rates
));
545 retries
= &zd_retry_rates
[first_idx
];
546 if (retry
<= 0 || retry
> retries
->count
)
549 final_idx
= retries
->rate
[retry
- 1];
550 final_rate
= zd_rates
[final_idx
].hw_value
;
552 if (final_rate
!= tx_status
->rate
) {
561 for (i
=1; i
<=position
; i
++) {
562 skb
= __skb_dequeue(q
);
563 zd_mac_tx_status(hw
, skb
,
564 mac
->ack_pending
? mac
->ack_signal
: 0,
565 i
== position
? tx_status
: NULL
);
566 mac
->ack_pending
= 0;
570 spin_unlock_irqrestore(&q
->lock
, flags
);
574 * zd_mac_tx_to_dev - callback for USB layer
575 * @skb: a &sk_buff pointer
576 * @error: error value, 0 if transmission successful
578 * Informs the MAC layer that the frame has successfully transferred to the
579 * device. If an ACK is required and the transfer to the device has been
580 * successful, the packets are put on the @ack_wait_queue with
581 * the control set removed.
583 void zd_mac_tx_to_dev(struct sk_buff
*skb
, int error
)
585 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
586 struct ieee80211_hw
*hw
= info
->rate_driver_data
[0];
587 struct zd_mac
*mac
= zd_hw_mac(hw
);
589 ieee80211_tx_info_clear_status(info
);
591 skb_pull(skb
, sizeof(struct zd_ctrlset
));
592 if (unlikely(error
||
593 (info
->flags
& IEEE80211_TX_CTL_NO_ACK
))) {
595 * FIXME : do we need to fill in anything ?
597 ieee80211_tx_status_irqsafe(hw
, skb
);
599 struct sk_buff_head
*q
= &mac
->ack_wait_queue
;
601 skb_queue_tail(q
, skb
);
602 while (skb_queue_len(q
) > ZD_MAC_MAX_ACK_WAITERS
) {
603 zd_mac_tx_status(hw
, skb_dequeue(q
),
604 mac
->ack_pending
? mac
->ack_signal
: 0,
606 mac
->ack_pending
= 0;
611 static int zd_calc_tx_length_us(u8
*service
, u8 zd_rate
, u16 tx_length
)
613 /* ZD_PURE_RATE() must be used to remove the modulation type flag of
614 * the zd-rate values.
616 static const u8 rate_divisor
[] = {
617 [ZD_PURE_RATE(ZD_CCK_RATE_1M
)] = 1,
618 [ZD_PURE_RATE(ZD_CCK_RATE_2M
)] = 2,
619 /* Bits must be doubled. */
620 [ZD_PURE_RATE(ZD_CCK_RATE_5_5M
)] = 11,
621 [ZD_PURE_RATE(ZD_CCK_RATE_11M
)] = 11,
622 [ZD_PURE_RATE(ZD_OFDM_RATE_6M
)] = 6,
623 [ZD_PURE_RATE(ZD_OFDM_RATE_9M
)] = 9,
624 [ZD_PURE_RATE(ZD_OFDM_RATE_12M
)] = 12,
625 [ZD_PURE_RATE(ZD_OFDM_RATE_18M
)] = 18,
626 [ZD_PURE_RATE(ZD_OFDM_RATE_24M
)] = 24,
627 [ZD_PURE_RATE(ZD_OFDM_RATE_36M
)] = 36,
628 [ZD_PURE_RATE(ZD_OFDM_RATE_48M
)] = 48,
629 [ZD_PURE_RATE(ZD_OFDM_RATE_54M
)] = 54,
632 u32 bits
= (u32
)tx_length
* 8;
635 divisor
= rate_divisor
[ZD_PURE_RATE(zd_rate
)];
640 case ZD_CCK_RATE_5_5M
:
641 bits
= (2*bits
) + 10; /* round up to the next integer */
643 case ZD_CCK_RATE_11M
:
646 *service
&= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION
;
647 if (0 < t
&& t
<= 3) {
648 *service
|= ZD_PLCP_SERVICE_LENGTH_EXTENSION
;
651 bits
+= 10; /* round up to the next integer */
658 static void cs_set_control(struct zd_mac
*mac
, struct zd_ctrlset
*cs
,
659 struct ieee80211_hdr
*header
,
660 struct ieee80211_tx_info
*info
)
664 * - if backoff needed, enable bit 0
665 * - if burst (backoff not needed) disable bit 0
671 if (info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
)
672 cs
->control
|= ZD_CS_NEED_RANDOM_BACKOFF
;
674 /* No ACK expected (multicast, etc.) */
675 if (info
->flags
& IEEE80211_TX_CTL_NO_ACK
)
676 cs
->control
|= ZD_CS_NO_ACK
;
679 if (ieee80211_is_pspoll(header
->frame_control
))
680 cs
->control
|= ZD_CS_PS_POLL_FRAME
;
682 if (info
->control
.rates
[0].flags
& IEEE80211_TX_RC_USE_RTS_CTS
)
683 cs
->control
|= ZD_CS_RTS
;
685 if (info
->control
.rates
[0].flags
& IEEE80211_TX_RC_USE_CTS_PROTECT
)
686 cs
->control
|= ZD_CS_SELF_CTS
;
688 /* FIXME: Management frame? */
691 static bool zd_mac_match_cur_beacon(struct zd_mac
*mac
, struct sk_buff
*beacon
)
693 if (!mac
->beacon
.cur_beacon
)
696 if (mac
->beacon
.cur_beacon
->len
!= beacon
->len
)
699 return !memcmp(beacon
->data
, mac
->beacon
.cur_beacon
->data
, beacon
->len
);
702 static void zd_mac_free_cur_beacon_locked(struct zd_mac
*mac
)
704 ZD_ASSERT(mutex_is_locked(&mac
->chip
.mutex
));
706 kfree_skb(mac
->beacon
.cur_beacon
);
707 mac
->beacon
.cur_beacon
= NULL
;
710 static void zd_mac_free_cur_beacon(struct zd_mac
*mac
)
712 mutex_lock(&mac
->chip
.mutex
);
713 zd_mac_free_cur_beacon_locked(mac
);
714 mutex_unlock(&mac
->chip
.mutex
);
717 static int zd_mac_config_beacon(struct ieee80211_hw
*hw
, struct sk_buff
*beacon
,
720 struct zd_mac
*mac
= zd_hw_mac(hw
);
721 int r
, ret
, num_cmds
, req_pos
= 0;
723 /* 4 more bytes for tail CRC */
724 u32 full_len
= beacon
->len
+ 4;
725 unsigned long end_jiffies
, message_jiffies
;
726 struct zd_ioreq32
*ioreqs
;
728 mutex_lock(&mac
->chip
.mutex
);
730 /* Check if hw already has this beacon. */
731 if (zd_mac_match_cur_beacon(mac
, beacon
)) {
736 /* Alloc memory for full beacon write at once. */
737 num_cmds
= 1 + zd_chip_is_zd1211b(&mac
->chip
) + full_len
;
738 ioreqs
= kmalloc(num_cmds
* sizeof(struct zd_ioreq32
), GFP_KERNEL
);
744 r
= zd_iowrite32_locked(&mac
->chip
, 0, CR_BCN_FIFO_SEMAPHORE
);
747 r
= zd_ioread32_locked(&mac
->chip
, &tmp
, CR_BCN_FIFO_SEMAPHORE
);
750 if (in_intr
&& tmp
& 0x2) {
755 end_jiffies
= jiffies
+ HZ
/ 2; /*~500ms*/
756 message_jiffies
= jiffies
+ HZ
/ 10; /*~100ms*/
758 r
= zd_ioread32_locked(&mac
->chip
, &tmp
, CR_BCN_FIFO_SEMAPHORE
);
761 if (time_is_before_eq_jiffies(message_jiffies
)) {
762 message_jiffies
= jiffies
+ HZ
/ 10;
763 dev_err(zd_mac_dev(mac
),
764 "CR_BCN_FIFO_SEMAPHORE not ready\n");
765 if (time_is_before_eq_jiffies(end_jiffies
)) {
766 dev_err(zd_mac_dev(mac
),
767 "Giving up beacon config.\n");
775 ioreqs
[req_pos
].addr
= CR_BCN_FIFO
;
776 ioreqs
[req_pos
].value
= full_len
- 1;
778 if (zd_chip_is_zd1211b(&mac
->chip
)) {
779 ioreqs
[req_pos
].addr
= CR_BCN_LENGTH
;
780 ioreqs
[req_pos
].value
= full_len
- 1;
784 for (j
= 0 ; j
< beacon
->len
; j
++) {
785 ioreqs
[req_pos
].addr
= CR_BCN_FIFO
;
786 ioreqs
[req_pos
].value
= *((u8
*)(beacon
->data
+ j
));
790 for (j
= 0; j
< 4; j
++) {
791 ioreqs
[req_pos
].addr
= CR_BCN_FIFO
;
792 ioreqs
[req_pos
].value
= 0x0;
796 BUG_ON(req_pos
!= num_cmds
);
798 r
= zd_iowrite32a_locked(&mac
->chip
, ioreqs
, num_cmds
);
802 * Try very hard to release device beacon semaphore, as otherwise
803 * device/driver can be left in unusable state.
805 end_jiffies
= jiffies
+ HZ
/ 2; /*~500ms*/
806 ret
= zd_iowrite32_locked(&mac
->chip
, 1, CR_BCN_FIFO_SEMAPHORE
);
808 if (in_intr
|| time_is_before_eq_jiffies(end_jiffies
)) {
814 ret
= zd_iowrite32_locked(&mac
->chip
, 1, CR_BCN_FIFO_SEMAPHORE
);
818 dev_err(zd_mac_dev(mac
), "Could not release "
819 "CR_BCN_FIFO_SEMAPHORE!\n");
820 if (r
< 0 || ret
< 0) {
824 /* We don't know if beacon was written successfully or not,
825 * so clear current. */
826 zd_mac_free_cur_beacon_locked(mac
);
831 /* Beacon has now been written successfully, update current. */
832 zd_mac_free_cur_beacon_locked(mac
);
833 mac
->beacon
.cur_beacon
= beacon
;
836 /* 802.11b/g 2.4G CCK 1Mb
837 * 802.11a, not yet implemented, uses different values (see GPL vendor
840 r
= zd_iowrite32_locked(&mac
->chip
, 0x00000400 | (full_len
<< 19),
846 mutex_unlock(&mac
->chip
.mutex
);
851 zd_mac_free_cur_beacon_locked(mac
);
854 mutex_unlock(&mac
->chip
.mutex
);
857 /* semaphore stuck, reset device to avoid fw freeze later */
858 dev_warn(zd_mac_dev(mac
), "CR_BCN_FIFO_SEMAPHORE stuck, "
859 "resetting device...");
860 usb_queue_reset_device(mac
->chip
.usb
.intf
);
865 static int fill_ctrlset(struct zd_mac
*mac
,
869 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
870 unsigned int frag_len
= skb
->len
+ FCS_LEN
;
871 unsigned int packet_length
;
872 struct ieee80211_rate
*txrate
;
873 struct zd_ctrlset
*cs
= (struct zd_ctrlset
*)
874 skb_push(skb
, sizeof(struct zd_ctrlset
));
875 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
877 ZD_ASSERT(frag_len
<= 0xffff);
880 * Firmware computes the duration itself (for all frames except PSPoll)
881 * and needs the field set to 0 at input, otherwise firmware messes up
882 * duration_id and sets bits 14 and 15 on.
884 if (!ieee80211_is_pspoll(hdr
->frame_control
))
885 hdr
->duration_id
= 0;
887 txrate
= ieee80211_get_tx_rate(mac
->hw
, info
);
889 cs
->modulation
= txrate
->hw_value
;
890 if (info
->control
.rates
[0].flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
891 cs
->modulation
= txrate
->hw_value_short
;
893 cs
->tx_length
= cpu_to_le16(frag_len
);
895 cs_set_control(mac
, cs
, hdr
, info
);
897 packet_length
= frag_len
+ sizeof(struct zd_ctrlset
) + 10;
898 ZD_ASSERT(packet_length
<= 0xffff);
899 /* ZD1211B: Computing the length difference this way, gives us
900 * flexibility to compute the packet length.
902 cs
->packet_length
= cpu_to_le16(zd_chip_is_zd1211b(&mac
->chip
) ?
903 packet_length
- frag_len
: packet_length
);
907 * - transmit frame length in microseconds
908 * - seems to be derived from frame length
909 * - see Cal_Us_Service() in zdinlinef.h
910 * - if macp->bTxBurstEnable is enabled, then multiply by 4
911 * - bTxBurstEnable is never set in the vendor driver
914 * - "for PLCP configuration"
915 * - always 0 except in some situations at 802.11b 11M
916 * - see line 53 of zdinlinef.h
919 r
= zd_calc_tx_length_us(&cs
->service
, ZD_RATE(cs
->modulation
),
920 le16_to_cpu(cs
->tx_length
));
923 cs
->current_length
= cpu_to_le16(r
);
924 cs
->next_frame_length
= 0;
930 * zd_op_tx - transmits a network frame to the device
932 * @dev: mac80211 hardware device
933 * @skb: socket buffer
934 * @control: the control structure
936 * This function transmit an IEEE 802.11 network frame to the device. The
937 * control block of the skbuff will be initialized. If necessary the incoming
938 * mac80211 queues will be stopped.
940 static void zd_op_tx(struct ieee80211_hw
*hw
,
941 struct ieee80211_tx_control
*control
,
944 struct zd_mac
*mac
= zd_hw_mac(hw
);
945 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
948 r
= fill_ctrlset(mac
, skb
);
952 info
->rate_driver_data
[0] = hw
;
954 r
= zd_usb_tx(&mac
->chip
.usb
, skb
);
964 * filter_ack - filters incoming packets for acknowledgements
965 * @dev: the mac80211 device
966 * @rx_hdr: received header
967 * @stats: the status for the received packet
969 * This functions looks for ACK packets and tries to match them with the
970 * frames in the tx queue. If a match is found the frame will be dequeued and
971 * the upper layers is informed about the successful transmission. If
972 * mac80211 queues have been stopped and the number of frames still to be
973 * transmitted is low the queues will be opened again.
975 * Returns 1 if the frame was an ACK, 0 if it was ignored.
977 static int filter_ack(struct ieee80211_hw
*hw
, struct ieee80211_hdr
*rx_hdr
,
978 struct ieee80211_rx_status
*stats
)
980 struct zd_mac
*mac
= zd_hw_mac(hw
);
982 struct sk_buff_head
*q
;
987 if (!ieee80211_is_ack(rx_hdr
->frame_control
))
990 q
= &mac
->ack_wait_queue
;
991 spin_lock_irqsave(&q
->lock
, flags
);
992 skb_queue_walk(q
, skb
) {
993 struct ieee80211_hdr
*tx_hdr
;
997 if (mac
->ack_pending
&& skb_queue_is_first(q
, skb
))
1000 tx_hdr
= (struct ieee80211_hdr
*)skb
->data
;
1001 if (likely(!memcmp(tx_hdr
->addr2
, rx_hdr
->addr1
, ETH_ALEN
)))
1009 for (i
=1; i
<position
; i
++) {
1010 skb
= __skb_dequeue(q
);
1011 zd_mac_tx_status(hw
, skb
,
1012 mac
->ack_pending
? mac
->ack_signal
: 0,
1014 mac
->ack_pending
= 0;
1017 mac
->ack_pending
= 1;
1018 mac
->ack_signal
= stats
->signal
;
1020 /* Prevent pending tx-packet on AP-mode */
1021 if (mac
->type
== NL80211_IFTYPE_AP
) {
1022 skb
= __skb_dequeue(q
);
1023 zd_mac_tx_status(hw
, skb
, mac
->ack_signal
, NULL
);
1024 mac
->ack_pending
= 0;
1028 spin_unlock_irqrestore(&q
->lock
, flags
);
1032 int zd_mac_rx(struct ieee80211_hw
*hw
, const u8
*buffer
, unsigned int length
)
1034 struct zd_mac
*mac
= zd_hw_mac(hw
);
1035 struct ieee80211_rx_status stats
;
1036 const struct rx_status
*status
;
1037 struct sk_buff
*skb
;
1044 if (length
< ZD_PLCP_HEADER_SIZE
+ 10 /* IEEE80211_1ADDR_LEN */ +
1045 FCS_LEN
+ sizeof(struct rx_status
))
1048 memset(&stats
, 0, sizeof(stats
));
1050 /* Note about pass_failed_fcs and pass_ctrl access below:
1051 * mac locking intentionally omitted here, as this is the only unlocked
1052 * reader and the only writer is configure_filter. Plus, if there were
1053 * any races accessing these variables, it wouldn't really matter.
1054 * If mac80211 ever provides a way for us to access filter flags
1055 * from outside configure_filter, we could improve on this. Also, this
1056 * situation may change once we implement some kind of DMA-into-skb
1059 /* Caller has to ensure that length >= sizeof(struct rx_status). */
1060 status
= (struct rx_status
*)
1061 (buffer
+ (length
- sizeof(struct rx_status
)));
1062 if (status
->frame_status
& ZD_RX_ERROR
) {
1063 if (mac
->pass_failed_fcs
&&
1064 (status
->frame_status
& ZD_RX_CRC32_ERROR
)) {
1065 stats
.flag
|= RX_FLAG_FAILED_FCS_CRC
;
1072 stats
.freq
= zd_channels
[_zd_chip_get_channel(&mac
->chip
) - 1].center_freq
;
1073 stats
.band
= IEEE80211_BAND_2GHZ
;
1074 stats
.signal
= zd_check_signal(hw
, status
->signal_strength
);
1076 rate
= zd_rx_rate(buffer
, status
);
1078 /* todo: return index in the big switches in zd_rx_rate instead */
1079 for (i
= 0; i
< mac
->band
.n_bitrates
; i
++)
1080 if (rate
== mac
->band
.bitrates
[i
].hw_value
)
1083 length
-= ZD_PLCP_HEADER_SIZE
+ sizeof(struct rx_status
);
1084 buffer
+= ZD_PLCP_HEADER_SIZE
;
1086 /* Except for bad frames, filter each frame to see if it is an ACK, in
1087 * which case our internal TX tracking is updated. Normally we then
1088 * bail here as there's no need to pass ACKs on up to the stack, but
1089 * there is also the case where the stack has requested us to pass
1090 * control frames on up (pass_ctrl) which we must consider. */
1092 filter_ack(hw
, (struct ieee80211_hdr
*)buffer
, &stats
)
1096 fc
= get_unaligned((__le16
*)buffer
);
1097 need_padding
= ieee80211_is_data_qos(fc
) ^ ieee80211_has_a4(fc
);
1099 skb
= dev_alloc_skb(length
+ (need_padding
? 2 : 0));
1103 /* Make sure the payload data is 4 byte aligned. */
1104 skb_reserve(skb
, 2);
1107 /* FIXME : could we avoid this big memcpy ? */
1108 memcpy(skb_put(skb
, length
), buffer
, length
);
1110 memcpy(IEEE80211_SKB_RXCB(skb
), &stats
, sizeof(stats
));
1111 ieee80211_rx_irqsafe(hw
, skb
);
1115 static int zd_op_add_interface(struct ieee80211_hw
*hw
,
1116 struct ieee80211_vif
*vif
)
1118 struct zd_mac
*mac
= zd_hw_mac(hw
);
1120 /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
1121 if (mac
->type
!= NL80211_IFTYPE_UNSPECIFIED
)
1124 switch (vif
->type
) {
1125 case NL80211_IFTYPE_MONITOR
:
1126 case NL80211_IFTYPE_MESH_POINT
:
1127 case NL80211_IFTYPE_STATION
:
1128 case NL80211_IFTYPE_ADHOC
:
1129 case NL80211_IFTYPE_AP
:
1130 mac
->type
= vif
->type
;
1138 return set_mac_and_bssid(mac
);
1141 static void zd_op_remove_interface(struct ieee80211_hw
*hw
,
1142 struct ieee80211_vif
*vif
)
1144 struct zd_mac
*mac
= zd_hw_mac(hw
);
1145 mac
->type
= NL80211_IFTYPE_UNSPECIFIED
;
1147 zd_set_beacon_interval(&mac
->chip
, 0, 0, NL80211_IFTYPE_UNSPECIFIED
);
1148 zd_write_mac_addr(&mac
->chip
, NULL
);
1150 zd_mac_free_cur_beacon(mac
);
1153 static int zd_op_config(struct ieee80211_hw
*hw
, u32 changed
)
1155 struct zd_mac
*mac
= zd_hw_mac(hw
);
1156 struct ieee80211_conf
*conf
= &hw
->conf
;
1158 spin_lock_irq(&mac
->lock
);
1159 mac
->channel
= conf
->chandef
.chan
->hw_value
;
1160 spin_unlock_irq(&mac
->lock
);
1162 return zd_chip_set_channel(&mac
->chip
, conf
->chandef
.chan
->hw_value
);
1165 static void zd_beacon_done(struct zd_mac
*mac
)
1167 struct sk_buff
*skb
, *beacon
;
1169 if (!test_bit(ZD_DEVICE_RUNNING
, &mac
->flags
))
1171 if (!mac
->vif
|| mac
->vif
->type
!= NL80211_IFTYPE_AP
)
1175 * Send out buffered broad- and multicast frames.
1177 while (!ieee80211_queue_stopped(mac
->hw
, 0)) {
1178 skb
= ieee80211_get_buffered_bc(mac
->hw
, mac
->vif
);
1181 zd_op_tx(mac
->hw
, NULL
, skb
);
1185 * Fetch next beacon so that tim_count is updated.
1187 beacon
= ieee80211_beacon_get(mac
->hw
, mac
->vif
);
1189 zd_mac_config_beacon(mac
->hw
, beacon
, true);
1191 spin_lock_irq(&mac
->lock
);
1192 mac
->beacon
.last_update
= jiffies
;
1193 spin_unlock_irq(&mac
->lock
);
1196 static void zd_process_intr(struct work_struct
*work
)
1199 unsigned long flags
;
1200 struct zd_mac
*mac
= container_of(work
, struct zd_mac
, process_intr
);
1202 spin_lock_irqsave(&mac
->lock
, flags
);
1203 int_status
= le16_to_cpu(*(__le16
*)(mac
->intr_buffer
+ 4));
1204 spin_unlock_irqrestore(&mac
->lock
, flags
);
1206 if (int_status
& INT_CFG_NEXT_BCN
) {
1207 /*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
1208 zd_beacon_done(mac
);
1210 dev_dbg_f(zd_mac_dev(mac
), "Unsupported interrupt\n");
1213 zd_chip_enable_hwint(&mac
->chip
);
1217 static u64
zd_op_prepare_multicast(struct ieee80211_hw
*hw
,
1218 struct netdev_hw_addr_list
*mc_list
)
1220 struct zd_mac
*mac
= zd_hw_mac(hw
);
1221 struct zd_mc_hash hash
;
1222 struct netdev_hw_addr
*ha
;
1226 netdev_hw_addr_list_for_each(ha
, mc_list
) {
1227 dev_dbg_f(zd_mac_dev(mac
), "mc addr %pM\n", ha
->addr
);
1228 zd_mc_add_addr(&hash
, ha
->addr
);
1231 return hash
.low
| ((u64
)hash
.high
<< 32);
1234 #define SUPPORTED_FIF_FLAGS \
1235 (FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
1236 FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
1237 static void zd_op_configure_filter(struct ieee80211_hw
*hw
,
1238 unsigned int changed_flags
,
1239 unsigned int *new_flags
,
1242 struct zd_mc_hash hash
= {
1244 .high
= multicast
>> 32,
1246 struct zd_mac
*mac
= zd_hw_mac(hw
);
1247 unsigned long flags
;
1250 /* Only deal with supported flags */
1251 changed_flags
&= SUPPORTED_FIF_FLAGS
;
1252 *new_flags
&= SUPPORTED_FIF_FLAGS
;
1255 * If multicast parameter (as returned by zd_op_prepare_multicast)
1256 * has changed, no bit in changed_flags is set. To handle this
1257 * situation, we do not return if changed_flags is 0. If we do so,
1258 * we will have some issue with IPv6 which uses multicast for link
1259 * layer address resolution.
1261 if (*new_flags
& (FIF_PROMISC_IN_BSS
| FIF_ALLMULTI
))
1262 zd_mc_add_all(&hash
);
1264 spin_lock_irqsave(&mac
->lock
, flags
);
1265 mac
->pass_failed_fcs
= !!(*new_flags
& FIF_FCSFAIL
);
1266 mac
->pass_ctrl
= !!(*new_flags
& FIF_CONTROL
);
1267 mac
->multicast_hash
= hash
;
1268 spin_unlock_irqrestore(&mac
->lock
, flags
);
1270 zd_chip_set_multicast_hash(&mac
->chip
, &hash
);
1272 if (changed_flags
& FIF_CONTROL
) {
1273 r
= set_rx_filter(mac
);
1275 dev_err(zd_mac_dev(mac
), "set_rx_filter error %d\n", r
);
1278 /* no handling required for FIF_OTHER_BSS as we don't currently
1279 * do BSSID filtering */
1280 /* FIXME: in future it would be nice to enable the probe response
1281 * filter (so that the driver doesn't see them) until
1282 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
1283 * have to schedule work to enable prbresp reception, which might
1284 * happen too late. For now we'll just listen and forward them all the
1288 static void set_rts_cts(struct zd_mac
*mac
, unsigned int short_preamble
)
1290 mutex_lock(&mac
->chip
.mutex
);
1291 zd_chip_set_rts_cts_rate_locked(&mac
->chip
, short_preamble
);
1292 mutex_unlock(&mac
->chip
.mutex
);
1295 static void zd_op_bss_info_changed(struct ieee80211_hw
*hw
,
1296 struct ieee80211_vif
*vif
,
1297 struct ieee80211_bss_conf
*bss_conf
,
1300 struct zd_mac
*mac
= zd_hw_mac(hw
);
1303 dev_dbg_f(zd_mac_dev(mac
), "changes: %x\n", changes
);
1305 if (mac
->type
== NL80211_IFTYPE_MESH_POINT
||
1306 mac
->type
== NL80211_IFTYPE_ADHOC
||
1307 mac
->type
== NL80211_IFTYPE_AP
) {
1309 if (changes
& BSS_CHANGED_BEACON
) {
1310 struct sk_buff
*beacon
= ieee80211_beacon_get(hw
, vif
);
1313 zd_chip_disable_hwint(&mac
->chip
);
1314 zd_mac_config_beacon(hw
, beacon
, false);
1315 zd_chip_enable_hwint(&mac
->chip
);
1319 if (changes
& BSS_CHANGED_BEACON_ENABLED
) {
1323 if (bss_conf
->enable_beacon
) {
1324 period
= bss_conf
->dtim_period
;
1325 interval
= bss_conf
->beacon_int
;
1328 spin_lock_irq(&mac
->lock
);
1329 mac
->beacon
.period
= period
;
1330 mac
->beacon
.interval
= interval
;
1331 mac
->beacon
.last_update
= jiffies
;
1332 spin_unlock_irq(&mac
->lock
);
1334 zd_set_beacon_interval(&mac
->chip
, interval
, period
,
1338 associated
= is_valid_ether_addr(bss_conf
->bssid
);
1340 spin_lock_irq(&mac
->lock
);
1341 mac
->associated
= associated
;
1342 spin_unlock_irq(&mac
->lock
);
1344 /* TODO: do hardware bssid filtering */
1346 if (changes
& BSS_CHANGED_ERP_PREAMBLE
) {
1347 spin_lock_irq(&mac
->lock
);
1348 mac
->short_preamble
= bss_conf
->use_short_preamble
;
1349 spin_unlock_irq(&mac
->lock
);
1351 set_rts_cts(mac
, bss_conf
->use_short_preamble
);
1355 static u64
zd_op_get_tsf(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
)
1357 struct zd_mac
*mac
= zd_hw_mac(hw
);
1358 return zd_chip_get_tsf(&mac
->chip
);
1361 static const struct ieee80211_ops zd_ops
= {
1363 .start
= zd_op_start
,
1365 .add_interface
= zd_op_add_interface
,
1366 .remove_interface
= zd_op_remove_interface
,
1367 .config
= zd_op_config
,
1368 .prepare_multicast
= zd_op_prepare_multicast
,
1369 .configure_filter
= zd_op_configure_filter
,
1370 .bss_info_changed
= zd_op_bss_info_changed
,
1371 .get_tsf
= zd_op_get_tsf
,
1374 struct ieee80211_hw
*zd_mac_alloc_hw(struct usb_interface
*intf
)
1377 struct ieee80211_hw
*hw
;
1379 hw
= ieee80211_alloc_hw(sizeof(struct zd_mac
), &zd_ops
);
1381 dev_dbg_f(&intf
->dev
, "out of memory\n");
1385 mac
= zd_hw_mac(hw
);
1387 memset(mac
, 0, sizeof(*mac
));
1388 spin_lock_init(&mac
->lock
);
1391 mac
->type
= NL80211_IFTYPE_UNSPECIFIED
;
1393 memcpy(mac
->channels
, zd_channels
, sizeof(zd_channels
));
1394 memcpy(mac
->rates
, zd_rates
, sizeof(zd_rates
));
1395 mac
->band
.n_bitrates
= ARRAY_SIZE(zd_rates
);
1396 mac
->band
.bitrates
= mac
->rates
;
1397 mac
->band
.n_channels
= ARRAY_SIZE(zd_channels
);
1398 mac
->band
.channels
= mac
->channels
;
1400 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = &mac
->band
;
1402 hw
->flags
= IEEE80211_HW_RX_INCLUDES_FCS
|
1403 IEEE80211_HW_SIGNAL_UNSPEC
|
1404 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
|
1405 IEEE80211_HW_MFP_CAPABLE
;
1407 hw
->wiphy
->interface_modes
=
1408 BIT(NL80211_IFTYPE_MESH_POINT
) |
1409 BIT(NL80211_IFTYPE_STATION
) |
1410 BIT(NL80211_IFTYPE_ADHOC
) |
1411 BIT(NL80211_IFTYPE_AP
);
1413 hw
->max_signal
= 100;
1415 hw
->extra_tx_headroom
= sizeof(struct zd_ctrlset
);
1418 * Tell mac80211 that we support multi rate retries
1420 hw
->max_rates
= IEEE80211_TX_MAX_RATES
;
1421 hw
->max_rate_tries
= 18; /* 9 rates * 2 retries/rate */
1423 skb_queue_head_init(&mac
->ack_wait_queue
);
1424 mac
->ack_pending
= 0;
1426 zd_chip_init(&mac
->chip
, hw
, intf
);
1427 housekeeping_init(mac
);
1429 INIT_WORK(&mac
->process_intr
, zd_process_intr
);
1431 SET_IEEE80211_DEV(hw
, &intf
->dev
);
1435 #define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
1437 static void beacon_watchdog_handler(struct work_struct
*work
)
1439 struct zd_mac
*mac
=
1440 container_of(work
, struct zd_mac
, beacon
.watchdog_work
.work
);
1441 struct sk_buff
*beacon
;
1442 unsigned long timeout
;
1443 int interval
, period
;
1445 if (!test_bit(ZD_DEVICE_RUNNING
, &mac
->flags
))
1447 if (mac
->type
!= NL80211_IFTYPE_AP
|| !mac
->vif
)
1450 spin_lock_irq(&mac
->lock
);
1451 interval
= mac
->beacon
.interval
;
1452 period
= mac
->beacon
.period
;
1453 timeout
= mac
->beacon
.last_update
+
1454 msecs_to_jiffies(interval
* 1024 / 1000) * 3;
1455 spin_unlock_irq(&mac
->lock
);
1457 if (interval
> 0 && time_is_before_jiffies(timeout
)) {
1458 dev_dbg_f(zd_mac_dev(mac
), "beacon interrupt stalled, "
1460 "(interval: %d, dtim: %d)\n",
1463 zd_chip_disable_hwint(&mac
->chip
);
1465 beacon
= ieee80211_beacon_get(mac
->hw
, mac
->vif
);
1467 zd_mac_free_cur_beacon(mac
);
1469 zd_mac_config_beacon(mac
->hw
, beacon
, false);
1472 zd_set_beacon_interval(&mac
->chip
, interval
, period
, mac
->type
);
1474 zd_chip_enable_hwint(&mac
->chip
);
1476 spin_lock_irq(&mac
->lock
);
1477 mac
->beacon
.last_update
= jiffies
;
1478 spin_unlock_irq(&mac
->lock
);
1482 queue_delayed_work(zd_workqueue
, &mac
->beacon
.watchdog_work
,
1483 BEACON_WATCHDOG_DELAY
);
1486 static void beacon_init(struct zd_mac
*mac
)
1488 INIT_DELAYED_WORK(&mac
->beacon
.watchdog_work
, beacon_watchdog_handler
);
1491 static void beacon_enable(struct zd_mac
*mac
)
1493 dev_dbg_f(zd_mac_dev(mac
), "\n");
1495 mac
->beacon
.last_update
= jiffies
;
1496 queue_delayed_work(zd_workqueue
, &mac
->beacon
.watchdog_work
,
1497 BEACON_WATCHDOG_DELAY
);
1500 static void beacon_disable(struct zd_mac
*mac
)
1502 dev_dbg_f(zd_mac_dev(mac
), "\n");
1503 cancel_delayed_work_sync(&mac
->beacon
.watchdog_work
);
1505 zd_mac_free_cur_beacon(mac
);
1508 #define LINK_LED_WORK_DELAY HZ
1510 static void link_led_handler(struct work_struct
*work
)
1512 struct zd_mac
*mac
=
1513 container_of(work
, struct zd_mac
, housekeeping
.link_led_work
.work
);
1514 struct zd_chip
*chip
= &mac
->chip
;
1518 if (!test_bit(ZD_DEVICE_RUNNING
, &mac
->flags
))
1521 spin_lock_irq(&mac
->lock
);
1522 is_associated
= mac
->associated
;
1523 spin_unlock_irq(&mac
->lock
);
1525 r
= zd_chip_control_leds(chip
,
1526 is_associated
? ZD_LED_ASSOCIATED
: ZD_LED_SCANNING
);
1528 dev_dbg_f(zd_mac_dev(mac
), "zd_chip_control_leds error %d\n", r
);
1531 queue_delayed_work(zd_workqueue
, &mac
->housekeeping
.link_led_work
,
1532 LINK_LED_WORK_DELAY
);
1535 static void housekeeping_init(struct zd_mac
*mac
)
1537 INIT_DELAYED_WORK(&mac
->housekeeping
.link_led_work
, link_led_handler
);
1540 static void housekeeping_enable(struct zd_mac
*mac
)
1542 dev_dbg_f(zd_mac_dev(mac
), "\n");
1543 queue_delayed_work(zd_workqueue
, &mac
->housekeeping
.link_led_work
,
1547 static void housekeeping_disable(struct zd_mac
*mac
)
1549 dev_dbg_f(zd_mac_dev(mac
), "\n");
1550 cancel_delayed_work_sync(&mac
->housekeeping
.link_led_work
);
1551 zd_chip_control_leds(&mac
->chip
, ZD_LED_OFF
);