x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / regulator / core.c
blobea83084cb7d9bb7c23f59845bdd72a018e47799c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
38 #include "dummy.h"
40 #define rdev_crit(rdev, fmt, ...) \
41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...) \
43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...) \
45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...) \
47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...) \
49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static LIST_HEAD(regulator_ena_gpio_list);
55 static bool has_full_constraints;
56 static bool board_wants_dummy_regulator;
58 static struct dentry *debugfs_root;
61 * struct regulator_map
63 * Used to provide symbolic supply names to devices.
65 struct regulator_map {
66 struct list_head list;
67 const char *dev_name; /* The dev_name() for the consumer */
68 const char *supply;
69 struct regulator_dev *regulator;
73 * struct regulator_enable_gpio
75 * Management for shared enable GPIO pin
77 struct regulator_enable_gpio {
78 struct list_head list;
79 int gpio;
80 u32 enable_count; /* a number of enabled shared GPIO */
81 u32 request_count; /* a number of requested shared GPIO */
82 unsigned int ena_gpio_invert:1;
86 * struct regulator
88 * One for each consumer device.
90 struct regulator {
91 struct device *dev;
92 struct list_head list;
93 unsigned int always_on:1;
94 unsigned int bypass:1;
95 int uA_load;
96 int min_uV;
97 int max_uV;
98 char *supply_name;
99 struct device_attribute dev_attr;
100 struct regulator_dev *rdev;
101 struct dentry *debugfs;
104 static int _regulator_is_enabled(struct regulator_dev *rdev);
105 static int _regulator_disable(struct regulator_dev *rdev);
106 static int _regulator_get_voltage(struct regulator_dev *rdev);
107 static int _regulator_get_current_limit(struct regulator_dev *rdev);
108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109 static void _notifier_call_chain(struct regulator_dev *rdev,
110 unsigned long event, void *data);
111 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112 int min_uV, int max_uV);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114 struct device *dev,
115 const char *supply_name);
117 static const char *rdev_get_name(struct regulator_dev *rdev)
119 if (rdev->constraints && rdev->constraints->name)
120 return rdev->constraints->name;
121 else if (rdev->desc->name)
122 return rdev->desc->name;
123 else
124 return "";
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 struct device_node *regnode = NULL;
139 char prop_name[32]; /* 32 is max size of property name */
141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143 snprintf(prop_name, 32, "%s-supply", supply);
144 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146 if (!regnode) {
147 dev_dbg(dev, "Looking up %s property in node %s failed",
148 prop_name, dev->of_node->full_name);
149 return NULL;
151 return regnode;
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 if (!rdev->constraints)
157 return 0;
159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160 return 1;
161 else
162 return 0;
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167 int *min_uV, int *max_uV)
169 BUG_ON(*min_uV > *max_uV);
171 if (!rdev->constraints) {
172 rdev_err(rdev, "no constraints\n");
173 return -ENODEV;
175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176 rdev_err(rdev, "operation not allowed\n");
177 return -EPERM;
180 if (*max_uV > rdev->constraints->max_uV)
181 *max_uV = rdev->constraints->max_uV;
182 if (*min_uV < rdev->constraints->min_uV)
183 *min_uV = rdev->constraints->min_uV;
185 if (*min_uV > *max_uV) {
186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187 *min_uV, *max_uV);
188 return -EINVAL;
191 return 0;
194 /* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198 int *min_uV, int *max_uV)
200 struct regulator *regulator;
202 list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 * Assume consumers that didn't say anything are OK
205 * with anything in the constraint range.
207 if (!regulator->min_uV && !regulator->max_uV)
208 continue;
210 if (*max_uV > regulator->max_uV)
211 *max_uV = regulator->max_uV;
212 if (*min_uV < regulator->min_uV)
213 *min_uV = regulator->min_uV;
216 if (*min_uV > *max_uV) {
217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218 *min_uV, *max_uV);
219 return -EINVAL;
222 return 0;
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227 int *min_uA, int *max_uA)
229 BUG_ON(*min_uA > *max_uA);
231 if (!rdev->constraints) {
232 rdev_err(rdev, "no constraints\n");
233 return -ENODEV;
235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236 rdev_err(rdev, "operation not allowed\n");
237 return -EPERM;
240 if (*max_uA > rdev->constraints->max_uA)
241 *max_uA = rdev->constraints->max_uA;
242 if (*min_uA < rdev->constraints->min_uA)
243 *min_uA = rdev->constraints->min_uA;
245 if (*min_uA > *max_uA) {
246 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247 *min_uA, *max_uA);
248 return -EINVAL;
251 return 0;
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 switch (*mode) {
258 case REGULATOR_MODE_FAST:
259 case REGULATOR_MODE_NORMAL:
260 case REGULATOR_MODE_IDLE:
261 case REGULATOR_MODE_STANDBY:
262 break;
263 default:
264 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 return -EINVAL;
268 if (!rdev->constraints) {
269 rdev_err(rdev, "no constraints\n");
270 return -ENODEV;
272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273 rdev_err(rdev, "operation not allowed\n");
274 return -EPERM;
277 /* The modes are bitmasks, the most power hungry modes having
278 * the lowest values. If the requested mode isn't supported
279 * try higher modes. */
280 while (*mode) {
281 if (rdev->constraints->valid_modes_mask & *mode)
282 return 0;
283 *mode /= 2;
286 return -EINVAL;
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
292 if (!rdev->constraints) {
293 rdev_err(rdev, "no constraints\n");
294 return -ENODEV;
296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297 rdev_err(rdev, "operation not allowed\n");
298 return -EPERM;
300 return 0;
303 static ssize_t regulator_uV_show(struct device *dev,
304 struct device_attribute *attr, char *buf)
306 struct regulator_dev *rdev = dev_get_drvdata(dev);
307 ssize_t ret;
309 mutex_lock(&rdev->mutex);
310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311 mutex_unlock(&rdev->mutex);
313 return ret;
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317 static ssize_t regulator_uA_show(struct device *dev,
318 struct device_attribute *attr, char *buf)
320 struct regulator_dev *rdev = dev_get_drvdata(dev);
322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327 char *buf)
329 struct regulator_dev *rdev = dev_get_drvdata(dev);
331 return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 static DEVICE_ATTR_RO(name);
335 static ssize_t regulator_print_opmode(char *buf, int mode)
337 switch (mode) {
338 case REGULATOR_MODE_FAST:
339 return sprintf(buf, "fast\n");
340 case REGULATOR_MODE_NORMAL:
341 return sprintf(buf, "normal\n");
342 case REGULATOR_MODE_IDLE:
343 return sprintf(buf, "idle\n");
344 case REGULATOR_MODE_STANDBY:
345 return sprintf(buf, "standby\n");
347 return sprintf(buf, "unknown\n");
350 static ssize_t regulator_opmode_show(struct device *dev,
351 struct device_attribute *attr, char *buf)
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
355 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359 static ssize_t regulator_print_state(char *buf, int state)
361 if (state > 0)
362 return sprintf(buf, "enabled\n");
363 else if (state == 0)
364 return sprintf(buf, "disabled\n");
365 else
366 return sprintf(buf, "unknown\n");
369 static ssize_t regulator_state_show(struct device *dev,
370 struct device_attribute *attr, char *buf)
372 struct regulator_dev *rdev = dev_get_drvdata(dev);
373 ssize_t ret;
375 mutex_lock(&rdev->mutex);
376 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377 mutex_unlock(&rdev->mutex);
379 return ret;
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383 static ssize_t regulator_status_show(struct device *dev,
384 struct device_attribute *attr, char *buf)
386 struct regulator_dev *rdev = dev_get_drvdata(dev);
387 int status;
388 char *label;
390 status = rdev->desc->ops->get_status(rdev);
391 if (status < 0)
392 return status;
394 switch (status) {
395 case REGULATOR_STATUS_OFF:
396 label = "off";
397 break;
398 case REGULATOR_STATUS_ON:
399 label = "on";
400 break;
401 case REGULATOR_STATUS_ERROR:
402 label = "error";
403 break;
404 case REGULATOR_STATUS_FAST:
405 label = "fast";
406 break;
407 case REGULATOR_STATUS_NORMAL:
408 label = "normal";
409 break;
410 case REGULATOR_STATUS_IDLE:
411 label = "idle";
412 break;
413 case REGULATOR_STATUS_STANDBY:
414 label = "standby";
415 break;
416 case REGULATOR_STATUS_BYPASS:
417 label = "bypass";
418 break;
419 case REGULATOR_STATUS_UNDEFINED:
420 label = "undefined";
421 break;
422 default:
423 return -ERANGE;
426 return sprintf(buf, "%s\n", label);
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430 static ssize_t regulator_min_uA_show(struct device *dev,
431 struct device_attribute *attr, char *buf)
433 struct regulator_dev *rdev = dev_get_drvdata(dev);
435 if (!rdev->constraints)
436 return sprintf(buf, "constraint not defined\n");
438 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442 static ssize_t regulator_max_uA_show(struct device *dev,
443 struct device_attribute *attr, char *buf)
445 struct regulator_dev *rdev = dev_get_drvdata(dev);
447 if (!rdev->constraints)
448 return sprintf(buf, "constraint not defined\n");
450 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454 static ssize_t regulator_min_uV_show(struct device *dev,
455 struct device_attribute *attr, char *buf)
457 struct regulator_dev *rdev = dev_get_drvdata(dev);
459 if (!rdev->constraints)
460 return sprintf(buf, "constraint not defined\n");
462 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466 static ssize_t regulator_max_uV_show(struct device *dev,
467 struct device_attribute *attr, char *buf)
469 struct regulator_dev *rdev = dev_get_drvdata(dev);
471 if (!rdev->constraints)
472 return sprintf(buf, "constraint not defined\n");
474 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478 static ssize_t regulator_total_uA_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
481 struct regulator_dev *rdev = dev_get_drvdata(dev);
482 struct regulator *regulator;
483 int uA = 0;
485 mutex_lock(&rdev->mutex);
486 list_for_each_entry(regulator, &rdev->consumer_list, list)
487 uA += regulator->uA_load;
488 mutex_unlock(&rdev->mutex);
489 return sprintf(buf, "%d\n", uA);
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494 char *buf)
496 struct regulator_dev *rdev = dev_get_drvdata(dev);
497 return sprintf(buf, "%d\n", rdev->use_count);
499 static DEVICE_ATTR_RO(num_users);
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502 char *buf)
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
506 switch (rdev->desc->type) {
507 case REGULATOR_VOLTAGE:
508 return sprintf(buf, "voltage\n");
509 case REGULATOR_CURRENT:
510 return sprintf(buf, "current\n");
512 return sprintf(buf, "unknown\n");
514 static DEVICE_ATTR_RO(type);
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517 struct device_attribute *attr, char *buf)
519 struct regulator_dev *rdev = dev_get_drvdata(dev);
521 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524 regulator_suspend_mem_uV_show, NULL);
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527 struct device_attribute *attr, char *buf)
529 struct regulator_dev *rdev = dev_get_drvdata(dev);
531 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534 regulator_suspend_disk_uV_show, NULL);
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537 struct device_attribute *attr, char *buf)
539 struct regulator_dev *rdev = dev_get_drvdata(dev);
541 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544 regulator_suspend_standby_uV_show, NULL);
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547 struct device_attribute *attr, char *buf)
549 struct regulator_dev *rdev = dev_get_drvdata(dev);
551 return regulator_print_opmode(buf,
552 rdev->constraints->state_mem.mode);
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555 regulator_suspend_mem_mode_show, NULL);
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558 struct device_attribute *attr, char *buf)
560 struct regulator_dev *rdev = dev_get_drvdata(dev);
562 return regulator_print_opmode(buf,
563 rdev->constraints->state_disk.mode);
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566 regulator_suspend_disk_mode_show, NULL);
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569 struct device_attribute *attr, char *buf)
571 struct regulator_dev *rdev = dev_get_drvdata(dev);
573 return regulator_print_opmode(buf,
574 rdev->constraints->state_standby.mode);
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577 regulator_suspend_standby_mode_show, NULL);
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580 struct device_attribute *attr, char *buf)
582 struct regulator_dev *rdev = dev_get_drvdata(dev);
584 return regulator_print_state(buf,
585 rdev->constraints->state_mem.enabled);
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588 regulator_suspend_mem_state_show, NULL);
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591 struct device_attribute *attr, char *buf)
593 struct regulator_dev *rdev = dev_get_drvdata(dev);
595 return regulator_print_state(buf,
596 rdev->constraints->state_disk.enabled);
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599 regulator_suspend_disk_state_show, NULL);
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602 struct device_attribute *attr, char *buf)
604 struct regulator_dev *rdev = dev_get_drvdata(dev);
606 return regulator_print_state(buf,
607 rdev->constraints->state_standby.enabled);
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610 regulator_suspend_standby_state_show, NULL);
612 static ssize_t regulator_bypass_show(struct device *dev,
613 struct device_attribute *attr, char *buf)
615 struct regulator_dev *rdev = dev_get_drvdata(dev);
616 const char *report;
617 bool bypass;
618 int ret;
620 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622 if (ret != 0)
623 report = "unknown";
624 else if (bypass)
625 report = "enabled";
626 else
627 report = "disabled";
629 return sprintf(buf, "%s\n", report);
631 static DEVICE_ATTR(bypass, 0444,
632 regulator_bypass_show, NULL);
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
638 static struct attribute *regulator_dev_attrs[] = {
639 &dev_attr_name.attr,
640 &dev_attr_num_users.attr,
641 &dev_attr_type.attr,
642 NULL,
644 ATTRIBUTE_GROUPS(regulator_dev);
646 static void regulator_dev_release(struct device *dev)
648 struct regulator_dev *rdev = dev_get_drvdata(dev);
649 kfree(rdev);
652 static struct class regulator_class = {
653 .name = "regulator",
654 .dev_release = regulator_dev_release,
655 .dev_groups = regulator_dev_groups,
658 /* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
662 struct regulator *sibling;
663 int current_uA = 0, output_uV, input_uV, err;
664 unsigned int mode;
666 err = regulator_check_drms(rdev);
667 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668 (!rdev->desc->ops->get_voltage &&
669 !rdev->desc->ops->get_voltage_sel) ||
670 !rdev->desc->ops->set_mode)
671 return;
673 /* get output voltage */
674 output_uV = _regulator_get_voltage(rdev);
675 if (output_uV <= 0)
676 return;
678 /* get input voltage */
679 input_uV = 0;
680 if (rdev->supply)
681 input_uV = regulator_get_voltage(rdev->supply);
682 if (input_uV <= 0)
683 input_uV = rdev->constraints->input_uV;
684 if (input_uV <= 0)
685 return;
687 /* calc total requested load */
688 list_for_each_entry(sibling, &rdev->consumer_list, list)
689 current_uA += sibling->uA_load;
691 /* now get the optimum mode for our new total regulator load */
692 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693 output_uV, current_uA);
695 /* check the new mode is allowed */
696 err = regulator_mode_constrain(rdev, &mode);
697 if (err == 0)
698 rdev->desc->ops->set_mode(rdev, mode);
701 static int suspend_set_state(struct regulator_dev *rdev,
702 struct regulator_state *rstate)
704 int ret = 0;
706 /* If we have no suspend mode configration don't set anything;
707 * only warn if the driver implements set_suspend_voltage or
708 * set_suspend_mode callback.
710 if (!rstate->enabled && !rstate->disabled) {
711 if (rdev->desc->ops->set_suspend_voltage ||
712 rdev->desc->ops->set_suspend_mode)
713 rdev_warn(rdev, "No configuration\n");
714 return 0;
717 if (rstate->enabled && rstate->disabled) {
718 rdev_err(rdev, "invalid configuration\n");
719 return -EINVAL;
722 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723 ret = rdev->desc->ops->set_suspend_enable(rdev);
724 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725 ret = rdev->desc->ops->set_suspend_disable(rdev);
726 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727 ret = 0;
729 if (ret < 0) {
730 rdev_err(rdev, "failed to enabled/disable\n");
731 return ret;
734 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736 if (ret < 0) {
737 rdev_err(rdev, "failed to set voltage\n");
738 return ret;
742 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744 if (ret < 0) {
745 rdev_err(rdev, "failed to set mode\n");
746 return ret;
749 return ret;
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
755 if (!rdev->constraints)
756 return -EINVAL;
758 switch (state) {
759 case PM_SUSPEND_STANDBY:
760 return suspend_set_state(rdev,
761 &rdev->constraints->state_standby);
762 case PM_SUSPEND_MEM:
763 return suspend_set_state(rdev,
764 &rdev->constraints->state_mem);
765 case PM_SUSPEND_MAX:
766 return suspend_set_state(rdev,
767 &rdev->constraints->state_disk);
768 default:
769 return -EINVAL;
773 static void print_constraints(struct regulator_dev *rdev)
775 struct regulation_constraints *constraints = rdev->constraints;
776 char buf[80] = "";
777 int count = 0;
778 int ret;
780 if (constraints->min_uV && constraints->max_uV) {
781 if (constraints->min_uV == constraints->max_uV)
782 count += sprintf(buf + count, "%d mV ",
783 constraints->min_uV / 1000);
784 else
785 count += sprintf(buf + count, "%d <--> %d mV ",
786 constraints->min_uV / 1000,
787 constraints->max_uV / 1000);
790 if (!constraints->min_uV ||
791 constraints->min_uV != constraints->max_uV) {
792 ret = _regulator_get_voltage(rdev);
793 if (ret > 0)
794 count += sprintf(buf + count, "at %d mV ", ret / 1000);
797 if (constraints->uV_offset)
798 count += sprintf(buf, "%dmV offset ",
799 constraints->uV_offset / 1000);
801 if (constraints->min_uA && constraints->max_uA) {
802 if (constraints->min_uA == constraints->max_uA)
803 count += sprintf(buf + count, "%d mA ",
804 constraints->min_uA / 1000);
805 else
806 count += sprintf(buf + count, "%d <--> %d mA ",
807 constraints->min_uA / 1000,
808 constraints->max_uA / 1000);
811 if (!constraints->min_uA ||
812 constraints->min_uA != constraints->max_uA) {
813 ret = _regulator_get_current_limit(rdev);
814 if (ret > 0)
815 count += sprintf(buf + count, "at %d mA ", ret / 1000);
818 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819 count += sprintf(buf + count, "fast ");
820 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821 count += sprintf(buf + count, "normal ");
822 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823 count += sprintf(buf + count, "idle ");
824 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825 count += sprintf(buf + count, "standby");
827 if (!count)
828 sprintf(buf, "no parameters");
830 rdev_info(rdev, "%s\n", buf);
832 if ((constraints->min_uV != constraints->max_uV) &&
833 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834 rdev_warn(rdev,
835 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839 struct regulation_constraints *constraints)
841 struct regulator_ops *ops = rdev->desc->ops;
842 int ret;
844 /* do we need to apply the constraint voltage */
845 if (rdev->constraints->apply_uV &&
846 rdev->constraints->min_uV == rdev->constraints->max_uV) {
847 ret = _regulator_do_set_voltage(rdev,
848 rdev->constraints->min_uV,
849 rdev->constraints->max_uV);
850 if (ret < 0) {
851 rdev_err(rdev, "failed to apply %duV constraint\n",
852 rdev->constraints->min_uV);
853 return ret;
857 /* constrain machine-level voltage specs to fit
858 * the actual range supported by this regulator.
860 if (ops->list_voltage && rdev->desc->n_voltages) {
861 int count = rdev->desc->n_voltages;
862 int i;
863 int min_uV = INT_MAX;
864 int max_uV = INT_MIN;
865 int cmin = constraints->min_uV;
866 int cmax = constraints->max_uV;
868 /* it's safe to autoconfigure fixed-voltage supplies
869 and the constraints are used by list_voltage. */
870 if (count == 1 && !cmin) {
871 cmin = 1;
872 cmax = INT_MAX;
873 constraints->min_uV = cmin;
874 constraints->max_uV = cmax;
877 /* voltage constraints are optional */
878 if ((cmin == 0) && (cmax == 0))
879 return 0;
881 /* else require explicit machine-level constraints */
882 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883 rdev_err(rdev, "invalid voltage constraints\n");
884 return -EINVAL;
887 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888 for (i = 0; i < count; i++) {
889 int value;
891 value = ops->list_voltage(rdev, i);
892 if (value <= 0)
893 continue;
895 /* maybe adjust [min_uV..max_uV] */
896 if (value >= cmin && value < min_uV)
897 min_uV = value;
898 if (value <= cmax && value > max_uV)
899 max_uV = value;
902 /* final: [min_uV..max_uV] valid iff constraints valid */
903 if (max_uV < min_uV) {
904 rdev_err(rdev,
905 "unsupportable voltage constraints %u-%uuV\n",
906 min_uV, max_uV);
907 return -EINVAL;
910 /* use regulator's subset of machine constraints */
911 if (constraints->min_uV < min_uV) {
912 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913 constraints->min_uV, min_uV);
914 constraints->min_uV = min_uV;
916 if (constraints->max_uV > max_uV) {
917 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918 constraints->max_uV, max_uV);
919 constraints->max_uV = max_uV;
923 return 0;
926 static int _regulator_do_enable(struct regulator_dev *rdev);
929 * set_machine_constraints - sets regulator constraints
930 * @rdev: regulator source
931 * @constraints: constraints to apply
933 * Allows platform initialisation code to define and constrain
934 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
935 * Constraints *must* be set by platform code in order for some
936 * regulator operations to proceed i.e. set_voltage, set_current_limit,
937 * set_mode.
939 static int set_machine_constraints(struct regulator_dev *rdev,
940 const struct regulation_constraints *constraints)
942 int ret = 0;
943 struct regulator_ops *ops = rdev->desc->ops;
945 if (constraints)
946 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
947 GFP_KERNEL);
948 else
949 rdev->constraints = kzalloc(sizeof(*constraints),
950 GFP_KERNEL);
951 if (!rdev->constraints)
952 return -ENOMEM;
954 ret = machine_constraints_voltage(rdev, rdev->constraints);
955 if (ret != 0)
956 goto out;
958 /* do we need to setup our suspend state */
959 if (rdev->constraints->initial_state) {
960 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
961 if (ret < 0) {
962 rdev_err(rdev, "failed to set suspend state\n");
963 goto out;
967 if (rdev->constraints->initial_mode) {
968 if (!ops->set_mode) {
969 rdev_err(rdev, "no set_mode operation\n");
970 ret = -EINVAL;
971 goto out;
974 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
975 if (ret < 0) {
976 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
977 goto out;
981 /* If the constraints say the regulator should be on at this point
982 * and we have control then make sure it is enabled.
984 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
985 ret = _regulator_do_enable(rdev);
986 if (ret < 0 && ret != -EINVAL) {
987 rdev_err(rdev, "failed to enable\n");
988 goto out;
992 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
993 && ops->set_ramp_delay) {
994 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
995 if (ret < 0) {
996 rdev_err(rdev, "failed to set ramp_delay\n");
997 goto out;
1001 print_constraints(rdev);
1002 return 0;
1003 out:
1004 kfree(rdev->constraints);
1005 rdev->constraints = NULL;
1006 return ret;
1010 * set_supply - set regulator supply regulator
1011 * @rdev: regulator name
1012 * @supply_rdev: supply regulator name
1014 * Called by platform initialisation code to set the supply regulator for this
1015 * regulator. This ensures that a regulators supply will also be enabled by the
1016 * core if it's child is enabled.
1018 static int set_supply(struct regulator_dev *rdev,
1019 struct regulator_dev *supply_rdev)
1021 int err;
1023 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1025 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1026 if (rdev->supply == NULL) {
1027 err = -ENOMEM;
1028 return err;
1030 supply_rdev->open_count++;
1032 return 0;
1036 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1037 * @rdev: regulator source
1038 * @consumer_dev_name: dev_name() string for device supply applies to
1039 * @supply: symbolic name for supply
1041 * Allows platform initialisation code to map physical regulator
1042 * sources to symbolic names for supplies for use by devices. Devices
1043 * should use these symbolic names to request regulators, avoiding the
1044 * need to provide board-specific regulator names as platform data.
1046 static int set_consumer_device_supply(struct regulator_dev *rdev,
1047 const char *consumer_dev_name,
1048 const char *supply)
1050 struct regulator_map *node;
1051 int has_dev;
1053 if (supply == NULL)
1054 return -EINVAL;
1056 if (consumer_dev_name != NULL)
1057 has_dev = 1;
1058 else
1059 has_dev = 0;
1061 list_for_each_entry(node, &regulator_map_list, list) {
1062 if (node->dev_name && consumer_dev_name) {
1063 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1064 continue;
1065 } else if (node->dev_name || consumer_dev_name) {
1066 continue;
1069 if (strcmp(node->supply, supply) != 0)
1070 continue;
1072 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1073 consumer_dev_name,
1074 dev_name(&node->regulator->dev),
1075 node->regulator->desc->name,
1076 supply,
1077 dev_name(&rdev->dev), rdev_get_name(rdev));
1078 return -EBUSY;
1081 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1082 if (node == NULL)
1083 return -ENOMEM;
1085 node->regulator = rdev;
1086 node->supply = supply;
1088 if (has_dev) {
1089 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1090 if (node->dev_name == NULL) {
1091 kfree(node);
1092 return -ENOMEM;
1096 list_add(&node->list, &regulator_map_list);
1097 return 0;
1100 static void unset_regulator_supplies(struct regulator_dev *rdev)
1102 struct regulator_map *node, *n;
1104 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1105 if (rdev == node->regulator) {
1106 list_del(&node->list);
1107 kfree(node->dev_name);
1108 kfree(node);
1113 #define REG_STR_SIZE 64
1115 static struct regulator *create_regulator(struct regulator_dev *rdev,
1116 struct device *dev,
1117 const char *supply_name)
1119 struct regulator *regulator;
1120 char buf[REG_STR_SIZE];
1121 int err, size;
1123 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1124 if (regulator == NULL)
1125 return NULL;
1127 mutex_lock(&rdev->mutex);
1128 regulator->rdev = rdev;
1129 list_add(&regulator->list, &rdev->consumer_list);
1131 if (dev) {
1132 regulator->dev = dev;
1134 /* Add a link to the device sysfs entry */
1135 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1136 dev->kobj.name, supply_name);
1137 if (size >= REG_STR_SIZE)
1138 goto overflow_err;
1140 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1141 if (regulator->supply_name == NULL)
1142 goto overflow_err;
1144 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1145 buf);
1146 if (err) {
1147 rdev_warn(rdev, "could not add device link %s err %d\n",
1148 dev->kobj.name, err);
1149 /* non-fatal */
1151 } else {
1152 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1153 if (regulator->supply_name == NULL)
1154 goto overflow_err;
1157 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1158 rdev->debugfs);
1159 if (!regulator->debugfs) {
1160 rdev_warn(rdev, "Failed to create debugfs directory\n");
1161 } else {
1162 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1163 &regulator->uA_load);
1164 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1165 &regulator->min_uV);
1166 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1167 &regulator->max_uV);
1171 * Check now if the regulator is an always on regulator - if
1172 * it is then we don't need to do nearly so much work for
1173 * enable/disable calls.
1175 if (!_regulator_can_change_status(rdev) &&
1176 _regulator_is_enabled(rdev))
1177 regulator->always_on = true;
1179 mutex_unlock(&rdev->mutex);
1180 return regulator;
1181 overflow_err:
1182 list_del(&regulator->list);
1183 kfree(regulator);
1184 mutex_unlock(&rdev->mutex);
1185 return NULL;
1188 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1190 if (!rdev->desc->ops->enable_time)
1191 return rdev->desc->enable_time;
1192 return rdev->desc->ops->enable_time(rdev);
1195 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1196 const char *supply,
1197 int *ret)
1199 struct regulator_dev *r;
1200 struct device_node *node;
1201 struct regulator_map *map;
1202 const char *devname = NULL;
1204 /* first do a dt based lookup */
1205 if (dev && dev->of_node) {
1206 node = of_get_regulator(dev, supply);
1207 if (node) {
1208 list_for_each_entry(r, &regulator_list, list)
1209 if (r->dev.parent &&
1210 node == r->dev.of_node)
1211 return r;
1212 } else {
1214 * If we couldn't even get the node then it's
1215 * not just that the device didn't register
1216 * yet, there's no node and we'll never
1217 * succeed.
1219 *ret = -ENODEV;
1223 /* if not found, try doing it non-dt way */
1224 if (dev)
1225 devname = dev_name(dev);
1227 list_for_each_entry(r, &regulator_list, list)
1228 if (strcmp(rdev_get_name(r), supply) == 0)
1229 return r;
1231 list_for_each_entry(map, &regulator_map_list, list) {
1232 /* If the mapping has a device set up it must match */
1233 if (map->dev_name &&
1234 (!devname || strcmp(map->dev_name, devname)))
1235 continue;
1237 if (strcmp(map->supply, supply) == 0)
1238 return map->regulator;
1242 return NULL;
1245 /* Internal regulator request function */
1246 static struct regulator *_regulator_get(struct device *dev, const char *id,
1247 bool exclusive)
1249 struct regulator_dev *rdev;
1250 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1251 const char *devname = NULL;
1252 int ret = 0;
1254 if (id == NULL) {
1255 pr_err("get() with no identifier\n");
1256 return regulator;
1259 if (dev)
1260 devname = dev_name(dev);
1262 mutex_lock(&regulator_list_mutex);
1264 rdev = regulator_dev_lookup(dev, id, &ret);
1265 if (rdev)
1266 goto found;
1269 * If we have return value from dev_lookup fail, we do not expect to
1270 * succeed, so, quit with appropriate error value
1272 if (ret) {
1273 regulator = ERR_PTR(ret);
1274 goto out;
1277 if (board_wants_dummy_regulator) {
1278 rdev = dummy_regulator_rdev;
1279 goto found;
1282 #ifdef CONFIG_REGULATOR_DUMMY
1283 if (!devname)
1284 devname = "deviceless";
1286 /* If the board didn't flag that it was fully constrained then
1287 * substitute in a dummy regulator so consumers can continue.
1289 if (!has_full_constraints) {
1290 pr_warn("%s supply %s not found, using dummy regulator\n",
1291 devname, id);
1292 rdev = dummy_regulator_rdev;
1293 goto found;
1295 #endif
1297 mutex_unlock(&regulator_list_mutex);
1298 return regulator;
1300 found:
1301 if (rdev->exclusive) {
1302 regulator = ERR_PTR(-EPERM);
1303 goto out;
1306 if (exclusive && rdev->open_count) {
1307 regulator = ERR_PTR(-EBUSY);
1308 goto out;
1311 if (!try_module_get(rdev->owner))
1312 goto out;
1314 regulator = create_regulator(rdev, dev, id);
1315 if (regulator == NULL) {
1316 regulator = ERR_PTR(-ENOMEM);
1317 module_put(rdev->owner);
1318 goto out;
1321 rdev->open_count++;
1322 if (exclusive) {
1323 rdev->exclusive = 1;
1325 ret = _regulator_is_enabled(rdev);
1326 if (ret > 0)
1327 rdev->use_count = 1;
1328 else
1329 rdev->use_count = 0;
1332 out:
1333 mutex_unlock(&regulator_list_mutex);
1335 return regulator;
1339 * regulator_get - lookup and obtain a reference to a regulator.
1340 * @dev: device for regulator "consumer"
1341 * @id: Supply name or regulator ID.
1343 * Returns a struct regulator corresponding to the regulator producer,
1344 * or IS_ERR() condition containing errno.
1346 * Use of supply names configured via regulator_set_device_supply() is
1347 * strongly encouraged. It is recommended that the supply name used
1348 * should match the name used for the supply and/or the relevant
1349 * device pins in the datasheet.
1351 struct regulator *regulator_get(struct device *dev, const char *id)
1353 return _regulator_get(dev, id, false);
1355 EXPORT_SYMBOL_GPL(regulator_get);
1357 static void devm_regulator_release(struct device *dev, void *res)
1359 regulator_put(*(struct regulator **)res);
1363 * devm_regulator_get - Resource managed regulator_get()
1364 * @dev: device for regulator "consumer"
1365 * @id: Supply name or regulator ID.
1367 * Managed regulator_get(). Regulators returned from this function are
1368 * automatically regulator_put() on driver detach. See regulator_get() for more
1369 * information.
1371 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1373 struct regulator **ptr, *regulator;
1375 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1376 if (!ptr)
1377 return ERR_PTR(-ENOMEM);
1379 regulator = regulator_get(dev, id);
1380 if (!IS_ERR(regulator)) {
1381 *ptr = regulator;
1382 devres_add(dev, ptr);
1383 } else {
1384 devres_free(ptr);
1387 return regulator;
1389 EXPORT_SYMBOL_GPL(devm_regulator_get);
1392 * regulator_get_exclusive - obtain exclusive access to a regulator.
1393 * @dev: device for regulator "consumer"
1394 * @id: Supply name or regulator ID.
1396 * Returns a struct regulator corresponding to the regulator producer,
1397 * or IS_ERR() condition containing errno. Other consumers will be
1398 * unable to obtain this reference is held and the use count for the
1399 * regulator will be initialised to reflect the current state of the
1400 * regulator.
1402 * This is intended for use by consumers which cannot tolerate shared
1403 * use of the regulator such as those which need to force the
1404 * regulator off for correct operation of the hardware they are
1405 * controlling.
1407 * Use of supply names configured via regulator_set_device_supply() is
1408 * strongly encouraged. It is recommended that the supply name used
1409 * should match the name used for the supply and/or the relevant
1410 * device pins in the datasheet.
1412 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1414 return _regulator_get(dev, id, true);
1416 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1419 * regulator_get_optional - obtain optional access to a regulator.
1420 * @dev: device for regulator "consumer"
1421 * @id: Supply name or regulator ID.
1423 * Returns a struct regulator corresponding to the regulator producer,
1424 * or IS_ERR() condition containing errno. Other consumers will be
1425 * unable to obtain this reference is held and the use count for the
1426 * regulator will be initialised to reflect the current state of the
1427 * regulator.
1429 * This is intended for use by consumers for devices which can have
1430 * some supplies unconnected in normal use, such as some MMC devices.
1431 * It can allow the regulator core to provide stub supplies for other
1432 * supplies requested using normal regulator_get() calls without
1433 * disrupting the operation of drivers that can handle absent
1434 * supplies.
1436 * Use of supply names configured via regulator_set_device_supply() is
1437 * strongly encouraged. It is recommended that the supply name used
1438 * should match the name used for the supply and/or the relevant
1439 * device pins in the datasheet.
1441 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1443 return _regulator_get(dev, id, 0);
1445 EXPORT_SYMBOL_GPL(regulator_get_optional);
1448 * devm_regulator_get_optional - Resource managed regulator_get_optional()
1449 * @dev: device for regulator "consumer"
1450 * @id: Supply name or regulator ID.
1452 * Managed regulator_get_optional(). Regulators returned from this
1453 * function are automatically regulator_put() on driver detach. See
1454 * regulator_get_optional() for more information.
1456 struct regulator *devm_regulator_get_optional(struct device *dev,
1457 const char *id)
1459 struct regulator **ptr, *regulator;
1461 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1462 if (!ptr)
1463 return ERR_PTR(-ENOMEM);
1465 regulator = regulator_get_optional(dev, id);
1466 if (!IS_ERR(regulator)) {
1467 *ptr = regulator;
1468 devres_add(dev, ptr);
1469 } else {
1470 devres_free(ptr);
1473 return regulator;
1475 EXPORT_SYMBOL_GPL(devm_regulator_get_optional);
1477 /* Locks held by regulator_put() */
1478 static void _regulator_put(struct regulator *regulator)
1480 struct regulator_dev *rdev;
1482 if (regulator == NULL || IS_ERR(regulator))
1483 return;
1485 rdev = regulator->rdev;
1487 debugfs_remove_recursive(regulator->debugfs);
1489 /* remove any sysfs entries */
1490 if (regulator->dev)
1491 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1492 kfree(regulator->supply_name);
1493 list_del(&regulator->list);
1494 kfree(regulator);
1496 rdev->open_count--;
1497 rdev->exclusive = 0;
1499 module_put(rdev->owner);
1503 * devm_regulator_get_exclusive - Resource managed regulator_get_exclusive()
1504 * @dev: device for regulator "consumer"
1505 * @id: Supply name or regulator ID.
1507 * Managed regulator_get_exclusive(). Regulators returned from this function
1508 * are automatically regulator_put() on driver detach. See regulator_get() for
1509 * more information.
1511 struct regulator *devm_regulator_get_exclusive(struct device *dev,
1512 const char *id)
1514 struct regulator **ptr, *regulator;
1516 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1517 if (!ptr)
1518 return ERR_PTR(-ENOMEM);
1520 regulator = _regulator_get(dev, id, 1);
1521 if (!IS_ERR(regulator)) {
1522 *ptr = regulator;
1523 devres_add(dev, ptr);
1524 } else {
1525 devres_free(ptr);
1528 return regulator;
1530 EXPORT_SYMBOL_GPL(devm_regulator_get_exclusive);
1533 * regulator_put - "free" the regulator source
1534 * @regulator: regulator source
1536 * Note: drivers must ensure that all regulator_enable calls made on this
1537 * regulator source are balanced by regulator_disable calls prior to calling
1538 * this function.
1540 void regulator_put(struct regulator *regulator)
1542 mutex_lock(&regulator_list_mutex);
1543 _regulator_put(regulator);
1544 mutex_unlock(&regulator_list_mutex);
1546 EXPORT_SYMBOL_GPL(regulator_put);
1548 static int devm_regulator_match(struct device *dev, void *res, void *data)
1550 struct regulator **r = res;
1551 if (!r || !*r) {
1552 WARN_ON(!r || !*r);
1553 return 0;
1555 return *r == data;
1559 * devm_regulator_put - Resource managed regulator_put()
1560 * @regulator: regulator to free
1562 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1563 * this function will not need to be called and the resource management
1564 * code will ensure that the resource is freed.
1566 void devm_regulator_put(struct regulator *regulator)
1568 int rc;
1570 rc = devres_release(regulator->dev, devm_regulator_release,
1571 devm_regulator_match, regulator);
1572 if (rc != 0)
1573 WARN_ON(rc);
1575 EXPORT_SYMBOL_GPL(devm_regulator_put);
1577 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1578 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1579 const struct regulator_config *config)
1581 struct regulator_enable_gpio *pin;
1582 int ret;
1584 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1585 if (pin->gpio == config->ena_gpio) {
1586 rdev_dbg(rdev, "GPIO %d is already used\n",
1587 config->ena_gpio);
1588 goto update_ena_gpio_to_rdev;
1592 ret = gpio_request_one(config->ena_gpio,
1593 GPIOF_DIR_OUT | config->ena_gpio_flags,
1594 rdev_get_name(rdev));
1595 if (ret)
1596 return ret;
1598 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1599 if (pin == NULL) {
1600 gpio_free(config->ena_gpio);
1601 return -ENOMEM;
1604 pin->gpio = config->ena_gpio;
1605 pin->ena_gpio_invert = config->ena_gpio_invert;
1606 list_add(&pin->list, &regulator_ena_gpio_list);
1608 update_ena_gpio_to_rdev:
1609 pin->request_count++;
1610 rdev->ena_pin = pin;
1611 return 0;
1614 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1616 struct regulator_enable_gpio *pin, *n;
1618 if (!rdev->ena_pin)
1619 return;
1621 /* Free the GPIO only in case of no use */
1622 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1623 if (pin->gpio == rdev->ena_pin->gpio) {
1624 if (pin->request_count <= 1) {
1625 pin->request_count = 0;
1626 gpio_free(pin->gpio);
1627 list_del(&pin->list);
1628 kfree(pin);
1629 } else {
1630 pin->request_count--;
1637 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1638 * @rdev: regulator_dev structure
1639 * @enable: enable GPIO at initial use?
1641 * GPIO is enabled in case of initial use. (enable_count is 0)
1642 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1644 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1646 struct regulator_enable_gpio *pin = rdev->ena_pin;
1648 if (!pin)
1649 return -EINVAL;
1651 if (enable) {
1652 /* Enable GPIO at initial use */
1653 if (pin->enable_count == 0)
1654 gpio_set_value_cansleep(pin->gpio,
1655 !pin->ena_gpio_invert);
1657 pin->enable_count++;
1658 } else {
1659 if (pin->enable_count > 1) {
1660 pin->enable_count--;
1661 return 0;
1664 /* Disable GPIO if not used */
1665 if (pin->enable_count <= 1) {
1666 gpio_set_value_cansleep(pin->gpio,
1667 pin->ena_gpio_invert);
1668 pin->enable_count = 0;
1672 return 0;
1675 static int _regulator_do_enable(struct regulator_dev *rdev)
1677 int ret, delay;
1679 /* Query before enabling in case configuration dependent. */
1680 ret = _regulator_get_enable_time(rdev);
1681 if (ret >= 0) {
1682 delay = ret;
1683 } else {
1684 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1685 delay = 0;
1688 trace_regulator_enable(rdev_get_name(rdev));
1690 if (rdev->ena_pin) {
1691 ret = regulator_ena_gpio_ctrl(rdev, true);
1692 if (ret < 0)
1693 return ret;
1694 rdev->ena_gpio_state = 1;
1695 } else if (rdev->desc->ops->enable) {
1696 ret = rdev->desc->ops->enable(rdev);
1697 if (ret < 0)
1698 return ret;
1699 } else {
1700 return -EINVAL;
1703 /* Allow the regulator to ramp; it would be useful to extend
1704 * this for bulk operations so that the regulators can ramp
1705 * together. */
1706 trace_regulator_enable_delay(rdev_get_name(rdev));
1708 if (delay >= 1000) {
1709 mdelay(delay / 1000);
1710 udelay(delay % 1000);
1711 } else if (delay) {
1712 udelay(delay);
1715 trace_regulator_enable_complete(rdev_get_name(rdev));
1717 return 0;
1720 /* locks held by regulator_enable() */
1721 static int _regulator_enable(struct regulator_dev *rdev)
1723 int ret;
1725 /* check voltage and requested load before enabling */
1726 if (rdev->constraints &&
1727 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1728 drms_uA_update(rdev);
1730 if (rdev->use_count == 0) {
1731 /* The regulator may on if it's not switchable or left on */
1732 ret = _regulator_is_enabled(rdev);
1733 if (ret == -EINVAL || ret == 0) {
1734 if (!_regulator_can_change_status(rdev))
1735 return -EPERM;
1737 ret = _regulator_do_enable(rdev);
1738 if (ret < 0)
1739 return ret;
1741 } else if (ret < 0) {
1742 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1743 return ret;
1745 /* Fallthrough on positive return values - already enabled */
1748 rdev->use_count++;
1750 return 0;
1754 * regulator_enable - enable regulator output
1755 * @regulator: regulator source
1757 * Request that the regulator be enabled with the regulator output at
1758 * the predefined voltage or current value. Calls to regulator_enable()
1759 * must be balanced with calls to regulator_disable().
1761 * NOTE: the output value can be set by other drivers, boot loader or may be
1762 * hardwired in the regulator.
1764 int regulator_enable(struct regulator *regulator)
1766 struct regulator_dev *rdev = regulator->rdev;
1767 int ret = 0;
1769 if (regulator->always_on)
1770 return 0;
1772 if (rdev->supply) {
1773 ret = regulator_enable(rdev->supply);
1774 if (ret != 0)
1775 return ret;
1778 mutex_lock(&rdev->mutex);
1779 ret = _regulator_enable(rdev);
1780 mutex_unlock(&rdev->mutex);
1782 if (ret != 0 && rdev->supply)
1783 regulator_disable(rdev->supply);
1785 return ret;
1787 EXPORT_SYMBOL_GPL(regulator_enable);
1789 static int _regulator_do_disable(struct regulator_dev *rdev)
1791 int ret;
1793 trace_regulator_disable(rdev_get_name(rdev));
1795 if (rdev->ena_pin) {
1796 ret = regulator_ena_gpio_ctrl(rdev, false);
1797 if (ret < 0)
1798 return ret;
1799 rdev->ena_gpio_state = 0;
1801 } else if (rdev->desc->ops->disable) {
1802 ret = rdev->desc->ops->disable(rdev);
1803 if (ret != 0)
1804 return ret;
1807 trace_regulator_disable_complete(rdev_get_name(rdev));
1809 return 0;
1812 /* locks held by regulator_disable() */
1813 static int _regulator_disable(struct regulator_dev *rdev)
1815 int ret = 0;
1817 if (WARN(rdev->use_count <= 0,
1818 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1819 return -EIO;
1821 /* are we the last user and permitted to disable ? */
1822 if (rdev->use_count == 1 &&
1823 (rdev->constraints && !rdev->constraints->always_on)) {
1825 /* we are last user */
1826 if (_regulator_can_change_status(rdev)) {
1827 ret = _regulator_do_disable(rdev);
1828 if (ret < 0) {
1829 rdev_err(rdev, "failed to disable\n");
1830 return ret;
1832 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1833 NULL);
1836 rdev->use_count = 0;
1837 } else if (rdev->use_count > 1) {
1839 if (rdev->constraints &&
1840 (rdev->constraints->valid_ops_mask &
1841 REGULATOR_CHANGE_DRMS))
1842 drms_uA_update(rdev);
1844 rdev->use_count--;
1847 return ret;
1851 * regulator_disable - disable regulator output
1852 * @regulator: regulator source
1854 * Disable the regulator output voltage or current. Calls to
1855 * regulator_enable() must be balanced with calls to
1856 * regulator_disable().
1858 * NOTE: this will only disable the regulator output if no other consumer
1859 * devices have it enabled, the regulator device supports disabling and
1860 * machine constraints permit this operation.
1862 int regulator_disable(struct regulator *regulator)
1864 struct regulator_dev *rdev = regulator->rdev;
1865 int ret = 0;
1867 if (regulator->always_on)
1868 return 0;
1870 mutex_lock(&rdev->mutex);
1871 ret = _regulator_disable(rdev);
1872 mutex_unlock(&rdev->mutex);
1874 if (ret == 0 && rdev->supply)
1875 regulator_disable(rdev->supply);
1877 return ret;
1879 EXPORT_SYMBOL_GPL(regulator_disable);
1881 /* locks held by regulator_force_disable() */
1882 static int _regulator_force_disable(struct regulator_dev *rdev)
1884 int ret = 0;
1886 ret = _regulator_do_disable(rdev);
1887 if (ret < 0) {
1888 rdev_err(rdev, "failed to force disable\n");
1889 return ret;
1892 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1893 REGULATOR_EVENT_DISABLE, NULL);
1895 return 0;
1899 * regulator_force_disable - force disable regulator output
1900 * @regulator: regulator source
1902 * Forcibly disable the regulator output voltage or current.
1903 * NOTE: this *will* disable the regulator output even if other consumer
1904 * devices have it enabled. This should be used for situations when device
1905 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1907 int regulator_force_disable(struct regulator *regulator)
1909 struct regulator_dev *rdev = regulator->rdev;
1910 int ret;
1912 mutex_lock(&rdev->mutex);
1913 regulator->uA_load = 0;
1914 ret = _regulator_force_disable(regulator->rdev);
1915 mutex_unlock(&rdev->mutex);
1917 if (rdev->supply)
1918 while (rdev->open_count--)
1919 regulator_disable(rdev->supply);
1921 return ret;
1923 EXPORT_SYMBOL_GPL(regulator_force_disable);
1925 static void regulator_disable_work(struct work_struct *work)
1927 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1928 disable_work.work);
1929 int count, i, ret;
1931 mutex_lock(&rdev->mutex);
1933 BUG_ON(!rdev->deferred_disables);
1935 count = rdev->deferred_disables;
1936 rdev->deferred_disables = 0;
1938 for (i = 0; i < count; i++) {
1939 ret = _regulator_disable(rdev);
1940 if (ret != 0)
1941 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1944 mutex_unlock(&rdev->mutex);
1946 if (rdev->supply) {
1947 for (i = 0; i < count; i++) {
1948 ret = regulator_disable(rdev->supply);
1949 if (ret != 0) {
1950 rdev_err(rdev,
1951 "Supply disable failed: %d\n", ret);
1958 * regulator_disable_deferred - disable regulator output with delay
1959 * @regulator: regulator source
1960 * @ms: miliseconds until the regulator is disabled
1962 * Execute regulator_disable() on the regulator after a delay. This
1963 * is intended for use with devices that require some time to quiesce.
1965 * NOTE: this will only disable the regulator output if no other consumer
1966 * devices have it enabled, the regulator device supports disabling and
1967 * machine constraints permit this operation.
1969 int regulator_disable_deferred(struct regulator *regulator, int ms)
1971 struct regulator_dev *rdev = regulator->rdev;
1972 int ret;
1974 if (regulator->always_on)
1975 return 0;
1977 if (!ms)
1978 return regulator_disable(regulator);
1980 mutex_lock(&rdev->mutex);
1981 rdev->deferred_disables++;
1982 mutex_unlock(&rdev->mutex);
1984 ret = queue_delayed_work(system_power_efficient_wq,
1985 &rdev->disable_work,
1986 msecs_to_jiffies(ms));
1987 if (ret < 0)
1988 return ret;
1989 else
1990 return 0;
1992 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1994 static int _regulator_is_enabled(struct regulator_dev *rdev)
1996 /* A GPIO control always takes precedence */
1997 if (rdev->ena_pin)
1998 return rdev->ena_gpio_state;
2000 /* If we don't know then assume that the regulator is always on */
2001 if (!rdev->desc->ops->is_enabled)
2002 return 1;
2004 return rdev->desc->ops->is_enabled(rdev);
2008 * regulator_is_enabled - is the regulator output enabled
2009 * @regulator: regulator source
2011 * Returns positive if the regulator driver backing the source/client
2012 * has requested that the device be enabled, zero if it hasn't, else a
2013 * negative errno code.
2015 * Note that the device backing this regulator handle can have multiple
2016 * users, so it might be enabled even if regulator_enable() was never
2017 * called for this particular source.
2019 int regulator_is_enabled(struct regulator *regulator)
2021 int ret;
2023 if (regulator->always_on)
2024 return 1;
2026 mutex_lock(&regulator->rdev->mutex);
2027 ret = _regulator_is_enabled(regulator->rdev);
2028 mutex_unlock(&regulator->rdev->mutex);
2030 return ret;
2032 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2035 * regulator_can_change_voltage - check if regulator can change voltage
2036 * @regulator: regulator source
2038 * Returns positive if the regulator driver backing the source/client
2039 * can change its voltage, false otherwise. Usefull for detecting fixed
2040 * or dummy regulators and disabling voltage change logic in the client
2041 * driver.
2043 int regulator_can_change_voltage(struct regulator *regulator)
2045 struct regulator_dev *rdev = regulator->rdev;
2047 if (rdev->constraints &&
2048 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2049 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2050 return 1;
2052 if (rdev->desc->continuous_voltage_range &&
2053 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2054 rdev->constraints->min_uV != rdev->constraints->max_uV)
2055 return 1;
2058 return 0;
2060 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2063 * regulator_count_voltages - count regulator_list_voltage() selectors
2064 * @regulator: regulator source
2066 * Returns number of selectors, or negative errno. Selectors are
2067 * numbered starting at zero, and typically correspond to bitfields
2068 * in hardware registers.
2070 int regulator_count_voltages(struct regulator *regulator)
2072 struct regulator_dev *rdev = regulator->rdev;
2074 return rdev->desc->n_voltages ? : -EINVAL;
2076 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2079 * regulator_list_voltage - enumerate supported voltages
2080 * @regulator: regulator source
2081 * @selector: identify voltage to list
2082 * Context: can sleep
2084 * Returns a voltage that can be passed to @regulator_set_voltage(),
2085 * zero if this selector code can't be used on this system, or a
2086 * negative errno.
2088 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2090 struct regulator_dev *rdev = regulator->rdev;
2091 struct regulator_ops *ops = rdev->desc->ops;
2092 int ret;
2094 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2095 return -EINVAL;
2097 mutex_lock(&rdev->mutex);
2098 ret = ops->list_voltage(rdev, selector);
2099 mutex_unlock(&rdev->mutex);
2101 if (ret > 0) {
2102 if (ret < rdev->constraints->min_uV)
2103 ret = 0;
2104 else if (ret > rdev->constraints->max_uV)
2105 ret = 0;
2108 return ret;
2110 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2113 * regulator_get_linear_step - return the voltage step size between VSEL values
2114 * @regulator: regulator source
2116 * Returns the voltage step size between VSEL values for linear
2117 * regulators, or return 0 if the regulator isn't a linear regulator.
2119 unsigned int regulator_get_linear_step(struct regulator *regulator)
2121 struct regulator_dev *rdev = regulator->rdev;
2123 return rdev->desc->uV_step;
2125 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2128 * regulator_is_supported_voltage - check if a voltage range can be supported
2130 * @regulator: Regulator to check.
2131 * @min_uV: Minimum required voltage in uV.
2132 * @max_uV: Maximum required voltage in uV.
2134 * Returns a boolean or a negative error code.
2136 int regulator_is_supported_voltage(struct regulator *regulator,
2137 int min_uV, int max_uV)
2139 struct regulator_dev *rdev = regulator->rdev;
2140 int i, voltages, ret;
2142 /* If we can't change voltage check the current voltage */
2143 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2144 ret = regulator_get_voltage(regulator);
2145 if (ret >= 0)
2146 return (min_uV <= ret && ret <= max_uV);
2147 else
2148 return ret;
2151 /* Any voltage within constrains range is fine? */
2152 if (rdev->desc->continuous_voltage_range)
2153 return min_uV >= rdev->constraints->min_uV &&
2154 max_uV <= rdev->constraints->max_uV;
2156 ret = regulator_count_voltages(regulator);
2157 if (ret < 0)
2158 return ret;
2159 voltages = ret;
2161 for (i = 0; i < voltages; i++) {
2162 ret = regulator_list_voltage(regulator, i);
2164 if (ret >= min_uV && ret <= max_uV)
2165 return 1;
2168 return 0;
2170 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2172 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2173 int min_uV, int max_uV)
2175 int ret;
2176 int delay = 0;
2177 int best_val = 0;
2178 unsigned int selector;
2179 int old_selector = -1;
2181 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2183 min_uV += rdev->constraints->uV_offset;
2184 max_uV += rdev->constraints->uV_offset;
2187 * If we can't obtain the old selector there is not enough
2188 * info to call set_voltage_time_sel().
2190 if (_regulator_is_enabled(rdev) &&
2191 rdev->desc->ops->set_voltage_time_sel &&
2192 rdev->desc->ops->get_voltage_sel) {
2193 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2194 if (old_selector < 0)
2195 return old_selector;
2198 if (rdev->desc->ops->set_voltage) {
2199 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2200 &selector);
2202 if (ret >= 0) {
2203 if (rdev->desc->ops->list_voltage)
2204 best_val = rdev->desc->ops->list_voltage(rdev,
2205 selector);
2206 else
2207 best_val = _regulator_get_voltage(rdev);
2210 } else if (rdev->desc->ops->set_voltage_sel) {
2211 if (rdev->desc->ops->map_voltage) {
2212 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2213 max_uV);
2214 } else {
2215 if (rdev->desc->ops->list_voltage ==
2216 regulator_list_voltage_linear)
2217 ret = regulator_map_voltage_linear(rdev,
2218 min_uV, max_uV);
2219 else
2220 ret = regulator_map_voltage_iterate(rdev,
2221 min_uV, max_uV);
2224 if (ret >= 0) {
2225 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2226 if (min_uV <= best_val && max_uV >= best_val) {
2227 selector = ret;
2228 if (old_selector == selector)
2229 ret = 0;
2230 else
2231 ret = rdev->desc->ops->set_voltage_sel(
2232 rdev, ret);
2233 } else {
2234 ret = -EINVAL;
2237 } else {
2238 ret = -EINVAL;
2241 /* Call set_voltage_time_sel if successfully obtained old_selector */
2242 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2243 && old_selector != selector) {
2245 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2246 old_selector, selector);
2247 if (delay < 0) {
2248 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2249 delay);
2250 delay = 0;
2253 /* Insert any necessary delays */
2254 if (delay >= 1000) {
2255 mdelay(delay / 1000);
2256 udelay(delay % 1000);
2257 } else if (delay) {
2258 udelay(delay);
2262 if (ret == 0 && best_val >= 0) {
2263 unsigned long data = best_val;
2265 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2266 (void *)data);
2269 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2271 return ret;
2275 * regulator_set_voltage - set regulator output voltage
2276 * @regulator: regulator source
2277 * @min_uV: Minimum required voltage in uV
2278 * @max_uV: Maximum acceptable voltage in uV
2280 * Sets a voltage regulator to the desired output voltage. This can be set
2281 * during any regulator state. IOW, regulator can be disabled or enabled.
2283 * If the regulator is enabled then the voltage will change to the new value
2284 * immediately otherwise if the regulator is disabled the regulator will
2285 * output at the new voltage when enabled.
2287 * NOTE: If the regulator is shared between several devices then the lowest
2288 * request voltage that meets the system constraints will be used.
2289 * Regulator system constraints must be set for this regulator before
2290 * calling this function otherwise this call will fail.
2292 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2294 struct regulator_dev *rdev = regulator->rdev;
2295 int ret = 0;
2296 int old_min_uV, old_max_uV;
2298 mutex_lock(&rdev->mutex);
2300 /* If we're setting the same range as last time the change
2301 * should be a noop (some cpufreq implementations use the same
2302 * voltage for multiple frequencies, for example).
2304 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2305 goto out;
2307 /* sanity check */
2308 if (!rdev->desc->ops->set_voltage &&
2309 !rdev->desc->ops->set_voltage_sel) {
2310 ret = -EINVAL;
2311 goto out;
2314 /* constraints check */
2315 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2316 if (ret < 0)
2317 goto out;
2319 /* restore original values in case of error */
2320 old_min_uV = regulator->min_uV;
2321 old_max_uV = regulator->max_uV;
2322 regulator->min_uV = min_uV;
2323 regulator->max_uV = max_uV;
2325 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2326 if (ret < 0)
2327 goto out2;
2329 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2330 if (ret < 0)
2331 goto out2;
2333 out:
2334 mutex_unlock(&rdev->mutex);
2335 return ret;
2336 out2:
2337 regulator->min_uV = old_min_uV;
2338 regulator->max_uV = old_max_uV;
2339 mutex_unlock(&rdev->mutex);
2340 return ret;
2342 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2345 * regulator_set_voltage_time - get raise/fall time
2346 * @regulator: regulator source
2347 * @old_uV: starting voltage in microvolts
2348 * @new_uV: target voltage in microvolts
2350 * Provided with the starting and ending voltage, this function attempts to
2351 * calculate the time in microseconds required to rise or fall to this new
2352 * voltage.
2354 int regulator_set_voltage_time(struct regulator *regulator,
2355 int old_uV, int new_uV)
2357 struct regulator_dev *rdev = regulator->rdev;
2358 struct regulator_ops *ops = rdev->desc->ops;
2359 int old_sel = -1;
2360 int new_sel = -1;
2361 int voltage;
2362 int i;
2364 /* Currently requires operations to do this */
2365 if (!ops->list_voltage || !ops->set_voltage_time_sel
2366 || !rdev->desc->n_voltages)
2367 return -EINVAL;
2369 for (i = 0; i < rdev->desc->n_voltages; i++) {
2370 /* We only look for exact voltage matches here */
2371 voltage = regulator_list_voltage(regulator, i);
2372 if (voltage < 0)
2373 return -EINVAL;
2374 if (voltage == 0)
2375 continue;
2376 if (voltage == old_uV)
2377 old_sel = i;
2378 if (voltage == new_uV)
2379 new_sel = i;
2382 if (old_sel < 0 || new_sel < 0)
2383 return -EINVAL;
2385 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2387 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2390 * regulator_set_voltage_time_sel - get raise/fall time
2391 * @rdev: regulator source device
2392 * @old_selector: selector for starting voltage
2393 * @new_selector: selector for target voltage
2395 * Provided with the starting and target voltage selectors, this function
2396 * returns time in microseconds required to rise or fall to this new voltage
2398 * Drivers providing ramp_delay in regulation_constraints can use this as their
2399 * set_voltage_time_sel() operation.
2401 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2402 unsigned int old_selector,
2403 unsigned int new_selector)
2405 unsigned int ramp_delay = 0;
2406 int old_volt, new_volt;
2408 if (rdev->constraints->ramp_delay)
2409 ramp_delay = rdev->constraints->ramp_delay;
2410 else if (rdev->desc->ramp_delay)
2411 ramp_delay = rdev->desc->ramp_delay;
2413 if (ramp_delay == 0) {
2414 rdev_warn(rdev, "ramp_delay not set\n");
2415 return 0;
2418 /* sanity check */
2419 if (!rdev->desc->ops->list_voltage)
2420 return -EINVAL;
2422 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2423 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2425 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2427 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2430 * regulator_sync_voltage - re-apply last regulator output voltage
2431 * @regulator: regulator source
2433 * Re-apply the last configured voltage. This is intended to be used
2434 * where some external control source the consumer is cooperating with
2435 * has caused the configured voltage to change.
2437 int regulator_sync_voltage(struct regulator *regulator)
2439 struct regulator_dev *rdev = regulator->rdev;
2440 int ret, min_uV, max_uV;
2442 mutex_lock(&rdev->mutex);
2444 if (!rdev->desc->ops->set_voltage &&
2445 !rdev->desc->ops->set_voltage_sel) {
2446 ret = -EINVAL;
2447 goto out;
2450 /* This is only going to work if we've had a voltage configured. */
2451 if (!regulator->min_uV && !regulator->max_uV) {
2452 ret = -EINVAL;
2453 goto out;
2456 min_uV = regulator->min_uV;
2457 max_uV = regulator->max_uV;
2459 /* This should be a paranoia check... */
2460 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2461 if (ret < 0)
2462 goto out;
2464 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2465 if (ret < 0)
2466 goto out;
2468 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2470 out:
2471 mutex_unlock(&rdev->mutex);
2472 return ret;
2474 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2476 static int _regulator_get_voltage(struct regulator_dev *rdev)
2478 int sel, ret;
2480 if (rdev->desc->ops->get_voltage_sel) {
2481 sel = rdev->desc->ops->get_voltage_sel(rdev);
2482 if (sel < 0)
2483 return sel;
2484 ret = rdev->desc->ops->list_voltage(rdev, sel);
2485 } else if (rdev->desc->ops->get_voltage) {
2486 ret = rdev->desc->ops->get_voltage(rdev);
2487 } else if (rdev->desc->ops->list_voltage) {
2488 ret = rdev->desc->ops->list_voltage(rdev, 0);
2489 } else {
2490 return -EINVAL;
2493 if (ret < 0)
2494 return ret;
2495 return ret - rdev->constraints->uV_offset;
2499 * regulator_get_voltage - get regulator output voltage
2500 * @regulator: regulator source
2502 * This returns the current regulator voltage in uV.
2504 * NOTE: If the regulator is disabled it will return the voltage value. This
2505 * function should not be used to determine regulator state.
2507 int regulator_get_voltage(struct regulator *regulator)
2509 int ret;
2511 mutex_lock(&regulator->rdev->mutex);
2513 ret = _regulator_get_voltage(regulator->rdev);
2515 mutex_unlock(&regulator->rdev->mutex);
2517 return ret;
2519 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2522 * regulator_set_current_limit - set regulator output current limit
2523 * @regulator: regulator source
2524 * @min_uA: Minimum supported current in uA
2525 * @max_uA: Maximum supported current in uA
2527 * Sets current sink to the desired output current. This can be set during
2528 * any regulator state. IOW, regulator can be disabled or enabled.
2530 * If the regulator is enabled then the current will change to the new value
2531 * immediately otherwise if the regulator is disabled the regulator will
2532 * output at the new current when enabled.
2534 * NOTE: Regulator system constraints must be set for this regulator before
2535 * calling this function otherwise this call will fail.
2537 int regulator_set_current_limit(struct regulator *regulator,
2538 int min_uA, int max_uA)
2540 struct regulator_dev *rdev = regulator->rdev;
2541 int ret;
2543 mutex_lock(&rdev->mutex);
2545 /* sanity check */
2546 if (!rdev->desc->ops->set_current_limit) {
2547 ret = -EINVAL;
2548 goto out;
2551 /* constraints check */
2552 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2553 if (ret < 0)
2554 goto out;
2556 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2557 out:
2558 mutex_unlock(&rdev->mutex);
2559 return ret;
2561 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2563 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2565 int ret;
2567 mutex_lock(&rdev->mutex);
2569 /* sanity check */
2570 if (!rdev->desc->ops->get_current_limit) {
2571 ret = -EINVAL;
2572 goto out;
2575 ret = rdev->desc->ops->get_current_limit(rdev);
2576 out:
2577 mutex_unlock(&rdev->mutex);
2578 return ret;
2582 * regulator_get_current_limit - get regulator output current
2583 * @regulator: regulator source
2585 * This returns the current supplied by the specified current sink in uA.
2587 * NOTE: If the regulator is disabled it will return the current value. This
2588 * function should not be used to determine regulator state.
2590 int regulator_get_current_limit(struct regulator *regulator)
2592 return _regulator_get_current_limit(regulator->rdev);
2594 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2597 * regulator_set_mode - set regulator operating mode
2598 * @regulator: regulator source
2599 * @mode: operating mode - one of the REGULATOR_MODE constants
2601 * Set regulator operating mode to increase regulator efficiency or improve
2602 * regulation performance.
2604 * NOTE: Regulator system constraints must be set for this regulator before
2605 * calling this function otherwise this call will fail.
2607 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2609 struct regulator_dev *rdev = regulator->rdev;
2610 int ret;
2611 int regulator_curr_mode;
2613 mutex_lock(&rdev->mutex);
2615 /* sanity check */
2616 if (!rdev->desc->ops->set_mode) {
2617 ret = -EINVAL;
2618 goto out;
2621 /* return if the same mode is requested */
2622 if (rdev->desc->ops->get_mode) {
2623 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2624 if (regulator_curr_mode == mode) {
2625 ret = 0;
2626 goto out;
2630 /* constraints check */
2631 ret = regulator_mode_constrain(rdev, &mode);
2632 if (ret < 0)
2633 goto out;
2635 ret = rdev->desc->ops->set_mode(rdev, mode);
2636 out:
2637 mutex_unlock(&rdev->mutex);
2638 return ret;
2640 EXPORT_SYMBOL_GPL(regulator_set_mode);
2642 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2644 int ret;
2646 mutex_lock(&rdev->mutex);
2648 /* sanity check */
2649 if (!rdev->desc->ops->get_mode) {
2650 ret = -EINVAL;
2651 goto out;
2654 ret = rdev->desc->ops->get_mode(rdev);
2655 out:
2656 mutex_unlock(&rdev->mutex);
2657 return ret;
2661 * regulator_get_mode - get regulator operating mode
2662 * @regulator: regulator source
2664 * Get the current regulator operating mode.
2666 unsigned int regulator_get_mode(struct regulator *regulator)
2668 return _regulator_get_mode(regulator->rdev);
2670 EXPORT_SYMBOL_GPL(regulator_get_mode);
2673 * regulator_set_optimum_mode - set regulator optimum operating mode
2674 * @regulator: regulator source
2675 * @uA_load: load current
2677 * Notifies the regulator core of a new device load. This is then used by
2678 * DRMS (if enabled by constraints) to set the most efficient regulator
2679 * operating mode for the new regulator loading.
2681 * Consumer devices notify their supply regulator of the maximum power
2682 * they will require (can be taken from device datasheet in the power
2683 * consumption tables) when they change operational status and hence power
2684 * state. Examples of operational state changes that can affect power
2685 * consumption are :-
2687 * o Device is opened / closed.
2688 * o Device I/O is about to begin or has just finished.
2689 * o Device is idling in between work.
2691 * This information is also exported via sysfs to userspace.
2693 * DRMS will sum the total requested load on the regulator and change
2694 * to the most efficient operating mode if platform constraints allow.
2696 * Returns the new regulator mode or error.
2698 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2700 struct regulator_dev *rdev = regulator->rdev;
2701 struct regulator *consumer;
2702 int ret, output_uV, input_uV = 0, total_uA_load = 0;
2703 unsigned int mode;
2705 if (rdev->supply)
2706 input_uV = regulator_get_voltage(rdev->supply);
2708 mutex_lock(&rdev->mutex);
2711 * first check to see if we can set modes at all, otherwise just
2712 * tell the consumer everything is OK.
2714 regulator->uA_load = uA_load;
2715 ret = regulator_check_drms(rdev);
2716 if (ret < 0) {
2717 ret = 0;
2718 goto out;
2721 if (!rdev->desc->ops->get_optimum_mode)
2722 goto out;
2725 * we can actually do this so any errors are indicators of
2726 * potential real failure.
2728 ret = -EINVAL;
2730 if (!rdev->desc->ops->set_mode)
2731 goto out;
2733 /* get output voltage */
2734 output_uV = _regulator_get_voltage(rdev);
2735 if (output_uV <= 0) {
2736 rdev_err(rdev, "invalid output voltage found\n");
2737 goto out;
2740 /* No supply? Use constraint voltage */
2741 if (input_uV <= 0)
2742 input_uV = rdev->constraints->input_uV;
2743 if (input_uV <= 0) {
2744 rdev_err(rdev, "invalid input voltage found\n");
2745 goto out;
2748 /* calc total requested load for this regulator */
2749 list_for_each_entry(consumer, &rdev->consumer_list, list)
2750 total_uA_load += consumer->uA_load;
2752 mode = rdev->desc->ops->get_optimum_mode(rdev,
2753 input_uV, output_uV,
2754 total_uA_load);
2755 ret = regulator_mode_constrain(rdev, &mode);
2756 if (ret < 0) {
2757 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2758 total_uA_load, input_uV, output_uV);
2759 goto out;
2762 ret = rdev->desc->ops->set_mode(rdev, mode);
2763 if (ret < 0) {
2764 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2765 goto out;
2767 ret = mode;
2768 out:
2769 mutex_unlock(&rdev->mutex);
2770 return ret;
2772 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2775 * regulator_allow_bypass - allow the regulator to go into bypass mode
2777 * @regulator: Regulator to configure
2778 * @enable: enable or disable bypass mode
2780 * Allow the regulator to go into bypass mode if all other consumers
2781 * for the regulator also enable bypass mode and the machine
2782 * constraints allow this. Bypass mode means that the regulator is
2783 * simply passing the input directly to the output with no regulation.
2785 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2787 struct regulator_dev *rdev = regulator->rdev;
2788 int ret = 0;
2790 if (!rdev->desc->ops->set_bypass)
2791 return 0;
2793 if (rdev->constraints &&
2794 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2795 return 0;
2797 mutex_lock(&rdev->mutex);
2799 if (enable && !regulator->bypass) {
2800 rdev->bypass_count++;
2802 if (rdev->bypass_count == rdev->open_count) {
2803 ret = rdev->desc->ops->set_bypass(rdev, enable);
2804 if (ret != 0)
2805 rdev->bypass_count--;
2808 } else if (!enable && regulator->bypass) {
2809 rdev->bypass_count--;
2811 if (rdev->bypass_count != rdev->open_count) {
2812 ret = rdev->desc->ops->set_bypass(rdev, enable);
2813 if (ret != 0)
2814 rdev->bypass_count++;
2818 if (ret == 0)
2819 regulator->bypass = enable;
2821 mutex_unlock(&rdev->mutex);
2823 return ret;
2825 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2828 * regulator_register_notifier - register regulator event notifier
2829 * @regulator: regulator source
2830 * @nb: notifier block
2832 * Register notifier block to receive regulator events.
2834 int regulator_register_notifier(struct regulator *regulator,
2835 struct notifier_block *nb)
2837 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2838 nb);
2840 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2843 * regulator_unregister_notifier - unregister regulator event notifier
2844 * @regulator: regulator source
2845 * @nb: notifier block
2847 * Unregister regulator event notifier block.
2849 int regulator_unregister_notifier(struct regulator *regulator,
2850 struct notifier_block *nb)
2852 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2853 nb);
2855 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2857 /* notify regulator consumers and downstream regulator consumers.
2858 * Note mutex must be held by caller.
2860 static void _notifier_call_chain(struct regulator_dev *rdev,
2861 unsigned long event, void *data)
2863 /* call rdev chain first */
2864 blocking_notifier_call_chain(&rdev->notifier, event, data);
2868 * regulator_bulk_get - get multiple regulator consumers
2870 * @dev: Device to supply
2871 * @num_consumers: Number of consumers to register
2872 * @consumers: Configuration of consumers; clients are stored here.
2874 * @return 0 on success, an errno on failure.
2876 * This helper function allows drivers to get several regulator
2877 * consumers in one operation. If any of the regulators cannot be
2878 * acquired then any regulators that were allocated will be freed
2879 * before returning to the caller.
2881 int regulator_bulk_get(struct device *dev, int num_consumers,
2882 struct regulator_bulk_data *consumers)
2884 int i;
2885 int ret;
2887 for (i = 0; i < num_consumers; i++)
2888 consumers[i].consumer = NULL;
2890 for (i = 0; i < num_consumers; i++) {
2891 consumers[i].consumer = regulator_get(dev,
2892 consumers[i].supply);
2893 if (IS_ERR(consumers[i].consumer)) {
2894 ret = PTR_ERR(consumers[i].consumer);
2895 dev_err(dev, "Failed to get supply '%s': %d\n",
2896 consumers[i].supply, ret);
2897 consumers[i].consumer = NULL;
2898 goto err;
2902 return 0;
2904 err:
2905 while (--i >= 0)
2906 regulator_put(consumers[i].consumer);
2908 return ret;
2910 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2913 * devm_regulator_bulk_get - managed get multiple regulator consumers
2915 * @dev: Device to supply
2916 * @num_consumers: Number of consumers to register
2917 * @consumers: Configuration of consumers; clients are stored here.
2919 * @return 0 on success, an errno on failure.
2921 * This helper function allows drivers to get several regulator
2922 * consumers in one operation with management, the regulators will
2923 * automatically be freed when the device is unbound. If any of the
2924 * regulators cannot be acquired then any regulators that were
2925 * allocated will be freed before returning to the caller.
2927 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2928 struct regulator_bulk_data *consumers)
2930 int i;
2931 int ret;
2933 for (i = 0; i < num_consumers; i++)
2934 consumers[i].consumer = NULL;
2936 for (i = 0; i < num_consumers; i++) {
2937 consumers[i].consumer = devm_regulator_get(dev,
2938 consumers[i].supply);
2939 if (IS_ERR(consumers[i].consumer)) {
2940 ret = PTR_ERR(consumers[i].consumer);
2941 dev_err(dev, "Failed to get supply '%s': %d\n",
2942 consumers[i].supply, ret);
2943 consumers[i].consumer = NULL;
2944 goto err;
2948 return 0;
2950 err:
2951 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2952 devm_regulator_put(consumers[i].consumer);
2954 return ret;
2956 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2958 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2960 struct regulator_bulk_data *bulk = data;
2962 bulk->ret = regulator_enable(bulk->consumer);
2966 * regulator_bulk_enable - enable multiple regulator consumers
2968 * @num_consumers: Number of consumers
2969 * @consumers: Consumer data; clients are stored here.
2970 * @return 0 on success, an errno on failure
2972 * This convenience API allows consumers to enable multiple regulator
2973 * clients in a single API call. If any consumers cannot be enabled
2974 * then any others that were enabled will be disabled again prior to
2975 * return.
2977 int regulator_bulk_enable(int num_consumers,
2978 struct regulator_bulk_data *consumers)
2980 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2981 int i;
2982 int ret = 0;
2984 for (i = 0; i < num_consumers; i++) {
2985 if (consumers[i].consumer->always_on)
2986 consumers[i].ret = 0;
2987 else
2988 async_schedule_domain(regulator_bulk_enable_async,
2989 &consumers[i], &async_domain);
2992 async_synchronize_full_domain(&async_domain);
2994 /* If any consumer failed we need to unwind any that succeeded */
2995 for (i = 0; i < num_consumers; i++) {
2996 if (consumers[i].ret != 0) {
2997 ret = consumers[i].ret;
2998 goto err;
3002 return 0;
3004 err:
3005 for (i = 0; i < num_consumers; i++) {
3006 if (consumers[i].ret < 0)
3007 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3008 consumers[i].ret);
3009 else
3010 regulator_disable(consumers[i].consumer);
3013 return ret;
3015 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3018 * regulator_bulk_disable - disable multiple regulator consumers
3020 * @num_consumers: Number of consumers
3021 * @consumers: Consumer data; clients are stored here.
3022 * @return 0 on success, an errno on failure
3024 * This convenience API allows consumers to disable multiple regulator
3025 * clients in a single API call. If any consumers cannot be disabled
3026 * then any others that were disabled will be enabled again prior to
3027 * return.
3029 int regulator_bulk_disable(int num_consumers,
3030 struct regulator_bulk_data *consumers)
3032 int i;
3033 int ret, r;
3035 for (i = num_consumers - 1; i >= 0; --i) {
3036 ret = regulator_disable(consumers[i].consumer);
3037 if (ret != 0)
3038 goto err;
3041 return 0;
3043 err:
3044 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3045 for (++i; i < num_consumers; ++i) {
3046 r = regulator_enable(consumers[i].consumer);
3047 if (r != 0)
3048 pr_err("Failed to reename %s: %d\n",
3049 consumers[i].supply, r);
3052 return ret;
3054 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3057 * regulator_bulk_force_disable - force disable multiple regulator consumers
3059 * @num_consumers: Number of consumers
3060 * @consumers: Consumer data; clients are stored here.
3061 * @return 0 on success, an errno on failure
3063 * This convenience API allows consumers to forcibly disable multiple regulator
3064 * clients in a single API call.
3065 * NOTE: This should be used for situations when device damage will
3066 * likely occur if the regulators are not disabled (e.g. over temp).
3067 * Although regulator_force_disable function call for some consumers can
3068 * return error numbers, the function is called for all consumers.
3070 int regulator_bulk_force_disable(int num_consumers,
3071 struct regulator_bulk_data *consumers)
3073 int i;
3074 int ret;
3076 for (i = 0; i < num_consumers; i++)
3077 consumers[i].ret =
3078 regulator_force_disable(consumers[i].consumer);
3080 for (i = 0; i < num_consumers; i++) {
3081 if (consumers[i].ret != 0) {
3082 ret = consumers[i].ret;
3083 goto out;
3087 return 0;
3088 out:
3089 return ret;
3091 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3094 * regulator_bulk_free - free multiple regulator consumers
3096 * @num_consumers: Number of consumers
3097 * @consumers: Consumer data; clients are stored here.
3099 * This convenience API allows consumers to free multiple regulator
3100 * clients in a single API call.
3102 void regulator_bulk_free(int num_consumers,
3103 struct regulator_bulk_data *consumers)
3105 int i;
3107 for (i = 0; i < num_consumers; i++) {
3108 regulator_put(consumers[i].consumer);
3109 consumers[i].consumer = NULL;
3112 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3115 * regulator_notifier_call_chain - call regulator event notifier
3116 * @rdev: regulator source
3117 * @event: notifier block
3118 * @data: callback-specific data.
3120 * Called by regulator drivers to notify clients a regulator event has
3121 * occurred. We also notify regulator clients downstream.
3122 * Note lock must be held by caller.
3124 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3125 unsigned long event, void *data)
3127 _notifier_call_chain(rdev, event, data);
3128 return NOTIFY_DONE;
3131 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3134 * regulator_mode_to_status - convert a regulator mode into a status
3136 * @mode: Mode to convert
3138 * Convert a regulator mode into a status.
3140 int regulator_mode_to_status(unsigned int mode)
3142 switch (mode) {
3143 case REGULATOR_MODE_FAST:
3144 return REGULATOR_STATUS_FAST;
3145 case REGULATOR_MODE_NORMAL:
3146 return REGULATOR_STATUS_NORMAL;
3147 case REGULATOR_MODE_IDLE:
3148 return REGULATOR_STATUS_IDLE;
3149 case REGULATOR_MODE_STANDBY:
3150 return REGULATOR_STATUS_STANDBY;
3151 default:
3152 return REGULATOR_STATUS_UNDEFINED;
3155 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3158 * To avoid cluttering sysfs (and memory) with useless state, only
3159 * create attributes that can be meaningfully displayed.
3161 static int add_regulator_attributes(struct regulator_dev *rdev)
3163 struct device *dev = &rdev->dev;
3164 struct regulator_ops *ops = rdev->desc->ops;
3165 int status = 0;
3167 /* some attributes need specific methods to be displayed */
3168 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3169 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3170 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3171 status = device_create_file(dev, &dev_attr_microvolts);
3172 if (status < 0)
3173 return status;
3175 if (ops->get_current_limit) {
3176 status = device_create_file(dev, &dev_attr_microamps);
3177 if (status < 0)
3178 return status;
3180 if (ops->get_mode) {
3181 status = device_create_file(dev, &dev_attr_opmode);
3182 if (status < 0)
3183 return status;
3185 if (rdev->ena_pin || ops->is_enabled) {
3186 status = device_create_file(dev, &dev_attr_state);
3187 if (status < 0)
3188 return status;
3190 if (ops->get_status) {
3191 status = device_create_file(dev, &dev_attr_status);
3192 if (status < 0)
3193 return status;
3195 if (ops->get_bypass) {
3196 status = device_create_file(dev, &dev_attr_bypass);
3197 if (status < 0)
3198 return status;
3201 /* some attributes are type-specific */
3202 if (rdev->desc->type == REGULATOR_CURRENT) {
3203 status = device_create_file(dev, &dev_attr_requested_microamps);
3204 if (status < 0)
3205 return status;
3208 /* all the other attributes exist to support constraints;
3209 * don't show them if there are no constraints, or if the
3210 * relevant supporting methods are missing.
3212 if (!rdev->constraints)
3213 return status;
3215 /* constraints need specific supporting methods */
3216 if (ops->set_voltage || ops->set_voltage_sel) {
3217 status = device_create_file(dev, &dev_attr_min_microvolts);
3218 if (status < 0)
3219 return status;
3220 status = device_create_file(dev, &dev_attr_max_microvolts);
3221 if (status < 0)
3222 return status;
3224 if (ops->set_current_limit) {
3225 status = device_create_file(dev, &dev_attr_min_microamps);
3226 if (status < 0)
3227 return status;
3228 status = device_create_file(dev, &dev_attr_max_microamps);
3229 if (status < 0)
3230 return status;
3233 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3234 if (status < 0)
3235 return status;
3236 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3237 if (status < 0)
3238 return status;
3239 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3240 if (status < 0)
3241 return status;
3243 if (ops->set_suspend_voltage) {
3244 status = device_create_file(dev,
3245 &dev_attr_suspend_standby_microvolts);
3246 if (status < 0)
3247 return status;
3248 status = device_create_file(dev,
3249 &dev_attr_suspend_mem_microvolts);
3250 if (status < 0)
3251 return status;
3252 status = device_create_file(dev,
3253 &dev_attr_suspend_disk_microvolts);
3254 if (status < 0)
3255 return status;
3258 if (ops->set_suspend_mode) {
3259 status = device_create_file(dev,
3260 &dev_attr_suspend_standby_mode);
3261 if (status < 0)
3262 return status;
3263 status = device_create_file(dev,
3264 &dev_attr_suspend_mem_mode);
3265 if (status < 0)
3266 return status;
3267 status = device_create_file(dev,
3268 &dev_attr_suspend_disk_mode);
3269 if (status < 0)
3270 return status;
3273 return status;
3276 static void rdev_init_debugfs(struct regulator_dev *rdev)
3278 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3279 if (!rdev->debugfs) {
3280 rdev_warn(rdev, "Failed to create debugfs directory\n");
3281 return;
3284 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3285 &rdev->use_count);
3286 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3287 &rdev->open_count);
3288 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3289 &rdev->bypass_count);
3293 * regulator_register - register regulator
3294 * @regulator_desc: regulator to register
3295 * @config: runtime configuration for regulator
3297 * Called by regulator drivers to register a regulator.
3298 * Returns a valid pointer to struct regulator_dev on success
3299 * or an ERR_PTR() on error.
3301 struct regulator_dev *
3302 regulator_register(const struct regulator_desc *regulator_desc,
3303 const struct regulator_config *config)
3305 const struct regulation_constraints *constraints = NULL;
3306 const struct regulator_init_data *init_data;
3307 static atomic_t regulator_no = ATOMIC_INIT(0);
3308 struct regulator_dev *rdev;
3309 struct device *dev;
3310 int ret, i;
3311 const char *supply = NULL;
3313 if (regulator_desc == NULL || config == NULL)
3314 return ERR_PTR(-EINVAL);
3316 dev = config->dev;
3317 WARN_ON(!dev);
3319 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3320 return ERR_PTR(-EINVAL);
3322 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3323 regulator_desc->type != REGULATOR_CURRENT)
3324 return ERR_PTR(-EINVAL);
3326 /* Only one of each should be implemented */
3327 WARN_ON(regulator_desc->ops->get_voltage &&
3328 regulator_desc->ops->get_voltage_sel);
3329 WARN_ON(regulator_desc->ops->set_voltage &&
3330 regulator_desc->ops->set_voltage_sel);
3332 /* If we're using selectors we must implement list_voltage. */
3333 if (regulator_desc->ops->get_voltage_sel &&
3334 !regulator_desc->ops->list_voltage) {
3335 return ERR_PTR(-EINVAL);
3337 if (regulator_desc->ops->set_voltage_sel &&
3338 !regulator_desc->ops->list_voltage) {
3339 return ERR_PTR(-EINVAL);
3342 init_data = config->init_data;
3344 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3345 if (rdev == NULL)
3346 return ERR_PTR(-ENOMEM);
3348 mutex_lock(&regulator_list_mutex);
3350 mutex_init(&rdev->mutex);
3351 rdev->reg_data = config->driver_data;
3352 rdev->owner = regulator_desc->owner;
3353 rdev->desc = regulator_desc;
3354 if (config->regmap)
3355 rdev->regmap = config->regmap;
3356 else if (dev_get_regmap(dev, NULL))
3357 rdev->regmap = dev_get_regmap(dev, NULL);
3358 else if (dev->parent)
3359 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3360 INIT_LIST_HEAD(&rdev->consumer_list);
3361 INIT_LIST_HEAD(&rdev->list);
3362 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3363 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3365 /* preform any regulator specific init */
3366 if (init_data && init_data->regulator_init) {
3367 ret = init_data->regulator_init(rdev->reg_data);
3368 if (ret < 0)
3369 goto clean;
3372 /* register with sysfs */
3373 rdev->dev.class = &regulator_class;
3374 rdev->dev.of_node = config->of_node;
3375 rdev->dev.parent = dev;
3376 dev_set_name(&rdev->dev, "regulator.%d",
3377 atomic_inc_return(&regulator_no) - 1);
3378 ret = device_register(&rdev->dev);
3379 if (ret != 0) {
3380 put_device(&rdev->dev);
3381 goto clean;
3384 dev_set_drvdata(&rdev->dev, rdev);
3386 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3387 ret = regulator_ena_gpio_request(rdev, config);
3388 if (ret != 0) {
3389 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3390 config->ena_gpio, ret);
3391 goto wash;
3394 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3395 rdev->ena_gpio_state = 1;
3397 if (config->ena_gpio_invert)
3398 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3401 /* set regulator constraints */
3402 if (init_data)
3403 constraints = &init_data->constraints;
3405 ret = set_machine_constraints(rdev, constraints);
3406 if (ret < 0)
3407 goto scrub;
3409 /* add attributes supported by this regulator */
3410 ret = add_regulator_attributes(rdev);
3411 if (ret < 0)
3412 goto scrub;
3414 if (init_data && init_data->supply_regulator)
3415 supply = init_data->supply_regulator;
3416 else if (regulator_desc->supply_name)
3417 supply = regulator_desc->supply_name;
3419 if (supply) {
3420 struct regulator_dev *r;
3422 r = regulator_dev_lookup(dev, supply, &ret);
3424 if (ret == -ENODEV) {
3426 * No supply was specified for this regulator and
3427 * there will never be one.
3429 ret = 0;
3430 goto add_dev;
3431 } else if (!r) {
3432 dev_err(dev, "Failed to find supply %s\n", supply);
3433 ret = -EPROBE_DEFER;
3434 goto scrub;
3437 ret = set_supply(rdev, r);
3438 if (ret < 0)
3439 goto scrub;
3441 /* Enable supply if rail is enabled */
3442 if (_regulator_is_enabled(rdev)) {
3443 ret = regulator_enable(rdev->supply);
3444 if (ret < 0)
3445 goto scrub;
3449 add_dev:
3450 /* add consumers devices */
3451 if (init_data) {
3452 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3453 ret = set_consumer_device_supply(rdev,
3454 init_data->consumer_supplies[i].dev_name,
3455 init_data->consumer_supplies[i].supply);
3456 if (ret < 0) {
3457 dev_err(dev, "Failed to set supply %s\n",
3458 init_data->consumer_supplies[i].supply);
3459 goto unset_supplies;
3464 list_add(&rdev->list, &regulator_list);
3466 rdev_init_debugfs(rdev);
3467 out:
3468 mutex_unlock(&regulator_list_mutex);
3469 return rdev;
3471 unset_supplies:
3472 unset_regulator_supplies(rdev);
3474 scrub:
3475 if (rdev->supply)
3476 _regulator_put(rdev->supply);
3477 regulator_ena_gpio_free(rdev);
3478 kfree(rdev->constraints);
3479 wash:
3480 device_unregister(&rdev->dev);
3481 /* device core frees rdev */
3482 rdev = ERR_PTR(ret);
3483 goto out;
3485 clean:
3486 kfree(rdev);
3487 rdev = ERR_PTR(ret);
3488 goto out;
3490 EXPORT_SYMBOL_GPL(regulator_register);
3493 * regulator_unregister - unregister regulator
3494 * @rdev: regulator to unregister
3496 * Called by regulator drivers to unregister a regulator.
3498 void regulator_unregister(struct regulator_dev *rdev)
3500 if (rdev == NULL)
3501 return;
3503 if (rdev->supply) {
3504 while (rdev->use_count--)
3505 regulator_disable(rdev->supply);
3506 regulator_put(rdev->supply);
3508 mutex_lock(&regulator_list_mutex);
3509 debugfs_remove_recursive(rdev->debugfs);
3510 flush_work(&rdev->disable_work.work);
3511 WARN_ON(rdev->open_count);
3512 unset_regulator_supplies(rdev);
3513 list_del(&rdev->list);
3514 kfree(rdev->constraints);
3515 regulator_ena_gpio_free(rdev);
3516 device_unregister(&rdev->dev);
3517 mutex_unlock(&regulator_list_mutex);
3519 EXPORT_SYMBOL_GPL(regulator_unregister);
3522 * regulator_suspend_prepare - prepare regulators for system wide suspend
3523 * @state: system suspend state
3525 * Configure each regulator with it's suspend operating parameters for state.
3526 * This will usually be called by machine suspend code prior to supending.
3528 int regulator_suspend_prepare(suspend_state_t state)
3530 struct regulator_dev *rdev;
3531 int ret = 0;
3533 /* ON is handled by regulator active state */
3534 if (state == PM_SUSPEND_ON)
3535 return -EINVAL;
3537 mutex_lock(&regulator_list_mutex);
3538 list_for_each_entry(rdev, &regulator_list, list) {
3540 mutex_lock(&rdev->mutex);
3541 ret = suspend_prepare(rdev, state);
3542 mutex_unlock(&rdev->mutex);
3544 if (ret < 0) {
3545 rdev_err(rdev, "failed to prepare\n");
3546 goto out;
3549 out:
3550 mutex_unlock(&regulator_list_mutex);
3551 return ret;
3553 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3556 * regulator_suspend_finish - resume regulators from system wide suspend
3558 * Turn on regulators that might be turned off by regulator_suspend_prepare
3559 * and that should be turned on according to the regulators properties.
3561 int regulator_suspend_finish(void)
3563 struct regulator_dev *rdev;
3564 int ret = 0, error;
3566 mutex_lock(&regulator_list_mutex);
3567 list_for_each_entry(rdev, &regulator_list, list) {
3568 mutex_lock(&rdev->mutex);
3569 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3570 error = _regulator_do_enable(rdev);
3571 if (error)
3572 ret = error;
3573 } else {
3574 if (!has_full_constraints)
3575 goto unlock;
3576 if (!_regulator_is_enabled(rdev))
3577 goto unlock;
3579 error = _regulator_do_disable(rdev);
3580 if (error)
3581 ret = error;
3583 unlock:
3584 mutex_unlock(&rdev->mutex);
3586 mutex_unlock(&regulator_list_mutex);
3587 return ret;
3589 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3592 * regulator_has_full_constraints - the system has fully specified constraints
3594 * Calling this function will cause the regulator API to disable all
3595 * regulators which have a zero use count and don't have an always_on
3596 * constraint in a late_initcall.
3598 * The intention is that this will become the default behaviour in a
3599 * future kernel release so users are encouraged to use this facility
3600 * now.
3602 void regulator_has_full_constraints(void)
3604 has_full_constraints = 1;
3606 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3609 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3611 * Calling this function will cause the regulator API to provide a
3612 * dummy regulator to consumers if no physical regulator is found,
3613 * allowing most consumers to proceed as though a regulator were
3614 * configured. This allows systems such as those with software
3615 * controllable regulators for the CPU core only to be brought up more
3616 * readily.
3618 void regulator_use_dummy_regulator(void)
3620 board_wants_dummy_regulator = true;
3622 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3625 * rdev_get_drvdata - get rdev regulator driver data
3626 * @rdev: regulator
3628 * Get rdev regulator driver private data. This call can be used in the
3629 * regulator driver context.
3631 void *rdev_get_drvdata(struct regulator_dev *rdev)
3633 return rdev->reg_data;
3635 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3638 * regulator_get_drvdata - get regulator driver data
3639 * @regulator: regulator
3641 * Get regulator driver private data. This call can be used in the consumer
3642 * driver context when non API regulator specific functions need to be called.
3644 void *regulator_get_drvdata(struct regulator *regulator)
3646 return regulator->rdev->reg_data;
3648 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3651 * regulator_set_drvdata - set regulator driver data
3652 * @regulator: regulator
3653 * @data: data
3655 void regulator_set_drvdata(struct regulator *regulator, void *data)
3657 regulator->rdev->reg_data = data;
3659 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3662 * regulator_get_id - get regulator ID
3663 * @rdev: regulator
3665 int rdev_get_id(struct regulator_dev *rdev)
3667 return rdev->desc->id;
3669 EXPORT_SYMBOL_GPL(rdev_get_id);
3671 struct device *rdev_get_dev(struct regulator_dev *rdev)
3673 return &rdev->dev;
3675 EXPORT_SYMBOL_GPL(rdev_get_dev);
3677 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3679 return reg_init_data->driver_data;
3681 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3683 #ifdef CONFIG_DEBUG_FS
3684 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3685 size_t count, loff_t *ppos)
3687 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3688 ssize_t len, ret = 0;
3689 struct regulator_map *map;
3691 if (!buf)
3692 return -ENOMEM;
3694 list_for_each_entry(map, &regulator_map_list, list) {
3695 len = snprintf(buf + ret, PAGE_SIZE - ret,
3696 "%s -> %s.%s\n",
3697 rdev_get_name(map->regulator), map->dev_name,
3698 map->supply);
3699 if (len >= 0)
3700 ret += len;
3701 if (ret > PAGE_SIZE) {
3702 ret = PAGE_SIZE;
3703 break;
3707 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3709 kfree(buf);
3711 return ret;
3713 #endif
3715 static const struct file_operations supply_map_fops = {
3716 #ifdef CONFIG_DEBUG_FS
3717 .read = supply_map_read_file,
3718 .llseek = default_llseek,
3719 #endif
3722 static int __init regulator_init(void)
3724 int ret;
3726 ret = class_register(&regulator_class);
3728 debugfs_root = debugfs_create_dir("regulator", NULL);
3729 if (!debugfs_root)
3730 pr_warn("regulator: Failed to create debugfs directory\n");
3732 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3733 &supply_map_fops);
3735 regulator_dummy_init();
3737 return ret;
3740 /* init early to allow our consumers to complete system booting */
3741 core_initcall(regulator_init);
3743 static int __init regulator_init_complete(void)
3745 struct regulator_dev *rdev;
3746 struct regulator_ops *ops;
3747 struct regulation_constraints *c;
3748 int enabled, ret;
3751 * Since DT doesn't provide an idiomatic mechanism for
3752 * enabling full constraints and since it's much more natural
3753 * with DT to provide them just assume that a DT enabled
3754 * system has full constraints.
3756 if (of_have_populated_dt())
3757 has_full_constraints = true;
3759 mutex_lock(&regulator_list_mutex);
3761 /* If we have a full configuration then disable any regulators
3762 * which are not in use or always_on. This will become the
3763 * default behaviour in the future.
3765 list_for_each_entry(rdev, &regulator_list, list) {
3766 ops = rdev->desc->ops;
3767 c = rdev->constraints;
3769 if (c && c->always_on)
3770 continue;
3772 mutex_lock(&rdev->mutex);
3774 if (rdev->use_count)
3775 goto unlock;
3777 /* If we can't read the status assume it's on. */
3778 if (ops->is_enabled)
3779 enabled = ops->is_enabled(rdev);
3780 else
3781 enabled = 1;
3783 if (!enabled)
3784 goto unlock;
3786 if (has_full_constraints) {
3787 /* We log since this may kill the system if it
3788 * goes wrong. */
3789 rdev_info(rdev, "disabling\n");
3790 ret = _regulator_do_disable(rdev);
3791 if (ret != 0) {
3792 rdev_err(rdev, "couldn't disable: %d\n", ret);
3794 } else {
3795 /* The intention is that in future we will
3796 * assume that full constraints are provided
3797 * so warn even if we aren't going to do
3798 * anything here.
3800 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3803 unlock:
3804 mutex_unlock(&rdev->mutex);
3807 mutex_unlock(&regulator_list_mutex);
3809 return 0;
3811 late_initcall(regulator_init_complete);