2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
40 #define rdev_crit(rdev, fmt, ...) \
41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...) \
43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...) \
45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...) \
47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...) \
49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51 static DEFINE_MUTEX(regulator_list_mutex
);
52 static LIST_HEAD(regulator_list
);
53 static LIST_HEAD(regulator_map_list
);
54 static LIST_HEAD(regulator_ena_gpio_list
);
55 static bool has_full_constraints
;
56 static bool board_wants_dummy_regulator
;
58 static struct dentry
*debugfs_root
;
61 * struct regulator_map
63 * Used to provide symbolic supply names to devices.
65 struct regulator_map
{
66 struct list_head list
;
67 const char *dev_name
; /* The dev_name() for the consumer */
69 struct regulator_dev
*regulator
;
73 * struct regulator_enable_gpio
75 * Management for shared enable GPIO pin
77 struct regulator_enable_gpio
{
78 struct list_head list
;
80 u32 enable_count
; /* a number of enabled shared GPIO */
81 u32 request_count
; /* a number of requested shared GPIO */
82 unsigned int ena_gpio_invert
:1;
88 * One for each consumer device.
92 struct list_head list
;
93 unsigned int always_on
:1;
94 unsigned int bypass
:1;
99 struct device_attribute dev_attr
;
100 struct regulator_dev
*rdev
;
101 struct dentry
*debugfs
;
104 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
105 static int _regulator_disable(struct regulator_dev
*rdev
);
106 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
107 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
108 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
109 static void _notifier_call_chain(struct regulator_dev
*rdev
,
110 unsigned long event
, void *data
);
111 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
112 int min_uV
, int max_uV
);
113 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
115 const char *supply_name
);
117 static const char *rdev_get_name(struct regulator_dev
*rdev
)
119 if (rdev
->constraints
&& rdev
->constraints
->name
)
120 return rdev
->constraints
->name
;
121 else if (rdev
->desc
->name
)
122 return rdev
->desc
->name
;
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
136 static struct device_node
*of_get_regulator(struct device
*dev
, const char *supply
)
138 struct device_node
*regnode
= NULL
;
139 char prop_name
[32]; /* 32 is max size of property name */
141 dev_dbg(dev
, "Looking up %s-supply from device tree\n", supply
);
143 snprintf(prop_name
, 32, "%s-supply", supply
);
144 regnode
= of_parse_phandle(dev
->of_node
, prop_name
, 0);
147 dev_dbg(dev
, "Looking up %s property in node %s failed",
148 prop_name
, dev
->of_node
->full_name
);
154 static int _regulator_can_change_status(struct regulator_dev
*rdev
)
156 if (!rdev
->constraints
)
159 if (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
)
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev
*rdev
,
167 int *min_uV
, int *max_uV
)
169 BUG_ON(*min_uV
> *max_uV
);
171 if (!rdev
->constraints
) {
172 rdev_err(rdev
, "no constraints\n");
175 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
176 rdev_err(rdev
, "operation not allowed\n");
180 if (*max_uV
> rdev
->constraints
->max_uV
)
181 *max_uV
= rdev
->constraints
->max_uV
;
182 if (*min_uV
< rdev
->constraints
->min_uV
)
183 *min_uV
= rdev
->constraints
->min_uV
;
185 if (*min_uV
> *max_uV
) {
186 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
194 /* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
197 static int regulator_check_consumers(struct regulator_dev
*rdev
,
198 int *min_uV
, int *max_uV
)
200 struct regulator
*regulator
;
202 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
204 * Assume consumers that didn't say anything are OK
205 * with anything in the constraint range.
207 if (!regulator
->min_uV
&& !regulator
->max_uV
)
210 if (*max_uV
> regulator
->max_uV
)
211 *max_uV
= regulator
->max_uV
;
212 if (*min_uV
< regulator
->min_uV
)
213 *min_uV
= regulator
->min_uV
;
216 if (*min_uV
> *max_uV
) {
217 rdev_err(rdev
, "Restricting voltage, %u-%uuV\n",
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
227 int *min_uA
, int *max_uA
)
229 BUG_ON(*min_uA
> *max_uA
);
231 if (!rdev
->constraints
) {
232 rdev_err(rdev
, "no constraints\n");
235 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_CURRENT
)) {
236 rdev_err(rdev
, "operation not allowed\n");
240 if (*max_uA
> rdev
->constraints
->max_uA
)
241 *max_uA
= rdev
->constraints
->max_uA
;
242 if (*min_uA
< rdev
->constraints
->min_uA
)
243 *min_uA
= rdev
->constraints
->min_uA
;
245 if (*min_uA
> *max_uA
) {
246 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev
*rdev
, int *mode
)
258 case REGULATOR_MODE_FAST
:
259 case REGULATOR_MODE_NORMAL
:
260 case REGULATOR_MODE_IDLE
:
261 case REGULATOR_MODE_STANDBY
:
264 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
268 if (!rdev
->constraints
) {
269 rdev_err(rdev
, "no constraints\n");
272 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_MODE
)) {
273 rdev_err(rdev
, "operation not allowed\n");
277 /* The modes are bitmasks, the most power hungry modes having
278 * the lowest values. If the requested mode isn't supported
279 * try higher modes. */
281 if (rdev
->constraints
->valid_modes_mask
& *mode
)
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev
*rdev
)
292 if (!rdev
->constraints
) {
293 rdev_err(rdev
, "no constraints\n");
296 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
)) {
297 rdev_err(rdev
, "operation not allowed\n");
303 static ssize_t
regulator_uV_show(struct device
*dev
,
304 struct device_attribute
*attr
, char *buf
)
306 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
309 mutex_lock(&rdev
->mutex
);
310 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
311 mutex_unlock(&rdev
->mutex
);
315 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
317 static ssize_t
regulator_uA_show(struct device
*dev
,
318 struct device_attribute
*attr
, char *buf
)
320 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
322 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
324 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
326 static ssize_t
name_show(struct device
*dev
, struct device_attribute
*attr
,
329 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
331 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
333 static DEVICE_ATTR_RO(name
);
335 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
338 case REGULATOR_MODE_FAST
:
339 return sprintf(buf
, "fast\n");
340 case REGULATOR_MODE_NORMAL
:
341 return sprintf(buf
, "normal\n");
342 case REGULATOR_MODE_IDLE
:
343 return sprintf(buf
, "idle\n");
344 case REGULATOR_MODE_STANDBY
:
345 return sprintf(buf
, "standby\n");
347 return sprintf(buf
, "unknown\n");
350 static ssize_t
regulator_opmode_show(struct device
*dev
,
351 struct device_attribute
*attr
, char *buf
)
353 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
355 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
357 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
359 static ssize_t
regulator_print_state(char *buf
, int state
)
362 return sprintf(buf
, "enabled\n");
364 return sprintf(buf
, "disabled\n");
366 return sprintf(buf
, "unknown\n");
369 static ssize_t
regulator_state_show(struct device
*dev
,
370 struct device_attribute
*attr
, char *buf
)
372 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
375 mutex_lock(&rdev
->mutex
);
376 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
377 mutex_unlock(&rdev
->mutex
);
381 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
383 static ssize_t
regulator_status_show(struct device
*dev
,
384 struct device_attribute
*attr
, char *buf
)
386 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
390 status
= rdev
->desc
->ops
->get_status(rdev
);
395 case REGULATOR_STATUS_OFF
:
398 case REGULATOR_STATUS_ON
:
401 case REGULATOR_STATUS_ERROR
:
404 case REGULATOR_STATUS_FAST
:
407 case REGULATOR_STATUS_NORMAL
:
410 case REGULATOR_STATUS_IDLE
:
413 case REGULATOR_STATUS_STANDBY
:
416 case REGULATOR_STATUS_BYPASS
:
419 case REGULATOR_STATUS_UNDEFINED
:
426 return sprintf(buf
, "%s\n", label
);
428 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
430 static ssize_t
regulator_min_uA_show(struct device
*dev
,
431 struct device_attribute
*attr
, char *buf
)
433 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
435 if (!rdev
->constraints
)
436 return sprintf(buf
, "constraint not defined\n");
438 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
440 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
442 static ssize_t
regulator_max_uA_show(struct device
*dev
,
443 struct device_attribute
*attr
, char *buf
)
445 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
447 if (!rdev
->constraints
)
448 return sprintf(buf
, "constraint not defined\n");
450 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
452 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
454 static ssize_t
regulator_min_uV_show(struct device
*dev
,
455 struct device_attribute
*attr
, char *buf
)
457 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
459 if (!rdev
->constraints
)
460 return sprintf(buf
, "constraint not defined\n");
462 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
464 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
466 static ssize_t
regulator_max_uV_show(struct device
*dev
,
467 struct device_attribute
*attr
, char *buf
)
469 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
471 if (!rdev
->constraints
)
472 return sprintf(buf
, "constraint not defined\n");
474 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
476 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
478 static ssize_t
regulator_total_uA_show(struct device
*dev
,
479 struct device_attribute
*attr
, char *buf
)
481 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
482 struct regulator
*regulator
;
485 mutex_lock(&rdev
->mutex
);
486 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
487 uA
+= regulator
->uA_load
;
488 mutex_unlock(&rdev
->mutex
);
489 return sprintf(buf
, "%d\n", uA
);
491 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
493 static ssize_t
num_users_show(struct device
*dev
, struct device_attribute
*attr
,
496 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
497 return sprintf(buf
, "%d\n", rdev
->use_count
);
499 static DEVICE_ATTR_RO(num_users
);
501 static ssize_t
type_show(struct device
*dev
, struct device_attribute
*attr
,
504 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
506 switch (rdev
->desc
->type
) {
507 case REGULATOR_VOLTAGE
:
508 return sprintf(buf
, "voltage\n");
509 case REGULATOR_CURRENT
:
510 return sprintf(buf
, "current\n");
512 return sprintf(buf
, "unknown\n");
514 static DEVICE_ATTR_RO(type
);
516 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
517 struct device_attribute
*attr
, char *buf
)
519 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
521 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
523 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
524 regulator_suspend_mem_uV_show
, NULL
);
526 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
527 struct device_attribute
*attr
, char *buf
)
529 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
531 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
533 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
534 regulator_suspend_disk_uV_show
, NULL
);
536 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
537 struct device_attribute
*attr
, char *buf
)
539 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
541 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
543 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
544 regulator_suspend_standby_uV_show
, NULL
);
546 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
547 struct device_attribute
*attr
, char *buf
)
549 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
551 return regulator_print_opmode(buf
,
552 rdev
->constraints
->state_mem
.mode
);
554 static DEVICE_ATTR(suspend_mem_mode
, 0444,
555 regulator_suspend_mem_mode_show
, NULL
);
557 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
558 struct device_attribute
*attr
, char *buf
)
560 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
562 return regulator_print_opmode(buf
,
563 rdev
->constraints
->state_disk
.mode
);
565 static DEVICE_ATTR(suspend_disk_mode
, 0444,
566 regulator_suspend_disk_mode_show
, NULL
);
568 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
569 struct device_attribute
*attr
, char *buf
)
571 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
573 return regulator_print_opmode(buf
,
574 rdev
->constraints
->state_standby
.mode
);
576 static DEVICE_ATTR(suspend_standby_mode
, 0444,
577 regulator_suspend_standby_mode_show
, NULL
);
579 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
580 struct device_attribute
*attr
, char *buf
)
582 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
584 return regulator_print_state(buf
,
585 rdev
->constraints
->state_mem
.enabled
);
587 static DEVICE_ATTR(suspend_mem_state
, 0444,
588 regulator_suspend_mem_state_show
, NULL
);
590 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
591 struct device_attribute
*attr
, char *buf
)
593 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
595 return regulator_print_state(buf
,
596 rdev
->constraints
->state_disk
.enabled
);
598 static DEVICE_ATTR(suspend_disk_state
, 0444,
599 regulator_suspend_disk_state_show
, NULL
);
601 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
602 struct device_attribute
*attr
, char *buf
)
604 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
606 return regulator_print_state(buf
,
607 rdev
->constraints
->state_standby
.enabled
);
609 static DEVICE_ATTR(suspend_standby_state
, 0444,
610 regulator_suspend_standby_state_show
, NULL
);
612 static ssize_t
regulator_bypass_show(struct device
*dev
,
613 struct device_attribute
*attr
, char *buf
)
615 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
620 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypass
);
629 return sprintf(buf
, "%s\n", report
);
631 static DEVICE_ATTR(bypass
, 0444,
632 regulator_bypass_show
, NULL
);
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
638 static struct attribute
*regulator_dev_attrs
[] = {
640 &dev_attr_num_users
.attr
,
644 ATTRIBUTE_GROUPS(regulator_dev
);
646 static void regulator_dev_release(struct device
*dev
)
648 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
652 static struct class regulator_class
= {
654 .dev_release
= regulator_dev_release
,
655 .dev_groups
= regulator_dev_groups
,
658 /* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev
*rdev
)
662 struct regulator
*sibling
;
663 int current_uA
= 0, output_uV
, input_uV
, err
;
666 err
= regulator_check_drms(rdev
);
667 if (err
< 0 || !rdev
->desc
->ops
->get_optimum_mode
||
668 (!rdev
->desc
->ops
->get_voltage
&&
669 !rdev
->desc
->ops
->get_voltage_sel
) ||
670 !rdev
->desc
->ops
->set_mode
)
673 /* get output voltage */
674 output_uV
= _regulator_get_voltage(rdev
);
678 /* get input voltage */
681 input_uV
= regulator_get_voltage(rdev
->supply
);
683 input_uV
= rdev
->constraints
->input_uV
;
687 /* calc total requested load */
688 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
689 current_uA
+= sibling
->uA_load
;
691 /* now get the optimum mode for our new total regulator load */
692 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
693 output_uV
, current_uA
);
695 /* check the new mode is allowed */
696 err
= regulator_mode_constrain(rdev
, &mode
);
698 rdev
->desc
->ops
->set_mode(rdev
, mode
);
701 static int suspend_set_state(struct regulator_dev
*rdev
,
702 struct regulator_state
*rstate
)
706 /* If we have no suspend mode configration don't set anything;
707 * only warn if the driver implements set_suspend_voltage or
708 * set_suspend_mode callback.
710 if (!rstate
->enabled
&& !rstate
->disabled
) {
711 if (rdev
->desc
->ops
->set_suspend_voltage
||
712 rdev
->desc
->ops
->set_suspend_mode
)
713 rdev_warn(rdev
, "No configuration\n");
717 if (rstate
->enabled
&& rstate
->disabled
) {
718 rdev_err(rdev
, "invalid configuration\n");
722 if (rstate
->enabled
&& rdev
->desc
->ops
->set_suspend_enable
)
723 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
724 else if (rstate
->disabled
&& rdev
->desc
->ops
->set_suspend_disable
)
725 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
726 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
730 rdev_err(rdev
, "failed to enabled/disable\n");
734 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
735 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
737 rdev_err(rdev
, "failed to set voltage\n");
742 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
743 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
745 rdev_err(rdev
, "failed to set mode\n");
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev
*rdev
, suspend_state_t state
)
755 if (!rdev
->constraints
)
759 case PM_SUSPEND_STANDBY
:
760 return suspend_set_state(rdev
,
761 &rdev
->constraints
->state_standby
);
763 return suspend_set_state(rdev
,
764 &rdev
->constraints
->state_mem
);
766 return suspend_set_state(rdev
,
767 &rdev
->constraints
->state_disk
);
773 static void print_constraints(struct regulator_dev
*rdev
)
775 struct regulation_constraints
*constraints
= rdev
->constraints
;
780 if (constraints
->min_uV
&& constraints
->max_uV
) {
781 if (constraints
->min_uV
== constraints
->max_uV
)
782 count
+= sprintf(buf
+ count
, "%d mV ",
783 constraints
->min_uV
/ 1000);
785 count
+= sprintf(buf
+ count
, "%d <--> %d mV ",
786 constraints
->min_uV
/ 1000,
787 constraints
->max_uV
/ 1000);
790 if (!constraints
->min_uV
||
791 constraints
->min_uV
!= constraints
->max_uV
) {
792 ret
= _regulator_get_voltage(rdev
);
794 count
+= sprintf(buf
+ count
, "at %d mV ", ret
/ 1000);
797 if (constraints
->uV_offset
)
798 count
+= sprintf(buf
, "%dmV offset ",
799 constraints
->uV_offset
/ 1000);
801 if (constraints
->min_uA
&& constraints
->max_uA
) {
802 if (constraints
->min_uA
== constraints
->max_uA
)
803 count
+= sprintf(buf
+ count
, "%d mA ",
804 constraints
->min_uA
/ 1000);
806 count
+= sprintf(buf
+ count
, "%d <--> %d mA ",
807 constraints
->min_uA
/ 1000,
808 constraints
->max_uA
/ 1000);
811 if (!constraints
->min_uA
||
812 constraints
->min_uA
!= constraints
->max_uA
) {
813 ret
= _regulator_get_current_limit(rdev
);
815 count
+= sprintf(buf
+ count
, "at %d mA ", ret
/ 1000);
818 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
819 count
+= sprintf(buf
+ count
, "fast ");
820 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
821 count
+= sprintf(buf
+ count
, "normal ");
822 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
823 count
+= sprintf(buf
+ count
, "idle ");
824 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
825 count
+= sprintf(buf
+ count
, "standby");
828 sprintf(buf
, "no parameters");
830 rdev_info(rdev
, "%s\n", buf
);
832 if ((constraints
->min_uV
!= constraints
->max_uV
) &&
833 !(constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
))
835 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
838 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
839 struct regulation_constraints
*constraints
)
841 struct regulator_ops
*ops
= rdev
->desc
->ops
;
844 /* do we need to apply the constraint voltage */
845 if (rdev
->constraints
->apply_uV
&&
846 rdev
->constraints
->min_uV
== rdev
->constraints
->max_uV
) {
847 ret
= _regulator_do_set_voltage(rdev
,
848 rdev
->constraints
->min_uV
,
849 rdev
->constraints
->max_uV
);
851 rdev_err(rdev
, "failed to apply %duV constraint\n",
852 rdev
->constraints
->min_uV
);
857 /* constrain machine-level voltage specs to fit
858 * the actual range supported by this regulator.
860 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
861 int count
= rdev
->desc
->n_voltages
;
863 int min_uV
= INT_MAX
;
864 int max_uV
= INT_MIN
;
865 int cmin
= constraints
->min_uV
;
866 int cmax
= constraints
->max_uV
;
868 /* it's safe to autoconfigure fixed-voltage supplies
869 and the constraints are used by list_voltage. */
870 if (count
== 1 && !cmin
) {
873 constraints
->min_uV
= cmin
;
874 constraints
->max_uV
= cmax
;
877 /* voltage constraints are optional */
878 if ((cmin
== 0) && (cmax
== 0))
881 /* else require explicit machine-level constraints */
882 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
883 rdev_err(rdev
, "invalid voltage constraints\n");
887 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888 for (i
= 0; i
< count
; i
++) {
891 value
= ops
->list_voltage(rdev
, i
);
895 /* maybe adjust [min_uV..max_uV] */
896 if (value
>= cmin
&& value
< min_uV
)
898 if (value
<= cmax
&& value
> max_uV
)
902 /* final: [min_uV..max_uV] valid iff constraints valid */
903 if (max_uV
< min_uV
) {
905 "unsupportable voltage constraints %u-%uuV\n",
910 /* use regulator's subset of machine constraints */
911 if (constraints
->min_uV
< min_uV
) {
912 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
913 constraints
->min_uV
, min_uV
);
914 constraints
->min_uV
= min_uV
;
916 if (constraints
->max_uV
> max_uV
) {
917 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
918 constraints
->max_uV
, max_uV
);
919 constraints
->max_uV
= max_uV
;
926 static int _regulator_do_enable(struct regulator_dev
*rdev
);
929 * set_machine_constraints - sets regulator constraints
930 * @rdev: regulator source
931 * @constraints: constraints to apply
933 * Allows platform initialisation code to define and constrain
934 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
935 * Constraints *must* be set by platform code in order for some
936 * regulator operations to proceed i.e. set_voltage, set_current_limit,
939 static int set_machine_constraints(struct regulator_dev
*rdev
,
940 const struct regulation_constraints
*constraints
)
943 struct regulator_ops
*ops
= rdev
->desc
->ops
;
946 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
949 rdev
->constraints
= kzalloc(sizeof(*constraints
),
951 if (!rdev
->constraints
)
954 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
958 /* do we need to setup our suspend state */
959 if (rdev
->constraints
->initial_state
) {
960 ret
= suspend_prepare(rdev
, rdev
->constraints
->initial_state
);
962 rdev_err(rdev
, "failed to set suspend state\n");
967 if (rdev
->constraints
->initial_mode
) {
968 if (!ops
->set_mode
) {
969 rdev_err(rdev
, "no set_mode operation\n");
974 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
976 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
981 /* If the constraints say the regulator should be on at this point
982 * and we have control then make sure it is enabled.
984 if (rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) {
985 ret
= _regulator_do_enable(rdev
);
986 if (ret
< 0 && ret
!= -EINVAL
) {
987 rdev_err(rdev
, "failed to enable\n");
992 if ((rdev
->constraints
->ramp_delay
|| rdev
->constraints
->ramp_disable
)
993 && ops
->set_ramp_delay
) {
994 ret
= ops
->set_ramp_delay(rdev
, rdev
->constraints
->ramp_delay
);
996 rdev_err(rdev
, "failed to set ramp_delay\n");
1001 print_constraints(rdev
);
1004 kfree(rdev
->constraints
);
1005 rdev
->constraints
= NULL
;
1010 * set_supply - set regulator supply regulator
1011 * @rdev: regulator name
1012 * @supply_rdev: supply regulator name
1014 * Called by platform initialisation code to set the supply regulator for this
1015 * regulator. This ensures that a regulators supply will also be enabled by the
1016 * core if it's child is enabled.
1018 static int set_supply(struct regulator_dev
*rdev
,
1019 struct regulator_dev
*supply_rdev
)
1023 rdev_info(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
1025 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
1026 if (rdev
->supply
== NULL
) {
1030 supply_rdev
->open_count
++;
1036 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1037 * @rdev: regulator source
1038 * @consumer_dev_name: dev_name() string for device supply applies to
1039 * @supply: symbolic name for supply
1041 * Allows platform initialisation code to map physical regulator
1042 * sources to symbolic names for supplies for use by devices. Devices
1043 * should use these symbolic names to request regulators, avoiding the
1044 * need to provide board-specific regulator names as platform data.
1046 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
1047 const char *consumer_dev_name
,
1050 struct regulator_map
*node
;
1056 if (consumer_dev_name
!= NULL
)
1061 list_for_each_entry(node
, ®ulator_map_list
, list
) {
1062 if (node
->dev_name
&& consumer_dev_name
) {
1063 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1065 } else if (node
->dev_name
|| consumer_dev_name
) {
1069 if (strcmp(node
->supply
, supply
) != 0)
1072 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1074 dev_name(&node
->regulator
->dev
),
1075 node
->regulator
->desc
->name
,
1077 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1081 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1085 node
->regulator
= rdev
;
1086 node
->supply
= supply
;
1089 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1090 if (node
->dev_name
== NULL
) {
1096 list_add(&node
->list
, ®ulator_map_list
);
1100 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1102 struct regulator_map
*node
, *n
;
1104 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1105 if (rdev
== node
->regulator
) {
1106 list_del(&node
->list
);
1107 kfree(node
->dev_name
);
1113 #define REG_STR_SIZE 64
1115 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1117 const char *supply_name
)
1119 struct regulator
*regulator
;
1120 char buf
[REG_STR_SIZE
];
1123 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1124 if (regulator
== NULL
)
1127 mutex_lock(&rdev
->mutex
);
1128 regulator
->rdev
= rdev
;
1129 list_add(®ulator
->list
, &rdev
->consumer_list
);
1132 regulator
->dev
= dev
;
1134 /* Add a link to the device sysfs entry */
1135 size
= scnprintf(buf
, REG_STR_SIZE
, "%s-%s",
1136 dev
->kobj
.name
, supply_name
);
1137 if (size
>= REG_STR_SIZE
)
1140 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1141 if (regulator
->supply_name
== NULL
)
1144 err
= sysfs_create_link(&rdev
->dev
.kobj
, &dev
->kobj
,
1147 rdev_warn(rdev
, "could not add device link %s err %d\n",
1148 dev
->kobj
.name
, err
);
1152 regulator
->supply_name
= kstrdup(supply_name
, GFP_KERNEL
);
1153 if (regulator
->supply_name
== NULL
)
1157 regulator
->debugfs
= debugfs_create_dir(regulator
->supply_name
,
1159 if (!regulator
->debugfs
) {
1160 rdev_warn(rdev
, "Failed to create debugfs directory\n");
1162 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1163 ®ulator
->uA_load
);
1164 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1165 ®ulator
->min_uV
);
1166 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1167 ®ulator
->max_uV
);
1171 * Check now if the regulator is an always on regulator - if
1172 * it is then we don't need to do nearly so much work for
1173 * enable/disable calls.
1175 if (!_regulator_can_change_status(rdev
) &&
1176 _regulator_is_enabled(rdev
))
1177 regulator
->always_on
= true;
1179 mutex_unlock(&rdev
->mutex
);
1182 list_del(®ulator
->list
);
1184 mutex_unlock(&rdev
->mutex
);
1188 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1190 if (!rdev
->desc
->ops
->enable_time
)
1191 return rdev
->desc
->enable_time
;
1192 return rdev
->desc
->ops
->enable_time(rdev
);
1195 static struct regulator_dev
*regulator_dev_lookup(struct device
*dev
,
1199 struct regulator_dev
*r
;
1200 struct device_node
*node
;
1201 struct regulator_map
*map
;
1202 const char *devname
= NULL
;
1204 /* first do a dt based lookup */
1205 if (dev
&& dev
->of_node
) {
1206 node
= of_get_regulator(dev
, supply
);
1208 list_for_each_entry(r
, ®ulator_list
, list
)
1209 if (r
->dev
.parent
&&
1210 node
== r
->dev
.of_node
)
1214 * If we couldn't even get the node then it's
1215 * not just that the device didn't register
1216 * yet, there's no node and we'll never
1223 /* if not found, try doing it non-dt way */
1225 devname
= dev_name(dev
);
1227 list_for_each_entry(r
, ®ulator_list
, list
)
1228 if (strcmp(rdev_get_name(r
), supply
) == 0)
1231 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1232 /* If the mapping has a device set up it must match */
1233 if (map
->dev_name
&&
1234 (!devname
|| strcmp(map
->dev_name
, devname
)))
1237 if (strcmp(map
->supply
, supply
) == 0)
1238 return map
->regulator
;
1245 /* Internal regulator request function */
1246 static struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1249 struct regulator_dev
*rdev
;
1250 struct regulator
*regulator
= ERR_PTR(-EPROBE_DEFER
);
1251 const char *devname
= NULL
;
1255 pr_err("get() with no identifier\n");
1260 devname
= dev_name(dev
);
1262 mutex_lock(®ulator_list_mutex
);
1264 rdev
= regulator_dev_lookup(dev
, id
, &ret
);
1269 * If we have return value from dev_lookup fail, we do not expect to
1270 * succeed, so, quit with appropriate error value
1273 regulator
= ERR_PTR(ret
);
1277 if (board_wants_dummy_regulator
) {
1278 rdev
= dummy_regulator_rdev
;
1282 #ifdef CONFIG_REGULATOR_DUMMY
1284 devname
= "deviceless";
1286 /* If the board didn't flag that it was fully constrained then
1287 * substitute in a dummy regulator so consumers can continue.
1289 if (!has_full_constraints
) {
1290 pr_warn("%s supply %s not found, using dummy regulator\n",
1292 rdev
= dummy_regulator_rdev
;
1297 mutex_unlock(®ulator_list_mutex
);
1301 if (rdev
->exclusive
) {
1302 regulator
= ERR_PTR(-EPERM
);
1306 if (exclusive
&& rdev
->open_count
) {
1307 regulator
= ERR_PTR(-EBUSY
);
1311 if (!try_module_get(rdev
->owner
))
1314 regulator
= create_regulator(rdev
, dev
, id
);
1315 if (regulator
== NULL
) {
1316 regulator
= ERR_PTR(-ENOMEM
);
1317 module_put(rdev
->owner
);
1323 rdev
->exclusive
= 1;
1325 ret
= _regulator_is_enabled(rdev
);
1327 rdev
->use_count
= 1;
1329 rdev
->use_count
= 0;
1333 mutex_unlock(®ulator_list_mutex
);
1339 * regulator_get - lookup and obtain a reference to a regulator.
1340 * @dev: device for regulator "consumer"
1341 * @id: Supply name or regulator ID.
1343 * Returns a struct regulator corresponding to the regulator producer,
1344 * or IS_ERR() condition containing errno.
1346 * Use of supply names configured via regulator_set_device_supply() is
1347 * strongly encouraged. It is recommended that the supply name used
1348 * should match the name used for the supply and/or the relevant
1349 * device pins in the datasheet.
1351 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1353 return _regulator_get(dev
, id
, false);
1355 EXPORT_SYMBOL_GPL(regulator_get
);
1357 static void devm_regulator_release(struct device
*dev
, void *res
)
1359 regulator_put(*(struct regulator
**)res
);
1363 * devm_regulator_get - Resource managed regulator_get()
1364 * @dev: device for regulator "consumer"
1365 * @id: Supply name or regulator ID.
1367 * Managed regulator_get(). Regulators returned from this function are
1368 * automatically regulator_put() on driver detach. See regulator_get() for more
1371 struct regulator
*devm_regulator_get(struct device
*dev
, const char *id
)
1373 struct regulator
**ptr
, *regulator
;
1375 ptr
= devres_alloc(devm_regulator_release
, sizeof(*ptr
), GFP_KERNEL
);
1377 return ERR_PTR(-ENOMEM
);
1379 regulator
= regulator_get(dev
, id
);
1380 if (!IS_ERR(regulator
)) {
1382 devres_add(dev
, ptr
);
1389 EXPORT_SYMBOL_GPL(devm_regulator_get
);
1392 * regulator_get_exclusive - obtain exclusive access to a regulator.
1393 * @dev: device for regulator "consumer"
1394 * @id: Supply name or regulator ID.
1396 * Returns a struct regulator corresponding to the regulator producer,
1397 * or IS_ERR() condition containing errno. Other consumers will be
1398 * unable to obtain this reference is held and the use count for the
1399 * regulator will be initialised to reflect the current state of the
1402 * This is intended for use by consumers which cannot tolerate shared
1403 * use of the regulator such as those which need to force the
1404 * regulator off for correct operation of the hardware they are
1407 * Use of supply names configured via regulator_set_device_supply() is
1408 * strongly encouraged. It is recommended that the supply name used
1409 * should match the name used for the supply and/or the relevant
1410 * device pins in the datasheet.
1412 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1414 return _regulator_get(dev
, id
, true);
1416 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
1419 * regulator_get_optional - obtain optional access to a regulator.
1420 * @dev: device for regulator "consumer"
1421 * @id: Supply name or regulator ID.
1423 * Returns a struct regulator corresponding to the regulator producer,
1424 * or IS_ERR() condition containing errno. Other consumers will be
1425 * unable to obtain this reference is held and the use count for the
1426 * regulator will be initialised to reflect the current state of the
1429 * This is intended for use by consumers for devices which can have
1430 * some supplies unconnected in normal use, such as some MMC devices.
1431 * It can allow the regulator core to provide stub supplies for other
1432 * supplies requested using normal regulator_get() calls without
1433 * disrupting the operation of drivers that can handle absent
1436 * Use of supply names configured via regulator_set_device_supply() is
1437 * strongly encouraged. It is recommended that the supply name used
1438 * should match the name used for the supply and/or the relevant
1439 * device pins in the datasheet.
1441 struct regulator
*regulator_get_optional(struct device
*dev
, const char *id
)
1443 return _regulator_get(dev
, id
, 0);
1445 EXPORT_SYMBOL_GPL(regulator_get_optional
);
1448 * devm_regulator_get_optional - Resource managed regulator_get_optional()
1449 * @dev: device for regulator "consumer"
1450 * @id: Supply name or regulator ID.
1452 * Managed regulator_get_optional(). Regulators returned from this
1453 * function are automatically regulator_put() on driver detach. See
1454 * regulator_get_optional() for more information.
1456 struct regulator
*devm_regulator_get_optional(struct device
*dev
,
1459 struct regulator
**ptr
, *regulator
;
1461 ptr
= devres_alloc(devm_regulator_release
, sizeof(*ptr
), GFP_KERNEL
);
1463 return ERR_PTR(-ENOMEM
);
1465 regulator
= regulator_get_optional(dev
, id
);
1466 if (!IS_ERR(regulator
)) {
1468 devres_add(dev
, ptr
);
1475 EXPORT_SYMBOL_GPL(devm_regulator_get_optional
);
1477 /* Locks held by regulator_put() */
1478 static void _regulator_put(struct regulator
*regulator
)
1480 struct regulator_dev
*rdev
;
1482 if (regulator
== NULL
|| IS_ERR(regulator
))
1485 rdev
= regulator
->rdev
;
1487 debugfs_remove_recursive(regulator
->debugfs
);
1489 /* remove any sysfs entries */
1491 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1492 kfree(regulator
->supply_name
);
1493 list_del(®ulator
->list
);
1497 rdev
->exclusive
= 0;
1499 module_put(rdev
->owner
);
1503 * devm_regulator_get_exclusive - Resource managed regulator_get_exclusive()
1504 * @dev: device for regulator "consumer"
1505 * @id: Supply name or regulator ID.
1507 * Managed regulator_get_exclusive(). Regulators returned from this function
1508 * are automatically regulator_put() on driver detach. See regulator_get() for
1511 struct regulator
*devm_regulator_get_exclusive(struct device
*dev
,
1514 struct regulator
**ptr
, *regulator
;
1516 ptr
= devres_alloc(devm_regulator_release
, sizeof(*ptr
), GFP_KERNEL
);
1518 return ERR_PTR(-ENOMEM
);
1520 regulator
= _regulator_get(dev
, id
, 1);
1521 if (!IS_ERR(regulator
)) {
1523 devres_add(dev
, ptr
);
1530 EXPORT_SYMBOL_GPL(devm_regulator_get_exclusive
);
1533 * regulator_put - "free" the regulator source
1534 * @regulator: regulator source
1536 * Note: drivers must ensure that all regulator_enable calls made on this
1537 * regulator source are balanced by regulator_disable calls prior to calling
1540 void regulator_put(struct regulator
*regulator
)
1542 mutex_lock(®ulator_list_mutex
);
1543 _regulator_put(regulator
);
1544 mutex_unlock(®ulator_list_mutex
);
1546 EXPORT_SYMBOL_GPL(regulator_put
);
1548 static int devm_regulator_match(struct device
*dev
, void *res
, void *data
)
1550 struct regulator
**r
= res
;
1559 * devm_regulator_put - Resource managed regulator_put()
1560 * @regulator: regulator to free
1562 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1563 * this function will not need to be called and the resource management
1564 * code will ensure that the resource is freed.
1566 void devm_regulator_put(struct regulator
*regulator
)
1570 rc
= devres_release(regulator
->dev
, devm_regulator_release
,
1571 devm_regulator_match
, regulator
);
1575 EXPORT_SYMBOL_GPL(devm_regulator_put
);
1577 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1578 static int regulator_ena_gpio_request(struct regulator_dev
*rdev
,
1579 const struct regulator_config
*config
)
1581 struct regulator_enable_gpio
*pin
;
1584 list_for_each_entry(pin
, ®ulator_ena_gpio_list
, list
) {
1585 if (pin
->gpio
== config
->ena_gpio
) {
1586 rdev_dbg(rdev
, "GPIO %d is already used\n",
1588 goto update_ena_gpio_to_rdev
;
1592 ret
= gpio_request_one(config
->ena_gpio
,
1593 GPIOF_DIR_OUT
| config
->ena_gpio_flags
,
1594 rdev_get_name(rdev
));
1598 pin
= kzalloc(sizeof(struct regulator_enable_gpio
), GFP_KERNEL
);
1600 gpio_free(config
->ena_gpio
);
1604 pin
->gpio
= config
->ena_gpio
;
1605 pin
->ena_gpio_invert
= config
->ena_gpio_invert
;
1606 list_add(&pin
->list
, ®ulator_ena_gpio_list
);
1608 update_ena_gpio_to_rdev
:
1609 pin
->request_count
++;
1610 rdev
->ena_pin
= pin
;
1614 static void regulator_ena_gpio_free(struct regulator_dev
*rdev
)
1616 struct regulator_enable_gpio
*pin
, *n
;
1621 /* Free the GPIO only in case of no use */
1622 list_for_each_entry_safe(pin
, n
, ®ulator_ena_gpio_list
, list
) {
1623 if (pin
->gpio
== rdev
->ena_pin
->gpio
) {
1624 if (pin
->request_count
<= 1) {
1625 pin
->request_count
= 0;
1626 gpio_free(pin
->gpio
);
1627 list_del(&pin
->list
);
1630 pin
->request_count
--;
1637 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1638 * @rdev: regulator_dev structure
1639 * @enable: enable GPIO at initial use?
1641 * GPIO is enabled in case of initial use. (enable_count is 0)
1642 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1644 static int regulator_ena_gpio_ctrl(struct regulator_dev
*rdev
, bool enable
)
1646 struct regulator_enable_gpio
*pin
= rdev
->ena_pin
;
1652 /* Enable GPIO at initial use */
1653 if (pin
->enable_count
== 0)
1654 gpio_set_value_cansleep(pin
->gpio
,
1655 !pin
->ena_gpio_invert
);
1657 pin
->enable_count
++;
1659 if (pin
->enable_count
> 1) {
1660 pin
->enable_count
--;
1664 /* Disable GPIO if not used */
1665 if (pin
->enable_count
<= 1) {
1666 gpio_set_value_cansleep(pin
->gpio
,
1667 pin
->ena_gpio_invert
);
1668 pin
->enable_count
= 0;
1675 static int _regulator_do_enable(struct regulator_dev
*rdev
)
1679 /* Query before enabling in case configuration dependent. */
1680 ret
= _regulator_get_enable_time(rdev
);
1684 rdev_warn(rdev
, "enable_time() failed: %d\n", ret
);
1688 trace_regulator_enable(rdev_get_name(rdev
));
1690 if (rdev
->ena_pin
) {
1691 ret
= regulator_ena_gpio_ctrl(rdev
, true);
1694 rdev
->ena_gpio_state
= 1;
1695 } else if (rdev
->desc
->ops
->enable
) {
1696 ret
= rdev
->desc
->ops
->enable(rdev
);
1703 /* Allow the regulator to ramp; it would be useful to extend
1704 * this for bulk operations so that the regulators can ramp
1706 trace_regulator_enable_delay(rdev_get_name(rdev
));
1708 if (delay
>= 1000) {
1709 mdelay(delay
/ 1000);
1710 udelay(delay
% 1000);
1715 trace_regulator_enable_complete(rdev_get_name(rdev
));
1720 /* locks held by regulator_enable() */
1721 static int _regulator_enable(struct regulator_dev
*rdev
)
1725 /* check voltage and requested load before enabling */
1726 if (rdev
->constraints
&&
1727 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
))
1728 drms_uA_update(rdev
);
1730 if (rdev
->use_count
== 0) {
1731 /* The regulator may on if it's not switchable or left on */
1732 ret
= _regulator_is_enabled(rdev
);
1733 if (ret
== -EINVAL
|| ret
== 0) {
1734 if (!_regulator_can_change_status(rdev
))
1737 ret
= _regulator_do_enable(rdev
);
1741 } else if (ret
< 0) {
1742 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
1745 /* Fallthrough on positive return values - already enabled */
1754 * regulator_enable - enable regulator output
1755 * @regulator: regulator source
1757 * Request that the regulator be enabled with the regulator output at
1758 * the predefined voltage or current value. Calls to regulator_enable()
1759 * must be balanced with calls to regulator_disable().
1761 * NOTE: the output value can be set by other drivers, boot loader or may be
1762 * hardwired in the regulator.
1764 int regulator_enable(struct regulator
*regulator
)
1766 struct regulator_dev
*rdev
= regulator
->rdev
;
1769 if (regulator
->always_on
)
1773 ret
= regulator_enable(rdev
->supply
);
1778 mutex_lock(&rdev
->mutex
);
1779 ret
= _regulator_enable(rdev
);
1780 mutex_unlock(&rdev
->mutex
);
1782 if (ret
!= 0 && rdev
->supply
)
1783 regulator_disable(rdev
->supply
);
1787 EXPORT_SYMBOL_GPL(regulator_enable
);
1789 static int _regulator_do_disable(struct regulator_dev
*rdev
)
1793 trace_regulator_disable(rdev_get_name(rdev
));
1795 if (rdev
->ena_pin
) {
1796 ret
= regulator_ena_gpio_ctrl(rdev
, false);
1799 rdev
->ena_gpio_state
= 0;
1801 } else if (rdev
->desc
->ops
->disable
) {
1802 ret
= rdev
->desc
->ops
->disable(rdev
);
1807 trace_regulator_disable_complete(rdev_get_name(rdev
));
1812 /* locks held by regulator_disable() */
1813 static int _regulator_disable(struct regulator_dev
*rdev
)
1817 if (WARN(rdev
->use_count
<= 0,
1818 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
1821 /* are we the last user and permitted to disable ? */
1822 if (rdev
->use_count
== 1 &&
1823 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
1825 /* we are last user */
1826 if (_regulator_can_change_status(rdev
)) {
1827 ret
= _regulator_do_disable(rdev
);
1829 rdev_err(rdev
, "failed to disable\n");
1832 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
1836 rdev
->use_count
= 0;
1837 } else if (rdev
->use_count
> 1) {
1839 if (rdev
->constraints
&&
1840 (rdev
->constraints
->valid_ops_mask
&
1841 REGULATOR_CHANGE_DRMS
))
1842 drms_uA_update(rdev
);
1851 * regulator_disable - disable regulator output
1852 * @regulator: regulator source
1854 * Disable the regulator output voltage or current. Calls to
1855 * regulator_enable() must be balanced with calls to
1856 * regulator_disable().
1858 * NOTE: this will only disable the regulator output if no other consumer
1859 * devices have it enabled, the regulator device supports disabling and
1860 * machine constraints permit this operation.
1862 int regulator_disable(struct regulator
*regulator
)
1864 struct regulator_dev
*rdev
= regulator
->rdev
;
1867 if (regulator
->always_on
)
1870 mutex_lock(&rdev
->mutex
);
1871 ret
= _regulator_disable(rdev
);
1872 mutex_unlock(&rdev
->mutex
);
1874 if (ret
== 0 && rdev
->supply
)
1875 regulator_disable(rdev
->supply
);
1879 EXPORT_SYMBOL_GPL(regulator_disable
);
1881 /* locks held by regulator_force_disable() */
1882 static int _regulator_force_disable(struct regulator_dev
*rdev
)
1886 ret
= _regulator_do_disable(rdev
);
1888 rdev_err(rdev
, "failed to force disable\n");
1892 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
1893 REGULATOR_EVENT_DISABLE
, NULL
);
1899 * regulator_force_disable - force disable regulator output
1900 * @regulator: regulator source
1902 * Forcibly disable the regulator output voltage or current.
1903 * NOTE: this *will* disable the regulator output even if other consumer
1904 * devices have it enabled. This should be used for situations when device
1905 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1907 int regulator_force_disable(struct regulator
*regulator
)
1909 struct regulator_dev
*rdev
= regulator
->rdev
;
1912 mutex_lock(&rdev
->mutex
);
1913 regulator
->uA_load
= 0;
1914 ret
= _regulator_force_disable(regulator
->rdev
);
1915 mutex_unlock(&rdev
->mutex
);
1918 while (rdev
->open_count
--)
1919 regulator_disable(rdev
->supply
);
1923 EXPORT_SYMBOL_GPL(regulator_force_disable
);
1925 static void regulator_disable_work(struct work_struct
*work
)
1927 struct regulator_dev
*rdev
= container_of(work
, struct regulator_dev
,
1931 mutex_lock(&rdev
->mutex
);
1933 BUG_ON(!rdev
->deferred_disables
);
1935 count
= rdev
->deferred_disables
;
1936 rdev
->deferred_disables
= 0;
1938 for (i
= 0; i
< count
; i
++) {
1939 ret
= _regulator_disable(rdev
);
1941 rdev_err(rdev
, "Deferred disable failed: %d\n", ret
);
1944 mutex_unlock(&rdev
->mutex
);
1947 for (i
= 0; i
< count
; i
++) {
1948 ret
= regulator_disable(rdev
->supply
);
1951 "Supply disable failed: %d\n", ret
);
1958 * regulator_disable_deferred - disable regulator output with delay
1959 * @regulator: regulator source
1960 * @ms: miliseconds until the regulator is disabled
1962 * Execute regulator_disable() on the regulator after a delay. This
1963 * is intended for use with devices that require some time to quiesce.
1965 * NOTE: this will only disable the regulator output if no other consumer
1966 * devices have it enabled, the regulator device supports disabling and
1967 * machine constraints permit this operation.
1969 int regulator_disable_deferred(struct regulator
*regulator
, int ms
)
1971 struct regulator_dev
*rdev
= regulator
->rdev
;
1974 if (regulator
->always_on
)
1978 return regulator_disable(regulator
);
1980 mutex_lock(&rdev
->mutex
);
1981 rdev
->deferred_disables
++;
1982 mutex_unlock(&rdev
->mutex
);
1984 ret
= queue_delayed_work(system_power_efficient_wq
,
1985 &rdev
->disable_work
,
1986 msecs_to_jiffies(ms
));
1992 EXPORT_SYMBOL_GPL(regulator_disable_deferred
);
1994 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
1996 /* A GPIO control always takes precedence */
1998 return rdev
->ena_gpio_state
;
2000 /* If we don't know then assume that the regulator is always on */
2001 if (!rdev
->desc
->ops
->is_enabled
)
2004 return rdev
->desc
->ops
->is_enabled(rdev
);
2008 * regulator_is_enabled - is the regulator output enabled
2009 * @regulator: regulator source
2011 * Returns positive if the regulator driver backing the source/client
2012 * has requested that the device be enabled, zero if it hasn't, else a
2013 * negative errno code.
2015 * Note that the device backing this regulator handle can have multiple
2016 * users, so it might be enabled even if regulator_enable() was never
2017 * called for this particular source.
2019 int regulator_is_enabled(struct regulator
*regulator
)
2023 if (regulator
->always_on
)
2026 mutex_lock(®ulator
->rdev
->mutex
);
2027 ret
= _regulator_is_enabled(regulator
->rdev
);
2028 mutex_unlock(®ulator
->rdev
->mutex
);
2032 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
2035 * regulator_can_change_voltage - check if regulator can change voltage
2036 * @regulator: regulator source
2038 * Returns positive if the regulator driver backing the source/client
2039 * can change its voltage, false otherwise. Usefull for detecting fixed
2040 * or dummy regulators and disabling voltage change logic in the client
2043 int regulator_can_change_voltage(struct regulator
*regulator
)
2045 struct regulator_dev
*rdev
= regulator
->rdev
;
2047 if (rdev
->constraints
&&
2048 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2049 if (rdev
->desc
->n_voltages
- rdev
->desc
->linear_min_sel
> 1)
2052 if (rdev
->desc
->continuous_voltage_range
&&
2053 rdev
->constraints
->min_uV
&& rdev
->constraints
->max_uV
&&
2054 rdev
->constraints
->min_uV
!= rdev
->constraints
->max_uV
)
2060 EXPORT_SYMBOL_GPL(regulator_can_change_voltage
);
2063 * regulator_count_voltages - count regulator_list_voltage() selectors
2064 * @regulator: regulator source
2066 * Returns number of selectors, or negative errno. Selectors are
2067 * numbered starting at zero, and typically correspond to bitfields
2068 * in hardware registers.
2070 int regulator_count_voltages(struct regulator
*regulator
)
2072 struct regulator_dev
*rdev
= regulator
->rdev
;
2074 return rdev
->desc
->n_voltages
? : -EINVAL
;
2076 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
2079 * regulator_list_voltage - enumerate supported voltages
2080 * @regulator: regulator source
2081 * @selector: identify voltage to list
2082 * Context: can sleep
2084 * Returns a voltage that can be passed to @regulator_set_voltage(),
2085 * zero if this selector code can't be used on this system, or a
2088 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
2090 struct regulator_dev
*rdev
= regulator
->rdev
;
2091 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2094 if (!ops
->list_voltage
|| selector
>= rdev
->desc
->n_voltages
)
2097 mutex_lock(&rdev
->mutex
);
2098 ret
= ops
->list_voltage(rdev
, selector
);
2099 mutex_unlock(&rdev
->mutex
);
2102 if (ret
< rdev
->constraints
->min_uV
)
2104 else if (ret
> rdev
->constraints
->max_uV
)
2110 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
2113 * regulator_get_linear_step - return the voltage step size between VSEL values
2114 * @regulator: regulator source
2116 * Returns the voltage step size between VSEL values for linear
2117 * regulators, or return 0 if the regulator isn't a linear regulator.
2119 unsigned int regulator_get_linear_step(struct regulator
*regulator
)
2121 struct regulator_dev
*rdev
= regulator
->rdev
;
2123 return rdev
->desc
->uV_step
;
2125 EXPORT_SYMBOL_GPL(regulator_get_linear_step
);
2128 * regulator_is_supported_voltage - check if a voltage range can be supported
2130 * @regulator: Regulator to check.
2131 * @min_uV: Minimum required voltage in uV.
2132 * @max_uV: Maximum required voltage in uV.
2134 * Returns a boolean or a negative error code.
2136 int regulator_is_supported_voltage(struct regulator
*regulator
,
2137 int min_uV
, int max_uV
)
2139 struct regulator_dev
*rdev
= regulator
->rdev
;
2140 int i
, voltages
, ret
;
2142 /* If we can't change voltage check the current voltage */
2143 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2144 ret
= regulator_get_voltage(regulator
);
2146 return (min_uV
<= ret
&& ret
<= max_uV
);
2151 /* Any voltage within constrains range is fine? */
2152 if (rdev
->desc
->continuous_voltage_range
)
2153 return min_uV
>= rdev
->constraints
->min_uV
&&
2154 max_uV
<= rdev
->constraints
->max_uV
;
2156 ret
= regulator_count_voltages(regulator
);
2161 for (i
= 0; i
< voltages
; i
++) {
2162 ret
= regulator_list_voltage(regulator
, i
);
2164 if (ret
>= min_uV
&& ret
<= max_uV
)
2170 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage
);
2172 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
2173 int min_uV
, int max_uV
)
2178 unsigned int selector
;
2179 int old_selector
= -1;
2181 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
2183 min_uV
+= rdev
->constraints
->uV_offset
;
2184 max_uV
+= rdev
->constraints
->uV_offset
;
2187 * If we can't obtain the old selector there is not enough
2188 * info to call set_voltage_time_sel().
2190 if (_regulator_is_enabled(rdev
) &&
2191 rdev
->desc
->ops
->set_voltage_time_sel
&&
2192 rdev
->desc
->ops
->get_voltage_sel
) {
2193 old_selector
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
2194 if (old_selector
< 0)
2195 return old_selector
;
2198 if (rdev
->desc
->ops
->set_voltage
) {
2199 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
,
2203 if (rdev
->desc
->ops
->list_voltage
)
2204 best_val
= rdev
->desc
->ops
->list_voltage(rdev
,
2207 best_val
= _regulator_get_voltage(rdev
);
2210 } else if (rdev
->desc
->ops
->set_voltage_sel
) {
2211 if (rdev
->desc
->ops
->map_voltage
) {
2212 ret
= rdev
->desc
->ops
->map_voltage(rdev
, min_uV
,
2215 if (rdev
->desc
->ops
->list_voltage
==
2216 regulator_list_voltage_linear
)
2217 ret
= regulator_map_voltage_linear(rdev
,
2220 ret
= regulator_map_voltage_iterate(rdev
,
2225 best_val
= rdev
->desc
->ops
->list_voltage(rdev
, ret
);
2226 if (min_uV
<= best_val
&& max_uV
>= best_val
) {
2228 if (old_selector
== selector
)
2231 ret
= rdev
->desc
->ops
->set_voltage_sel(
2241 /* Call set_voltage_time_sel if successfully obtained old_selector */
2242 if (ret
== 0 && !rdev
->constraints
->ramp_disable
&& old_selector
>= 0
2243 && old_selector
!= selector
) {
2245 delay
= rdev
->desc
->ops
->set_voltage_time_sel(rdev
,
2246 old_selector
, selector
);
2248 rdev_warn(rdev
, "set_voltage_time_sel() failed: %d\n",
2253 /* Insert any necessary delays */
2254 if (delay
>= 1000) {
2255 mdelay(delay
/ 1000);
2256 udelay(delay
% 1000);
2262 if (ret
== 0 && best_val
>= 0) {
2263 unsigned long data
= best_val
;
2265 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
2269 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), best_val
);
2275 * regulator_set_voltage - set regulator output voltage
2276 * @regulator: regulator source
2277 * @min_uV: Minimum required voltage in uV
2278 * @max_uV: Maximum acceptable voltage in uV
2280 * Sets a voltage regulator to the desired output voltage. This can be set
2281 * during any regulator state. IOW, regulator can be disabled or enabled.
2283 * If the regulator is enabled then the voltage will change to the new value
2284 * immediately otherwise if the regulator is disabled the regulator will
2285 * output at the new voltage when enabled.
2287 * NOTE: If the regulator is shared between several devices then the lowest
2288 * request voltage that meets the system constraints will be used.
2289 * Regulator system constraints must be set for this regulator before
2290 * calling this function otherwise this call will fail.
2292 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
2294 struct regulator_dev
*rdev
= regulator
->rdev
;
2296 int old_min_uV
, old_max_uV
;
2298 mutex_lock(&rdev
->mutex
);
2300 /* If we're setting the same range as last time the change
2301 * should be a noop (some cpufreq implementations use the same
2302 * voltage for multiple frequencies, for example).
2304 if (regulator
->min_uV
== min_uV
&& regulator
->max_uV
== max_uV
)
2308 if (!rdev
->desc
->ops
->set_voltage
&&
2309 !rdev
->desc
->ops
->set_voltage_sel
) {
2314 /* constraints check */
2315 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
2319 /* restore original values in case of error */
2320 old_min_uV
= regulator
->min_uV
;
2321 old_max_uV
= regulator
->max_uV
;
2322 regulator
->min_uV
= min_uV
;
2323 regulator
->max_uV
= max_uV
;
2325 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
2329 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
2334 mutex_unlock(&rdev
->mutex
);
2337 regulator
->min_uV
= old_min_uV
;
2338 regulator
->max_uV
= old_max_uV
;
2339 mutex_unlock(&rdev
->mutex
);
2342 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
2345 * regulator_set_voltage_time - get raise/fall time
2346 * @regulator: regulator source
2347 * @old_uV: starting voltage in microvolts
2348 * @new_uV: target voltage in microvolts
2350 * Provided with the starting and ending voltage, this function attempts to
2351 * calculate the time in microseconds required to rise or fall to this new
2354 int regulator_set_voltage_time(struct regulator
*regulator
,
2355 int old_uV
, int new_uV
)
2357 struct regulator_dev
*rdev
= regulator
->rdev
;
2358 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2364 /* Currently requires operations to do this */
2365 if (!ops
->list_voltage
|| !ops
->set_voltage_time_sel
2366 || !rdev
->desc
->n_voltages
)
2369 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
2370 /* We only look for exact voltage matches here */
2371 voltage
= regulator_list_voltage(regulator
, i
);
2376 if (voltage
== old_uV
)
2378 if (voltage
== new_uV
)
2382 if (old_sel
< 0 || new_sel
< 0)
2385 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
2387 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
2390 * regulator_set_voltage_time_sel - get raise/fall time
2391 * @rdev: regulator source device
2392 * @old_selector: selector for starting voltage
2393 * @new_selector: selector for target voltage
2395 * Provided with the starting and target voltage selectors, this function
2396 * returns time in microseconds required to rise or fall to this new voltage
2398 * Drivers providing ramp_delay in regulation_constraints can use this as their
2399 * set_voltage_time_sel() operation.
2401 int regulator_set_voltage_time_sel(struct regulator_dev
*rdev
,
2402 unsigned int old_selector
,
2403 unsigned int new_selector
)
2405 unsigned int ramp_delay
= 0;
2406 int old_volt
, new_volt
;
2408 if (rdev
->constraints
->ramp_delay
)
2409 ramp_delay
= rdev
->constraints
->ramp_delay
;
2410 else if (rdev
->desc
->ramp_delay
)
2411 ramp_delay
= rdev
->desc
->ramp_delay
;
2413 if (ramp_delay
== 0) {
2414 rdev_warn(rdev
, "ramp_delay not set\n");
2419 if (!rdev
->desc
->ops
->list_voltage
)
2422 old_volt
= rdev
->desc
->ops
->list_voltage(rdev
, old_selector
);
2423 new_volt
= rdev
->desc
->ops
->list_voltage(rdev
, new_selector
);
2425 return DIV_ROUND_UP(abs(new_volt
- old_volt
), ramp_delay
);
2427 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel
);
2430 * regulator_sync_voltage - re-apply last regulator output voltage
2431 * @regulator: regulator source
2433 * Re-apply the last configured voltage. This is intended to be used
2434 * where some external control source the consumer is cooperating with
2435 * has caused the configured voltage to change.
2437 int regulator_sync_voltage(struct regulator
*regulator
)
2439 struct regulator_dev
*rdev
= regulator
->rdev
;
2440 int ret
, min_uV
, max_uV
;
2442 mutex_lock(&rdev
->mutex
);
2444 if (!rdev
->desc
->ops
->set_voltage
&&
2445 !rdev
->desc
->ops
->set_voltage_sel
) {
2450 /* This is only going to work if we've had a voltage configured. */
2451 if (!regulator
->min_uV
&& !regulator
->max_uV
) {
2456 min_uV
= regulator
->min_uV
;
2457 max_uV
= regulator
->max_uV
;
2459 /* This should be a paranoia check... */
2460 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
2464 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
2468 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
2471 mutex_unlock(&rdev
->mutex
);
2474 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
2476 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
2480 if (rdev
->desc
->ops
->get_voltage_sel
) {
2481 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
2484 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
2485 } else if (rdev
->desc
->ops
->get_voltage
) {
2486 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
2487 } else if (rdev
->desc
->ops
->list_voltage
) {
2488 ret
= rdev
->desc
->ops
->list_voltage(rdev
, 0);
2495 return ret
- rdev
->constraints
->uV_offset
;
2499 * regulator_get_voltage - get regulator output voltage
2500 * @regulator: regulator source
2502 * This returns the current regulator voltage in uV.
2504 * NOTE: If the regulator is disabled it will return the voltage value. This
2505 * function should not be used to determine regulator state.
2507 int regulator_get_voltage(struct regulator
*regulator
)
2511 mutex_lock(®ulator
->rdev
->mutex
);
2513 ret
= _regulator_get_voltage(regulator
->rdev
);
2515 mutex_unlock(®ulator
->rdev
->mutex
);
2519 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
2522 * regulator_set_current_limit - set regulator output current limit
2523 * @regulator: regulator source
2524 * @min_uA: Minimum supported current in uA
2525 * @max_uA: Maximum supported current in uA
2527 * Sets current sink to the desired output current. This can be set during
2528 * any regulator state. IOW, regulator can be disabled or enabled.
2530 * If the regulator is enabled then the current will change to the new value
2531 * immediately otherwise if the regulator is disabled the regulator will
2532 * output at the new current when enabled.
2534 * NOTE: Regulator system constraints must be set for this regulator before
2535 * calling this function otherwise this call will fail.
2537 int regulator_set_current_limit(struct regulator
*regulator
,
2538 int min_uA
, int max_uA
)
2540 struct regulator_dev
*rdev
= regulator
->rdev
;
2543 mutex_lock(&rdev
->mutex
);
2546 if (!rdev
->desc
->ops
->set_current_limit
) {
2551 /* constraints check */
2552 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
2556 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
2558 mutex_unlock(&rdev
->mutex
);
2561 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
2563 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
2567 mutex_lock(&rdev
->mutex
);
2570 if (!rdev
->desc
->ops
->get_current_limit
) {
2575 ret
= rdev
->desc
->ops
->get_current_limit(rdev
);
2577 mutex_unlock(&rdev
->mutex
);
2582 * regulator_get_current_limit - get regulator output current
2583 * @regulator: regulator source
2585 * This returns the current supplied by the specified current sink in uA.
2587 * NOTE: If the regulator is disabled it will return the current value. This
2588 * function should not be used to determine regulator state.
2590 int regulator_get_current_limit(struct regulator
*regulator
)
2592 return _regulator_get_current_limit(regulator
->rdev
);
2594 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
2597 * regulator_set_mode - set regulator operating mode
2598 * @regulator: regulator source
2599 * @mode: operating mode - one of the REGULATOR_MODE constants
2601 * Set regulator operating mode to increase regulator efficiency or improve
2602 * regulation performance.
2604 * NOTE: Regulator system constraints must be set for this regulator before
2605 * calling this function otherwise this call will fail.
2607 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
2609 struct regulator_dev
*rdev
= regulator
->rdev
;
2611 int regulator_curr_mode
;
2613 mutex_lock(&rdev
->mutex
);
2616 if (!rdev
->desc
->ops
->set_mode
) {
2621 /* return if the same mode is requested */
2622 if (rdev
->desc
->ops
->get_mode
) {
2623 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
2624 if (regulator_curr_mode
== mode
) {
2630 /* constraints check */
2631 ret
= regulator_mode_constrain(rdev
, &mode
);
2635 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
2637 mutex_unlock(&rdev
->mutex
);
2640 EXPORT_SYMBOL_GPL(regulator_set_mode
);
2642 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
2646 mutex_lock(&rdev
->mutex
);
2649 if (!rdev
->desc
->ops
->get_mode
) {
2654 ret
= rdev
->desc
->ops
->get_mode(rdev
);
2656 mutex_unlock(&rdev
->mutex
);
2661 * regulator_get_mode - get regulator operating mode
2662 * @regulator: regulator source
2664 * Get the current regulator operating mode.
2666 unsigned int regulator_get_mode(struct regulator
*regulator
)
2668 return _regulator_get_mode(regulator
->rdev
);
2670 EXPORT_SYMBOL_GPL(regulator_get_mode
);
2673 * regulator_set_optimum_mode - set regulator optimum operating mode
2674 * @regulator: regulator source
2675 * @uA_load: load current
2677 * Notifies the regulator core of a new device load. This is then used by
2678 * DRMS (if enabled by constraints) to set the most efficient regulator
2679 * operating mode for the new regulator loading.
2681 * Consumer devices notify their supply regulator of the maximum power
2682 * they will require (can be taken from device datasheet in the power
2683 * consumption tables) when they change operational status and hence power
2684 * state. Examples of operational state changes that can affect power
2685 * consumption are :-
2687 * o Device is opened / closed.
2688 * o Device I/O is about to begin or has just finished.
2689 * o Device is idling in between work.
2691 * This information is also exported via sysfs to userspace.
2693 * DRMS will sum the total requested load on the regulator and change
2694 * to the most efficient operating mode if platform constraints allow.
2696 * Returns the new regulator mode or error.
2698 int regulator_set_optimum_mode(struct regulator
*regulator
, int uA_load
)
2700 struct regulator_dev
*rdev
= regulator
->rdev
;
2701 struct regulator
*consumer
;
2702 int ret
, output_uV
, input_uV
= 0, total_uA_load
= 0;
2706 input_uV
= regulator_get_voltage(rdev
->supply
);
2708 mutex_lock(&rdev
->mutex
);
2711 * first check to see if we can set modes at all, otherwise just
2712 * tell the consumer everything is OK.
2714 regulator
->uA_load
= uA_load
;
2715 ret
= regulator_check_drms(rdev
);
2721 if (!rdev
->desc
->ops
->get_optimum_mode
)
2725 * we can actually do this so any errors are indicators of
2726 * potential real failure.
2730 if (!rdev
->desc
->ops
->set_mode
)
2733 /* get output voltage */
2734 output_uV
= _regulator_get_voltage(rdev
);
2735 if (output_uV
<= 0) {
2736 rdev_err(rdev
, "invalid output voltage found\n");
2740 /* No supply? Use constraint voltage */
2742 input_uV
= rdev
->constraints
->input_uV
;
2743 if (input_uV
<= 0) {
2744 rdev_err(rdev
, "invalid input voltage found\n");
2748 /* calc total requested load for this regulator */
2749 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
)
2750 total_uA_load
+= consumer
->uA_load
;
2752 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
,
2753 input_uV
, output_uV
,
2755 ret
= regulator_mode_constrain(rdev
, &mode
);
2757 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2758 total_uA_load
, input_uV
, output_uV
);
2762 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
2764 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
2769 mutex_unlock(&rdev
->mutex
);
2772 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode
);
2775 * regulator_allow_bypass - allow the regulator to go into bypass mode
2777 * @regulator: Regulator to configure
2778 * @enable: enable or disable bypass mode
2780 * Allow the regulator to go into bypass mode if all other consumers
2781 * for the regulator also enable bypass mode and the machine
2782 * constraints allow this. Bypass mode means that the regulator is
2783 * simply passing the input directly to the output with no regulation.
2785 int regulator_allow_bypass(struct regulator
*regulator
, bool enable
)
2787 struct regulator_dev
*rdev
= regulator
->rdev
;
2790 if (!rdev
->desc
->ops
->set_bypass
)
2793 if (rdev
->constraints
&&
2794 !(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_BYPASS
))
2797 mutex_lock(&rdev
->mutex
);
2799 if (enable
&& !regulator
->bypass
) {
2800 rdev
->bypass_count
++;
2802 if (rdev
->bypass_count
== rdev
->open_count
) {
2803 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
2805 rdev
->bypass_count
--;
2808 } else if (!enable
&& regulator
->bypass
) {
2809 rdev
->bypass_count
--;
2811 if (rdev
->bypass_count
!= rdev
->open_count
) {
2812 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
2814 rdev
->bypass_count
++;
2819 regulator
->bypass
= enable
;
2821 mutex_unlock(&rdev
->mutex
);
2825 EXPORT_SYMBOL_GPL(regulator_allow_bypass
);
2828 * regulator_register_notifier - register regulator event notifier
2829 * @regulator: regulator source
2830 * @nb: notifier block
2832 * Register notifier block to receive regulator events.
2834 int regulator_register_notifier(struct regulator
*regulator
,
2835 struct notifier_block
*nb
)
2837 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
2840 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
2843 * regulator_unregister_notifier - unregister regulator event notifier
2844 * @regulator: regulator source
2845 * @nb: notifier block
2847 * Unregister regulator event notifier block.
2849 int regulator_unregister_notifier(struct regulator
*regulator
,
2850 struct notifier_block
*nb
)
2852 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
2855 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
2857 /* notify regulator consumers and downstream regulator consumers.
2858 * Note mutex must be held by caller.
2860 static void _notifier_call_chain(struct regulator_dev
*rdev
,
2861 unsigned long event
, void *data
)
2863 /* call rdev chain first */
2864 blocking_notifier_call_chain(&rdev
->notifier
, event
, data
);
2868 * regulator_bulk_get - get multiple regulator consumers
2870 * @dev: Device to supply
2871 * @num_consumers: Number of consumers to register
2872 * @consumers: Configuration of consumers; clients are stored here.
2874 * @return 0 on success, an errno on failure.
2876 * This helper function allows drivers to get several regulator
2877 * consumers in one operation. If any of the regulators cannot be
2878 * acquired then any regulators that were allocated will be freed
2879 * before returning to the caller.
2881 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
2882 struct regulator_bulk_data
*consumers
)
2887 for (i
= 0; i
< num_consumers
; i
++)
2888 consumers
[i
].consumer
= NULL
;
2890 for (i
= 0; i
< num_consumers
; i
++) {
2891 consumers
[i
].consumer
= regulator_get(dev
,
2892 consumers
[i
].supply
);
2893 if (IS_ERR(consumers
[i
].consumer
)) {
2894 ret
= PTR_ERR(consumers
[i
].consumer
);
2895 dev_err(dev
, "Failed to get supply '%s': %d\n",
2896 consumers
[i
].supply
, ret
);
2897 consumers
[i
].consumer
= NULL
;
2906 regulator_put(consumers
[i
].consumer
);
2910 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
2913 * devm_regulator_bulk_get - managed get multiple regulator consumers
2915 * @dev: Device to supply
2916 * @num_consumers: Number of consumers to register
2917 * @consumers: Configuration of consumers; clients are stored here.
2919 * @return 0 on success, an errno on failure.
2921 * This helper function allows drivers to get several regulator
2922 * consumers in one operation with management, the regulators will
2923 * automatically be freed when the device is unbound. If any of the
2924 * regulators cannot be acquired then any regulators that were
2925 * allocated will be freed before returning to the caller.
2927 int devm_regulator_bulk_get(struct device
*dev
, int num_consumers
,
2928 struct regulator_bulk_data
*consumers
)
2933 for (i
= 0; i
< num_consumers
; i
++)
2934 consumers
[i
].consumer
= NULL
;
2936 for (i
= 0; i
< num_consumers
; i
++) {
2937 consumers
[i
].consumer
= devm_regulator_get(dev
,
2938 consumers
[i
].supply
);
2939 if (IS_ERR(consumers
[i
].consumer
)) {
2940 ret
= PTR_ERR(consumers
[i
].consumer
);
2941 dev_err(dev
, "Failed to get supply '%s': %d\n",
2942 consumers
[i
].supply
, ret
);
2943 consumers
[i
].consumer
= NULL
;
2951 for (i
= 0; i
< num_consumers
&& consumers
[i
].consumer
; i
++)
2952 devm_regulator_put(consumers
[i
].consumer
);
2956 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get
);
2958 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
2960 struct regulator_bulk_data
*bulk
= data
;
2962 bulk
->ret
= regulator_enable(bulk
->consumer
);
2966 * regulator_bulk_enable - enable multiple regulator consumers
2968 * @num_consumers: Number of consumers
2969 * @consumers: Consumer data; clients are stored here.
2970 * @return 0 on success, an errno on failure
2972 * This convenience API allows consumers to enable multiple regulator
2973 * clients in a single API call. If any consumers cannot be enabled
2974 * then any others that were enabled will be disabled again prior to
2977 int regulator_bulk_enable(int num_consumers
,
2978 struct regulator_bulk_data
*consumers
)
2980 ASYNC_DOMAIN_EXCLUSIVE(async_domain
);
2984 for (i
= 0; i
< num_consumers
; i
++) {
2985 if (consumers
[i
].consumer
->always_on
)
2986 consumers
[i
].ret
= 0;
2988 async_schedule_domain(regulator_bulk_enable_async
,
2989 &consumers
[i
], &async_domain
);
2992 async_synchronize_full_domain(&async_domain
);
2994 /* If any consumer failed we need to unwind any that succeeded */
2995 for (i
= 0; i
< num_consumers
; i
++) {
2996 if (consumers
[i
].ret
!= 0) {
2997 ret
= consumers
[i
].ret
;
3005 for (i
= 0; i
< num_consumers
; i
++) {
3006 if (consumers
[i
].ret
< 0)
3007 pr_err("Failed to enable %s: %d\n", consumers
[i
].supply
,
3010 regulator_disable(consumers
[i
].consumer
);
3015 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
3018 * regulator_bulk_disable - disable multiple regulator consumers
3020 * @num_consumers: Number of consumers
3021 * @consumers: Consumer data; clients are stored here.
3022 * @return 0 on success, an errno on failure
3024 * This convenience API allows consumers to disable multiple regulator
3025 * clients in a single API call. If any consumers cannot be disabled
3026 * then any others that were disabled will be enabled again prior to
3029 int regulator_bulk_disable(int num_consumers
,
3030 struct regulator_bulk_data
*consumers
)
3035 for (i
= num_consumers
- 1; i
>= 0; --i
) {
3036 ret
= regulator_disable(consumers
[i
].consumer
);
3044 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
3045 for (++i
; i
< num_consumers
; ++i
) {
3046 r
= regulator_enable(consumers
[i
].consumer
);
3048 pr_err("Failed to reename %s: %d\n",
3049 consumers
[i
].supply
, r
);
3054 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
3057 * regulator_bulk_force_disable - force disable multiple regulator consumers
3059 * @num_consumers: Number of consumers
3060 * @consumers: Consumer data; clients are stored here.
3061 * @return 0 on success, an errno on failure
3063 * This convenience API allows consumers to forcibly disable multiple regulator
3064 * clients in a single API call.
3065 * NOTE: This should be used for situations when device damage will
3066 * likely occur if the regulators are not disabled (e.g. over temp).
3067 * Although regulator_force_disable function call for some consumers can
3068 * return error numbers, the function is called for all consumers.
3070 int regulator_bulk_force_disable(int num_consumers
,
3071 struct regulator_bulk_data
*consumers
)
3076 for (i
= 0; i
< num_consumers
; i
++)
3078 regulator_force_disable(consumers
[i
].consumer
);
3080 for (i
= 0; i
< num_consumers
; i
++) {
3081 if (consumers
[i
].ret
!= 0) {
3082 ret
= consumers
[i
].ret
;
3091 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable
);
3094 * regulator_bulk_free - free multiple regulator consumers
3096 * @num_consumers: Number of consumers
3097 * @consumers: Consumer data; clients are stored here.
3099 * This convenience API allows consumers to free multiple regulator
3100 * clients in a single API call.
3102 void regulator_bulk_free(int num_consumers
,
3103 struct regulator_bulk_data
*consumers
)
3107 for (i
= 0; i
< num_consumers
; i
++) {
3108 regulator_put(consumers
[i
].consumer
);
3109 consumers
[i
].consumer
= NULL
;
3112 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
3115 * regulator_notifier_call_chain - call regulator event notifier
3116 * @rdev: regulator source
3117 * @event: notifier block
3118 * @data: callback-specific data.
3120 * Called by regulator drivers to notify clients a regulator event has
3121 * occurred. We also notify regulator clients downstream.
3122 * Note lock must be held by caller.
3124 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
3125 unsigned long event
, void *data
)
3127 _notifier_call_chain(rdev
, event
, data
);
3131 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
3134 * regulator_mode_to_status - convert a regulator mode into a status
3136 * @mode: Mode to convert
3138 * Convert a regulator mode into a status.
3140 int regulator_mode_to_status(unsigned int mode
)
3143 case REGULATOR_MODE_FAST
:
3144 return REGULATOR_STATUS_FAST
;
3145 case REGULATOR_MODE_NORMAL
:
3146 return REGULATOR_STATUS_NORMAL
;
3147 case REGULATOR_MODE_IDLE
:
3148 return REGULATOR_STATUS_IDLE
;
3149 case REGULATOR_MODE_STANDBY
:
3150 return REGULATOR_STATUS_STANDBY
;
3152 return REGULATOR_STATUS_UNDEFINED
;
3155 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
3158 * To avoid cluttering sysfs (and memory) with useless state, only
3159 * create attributes that can be meaningfully displayed.
3161 static int add_regulator_attributes(struct regulator_dev
*rdev
)
3163 struct device
*dev
= &rdev
->dev
;
3164 struct regulator_ops
*ops
= rdev
->desc
->ops
;
3167 /* some attributes need specific methods to be displayed */
3168 if ((ops
->get_voltage
&& ops
->get_voltage(rdev
) >= 0) ||
3169 (ops
->get_voltage_sel
&& ops
->get_voltage_sel(rdev
) >= 0) ||
3170 (ops
->list_voltage
&& ops
->list_voltage(rdev
, 0) >= 0)) {
3171 status
= device_create_file(dev
, &dev_attr_microvolts
);
3175 if (ops
->get_current_limit
) {
3176 status
= device_create_file(dev
, &dev_attr_microamps
);
3180 if (ops
->get_mode
) {
3181 status
= device_create_file(dev
, &dev_attr_opmode
);
3185 if (rdev
->ena_pin
|| ops
->is_enabled
) {
3186 status
= device_create_file(dev
, &dev_attr_state
);
3190 if (ops
->get_status
) {
3191 status
= device_create_file(dev
, &dev_attr_status
);
3195 if (ops
->get_bypass
) {
3196 status
= device_create_file(dev
, &dev_attr_bypass
);
3201 /* some attributes are type-specific */
3202 if (rdev
->desc
->type
== REGULATOR_CURRENT
) {
3203 status
= device_create_file(dev
, &dev_attr_requested_microamps
);
3208 /* all the other attributes exist to support constraints;
3209 * don't show them if there are no constraints, or if the
3210 * relevant supporting methods are missing.
3212 if (!rdev
->constraints
)
3215 /* constraints need specific supporting methods */
3216 if (ops
->set_voltage
|| ops
->set_voltage_sel
) {
3217 status
= device_create_file(dev
, &dev_attr_min_microvolts
);
3220 status
= device_create_file(dev
, &dev_attr_max_microvolts
);
3224 if (ops
->set_current_limit
) {
3225 status
= device_create_file(dev
, &dev_attr_min_microamps
);
3228 status
= device_create_file(dev
, &dev_attr_max_microamps
);
3233 status
= device_create_file(dev
, &dev_attr_suspend_standby_state
);
3236 status
= device_create_file(dev
, &dev_attr_suspend_mem_state
);
3239 status
= device_create_file(dev
, &dev_attr_suspend_disk_state
);
3243 if (ops
->set_suspend_voltage
) {
3244 status
= device_create_file(dev
,
3245 &dev_attr_suspend_standby_microvolts
);
3248 status
= device_create_file(dev
,
3249 &dev_attr_suspend_mem_microvolts
);
3252 status
= device_create_file(dev
,
3253 &dev_attr_suspend_disk_microvolts
);
3258 if (ops
->set_suspend_mode
) {
3259 status
= device_create_file(dev
,
3260 &dev_attr_suspend_standby_mode
);
3263 status
= device_create_file(dev
,
3264 &dev_attr_suspend_mem_mode
);
3267 status
= device_create_file(dev
,
3268 &dev_attr_suspend_disk_mode
);
3276 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
3278 rdev
->debugfs
= debugfs_create_dir(rdev_get_name(rdev
), debugfs_root
);
3279 if (!rdev
->debugfs
) {
3280 rdev_warn(rdev
, "Failed to create debugfs directory\n");
3284 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
3286 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
3288 debugfs_create_u32("bypass_count", 0444, rdev
->debugfs
,
3289 &rdev
->bypass_count
);
3293 * regulator_register - register regulator
3294 * @regulator_desc: regulator to register
3295 * @config: runtime configuration for regulator
3297 * Called by regulator drivers to register a regulator.
3298 * Returns a valid pointer to struct regulator_dev on success
3299 * or an ERR_PTR() on error.
3301 struct regulator_dev
*
3302 regulator_register(const struct regulator_desc
*regulator_desc
,
3303 const struct regulator_config
*config
)
3305 const struct regulation_constraints
*constraints
= NULL
;
3306 const struct regulator_init_data
*init_data
;
3307 static atomic_t regulator_no
= ATOMIC_INIT(0);
3308 struct regulator_dev
*rdev
;
3311 const char *supply
= NULL
;
3313 if (regulator_desc
== NULL
|| config
== NULL
)
3314 return ERR_PTR(-EINVAL
);
3319 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
3320 return ERR_PTR(-EINVAL
);
3322 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
3323 regulator_desc
->type
!= REGULATOR_CURRENT
)
3324 return ERR_PTR(-EINVAL
);
3326 /* Only one of each should be implemented */
3327 WARN_ON(regulator_desc
->ops
->get_voltage
&&
3328 regulator_desc
->ops
->get_voltage_sel
);
3329 WARN_ON(regulator_desc
->ops
->set_voltage
&&
3330 regulator_desc
->ops
->set_voltage_sel
);
3332 /* If we're using selectors we must implement list_voltage. */
3333 if (regulator_desc
->ops
->get_voltage_sel
&&
3334 !regulator_desc
->ops
->list_voltage
) {
3335 return ERR_PTR(-EINVAL
);
3337 if (regulator_desc
->ops
->set_voltage_sel
&&
3338 !regulator_desc
->ops
->list_voltage
) {
3339 return ERR_PTR(-EINVAL
);
3342 init_data
= config
->init_data
;
3344 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
3346 return ERR_PTR(-ENOMEM
);
3348 mutex_lock(®ulator_list_mutex
);
3350 mutex_init(&rdev
->mutex
);
3351 rdev
->reg_data
= config
->driver_data
;
3352 rdev
->owner
= regulator_desc
->owner
;
3353 rdev
->desc
= regulator_desc
;
3355 rdev
->regmap
= config
->regmap
;
3356 else if (dev_get_regmap(dev
, NULL
))
3357 rdev
->regmap
= dev_get_regmap(dev
, NULL
);
3358 else if (dev
->parent
)
3359 rdev
->regmap
= dev_get_regmap(dev
->parent
, NULL
);
3360 INIT_LIST_HEAD(&rdev
->consumer_list
);
3361 INIT_LIST_HEAD(&rdev
->list
);
3362 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
3363 INIT_DELAYED_WORK(&rdev
->disable_work
, regulator_disable_work
);
3365 /* preform any regulator specific init */
3366 if (init_data
&& init_data
->regulator_init
) {
3367 ret
= init_data
->regulator_init(rdev
->reg_data
);
3372 /* register with sysfs */
3373 rdev
->dev
.class = ®ulator_class
;
3374 rdev
->dev
.of_node
= config
->of_node
;
3375 rdev
->dev
.parent
= dev
;
3376 dev_set_name(&rdev
->dev
, "regulator.%d",
3377 atomic_inc_return(®ulator_no
) - 1);
3378 ret
= device_register(&rdev
->dev
);
3380 put_device(&rdev
->dev
);
3384 dev_set_drvdata(&rdev
->dev
, rdev
);
3386 if (config
->ena_gpio
&& gpio_is_valid(config
->ena_gpio
)) {
3387 ret
= regulator_ena_gpio_request(rdev
, config
);
3389 rdev_err(rdev
, "Failed to request enable GPIO%d: %d\n",
3390 config
->ena_gpio
, ret
);
3394 if (config
->ena_gpio_flags
& GPIOF_OUT_INIT_HIGH
)
3395 rdev
->ena_gpio_state
= 1;
3397 if (config
->ena_gpio_invert
)
3398 rdev
->ena_gpio_state
= !rdev
->ena_gpio_state
;
3401 /* set regulator constraints */
3403 constraints
= &init_data
->constraints
;
3405 ret
= set_machine_constraints(rdev
, constraints
);
3409 /* add attributes supported by this regulator */
3410 ret
= add_regulator_attributes(rdev
);
3414 if (init_data
&& init_data
->supply_regulator
)
3415 supply
= init_data
->supply_regulator
;
3416 else if (regulator_desc
->supply_name
)
3417 supply
= regulator_desc
->supply_name
;
3420 struct regulator_dev
*r
;
3422 r
= regulator_dev_lookup(dev
, supply
, &ret
);
3424 if (ret
== -ENODEV
) {
3426 * No supply was specified for this regulator and
3427 * there will never be one.
3432 dev_err(dev
, "Failed to find supply %s\n", supply
);
3433 ret
= -EPROBE_DEFER
;
3437 ret
= set_supply(rdev
, r
);
3441 /* Enable supply if rail is enabled */
3442 if (_regulator_is_enabled(rdev
)) {
3443 ret
= regulator_enable(rdev
->supply
);
3450 /* add consumers devices */
3452 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
3453 ret
= set_consumer_device_supply(rdev
,
3454 init_data
->consumer_supplies
[i
].dev_name
,
3455 init_data
->consumer_supplies
[i
].supply
);
3457 dev_err(dev
, "Failed to set supply %s\n",
3458 init_data
->consumer_supplies
[i
].supply
);
3459 goto unset_supplies
;
3464 list_add(&rdev
->list
, ®ulator_list
);
3466 rdev_init_debugfs(rdev
);
3468 mutex_unlock(®ulator_list_mutex
);
3472 unset_regulator_supplies(rdev
);
3476 _regulator_put(rdev
->supply
);
3477 regulator_ena_gpio_free(rdev
);
3478 kfree(rdev
->constraints
);
3480 device_unregister(&rdev
->dev
);
3481 /* device core frees rdev */
3482 rdev
= ERR_PTR(ret
);
3487 rdev
= ERR_PTR(ret
);
3490 EXPORT_SYMBOL_GPL(regulator_register
);
3493 * regulator_unregister - unregister regulator
3494 * @rdev: regulator to unregister
3496 * Called by regulator drivers to unregister a regulator.
3498 void regulator_unregister(struct regulator_dev
*rdev
)
3504 while (rdev
->use_count
--)
3505 regulator_disable(rdev
->supply
);
3506 regulator_put(rdev
->supply
);
3508 mutex_lock(®ulator_list_mutex
);
3509 debugfs_remove_recursive(rdev
->debugfs
);
3510 flush_work(&rdev
->disable_work
.work
);
3511 WARN_ON(rdev
->open_count
);
3512 unset_regulator_supplies(rdev
);
3513 list_del(&rdev
->list
);
3514 kfree(rdev
->constraints
);
3515 regulator_ena_gpio_free(rdev
);
3516 device_unregister(&rdev
->dev
);
3517 mutex_unlock(®ulator_list_mutex
);
3519 EXPORT_SYMBOL_GPL(regulator_unregister
);
3522 * regulator_suspend_prepare - prepare regulators for system wide suspend
3523 * @state: system suspend state
3525 * Configure each regulator with it's suspend operating parameters for state.
3526 * This will usually be called by machine suspend code prior to supending.
3528 int regulator_suspend_prepare(suspend_state_t state
)
3530 struct regulator_dev
*rdev
;
3533 /* ON is handled by regulator active state */
3534 if (state
== PM_SUSPEND_ON
)
3537 mutex_lock(®ulator_list_mutex
);
3538 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3540 mutex_lock(&rdev
->mutex
);
3541 ret
= suspend_prepare(rdev
, state
);
3542 mutex_unlock(&rdev
->mutex
);
3545 rdev_err(rdev
, "failed to prepare\n");
3550 mutex_unlock(®ulator_list_mutex
);
3553 EXPORT_SYMBOL_GPL(regulator_suspend_prepare
);
3556 * regulator_suspend_finish - resume regulators from system wide suspend
3558 * Turn on regulators that might be turned off by regulator_suspend_prepare
3559 * and that should be turned on according to the regulators properties.
3561 int regulator_suspend_finish(void)
3563 struct regulator_dev
*rdev
;
3566 mutex_lock(®ulator_list_mutex
);
3567 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3568 mutex_lock(&rdev
->mutex
);
3569 if (rdev
->use_count
> 0 || rdev
->constraints
->always_on
) {
3570 error
= _regulator_do_enable(rdev
);
3574 if (!has_full_constraints
)
3576 if (!_regulator_is_enabled(rdev
))
3579 error
= _regulator_do_disable(rdev
);
3584 mutex_unlock(&rdev
->mutex
);
3586 mutex_unlock(®ulator_list_mutex
);
3589 EXPORT_SYMBOL_GPL(regulator_suspend_finish
);
3592 * regulator_has_full_constraints - the system has fully specified constraints
3594 * Calling this function will cause the regulator API to disable all
3595 * regulators which have a zero use count and don't have an always_on
3596 * constraint in a late_initcall.
3598 * The intention is that this will become the default behaviour in a
3599 * future kernel release so users are encouraged to use this facility
3602 void regulator_has_full_constraints(void)
3604 has_full_constraints
= 1;
3606 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
3609 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3611 * Calling this function will cause the regulator API to provide a
3612 * dummy regulator to consumers if no physical regulator is found,
3613 * allowing most consumers to proceed as though a regulator were
3614 * configured. This allows systems such as those with software
3615 * controllable regulators for the CPU core only to be brought up more
3618 void regulator_use_dummy_regulator(void)
3620 board_wants_dummy_regulator
= true;
3622 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator
);
3625 * rdev_get_drvdata - get rdev regulator driver data
3628 * Get rdev regulator driver private data. This call can be used in the
3629 * regulator driver context.
3631 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
3633 return rdev
->reg_data
;
3635 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
3638 * regulator_get_drvdata - get regulator driver data
3639 * @regulator: regulator
3641 * Get regulator driver private data. This call can be used in the consumer
3642 * driver context when non API regulator specific functions need to be called.
3644 void *regulator_get_drvdata(struct regulator
*regulator
)
3646 return regulator
->rdev
->reg_data
;
3648 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
3651 * regulator_set_drvdata - set regulator driver data
3652 * @regulator: regulator
3655 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
3657 regulator
->rdev
->reg_data
= data
;
3659 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
3662 * regulator_get_id - get regulator ID
3665 int rdev_get_id(struct regulator_dev
*rdev
)
3667 return rdev
->desc
->id
;
3669 EXPORT_SYMBOL_GPL(rdev_get_id
);
3671 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
3675 EXPORT_SYMBOL_GPL(rdev_get_dev
);
3677 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
3679 return reg_init_data
->driver_data
;
3681 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
3683 #ifdef CONFIG_DEBUG_FS
3684 static ssize_t
supply_map_read_file(struct file
*file
, char __user
*user_buf
,
3685 size_t count
, loff_t
*ppos
)
3687 char *buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3688 ssize_t len
, ret
= 0;
3689 struct regulator_map
*map
;
3694 list_for_each_entry(map
, ®ulator_map_list
, list
) {
3695 len
= snprintf(buf
+ ret
, PAGE_SIZE
- ret
,
3697 rdev_get_name(map
->regulator
), map
->dev_name
,
3701 if (ret
> PAGE_SIZE
) {
3707 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
3715 static const struct file_operations supply_map_fops
= {
3716 #ifdef CONFIG_DEBUG_FS
3717 .read
= supply_map_read_file
,
3718 .llseek
= default_llseek
,
3722 static int __init
regulator_init(void)
3726 ret
= class_register(®ulator_class
);
3728 debugfs_root
= debugfs_create_dir("regulator", NULL
);
3730 pr_warn("regulator: Failed to create debugfs directory\n");
3732 debugfs_create_file("supply_map", 0444, debugfs_root
, NULL
,
3735 regulator_dummy_init();
3740 /* init early to allow our consumers to complete system booting */
3741 core_initcall(regulator_init
);
3743 static int __init
regulator_init_complete(void)
3745 struct regulator_dev
*rdev
;
3746 struct regulator_ops
*ops
;
3747 struct regulation_constraints
*c
;
3751 * Since DT doesn't provide an idiomatic mechanism for
3752 * enabling full constraints and since it's much more natural
3753 * with DT to provide them just assume that a DT enabled
3754 * system has full constraints.
3756 if (of_have_populated_dt())
3757 has_full_constraints
= true;
3759 mutex_lock(®ulator_list_mutex
);
3761 /* If we have a full configuration then disable any regulators
3762 * which are not in use or always_on. This will become the
3763 * default behaviour in the future.
3765 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3766 ops
= rdev
->desc
->ops
;
3767 c
= rdev
->constraints
;
3769 if (c
&& c
->always_on
)
3772 mutex_lock(&rdev
->mutex
);
3774 if (rdev
->use_count
)
3777 /* If we can't read the status assume it's on. */
3778 if (ops
->is_enabled
)
3779 enabled
= ops
->is_enabled(rdev
);
3786 if (has_full_constraints
) {
3787 /* We log since this may kill the system if it
3789 rdev_info(rdev
, "disabling\n");
3790 ret
= _regulator_do_disable(rdev
);
3792 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
3795 /* The intention is that in future we will
3796 * assume that full constraints are provided
3797 * so warn even if we aren't going to do
3800 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
3804 mutex_unlock(&rdev
->mutex
);
3807 mutex_unlock(®ulator_list_mutex
);
3811 late_initcall(regulator_init_complete
);