x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / spi / spi-bfin5xx.c
blob45bdf73d6868e62d0efd5c16296d359400d05b17
1 /*
2 * Blackfin On-Chip SPI Driver
4 * Copyright 2004-2010 Analog Devices Inc.
6 * Enter bugs at http://blackfin.uclinux.org/
8 * Licensed under the GPL-2 or later.
9 */
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/delay.h>
14 #include <linux/device.h>
15 #include <linux/slab.h>
16 #include <linux/io.h>
17 #include <linux/ioport.h>
18 #include <linux/irq.h>
19 #include <linux/errno.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/spi/spi.h>
24 #include <linux/workqueue.h>
26 #include <asm/dma.h>
27 #include <asm/portmux.h>
28 #include <asm/bfin5xx_spi.h>
29 #include <asm/cacheflush.h>
31 #define DRV_NAME "bfin-spi"
32 #define DRV_AUTHOR "Bryan Wu, Luke Yang"
33 #define DRV_DESC "Blackfin on-chip SPI Controller Driver"
34 #define DRV_VERSION "1.0"
36 MODULE_AUTHOR(DRV_AUTHOR);
37 MODULE_DESCRIPTION(DRV_DESC);
38 MODULE_LICENSE("GPL");
40 #define START_STATE ((void *)0)
41 #define RUNNING_STATE ((void *)1)
42 #define DONE_STATE ((void *)2)
43 #define ERROR_STATE ((void *)-1)
45 struct bfin_spi_master_data;
47 struct bfin_spi_transfer_ops {
48 void (*write) (struct bfin_spi_master_data *);
49 void (*read) (struct bfin_spi_master_data *);
50 void (*duplex) (struct bfin_spi_master_data *);
53 struct bfin_spi_master_data {
54 /* Driver model hookup */
55 struct platform_device *pdev;
57 /* SPI framework hookup */
58 struct spi_master *master;
60 /* Regs base of SPI controller */
61 struct bfin_spi_regs __iomem *regs;
63 /* Pin request list */
64 u16 *pin_req;
66 /* BFIN hookup */
67 struct bfin5xx_spi_master *master_info;
69 /* Driver message queue */
70 struct workqueue_struct *workqueue;
71 struct work_struct pump_messages;
72 spinlock_t lock;
73 struct list_head queue;
74 int busy;
75 bool running;
77 /* Message Transfer pump */
78 struct tasklet_struct pump_transfers;
80 /* Current message transfer state info */
81 struct spi_message *cur_msg;
82 struct spi_transfer *cur_transfer;
83 struct bfin_spi_slave_data *cur_chip;
84 size_t len_in_bytes;
85 size_t len;
86 void *tx;
87 void *tx_end;
88 void *rx;
89 void *rx_end;
91 /* DMA stuffs */
92 int dma_channel;
93 int dma_mapped;
94 int dma_requested;
95 dma_addr_t rx_dma;
96 dma_addr_t tx_dma;
98 int irq_requested;
99 int spi_irq;
101 size_t rx_map_len;
102 size_t tx_map_len;
103 u8 n_bytes;
104 u16 ctrl_reg;
105 u16 flag_reg;
107 int cs_change;
108 const struct bfin_spi_transfer_ops *ops;
111 struct bfin_spi_slave_data {
112 u16 ctl_reg;
113 u16 baud;
114 u16 flag;
116 u8 chip_select_num;
117 u8 enable_dma;
118 u16 cs_chg_udelay; /* Some devices require > 255usec delay */
119 u32 cs_gpio;
120 u16 idle_tx_val;
121 u8 pio_interrupt; /* use spi data irq */
122 const struct bfin_spi_transfer_ops *ops;
125 static void bfin_spi_enable(struct bfin_spi_master_data *drv_data)
127 bfin_write_or(&drv_data->regs->ctl, BIT_CTL_ENABLE);
130 static void bfin_spi_disable(struct bfin_spi_master_data *drv_data)
132 bfin_write_and(&drv_data->regs->ctl, ~BIT_CTL_ENABLE);
135 /* Caculate the SPI_BAUD register value based on input HZ */
136 static u16 hz_to_spi_baud(u32 speed_hz)
138 u_long sclk = get_sclk();
139 u16 spi_baud = (sclk / (2 * speed_hz));
141 if ((sclk % (2 * speed_hz)) > 0)
142 spi_baud++;
144 if (spi_baud < MIN_SPI_BAUD_VAL)
145 spi_baud = MIN_SPI_BAUD_VAL;
147 return spi_baud;
150 static int bfin_spi_flush(struct bfin_spi_master_data *drv_data)
152 unsigned long limit = loops_per_jiffy << 1;
154 /* wait for stop and clear stat */
155 while (!(bfin_read(&drv_data->regs->stat) & BIT_STAT_SPIF) && --limit)
156 cpu_relax();
158 bfin_write(&drv_data->regs->stat, BIT_STAT_CLR);
160 return limit;
163 /* Chip select operation functions for cs_change flag */
164 static void bfin_spi_cs_active(struct bfin_spi_master_data *drv_data, struct bfin_spi_slave_data *chip)
166 if (likely(chip->chip_select_num < MAX_CTRL_CS))
167 bfin_write_and(&drv_data->regs->flg, ~chip->flag);
168 else
169 gpio_set_value(chip->cs_gpio, 0);
172 static void bfin_spi_cs_deactive(struct bfin_spi_master_data *drv_data,
173 struct bfin_spi_slave_data *chip)
175 if (likely(chip->chip_select_num < MAX_CTRL_CS))
176 bfin_write_or(&drv_data->regs->flg, chip->flag);
177 else
178 gpio_set_value(chip->cs_gpio, 1);
180 /* Move delay here for consistency */
181 if (chip->cs_chg_udelay)
182 udelay(chip->cs_chg_udelay);
185 /* enable or disable the pin muxed by GPIO and SPI CS to work as SPI CS */
186 static inline void bfin_spi_cs_enable(struct bfin_spi_master_data *drv_data,
187 struct bfin_spi_slave_data *chip)
189 if (chip->chip_select_num < MAX_CTRL_CS)
190 bfin_write_or(&drv_data->regs->flg, chip->flag >> 8);
193 static inline void bfin_spi_cs_disable(struct bfin_spi_master_data *drv_data,
194 struct bfin_spi_slave_data *chip)
196 if (chip->chip_select_num < MAX_CTRL_CS)
197 bfin_write_and(&drv_data->regs->flg, ~(chip->flag >> 8));
200 /* stop controller and re-config current chip*/
201 static void bfin_spi_restore_state(struct bfin_spi_master_data *drv_data)
203 struct bfin_spi_slave_data *chip = drv_data->cur_chip;
205 /* Clear status and disable clock */
206 bfin_write(&drv_data->regs->stat, BIT_STAT_CLR);
207 bfin_spi_disable(drv_data);
208 dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
210 SSYNC();
212 /* Load the registers */
213 bfin_write(&drv_data->regs->ctl, chip->ctl_reg);
214 bfin_write(&drv_data->regs->baud, chip->baud);
216 bfin_spi_enable(drv_data);
217 bfin_spi_cs_active(drv_data, chip);
220 /* used to kick off transfer in rx mode and read unwanted RX data */
221 static inline void bfin_spi_dummy_read(struct bfin_spi_master_data *drv_data)
223 (void) bfin_read(&drv_data->regs->rdbr);
226 static void bfin_spi_u8_writer(struct bfin_spi_master_data *drv_data)
228 /* clear RXS (we check for RXS inside the loop) */
229 bfin_spi_dummy_read(drv_data);
231 while (drv_data->tx < drv_data->tx_end) {
232 bfin_write(&drv_data->regs->tdbr, (*(u8 *) (drv_data->tx++)));
233 /* wait until transfer finished.
234 checking SPIF or TXS may not guarantee transfer completion */
235 while (!(bfin_read(&drv_data->regs->stat) & BIT_STAT_RXS))
236 cpu_relax();
237 /* discard RX data and clear RXS */
238 bfin_spi_dummy_read(drv_data);
242 static void bfin_spi_u8_reader(struct bfin_spi_master_data *drv_data)
244 u16 tx_val = drv_data->cur_chip->idle_tx_val;
246 /* discard old RX data and clear RXS */
247 bfin_spi_dummy_read(drv_data);
249 while (drv_data->rx < drv_data->rx_end) {
250 bfin_write(&drv_data->regs->tdbr, tx_val);
251 while (!(bfin_read(&drv_data->regs->stat) & BIT_STAT_RXS))
252 cpu_relax();
253 *(u8 *) (drv_data->rx++) = bfin_read(&drv_data->regs->rdbr);
257 static void bfin_spi_u8_duplex(struct bfin_spi_master_data *drv_data)
259 /* discard old RX data and clear RXS */
260 bfin_spi_dummy_read(drv_data);
262 while (drv_data->rx < drv_data->rx_end) {
263 bfin_write(&drv_data->regs->tdbr, (*(u8 *) (drv_data->tx++)));
264 while (!(bfin_read(&drv_data->regs->stat) & BIT_STAT_RXS))
265 cpu_relax();
266 *(u8 *) (drv_data->rx++) = bfin_read(&drv_data->regs->rdbr);
270 static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u8 = {
271 .write = bfin_spi_u8_writer,
272 .read = bfin_spi_u8_reader,
273 .duplex = bfin_spi_u8_duplex,
276 static void bfin_spi_u16_writer(struct bfin_spi_master_data *drv_data)
278 /* clear RXS (we check for RXS inside the loop) */
279 bfin_spi_dummy_read(drv_data);
281 while (drv_data->tx < drv_data->tx_end) {
282 bfin_write(&drv_data->regs->tdbr, (*(u16 *) (drv_data->tx)));
283 drv_data->tx += 2;
284 /* wait until transfer finished.
285 checking SPIF or TXS may not guarantee transfer completion */
286 while (!(bfin_read(&drv_data->regs->stat) & BIT_STAT_RXS))
287 cpu_relax();
288 /* discard RX data and clear RXS */
289 bfin_spi_dummy_read(drv_data);
293 static void bfin_spi_u16_reader(struct bfin_spi_master_data *drv_data)
295 u16 tx_val = drv_data->cur_chip->idle_tx_val;
297 /* discard old RX data and clear RXS */
298 bfin_spi_dummy_read(drv_data);
300 while (drv_data->rx < drv_data->rx_end) {
301 bfin_write(&drv_data->regs->tdbr, tx_val);
302 while (!(bfin_read(&drv_data->regs->stat) & BIT_STAT_RXS))
303 cpu_relax();
304 *(u16 *) (drv_data->rx) = bfin_read(&drv_data->regs->rdbr);
305 drv_data->rx += 2;
309 static void bfin_spi_u16_duplex(struct bfin_spi_master_data *drv_data)
311 /* discard old RX data and clear RXS */
312 bfin_spi_dummy_read(drv_data);
314 while (drv_data->rx < drv_data->rx_end) {
315 bfin_write(&drv_data->regs->tdbr, (*(u16 *) (drv_data->tx)));
316 drv_data->tx += 2;
317 while (!(bfin_read(&drv_data->regs->stat) & BIT_STAT_RXS))
318 cpu_relax();
319 *(u16 *) (drv_data->rx) = bfin_read(&drv_data->regs->rdbr);
320 drv_data->rx += 2;
324 static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u16 = {
325 .write = bfin_spi_u16_writer,
326 .read = bfin_spi_u16_reader,
327 .duplex = bfin_spi_u16_duplex,
330 /* test if there is more transfer to be done */
331 static void *bfin_spi_next_transfer(struct bfin_spi_master_data *drv_data)
333 struct spi_message *msg = drv_data->cur_msg;
334 struct spi_transfer *trans = drv_data->cur_transfer;
336 /* Move to next transfer */
337 if (trans->transfer_list.next != &msg->transfers) {
338 drv_data->cur_transfer =
339 list_entry(trans->transfer_list.next,
340 struct spi_transfer, transfer_list);
341 return RUNNING_STATE;
342 } else
343 return DONE_STATE;
347 * caller already set message->status;
348 * dma and pio irqs are blocked give finished message back
350 static void bfin_spi_giveback(struct bfin_spi_master_data *drv_data)
352 struct bfin_spi_slave_data *chip = drv_data->cur_chip;
353 struct spi_transfer *last_transfer;
354 unsigned long flags;
355 struct spi_message *msg;
357 spin_lock_irqsave(&drv_data->lock, flags);
358 msg = drv_data->cur_msg;
359 drv_data->cur_msg = NULL;
360 drv_data->cur_transfer = NULL;
361 drv_data->cur_chip = NULL;
362 queue_work(drv_data->workqueue, &drv_data->pump_messages);
363 spin_unlock_irqrestore(&drv_data->lock, flags);
365 last_transfer = list_entry(msg->transfers.prev,
366 struct spi_transfer, transfer_list);
368 msg->state = NULL;
370 if (!drv_data->cs_change)
371 bfin_spi_cs_deactive(drv_data, chip);
373 /* Not stop spi in autobuffer mode */
374 if (drv_data->tx_dma != 0xFFFF)
375 bfin_spi_disable(drv_data);
377 if (msg->complete)
378 msg->complete(msg->context);
381 /* spi data irq handler */
382 static irqreturn_t bfin_spi_pio_irq_handler(int irq, void *dev_id)
384 struct bfin_spi_master_data *drv_data = dev_id;
385 struct bfin_spi_slave_data *chip = drv_data->cur_chip;
386 struct spi_message *msg = drv_data->cur_msg;
387 int n_bytes = drv_data->n_bytes;
388 int loop = 0;
390 /* wait until transfer finished. */
391 while (!(bfin_read(&drv_data->regs->stat) & BIT_STAT_RXS))
392 cpu_relax();
394 if ((drv_data->tx && drv_data->tx >= drv_data->tx_end) ||
395 (drv_data->rx && drv_data->rx >= (drv_data->rx_end - n_bytes))) {
396 /* last read */
397 if (drv_data->rx) {
398 dev_dbg(&drv_data->pdev->dev, "last read\n");
399 if (!(n_bytes % 2)) {
400 u16 *buf = (u16 *)drv_data->rx;
401 for (loop = 0; loop < n_bytes / 2; loop++)
402 *buf++ = bfin_read(&drv_data->regs->rdbr);
403 } else {
404 u8 *buf = (u8 *)drv_data->rx;
405 for (loop = 0; loop < n_bytes; loop++)
406 *buf++ = bfin_read(&drv_data->regs->rdbr);
408 drv_data->rx += n_bytes;
411 msg->actual_length += drv_data->len_in_bytes;
412 if (drv_data->cs_change)
413 bfin_spi_cs_deactive(drv_data, chip);
414 /* Move to next transfer */
415 msg->state = bfin_spi_next_transfer(drv_data);
417 disable_irq_nosync(drv_data->spi_irq);
419 /* Schedule transfer tasklet */
420 tasklet_schedule(&drv_data->pump_transfers);
421 return IRQ_HANDLED;
424 if (drv_data->rx && drv_data->tx) {
425 /* duplex */
426 dev_dbg(&drv_data->pdev->dev, "duplex: write_TDBR\n");
427 if (!(n_bytes % 2)) {
428 u16 *buf = (u16 *)drv_data->rx;
429 u16 *buf2 = (u16 *)drv_data->tx;
430 for (loop = 0; loop < n_bytes / 2; loop++) {
431 *buf++ = bfin_read(&drv_data->regs->rdbr);
432 bfin_write(&drv_data->regs->tdbr, *buf2++);
434 } else {
435 u8 *buf = (u8 *)drv_data->rx;
436 u8 *buf2 = (u8 *)drv_data->tx;
437 for (loop = 0; loop < n_bytes; loop++) {
438 *buf++ = bfin_read(&drv_data->regs->rdbr);
439 bfin_write(&drv_data->regs->tdbr, *buf2++);
442 } else if (drv_data->rx) {
443 /* read */
444 dev_dbg(&drv_data->pdev->dev, "read: write_TDBR\n");
445 if (!(n_bytes % 2)) {
446 u16 *buf = (u16 *)drv_data->rx;
447 for (loop = 0; loop < n_bytes / 2; loop++) {
448 *buf++ = bfin_read(&drv_data->regs->rdbr);
449 bfin_write(&drv_data->regs->tdbr, chip->idle_tx_val);
451 } else {
452 u8 *buf = (u8 *)drv_data->rx;
453 for (loop = 0; loop < n_bytes; loop++) {
454 *buf++ = bfin_read(&drv_data->regs->rdbr);
455 bfin_write(&drv_data->regs->tdbr, chip->idle_tx_val);
458 } else if (drv_data->tx) {
459 /* write */
460 dev_dbg(&drv_data->pdev->dev, "write: write_TDBR\n");
461 if (!(n_bytes % 2)) {
462 u16 *buf = (u16 *)drv_data->tx;
463 for (loop = 0; loop < n_bytes / 2; loop++) {
464 bfin_read(&drv_data->regs->rdbr);
465 bfin_write(&drv_data->regs->tdbr, *buf++);
467 } else {
468 u8 *buf = (u8 *)drv_data->tx;
469 for (loop = 0; loop < n_bytes; loop++) {
470 bfin_read(&drv_data->regs->rdbr);
471 bfin_write(&drv_data->regs->tdbr, *buf++);
476 if (drv_data->tx)
477 drv_data->tx += n_bytes;
478 if (drv_data->rx)
479 drv_data->rx += n_bytes;
481 return IRQ_HANDLED;
484 static irqreturn_t bfin_spi_dma_irq_handler(int irq, void *dev_id)
486 struct bfin_spi_master_data *drv_data = dev_id;
487 struct bfin_spi_slave_data *chip = drv_data->cur_chip;
488 struct spi_message *msg = drv_data->cur_msg;
489 unsigned long timeout;
490 unsigned short dmastat = get_dma_curr_irqstat(drv_data->dma_channel);
491 u16 spistat = bfin_read(&drv_data->regs->stat);
493 dev_dbg(&drv_data->pdev->dev,
494 "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
495 dmastat, spistat);
497 if (drv_data->rx != NULL) {
498 u16 cr = bfin_read(&drv_data->regs->ctl);
499 /* discard old RX data and clear RXS */
500 bfin_spi_dummy_read(drv_data);
501 bfin_write(&drv_data->regs->ctl, cr & ~BIT_CTL_ENABLE); /* Disable SPI */
502 bfin_write(&drv_data->regs->ctl, cr & ~BIT_CTL_TIMOD); /* Restore State */
503 bfin_write(&drv_data->regs->stat, BIT_STAT_CLR); /* Clear Status */
506 clear_dma_irqstat(drv_data->dma_channel);
509 * wait for the last transaction shifted out. HRM states:
510 * at this point there may still be data in the SPI DMA FIFO waiting
511 * to be transmitted ... software needs to poll TXS in the SPI_STAT
512 * register until it goes low for 2 successive reads
514 if (drv_data->tx != NULL) {
515 while ((bfin_read(&drv_data->regs->stat) & BIT_STAT_TXS) ||
516 (bfin_read(&drv_data->regs->stat) & BIT_STAT_TXS))
517 cpu_relax();
520 dev_dbg(&drv_data->pdev->dev,
521 "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
522 dmastat, bfin_read(&drv_data->regs->stat));
524 timeout = jiffies + HZ;
525 while (!(bfin_read(&drv_data->regs->stat) & BIT_STAT_SPIF))
526 if (!time_before(jiffies, timeout)) {
527 dev_warn(&drv_data->pdev->dev, "timeout waiting for SPIF");
528 break;
529 } else
530 cpu_relax();
532 if ((dmastat & DMA_ERR) && (spistat & BIT_STAT_RBSY)) {
533 msg->state = ERROR_STATE;
534 dev_err(&drv_data->pdev->dev, "dma receive: fifo/buffer overflow\n");
535 } else {
536 msg->actual_length += drv_data->len_in_bytes;
538 if (drv_data->cs_change)
539 bfin_spi_cs_deactive(drv_data, chip);
541 /* Move to next transfer */
542 msg->state = bfin_spi_next_transfer(drv_data);
545 /* Schedule transfer tasklet */
546 tasklet_schedule(&drv_data->pump_transfers);
548 /* free the irq handler before next transfer */
549 dev_dbg(&drv_data->pdev->dev,
550 "disable dma channel irq%d\n",
551 drv_data->dma_channel);
552 dma_disable_irq_nosync(drv_data->dma_channel);
554 return IRQ_HANDLED;
557 static void bfin_spi_pump_transfers(unsigned long data)
559 struct bfin_spi_master_data *drv_data = (struct bfin_spi_master_data *)data;
560 struct spi_message *message = NULL;
561 struct spi_transfer *transfer = NULL;
562 struct spi_transfer *previous = NULL;
563 struct bfin_spi_slave_data *chip = NULL;
564 unsigned int bits_per_word;
565 u16 cr, cr_width, dma_width, dma_config;
566 u32 tranf_success = 1;
567 u8 full_duplex = 0;
569 /* Get current state information */
570 message = drv_data->cur_msg;
571 transfer = drv_data->cur_transfer;
572 chip = drv_data->cur_chip;
575 * if msg is error or done, report it back using complete() callback
578 /* Handle for abort */
579 if (message->state == ERROR_STATE) {
580 dev_dbg(&drv_data->pdev->dev, "transfer: we've hit an error\n");
581 message->status = -EIO;
582 bfin_spi_giveback(drv_data);
583 return;
586 /* Handle end of message */
587 if (message->state == DONE_STATE) {
588 dev_dbg(&drv_data->pdev->dev, "transfer: all done!\n");
589 message->status = 0;
590 bfin_spi_flush(drv_data);
591 bfin_spi_giveback(drv_data);
592 return;
595 /* Delay if requested at end of transfer */
596 if (message->state == RUNNING_STATE) {
597 dev_dbg(&drv_data->pdev->dev, "transfer: still running ...\n");
598 previous = list_entry(transfer->transfer_list.prev,
599 struct spi_transfer, transfer_list);
600 if (previous->delay_usecs)
601 udelay(previous->delay_usecs);
604 /* Flush any existing transfers that may be sitting in the hardware */
605 if (bfin_spi_flush(drv_data) == 0) {
606 dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
607 message->status = -EIO;
608 bfin_spi_giveback(drv_data);
609 return;
612 if (transfer->len == 0) {
613 /* Move to next transfer of this msg */
614 message->state = bfin_spi_next_transfer(drv_data);
615 /* Schedule next transfer tasklet */
616 tasklet_schedule(&drv_data->pump_transfers);
617 return;
620 if (transfer->tx_buf != NULL) {
621 drv_data->tx = (void *)transfer->tx_buf;
622 drv_data->tx_end = drv_data->tx + transfer->len;
623 dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
624 transfer->tx_buf, drv_data->tx_end);
625 } else {
626 drv_data->tx = NULL;
629 if (transfer->rx_buf != NULL) {
630 full_duplex = transfer->tx_buf != NULL;
631 drv_data->rx = transfer->rx_buf;
632 drv_data->rx_end = drv_data->rx + transfer->len;
633 dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
634 transfer->rx_buf, drv_data->rx_end);
635 } else {
636 drv_data->rx = NULL;
639 drv_data->rx_dma = transfer->rx_dma;
640 drv_data->tx_dma = transfer->tx_dma;
641 drv_data->len_in_bytes = transfer->len;
642 drv_data->cs_change = transfer->cs_change;
644 /* Bits per word setup */
645 bits_per_word = transfer->bits_per_word;
646 if (bits_per_word == 16) {
647 drv_data->n_bytes = bits_per_word/8;
648 drv_data->len = (transfer->len) >> 1;
649 cr_width = BIT_CTL_WORDSIZE;
650 drv_data->ops = &bfin_bfin_spi_transfer_ops_u16;
651 } else if (bits_per_word == 8) {
652 drv_data->n_bytes = bits_per_word/8;
653 drv_data->len = transfer->len;
654 cr_width = 0;
655 drv_data->ops = &bfin_bfin_spi_transfer_ops_u8;
657 cr = bfin_read(&drv_data->regs->ctl) & ~(BIT_CTL_TIMOD | BIT_CTL_WORDSIZE);
658 cr |= cr_width;
659 bfin_write(&drv_data->regs->ctl, cr);
661 dev_dbg(&drv_data->pdev->dev,
662 "transfer: drv_data->ops is %p, chip->ops is %p, u8_ops is %p\n",
663 drv_data->ops, chip->ops, &bfin_bfin_spi_transfer_ops_u8);
665 message->state = RUNNING_STATE;
666 dma_config = 0;
668 /* Speed setup (surely valid because already checked) */
669 if (transfer->speed_hz)
670 bfin_write(&drv_data->regs->baud, hz_to_spi_baud(transfer->speed_hz));
671 else
672 bfin_write(&drv_data->regs->baud, chip->baud);
674 bfin_write(&drv_data->regs->stat, BIT_STAT_CLR);
675 bfin_spi_cs_active(drv_data, chip);
677 dev_dbg(&drv_data->pdev->dev,
678 "now pumping a transfer: width is %d, len is %d\n",
679 cr_width, transfer->len);
682 * Try to map dma buffer and do a dma transfer. If successful use,
683 * different way to r/w according to the enable_dma settings and if
684 * we are not doing a full duplex transfer (since the hardware does
685 * not support full duplex DMA transfers).
687 if (!full_duplex && drv_data->cur_chip->enable_dma
688 && drv_data->len > 6) {
690 unsigned long dma_start_addr, flags;
692 disable_dma(drv_data->dma_channel);
693 clear_dma_irqstat(drv_data->dma_channel);
695 /* config dma channel */
696 dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
697 set_dma_x_count(drv_data->dma_channel, drv_data->len);
698 if (cr_width == BIT_CTL_WORDSIZE) {
699 set_dma_x_modify(drv_data->dma_channel, 2);
700 dma_width = WDSIZE_16;
701 } else {
702 set_dma_x_modify(drv_data->dma_channel, 1);
703 dma_width = WDSIZE_8;
706 /* poll for SPI completion before start */
707 while (!(bfin_read(&drv_data->regs->stat) & BIT_STAT_SPIF))
708 cpu_relax();
710 /* dirty hack for autobuffer DMA mode */
711 if (drv_data->tx_dma == 0xFFFF) {
712 dev_dbg(&drv_data->pdev->dev,
713 "doing autobuffer DMA out.\n");
715 /* no irq in autobuffer mode */
716 dma_config =
717 (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
718 set_dma_config(drv_data->dma_channel, dma_config);
719 set_dma_start_addr(drv_data->dma_channel,
720 (unsigned long)drv_data->tx);
721 enable_dma(drv_data->dma_channel);
723 /* start SPI transfer */
724 bfin_write(&drv_data->regs->ctl, cr | BIT_CTL_TIMOD_DMA_TX);
726 /* just return here, there can only be one transfer
727 * in this mode
729 message->status = 0;
730 bfin_spi_giveback(drv_data);
731 return;
734 /* In dma mode, rx or tx must be NULL in one transfer */
735 dma_config = (RESTART | dma_width | DI_EN);
736 if (drv_data->rx != NULL) {
737 /* set transfer mode, and enable SPI */
738 dev_dbg(&drv_data->pdev->dev, "doing DMA in to %p (size %zx)\n",
739 drv_data->rx, drv_data->len_in_bytes);
741 /* invalidate caches, if needed */
742 if (bfin_addr_dcacheable((unsigned long) drv_data->rx))
743 invalidate_dcache_range((unsigned long) drv_data->rx,
744 (unsigned long) (drv_data->rx +
745 drv_data->len_in_bytes));
747 dma_config |= WNR;
748 dma_start_addr = (unsigned long)drv_data->rx;
749 cr |= BIT_CTL_TIMOD_DMA_RX | BIT_CTL_SENDOPT;
751 } else if (drv_data->tx != NULL) {
752 dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
754 /* flush caches, if needed */
755 if (bfin_addr_dcacheable((unsigned long) drv_data->tx))
756 flush_dcache_range((unsigned long) drv_data->tx,
757 (unsigned long) (drv_data->tx +
758 drv_data->len_in_bytes));
760 dma_start_addr = (unsigned long)drv_data->tx;
761 cr |= BIT_CTL_TIMOD_DMA_TX;
763 } else
764 BUG();
766 /* oh man, here there be monsters ... and i dont mean the
767 * fluffy cute ones from pixar, i mean the kind that'll eat
768 * your data, kick your dog, and love it all. do *not* try
769 * and change these lines unless you (1) heavily test DMA
770 * with SPI flashes on a loaded system (e.g. ping floods),
771 * (2) know just how broken the DMA engine interaction with
772 * the SPI peripheral is, and (3) have someone else to blame
773 * when you screw it all up anyways.
775 set_dma_start_addr(drv_data->dma_channel, dma_start_addr);
776 set_dma_config(drv_data->dma_channel, dma_config);
777 local_irq_save(flags);
778 SSYNC();
779 bfin_write(&drv_data->regs->ctl, cr);
780 enable_dma(drv_data->dma_channel);
781 dma_enable_irq(drv_data->dma_channel);
782 local_irq_restore(flags);
784 return;
788 * We always use SPI_WRITE mode (transfer starts with TDBR write).
789 * SPI_READ mode (transfer starts with RDBR read) seems to have
790 * problems with setting up the output value in TDBR prior to the
791 * start of the transfer.
793 bfin_write(&drv_data->regs->ctl, cr | BIT_CTL_TXMOD);
795 if (chip->pio_interrupt) {
796 /* SPI irq should have been disabled by now */
798 /* discard old RX data and clear RXS */
799 bfin_spi_dummy_read(drv_data);
801 /* start transfer */
802 if (drv_data->tx == NULL)
803 bfin_write(&drv_data->regs->tdbr, chip->idle_tx_val);
804 else {
805 int loop;
806 if (bits_per_word == 16) {
807 u16 *buf = (u16 *)drv_data->tx;
808 for (loop = 0; loop < bits_per_word / 16;
809 loop++) {
810 bfin_write(&drv_data->regs->tdbr, *buf++);
812 } else if (bits_per_word == 8) {
813 u8 *buf = (u8 *)drv_data->tx;
814 for (loop = 0; loop < bits_per_word / 8; loop++)
815 bfin_write(&drv_data->regs->tdbr, *buf++);
818 drv_data->tx += drv_data->n_bytes;
821 /* once TDBR is empty, interrupt is triggered */
822 enable_irq(drv_data->spi_irq);
823 return;
826 /* IO mode */
827 dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
829 if (full_duplex) {
830 /* full duplex mode */
831 BUG_ON((drv_data->tx_end - drv_data->tx) !=
832 (drv_data->rx_end - drv_data->rx));
833 dev_dbg(&drv_data->pdev->dev,
834 "IO duplex: cr is 0x%x\n", cr);
836 drv_data->ops->duplex(drv_data);
838 if (drv_data->tx != drv_data->tx_end)
839 tranf_success = 0;
840 } else if (drv_data->tx != NULL) {
841 /* write only half duplex */
842 dev_dbg(&drv_data->pdev->dev,
843 "IO write: cr is 0x%x\n", cr);
845 drv_data->ops->write(drv_data);
847 if (drv_data->tx != drv_data->tx_end)
848 tranf_success = 0;
849 } else if (drv_data->rx != NULL) {
850 /* read only half duplex */
851 dev_dbg(&drv_data->pdev->dev,
852 "IO read: cr is 0x%x\n", cr);
854 drv_data->ops->read(drv_data);
855 if (drv_data->rx != drv_data->rx_end)
856 tranf_success = 0;
859 if (!tranf_success) {
860 dev_dbg(&drv_data->pdev->dev,
861 "IO write error!\n");
862 message->state = ERROR_STATE;
863 } else {
864 /* Update total byte transferred */
865 message->actual_length += drv_data->len_in_bytes;
866 /* Move to next transfer of this msg */
867 message->state = bfin_spi_next_transfer(drv_data);
868 if (drv_data->cs_change && message->state != DONE_STATE) {
869 bfin_spi_flush(drv_data);
870 bfin_spi_cs_deactive(drv_data, chip);
874 /* Schedule next transfer tasklet */
875 tasklet_schedule(&drv_data->pump_transfers);
878 /* pop a msg from queue and kick off real transfer */
879 static void bfin_spi_pump_messages(struct work_struct *work)
881 struct bfin_spi_master_data *drv_data;
882 unsigned long flags;
884 drv_data = container_of(work, struct bfin_spi_master_data, pump_messages);
886 /* Lock queue and check for queue work */
887 spin_lock_irqsave(&drv_data->lock, flags);
888 if (list_empty(&drv_data->queue) || !drv_data->running) {
889 /* pumper kicked off but no work to do */
890 drv_data->busy = 0;
891 spin_unlock_irqrestore(&drv_data->lock, flags);
892 return;
895 /* Make sure we are not already running a message */
896 if (drv_data->cur_msg) {
897 spin_unlock_irqrestore(&drv_data->lock, flags);
898 return;
901 /* Extract head of queue */
902 drv_data->cur_msg = list_entry(drv_data->queue.next,
903 struct spi_message, queue);
905 /* Setup the SSP using the per chip configuration */
906 drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
907 bfin_spi_restore_state(drv_data);
909 list_del_init(&drv_data->cur_msg->queue);
911 /* Initial message state */
912 drv_data->cur_msg->state = START_STATE;
913 drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
914 struct spi_transfer, transfer_list);
916 dev_dbg(&drv_data->pdev->dev, "got a message to pump, "
917 "state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
918 drv_data->cur_chip->baud, drv_data->cur_chip->flag,
919 drv_data->cur_chip->ctl_reg);
921 dev_dbg(&drv_data->pdev->dev,
922 "the first transfer len is %d\n",
923 drv_data->cur_transfer->len);
925 /* Mark as busy and launch transfers */
926 tasklet_schedule(&drv_data->pump_transfers);
928 drv_data->busy = 1;
929 spin_unlock_irqrestore(&drv_data->lock, flags);
933 * got a msg to transfer, queue it in drv_data->queue.
934 * And kick off message pumper
936 static int bfin_spi_transfer(struct spi_device *spi, struct spi_message *msg)
938 struct bfin_spi_master_data *drv_data = spi_master_get_devdata(spi->master);
939 unsigned long flags;
941 spin_lock_irqsave(&drv_data->lock, flags);
943 if (!drv_data->running) {
944 spin_unlock_irqrestore(&drv_data->lock, flags);
945 return -ESHUTDOWN;
948 msg->actual_length = 0;
949 msg->status = -EINPROGRESS;
950 msg->state = START_STATE;
952 dev_dbg(&spi->dev, "adding an msg in transfer() \n");
953 list_add_tail(&msg->queue, &drv_data->queue);
955 if (drv_data->running && !drv_data->busy)
956 queue_work(drv_data->workqueue, &drv_data->pump_messages);
958 spin_unlock_irqrestore(&drv_data->lock, flags);
960 return 0;
963 #define MAX_SPI_SSEL 7
965 static const u16 ssel[][MAX_SPI_SSEL] = {
966 {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
967 P_SPI0_SSEL4, P_SPI0_SSEL5,
968 P_SPI0_SSEL6, P_SPI0_SSEL7},
970 {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
971 P_SPI1_SSEL4, P_SPI1_SSEL5,
972 P_SPI1_SSEL6, P_SPI1_SSEL7},
974 {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
975 P_SPI2_SSEL4, P_SPI2_SSEL5,
976 P_SPI2_SSEL6, P_SPI2_SSEL7},
979 /* setup for devices (may be called multiple times -- not just first setup) */
980 static int bfin_spi_setup(struct spi_device *spi)
982 struct bfin5xx_spi_chip *chip_info;
983 struct bfin_spi_slave_data *chip = NULL;
984 struct bfin_spi_master_data *drv_data = spi_master_get_devdata(spi->master);
985 u16 bfin_ctl_reg;
986 int ret = -EINVAL;
988 /* Only alloc (or use chip_info) on first setup */
989 chip_info = NULL;
990 chip = spi_get_ctldata(spi);
991 if (chip == NULL) {
992 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
993 if (!chip) {
994 dev_err(&spi->dev, "cannot allocate chip data\n");
995 ret = -ENOMEM;
996 goto error;
999 chip->enable_dma = 0;
1000 chip_info = spi->controller_data;
1003 /* Let people set non-standard bits directly */
1004 bfin_ctl_reg = BIT_CTL_OPENDRAIN | BIT_CTL_EMISO |
1005 BIT_CTL_PSSE | BIT_CTL_GM | BIT_CTL_SZ;
1007 /* chip_info isn't always needed */
1008 if (chip_info) {
1009 /* Make sure people stop trying to set fields via ctl_reg
1010 * when they should actually be using common SPI framework.
1011 * Currently we let through: WOM EMISO PSSE GM SZ.
1012 * Not sure if a user actually needs/uses any of these,
1013 * but let's assume (for now) they do.
1015 if (chip_info->ctl_reg & ~bfin_ctl_reg) {
1016 dev_err(&spi->dev, "do not set bits in ctl_reg "
1017 "that the SPI framework manages\n");
1018 goto error;
1020 chip->enable_dma = chip_info->enable_dma != 0
1021 && drv_data->master_info->enable_dma;
1022 chip->ctl_reg = chip_info->ctl_reg;
1023 chip->cs_chg_udelay = chip_info->cs_chg_udelay;
1024 chip->idle_tx_val = chip_info->idle_tx_val;
1025 chip->pio_interrupt = chip_info->pio_interrupt;
1026 } else {
1027 /* force a default base state */
1028 chip->ctl_reg &= bfin_ctl_reg;
1031 /* translate common spi framework into our register */
1032 if (spi->mode & ~(SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST)) {
1033 dev_err(&spi->dev, "unsupported spi modes detected\n");
1034 goto error;
1036 if (spi->mode & SPI_CPOL)
1037 chip->ctl_reg |= BIT_CTL_CPOL;
1038 if (spi->mode & SPI_CPHA)
1039 chip->ctl_reg |= BIT_CTL_CPHA;
1040 if (spi->mode & SPI_LSB_FIRST)
1041 chip->ctl_reg |= BIT_CTL_LSBF;
1042 /* we dont support running in slave mode (yet?) */
1043 chip->ctl_reg |= BIT_CTL_MASTER;
1046 * Notice: for blackfin, the speed_hz is the value of register
1047 * SPI_BAUD, not the real baudrate
1049 chip->baud = hz_to_spi_baud(spi->max_speed_hz);
1050 chip->chip_select_num = spi->chip_select;
1051 if (chip->chip_select_num < MAX_CTRL_CS) {
1052 if (!(spi->mode & SPI_CPHA))
1053 dev_warn(&spi->dev, "Warning: SPI CPHA not set:"
1054 " Slave Select not under software control!\n"
1055 " See Documentation/blackfin/bfin-spi-notes.txt");
1057 chip->flag = (1 << spi->chip_select) << 8;
1058 } else
1059 chip->cs_gpio = chip->chip_select_num - MAX_CTRL_CS;
1061 if (chip->enable_dma && chip->pio_interrupt) {
1062 dev_err(&spi->dev, "enable_dma is set, "
1063 "do not set pio_interrupt\n");
1064 goto error;
1067 * if any one SPI chip is registered and wants DMA, request the
1068 * DMA channel for it
1070 if (chip->enable_dma && !drv_data->dma_requested) {
1071 /* register dma irq handler */
1072 ret = request_dma(drv_data->dma_channel, "BFIN_SPI_DMA");
1073 if (ret) {
1074 dev_err(&spi->dev,
1075 "Unable to request BlackFin SPI DMA channel\n");
1076 goto error;
1078 drv_data->dma_requested = 1;
1080 ret = set_dma_callback(drv_data->dma_channel,
1081 bfin_spi_dma_irq_handler, drv_data);
1082 if (ret) {
1083 dev_err(&spi->dev, "Unable to set dma callback\n");
1084 goto error;
1086 dma_disable_irq(drv_data->dma_channel);
1089 if (chip->pio_interrupt && !drv_data->irq_requested) {
1090 ret = request_irq(drv_data->spi_irq, bfin_spi_pio_irq_handler,
1091 0, "BFIN_SPI", drv_data);
1092 if (ret) {
1093 dev_err(&spi->dev, "Unable to register spi IRQ\n");
1094 goto error;
1096 drv_data->irq_requested = 1;
1097 /* we use write mode, spi irq has to be disabled here */
1098 disable_irq(drv_data->spi_irq);
1101 if (chip->chip_select_num >= MAX_CTRL_CS) {
1102 /* Only request on first setup */
1103 if (spi_get_ctldata(spi) == NULL) {
1104 ret = gpio_request(chip->cs_gpio, spi->modalias);
1105 if (ret) {
1106 dev_err(&spi->dev, "gpio_request() error\n");
1107 goto pin_error;
1109 gpio_direction_output(chip->cs_gpio, 1);
1113 dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n",
1114 spi->modalias, spi->bits_per_word, chip->enable_dma);
1115 dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
1116 chip->ctl_reg, chip->flag);
1118 spi_set_ctldata(spi, chip);
1120 dev_dbg(&spi->dev, "chip select number is %d\n", chip->chip_select_num);
1121 if (chip->chip_select_num < MAX_CTRL_CS) {
1122 ret = peripheral_request(ssel[spi->master->bus_num]
1123 [chip->chip_select_num-1], spi->modalias);
1124 if (ret) {
1125 dev_err(&spi->dev, "peripheral_request() error\n");
1126 goto pin_error;
1130 bfin_spi_cs_enable(drv_data, chip);
1131 bfin_spi_cs_deactive(drv_data, chip);
1133 return 0;
1135 pin_error:
1136 if (chip->chip_select_num >= MAX_CTRL_CS)
1137 gpio_free(chip->cs_gpio);
1138 else
1139 peripheral_free(ssel[spi->master->bus_num]
1140 [chip->chip_select_num - 1]);
1141 error:
1142 if (chip) {
1143 if (drv_data->dma_requested)
1144 free_dma(drv_data->dma_channel);
1145 drv_data->dma_requested = 0;
1147 kfree(chip);
1148 /* prevent free 'chip' twice */
1149 spi_set_ctldata(spi, NULL);
1152 return ret;
1156 * callback for spi framework.
1157 * clean driver specific data
1159 static void bfin_spi_cleanup(struct spi_device *spi)
1161 struct bfin_spi_slave_data *chip = spi_get_ctldata(spi);
1162 struct bfin_spi_master_data *drv_data = spi_master_get_devdata(spi->master);
1164 if (!chip)
1165 return;
1167 if (chip->chip_select_num < MAX_CTRL_CS) {
1168 peripheral_free(ssel[spi->master->bus_num]
1169 [chip->chip_select_num-1]);
1170 bfin_spi_cs_disable(drv_data, chip);
1171 } else
1172 gpio_free(chip->cs_gpio);
1174 kfree(chip);
1175 /* prevent free 'chip' twice */
1176 spi_set_ctldata(spi, NULL);
1179 static int bfin_spi_init_queue(struct bfin_spi_master_data *drv_data)
1181 INIT_LIST_HEAD(&drv_data->queue);
1182 spin_lock_init(&drv_data->lock);
1184 drv_data->running = false;
1185 drv_data->busy = 0;
1187 /* init transfer tasklet */
1188 tasklet_init(&drv_data->pump_transfers,
1189 bfin_spi_pump_transfers, (unsigned long)drv_data);
1191 /* init messages workqueue */
1192 INIT_WORK(&drv_data->pump_messages, bfin_spi_pump_messages);
1193 drv_data->workqueue = create_singlethread_workqueue(
1194 dev_name(drv_data->master->dev.parent));
1195 if (drv_data->workqueue == NULL)
1196 return -EBUSY;
1198 return 0;
1201 static int bfin_spi_start_queue(struct bfin_spi_master_data *drv_data)
1203 unsigned long flags;
1205 spin_lock_irqsave(&drv_data->lock, flags);
1207 if (drv_data->running || drv_data->busy) {
1208 spin_unlock_irqrestore(&drv_data->lock, flags);
1209 return -EBUSY;
1212 drv_data->running = true;
1213 drv_data->cur_msg = NULL;
1214 drv_data->cur_transfer = NULL;
1215 drv_data->cur_chip = NULL;
1216 spin_unlock_irqrestore(&drv_data->lock, flags);
1218 queue_work(drv_data->workqueue, &drv_data->pump_messages);
1220 return 0;
1223 static int bfin_spi_stop_queue(struct bfin_spi_master_data *drv_data)
1225 unsigned long flags;
1226 unsigned limit = 500;
1227 int status = 0;
1229 spin_lock_irqsave(&drv_data->lock, flags);
1232 * This is a bit lame, but is optimized for the common execution path.
1233 * A wait_queue on the drv_data->busy could be used, but then the common
1234 * execution path (pump_messages) would be required to call wake_up or
1235 * friends on every SPI message. Do this instead
1237 drv_data->running = false;
1238 while ((!list_empty(&drv_data->queue) || drv_data->busy) && limit--) {
1239 spin_unlock_irqrestore(&drv_data->lock, flags);
1240 msleep(10);
1241 spin_lock_irqsave(&drv_data->lock, flags);
1244 if (!list_empty(&drv_data->queue) || drv_data->busy)
1245 status = -EBUSY;
1247 spin_unlock_irqrestore(&drv_data->lock, flags);
1249 return status;
1252 static int bfin_spi_destroy_queue(struct bfin_spi_master_data *drv_data)
1254 int status;
1256 status = bfin_spi_stop_queue(drv_data);
1257 if (status != 0)
1258 return status;
1260 destroy_workqueue(drv_data->workqueue);
1262 return 0;
1265 static int bfin_spi_probe(struct platform_device *pdev)
1267 struct device *dev = &pdev->dev;
1268 struct bfin5xx_spi_master *platform_info;
1269 struct spi_master *master;
1270 struct bfin_spi_master_data *drv_data;
1271 struct resource *res;
1272 int status = 0;
1274 platform_info = dev_get_platdata(dev);
1276 /* Allocate master with space for drv_data */
1277 master = spi_alloc_master(dev, sizeof(*drv_data));
1278 if (!master) {
1279 dev_err(&pdev->dev, "can not alloc spi_master\n");
1280 return -ENOMEM;
1283 drv_data = spi_master_get_devdata(master);
1284 drv_data->master = master;
1285 drv_data->master_info = platform_info;
1286 drv_data->pdev = pdev;
1287 drv_data->pin_req = platform_info->pin_req;
1289 /* the spi->mode bits supported by this driver: */
1290 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1291 master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1292 master->bus_num = pdev->id;
1293 master->num_chipselect = platform_info->num_chipselect;
1294 master->cleanup = bfin_spi_cleanup;
1295 master->setup = bfin_spi_setup;
1296 master->transfer = bfin_spi_transfer;
1298 /* Find and map our resources */
1299 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1300 if (res == NULL) {
1301 dev_err(dev, "Cannot get IORESOURCE_MEM\n");
1302 status = -ENOENT;
1303 goto out_error_get_res;
1306 drv_data->regs = ioremap(res->start, resource_size(res));
1307 if (drv_data->regs == NULL) {
1308 dev_err(dev, "Cannot map IO\n");
1309 status = -ENXIO;
1310 goto out_error_ioremap;
1313 res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
1314 if (res == NULL) {
1315 dev_err(dev, "No DMA channel specified\n");
1316 status = -ENOENT;
1317 goto out_error_free_io;
1319 drv_data->dma_channel = res->start;
1321 drv_data->spi_irq = platform_get_irq(pdev, 0);
1322 if (drv_data->spi_irq < 0) {
1323 dev_err(dev, "No spi pio irq specified\n");
1324 status = -ENOENT;
1325 goto out_error_free_io;
1328 /* Initial and start queue */
1329 status = bfin_spi_init_queue(drv_data);
1330 if (status != 0) {
1331 dev_err(dev, "problem initializing queue\n");
1332 goto out_error_queue_alloc;
1335 status = bfin_spi_start_queue(drv_data);
1336 if (status != 0) {
1337 dev_err(dev, "problem starting queue\n");
1338 goto out_error_queue_alloc;
1341 status = peripheral_request_list(drv_data->pin_req, DRV_NAME);
1342 if (status != 0) {
1343 dev_err(&pdev->dev, ": Requesting Peripherals failed\n");
1344 goto out_error_queue_alloc;
1347 /* Reset SPI registers. If these registers were used by the boot loader,
1348 * the sky may fall on your head if you enable the dma controller.
1350 bfin_write(&drv_data->regs->ctl, BIT_CTL_CPHA | BIT_CTL_MASTER);
1351 bfin_write(&drv_data->regs->flg, 0xFF00);
1353 /* Register with the SPI framework */
1354 platform_set_drvdata(pdev, drv_data);
1355 status = spi_register_master(master);
1356 if (status != 0) {
1357 dev_err(dev, "problem registering spi master\n");
1358 goto out_error_queue_alloc;
1361 dev_info(dev, "%s, Version %s, regs@%p, dma channel@%d\n",
1362 DRV_DESC, DRV_VERSION, drv_data->regs,
1363 drv_data->dma_channel);
1364 return status;
1366 out_error_queue_alloc:
1367 bfin_spi_destroy_queue(drv_data);
1368 out_error_free_io:
1369 iounmap(drv_data->regs);
1370 out_error_ioremap:
1371 out_error_get_res:
1372 spi_master_put(master);
1374 return status;
1377 /* stop hardware and remove the driver */
1378 static int bfin_spi_remove(struct platform_device *pdev)
1380 struct bfin_spi_master_data *drv_data = platform_get_drvdata(pdev);
1381 int status = 0;
1383 if (!drv_data)
1384 return 0;
1386 /* Remove the queue */
1387 status = bfin_spi_destroy_queue(drv_data);
1388 if (status != 0)
1389 return status;
1391 /* Disable the SSP at the peripheral and SOC level */
1392 bfin_spi_disable(drv_data);
1394 /* Release DMA */
1395 if (drv_data->master_info->enable_dma) {
1396 if (dma_channel_active(drv_data->dma_channel))
1397 free_dma(drv_data->dma_channel);
1400 if (drv_data->irq_requested) {
1401 free_irq(drv_data->spi_irq, drv_data);
1402 drv_data->irq_requested = 0;
1405 /* Disconnect from the SPI framework */
1406 spi_unregister_master(drv_data->master);
1408 peripheral_free_list(drv_data->pin_req);
1410 return 0;
1413 #ifdef CONFIG_PM
1414 static int bfin_spi_suspend(struct platform_device *pdev, pm_message_t state)
1416 struct bfin_spi_master_data *drv_data = platform_get_drvdata(pdev);
1417 int status = 0;
1419 status = bfin_spi_stop_queue(drv_data);
1420 if (status != 0)
1421 return status;
1423 drv_data->ctrl_reg = bfin_read(&drv_data->regs->ctl);
1424 drv_data->flag_reg = bfin_read(&drv_data->regs->flg);
1427 * reset SPI_CTL and SPI_FLG registers
1429 bfin_write(&drv_data->regs->ctl, BIT_CTL_CPHA | BIT_CTL_MASTER);
1430 bfin_write(&drv_data->regs->flg, 0xFF00);
1432 return 0;
1435 static int bfin_spi_resume(struct platform_device *pdev)
1437 struct bfin_spi_master_data *drv_data = platform_get_drvdata(pdev);
1438 int status = 0;
1440 bfin_write(&drv_data->regs->ctl, drv_data->ctrl_reg);
1441 bfin_write(&drv_data->regs->flg, drv_data->flag_reg);
1443 /* Start the queue running */
1444 status = bfin_spi_start_queue(drv_data);
1445 if (status != 0) {
1446 dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
1447 return status;
1450 return 0;
1452 #else
1453 #define bfin_spi_suspend NULL
1454 #define bfin_spi_resume NULL
1455 #endif /* CONFIG_PM */
1457 MODULE_ALIAS("platform:bfin-spi");
1458 static struct platform_driver bfin_spi_driver = {
1459 .driver = {
1460 .name = DRV_NAME,
1461 .owner = THIS_MODULE,
1463 .suspend = bfin_spi_suspend,
1464 .resume = bfin_spi_resume,
1465 .remove = bfin_spi_remove,
1468 static int __init bfin_spi_init(void)
1470 return platform_driver_probe(&bfin_spi_driver, bfin_spi_probe);
1472 subsys_initcall(bfin_spi_init);
1474 static void __exit bfin_spi_exit(void)
1476 platform_driver_unregister(&bfin_spi_driver);
1478 module_exit(bfin_spi_exit);