x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / spi / spi-tegra114.c
blob145dd435483b2d12e304ce3bb46f97a2f4baab4e
1 /*
2 * SPI driver for NVIDIA's Tegra114 SPI Controller.
4 * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 #include <linux/clk.h>
20 #include <linux/clk/tegra.h>
21 #include <linux/completion.h>
22 #include <linux/delay.h>
23 #include <linux/dmaengine.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmapool.h>
26 #include <linux/err.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kernel.h>
31 #include <linux/kthread.h>
32 #include <linux/module.h>
33 #include <linux/platform_device.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/spi/spi.h>
39 #define SPI_COMMAND1 0x000
40 #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
41 #define SPI_PACKED (1 << 5)
42 #define SPI_TX_EN (1 << 11)
43 #define SPI_RX_EN (1 << 12)
44 #define SPI_BOTH_EN_BYTE (1 << 13)
45 #define SPI_BOTH_EN_BIT (1 << 14)
46 #define SPI_LSBYTE_FE (1 << 15)
47 #define SPI_LSBIT_FE (1 << 16)
48 #define SPI_BIDIROE (1 << 17)
49 #define SPI_IDLE_SDA_DRIVE_LOW (0 << 18)
50 #define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18)
51 #define SPI_IDLE_SDA_PULL_LOW (2 << 18)
52 #define SPI_IDLE_SDA_PULL_HIGH (3 << 18)
53 #define SPI_IDLE_SDA_MASK (3 << 18)
54 #define SPI_CS_SS_VAL (1 << 20)
55 #define SPI_CS_SW_HW (1 << 21)
56 /* SPI_CS_POL_INACTIVE bits are default high */
57 #define SPI_CS_POL_INACTIVE 22
58 #define SPI_CS_POL_INACTIVE_0 (1 << 22)
59 #define SPI_CS_POL_INACTIVE_1 (1 << 23)
60 #define SPI_CS_POL_INACTIVE_2 (1 << 24)
61 #define SPI_CS_POL_INACTIVE_3 (1 << 25)
62 #define SPI_CS_POL_INACTIVE_MASK (0xF << 22)
64 #define SPI_CS_SEL_0 (0 << 26)
65 #define SPI_CS_SEL_1 (1 << 26)
66 #define SPI_CS_SEL_2 (2 << 26)
67 #define SPI_CS_SEL_3 (3 << 26)
68 #define SPI_CS_SEL_MASK (3 << 26)
69 #define SPI_CS_SEL(x) (((x) & 0x3) << 26)
70 #define SPI_CONTROL_MODE_0 (0 << 28)
71 #define SPI_CONTROL_MODE_1 (1 << 28)
72 #define SPI_CONTROL_MODE_2 (2 << 28)
73 #define SPI_CONTROL_MODE_3 (3 << 28)
74 #define SPI_CONTROL_MODE_MASK (3 << 28)
75 #define SPI_MODE_SEL(x) (((x) & 0x3) << 28)
76 #define SPI_M_S (1 << 30)
77 #define SPI_PIO (1 << 31)
79 #define SPI_COMMAND2 0x004
80 #define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6)
81 #define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0)
83 #define SPI_CS_TIMING1 0x008
84 #define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
85 #define SPI_CS_SETUP_HOLD(reg, cs, val) \
86 ((((val) & 0xFFu) << ((cs) * 8)) | \
87 ((reg) & ~(0xFFu << ((cs) * 8))))
89 #define SPI_CS_TIMING2 0x00C
90 #define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0)
91 #define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5)
92 #define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8)
93 #define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13)
94 #define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16)
95 #define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21)
96 #define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24)
97 #define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29)
98 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \
99 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \
100 ((reg) & ~(1 << ((cs) * 8 + 5))))
101 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \
102 (reg = (((val) & 0xF) << ((cs) * 8)) | \
103 ((reg) & ~(0xF << ((cs) * 8))))
105 #define SPI_TRANS_STATUS 0x010
106 #define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF)
107 #define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF)
108 #define SPI_RDY (1 << 30)
110 #define SPI_FIFO_STATUS 0x014
111 #define SPI_RX_FIFO_EMPTY (1 << 0)
112 #define SPI_RX_FIFO_FULL (1 << 1)
113 #define SPI_TX_FIFO_EMPTY (1 << 2)
114 #define SPI_TX_FIFO_FULL (1 << 3)
115 #define SPI_RX_FIFO_UNF (1 << 4)
116 #define SPI_RX_FIFO_OVF (1 << 5)
117 #define SPI_TX_FIFO_UNF (1 << 6)
118 #define SPI_TX_FIFO_OVF (1 << 7)
119 #define SPI_ERR (1 << 8)
120 #define SPI_TX_FIFO_FLUSH (1 << 14)
121 #define SPI_RX_FIFO_FLUSH (1 << 15)
122 #define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F)
123 #define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F)
124 #define SPI_FRAME_END (1 << 30)
125 #define SPI_CS_INACTIVE (1 << 31)
127 #define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \
128 SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
129 #define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
131 #define SPI_TX_DATA 0x018
132 #define SPI_RX_DATA 0x01C
134 #define SPI_DMA_CTL 0x020
135 #define SPI_TX_TRIG_1 (0 << 15)
136 #define SPI_TX_TRIG_4 (1 << 15)
137 #define SPI_TX_TRIG_8 (2 << 15)
138 #define SPI_TX_TRIG_16 (3 << 15)
139 #define SPI_TX_TRIG_MASK (3 << 15)
140 #define SPI_RX_TRIG_1 (0 << 19)
141 #define SPI_RX_TRIG_4 (1 << 19)
142 #define SPI_RX_TRIG_8 (2 << 19)
143 #define SPI_RX_TRIG_16 (3 << 19)
144 #define SPI_RX_TRIG_MASK (3 << 19)
145 #define SPI_IE_TX (1 << 28)
146 #define SPI_IE_RX (1 << 29)
147 #define SPI_CONT (1 << 30)
148 #define SPI_DMA (1 << 31)
149 #define SPI_DMA_EN SPI_DMA
151 #define SPI_DMA_BLK 0x024
152 #define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0)
154 #define SPI_TX_FIFO 0x108
155 #define SPI_RX_FIFO 0x188
156 #define MAX_CHIP_SELECT 4
157 #define SPI_FIFO_DEPTH 64
158 #define DATA_DIR_TX (1 << 0)
159 #define DATA_DIR_RX (1 << 1)
161 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
162 #define DEFAULT_SPI_DMA_BUF_LEN (16*1024)
163 #define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40)
164 #define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0)
165 #define MAX_HOLD_CYCLES 16
166 #define SPI_DEFAULT_SPEED 25000000
168 #define MAX_CHIP_SELECT 4
169 #define SPI_FIFO_DEPTH 64
171 struct tegra_spi_data {
172 struct device *dev;
173 struct spi_master *master;
174 spinlock_t lock;
176 struct clk *clk;
177 void __iomem *base;
178 phys_addr_t phys;
179 unsigned irq;
180 int dma_req_sel;
181 u32 spi_max_frequency;
182 u32 cur_speed;
184 struct spi_device *cur_spi;
185 unsigned cur_pos;
186 unsigned cur_len;
187 unsigned words_per_32bit;
188 unsigned bytes_per_word;
189 unsigned curr_dma_words;
190 unsigned cur_direction;
192 unsigned cur_rx_pos;
193 unsigned cur_tx_pos;
195 unsigned dma_buf_size;
196 unsigned max_buf_size;
197 bool is_curr_dma_xfer;
199 struct completion rx_dma_complete;
200 struct completion tx_dma_complete;
202 u32 tx_status;
203 u32 rx_status;
204 u32 status_reg;
205 bool is_packed;
206 unsigned long packed_size;
208 u32 command1_reg;
209 u32 dma_control_reg;
210 u32 def_command1_reg;
211 u32 spi_cs_timing;
213 struct completion xfer_completion;
214 struct spi_transfer *curr_xfer;
215 struct dma_chan *rx_dma_chan;
216 u32 *rx_dma_buf;
217 dma_addr_t rx_dma_phys;
218 struct dma_async_tx_descriptor *rx_dma_desc;
220 struct dma_chan *tx_dma_chan;
221 u32 *tx_dma_buf;
222 dma_addr_t tx_dma_phys;
223 struct dma_async_tx_descriptor *tx_dma_desc;
226 static int tegra_spi_runtime_suspend(struct device *dev);
227 static int tegra_spi_runtime_resume(struct device *dev);
229 static inline unsigned long tegra_spi_readl(struct tegra_spi_data *tspi,
230 unsigned long reg)
232 return readl(tspi->base + reg);
235 static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
236 unsigned long val, unsigned long reg)
238 writel(val, tspi->base + reg);
240 /* Read back register to make sure that register writes completed */
241 if (reg != SPI_TX_FIFO)
242 readl(tspi->base + SPI_COMMAND1);
245 static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
247 unsigned long val;
249 /* Write 1 to clear status register */
250 val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
251 tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
253 /* Clear fifo status error if any */
254 val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
255 if (val & SPI_ERR)
256 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
257 SPI_FIFO_STATUS);
260 static unsigned tegra_spi_calculate_curr_xfer_param(
261 struct spi_device *spi, struct tegra_spi_data *tspi,
262 struct spi_transfer *t)
264 unsigned remain_len = t->len - tspi->cur_pos;
265 unsigned max_word;
266 unsigned bits_per_word = t->bits_per_word;
267 unsigned max_len;
268 unsigned total_fifo_words;
270 tspi->bytes_per_word = (bits_per_word - 1) / 8 + 1;
272 if (bits_per_word == 8 || bits_per_word == 16) {
273 tspi->is_packed = 1;
274 tspi->words_per_32bit = 32/bits_per_word;
275 } else {
276 tspi->is_packed = 0;
277 tspi->words_per_32bit = 1;
280 if (tspi->is_packed) {
281 max_len = min(remain_len, tspi->max_buf_size);
282 tspi->curr_dma_words = max_len/tspi->bytes_per_word;
283 total_fifo_words = (max_len + 3) / 4;
284 } else {
285 max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
286 max_word = min(max_word, tspi->max_buf_size/4);
287 tspi->curr_dma_words = max_word;
288 total_fifo_words = max_word;
290 return total_fifo_words;
293 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
294 struct tegra_spi_data *tspi, struct spi_transfer *t)
296 unsigned nbytes;
297 unsigned tx_empty_count;
298 unsigned long fifo_status;
299 unsigned max_n_32bit;
300 unsigned i, count;
301 unsigned long x;
302 unsigned int written_words;
303 unsigned fifo_words_left;
304 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
306 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
307 tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
309 if (tspi->is_packed) {
310 fifo_words_left = tx_empty_count * tspi->words_per_32bit;
311 written_words = min(fifo_words_left, tspi->curr_dma_words);
312 nbytes = written_words * tspi->bytes_per_word;
313 max_n_32bit = DIV_ROUND_UP(nbytes, 4);
314 for (count = 0; count < max_n_32bit; count++) {
315 x = 0;
316 for (i = 0; (i < 4) && nbytes; i++, nbytes--)
317 x |= (*tx_buf++) << (i*8);
318 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
320 } else {
321 max_n_32bit = min(tspi->curr_dma_words, tx_empty_count);
322 written_words = max_n_32bit;
323 nbytes = written_words * tspi->bytes_per_word;
324 for (count = 0; count < max_n_32bit; count++) {
325 x = 0;
326 for (i = 0; nbytes && (i < tspi->bytes_per_word);
327 i++, nbytes--)
328 x |= ((*tx_buf++) << i*8);
329 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
332 tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
333 return written_words;
336 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
337 struct tegra_spi_data *tspi, struct spi_transfer *t)
339 unsigned rx_full_count;
340 unsigned long fifo_status;
341 unsigned i, count;
342 unsigned long x;
343 unsigned int read_words = 0;
344 unsigned len;
345 u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
347 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
348 rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
349 if (tspi->is_packed) {
350 len = tspi->curr_dma_words * tspi->bytes_per_word;
351 for (count = 0; count < rx_full_count; count++) {
352 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
353 for (i = 0; len && (i < 4); i++, len--)
354 *rx_buf++ = (x >> i*8) & 0xFF;
356 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
357 read_words += tspi->curr_dma_words;
358 } else {
359 unsigned int rx_mask;
360 unsigned int bits_per_word = t->bits_per_word;
362 rx_mask = (1 << bits_per_word) - 1;
363 for (count = 0; count < rx_full_count; count++) {
364 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
365 x &= rx_mask;
366 for (i = 0; (i < tspi->bytes_per_word); i++)
367 *rx_buf++ = (x >> (i*8)) & 0xFF;
369 tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word;
370 read_words += rx_full_count;
372 return read_words;
375 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
376 struct tegra_spi_data *tspi, struct spi_transfer *t)
378 unsigned len;
380 /* Make the dma buffer to read by cpu */
381 dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
382 tspi->dma_buf_size, DMA_TO_DEVICE);
384 if (tspi->is_packed) {
385 len = tspi->curr_dma_words * tspi->bytes_per_word;
386 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
387 } else {
388 unsigned int i;
389 unsigned int count;
390 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
391 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
392 unsigned int x;
394 for (count = 0; count < tspi->curr_dma_words; count++) {
395 x = 0;
396 for (i = 0; consume && (i < tspi->bytes_per_word);
397 i++, consume--)
398 x |= ((*tx_buf++) << i * 8);
399 tspi->tx_dma_buf[count] = x;
402 tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
404 /* Make the dma buffer to read by dma */
405 dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
406 tspi->dma_buf_size, DMA_TO_DEVICE);
409 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
410 struct tegra_spi_data *tspi, struct spi_transfer *t)
412 unsigned len;
414 /* Make the dma buffer to read by cpu */
415 dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
416 tspi->dma_buf_size, DMA_FROM_DEVICE);
418 if (tspi->is_packed) {
419 len = tspi->curr_dma_words * tspi->bytes_per_word;
420 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
421 } else {
422 unsigned int i;
423 unsigned int count;
424 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
425 unsigned int x;
426 unsigned int rx_mask;
427 unsigned int bits_per_word = t->bits_per_word;
429 rx_mask = (1 << bits_per_word) - 1;
430 for (count = 0; count < tspi->curr_dma_words; count++) {
431 x = tspi->rx_dma_buf[count];
432 x &= rx_mask;
433 for (i = 0; (i < tspi->bytes_per_word); i++)
434 *rx_buf++ = (x >> (i*8)) & 0xFF;
437 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
439 /* Make the dma buffer to read by dma */
440 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
441 tspi->dma_buf_size, DMA_FROM_DEVICE);
444 static void tegra_spi_dma_complete(void *args)
446 struct completion *dma_complete = args;
448 complete(dma_complete);
451 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
453 INIT_COMPLETION(tspi->tx_dma_complete);
454 tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
455 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
456 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
457 if (!tspi->tx_dma_desc) {
458 dev_err(tspi->dev, "Not able to get desc for Tx\n");
459 return -EIO;
462 tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
463 tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
465 dmaengine_submit(tspi->tx_dma_desc);
466 dma_async_issue_pending(tspi->tx_dma_chan);
467 return 0;
470 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
472 INIT_COMPLETION(tspi->rx_dma_complete);
473 tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
474 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
475 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
476 if (!tspi->rx_dma_desc) {
477 dev_err(tspi->dev, "Not able to get desc for Rx\n");
478 return -EIO;
481 tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
482 tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
484 dmaengine_submit(tspi->rx_dma_desc);
485 dma_async_issue_pending(tspi->rx_dma_chan);
486 return 0;
489 static int tegra_spi_start_dma_based_transfer(
490 struct tegra_spi_data *tspi, struct spi_transfer *t)
492 unsigned long val;
493 unsigned int len;
494 int ret = 0;
495 unsigned long status;
497 /* Make sure that Rx and Tx fifo are empty */
498 status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
499 if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
500 dev_err(tspi->dev,
501 "Rx/Tx fifo are not empty status 0x%08lx\n", status);
502 return -EIO;
505 val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
506 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
508 if (tspi->is_packed)
509 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
510 4) * 4;
511 else
512 len = tspi->curr_dma_words * 4;
514 /* Set attention level based on length of transfer */
515 if (len & 0xF)
516 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
517 else if (((len) >> 4) & 0x1)
518 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
519 else
520 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
522 if (tspi->cur_direction & DATA_DIR_TX)
523 val |= SPI_IE_TX;
525 if (tspi->cur_direction & DATA_DIR_RX)
526 val |= SPI_IE_RX;
528 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
529 tspi->dma_control_reg = val;
531 if (tspi->cur_direction & DATA_DIR_TX) {
532 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
533 ret = tegra_spi_start_tx_dma(tspi, len);
534 if (ret < 0) {
535 dev_err(tspi->dev,
536 "Starting tx dma failed, err %d\n", ret);
537 return ret;
541 if (tspi->cur_direction & DATA_DIR_RX) {
542 /* Make the dma buffer to read by dma */
543 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
544 tspi->dma_buf_size, DMA_FROM_DEVICE);
546 ret = tegra_spi_start_rx_dma(tspi, len);
547 if (ret < 0) {
548 dev_err(tspi->dev,
549 "Starting rx dma failed, err %d\n", ret);
550 if (tspi->cur_direction & DATA_DIR_TX)
551 dmaengine_terminate_all(tspi->tx_dma_chan);
552 return ret;
555 tspi->is_curr_dma_xfer = true;
556 tspi->dma_control_reg = val;
558 val |= SPI_DMA_EN;
559 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
560 return ret;
563 static int tegra_spi_start_cpu_based_transfer(
564 struct tegra_spi_data *tspi, struct spi_transfer *t)
566 unsigned long val;
567 unsigned cur_words;
569 if (tspi->cur_direction & DATA_DIR_TX)
570 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
571 else
572 cur_words = tspi->curr_dma_words;
574 val = SPI_DMA_BLK_SET(cur_words - 1);
575 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
577 val = 0;
578 if (tspi->cur_direction & DATA_DIR_TX)
579 val |= SPI_IE_TX;
581 if (tspi->cur_direction & DATA_DIR_RX)
582 val |= SPI_IE_RX;
584 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
585 tspi->dma_control_reg = val;
587 tspi->is_curr_dma_xfer = false;
589 val |= SPI_DMA_EN;
590 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
591 return 0;
594 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
595 bool dma_to_memory)
597 struct dma_chan *dma_chan;
598 u32 *dma_buf;
599 dma_addr_t dma_phys;
600 int ret;
601 struct dma_slave_config dma_sconfig;
602 dma_cap_mask_t mask;
604 dma_cap_zero(mask);
605 dma_cap_set(DMA_SLAVE, mask);
606 dma_chan = dma_request_channel(mask, NULL, NULL);
607 if (!dma_chan) {
608 dev_err(tspi->dev,
609 "Dma channel is not available, will try later\n");
610 return -EPROBE_DEFER;
613 dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
614 &dma_phys, GFP_KERNEL);
615 if (!dma_buf) {
616 dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
617 dma_release_channel(dma_chan);
618 return -ENOMEM;
621 dma_sconfig.slave_id = tspi->dma_req_sel;
622 if (dma_to_memory) {
623 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
624 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
625 dma_sconfig.src_maxburst = 0;
626 } else {
627 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
628 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
629 dma_sconfig.dst_maxburst = 0;
632 ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
633 if (ret)
634 goto scrub;
635 if (dma_to_memory) {
636 tspi->rx_dma_chan = dma_chan;
637 tspi->rx_dma_buf = dma_buf;
638 tspi->rx_dma_phys = dma_phys;
639 } else {
640 tspi->tx_dma_chan = dma_chan;
641 tspi->tx_dma_buf = dma_buf;
642 tspi->tx_dma_phys = dma_phys;
644 return 0;
646 scrub:
647 dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
648 dma_release_channel(dma_chan);
649 return ret;
652 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
653 bool dma_to_memory)
655 u32 *dma_buf;
656 dma_addr_t dma_phys;
657 struct dma_chan *dma_chan;
659 if (dma_to_memory) {
660 dma_buf = tspi->rx_dma_buf;
661 dma_chan = tspi->rx_dma_chan;
662 dma_phys = tspi->rx_dma_phys;
663 tspi->rx_dma_chan = NULL;
664 tspi->rx_dma_buf = NULL;
665 } else {
666 dma_buf = tspi->tx_dma_buf;
667 dma_chan = tspi->tx_dma_chan;
668 dma_phys = tspi->tx_dma_phys;
669 tspi->tx_dma_buf = NULL;
670 tspi->tx_dma_chan = NULL;
672 if (!dma_chan)
673 return;
675 dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
676 dma_release_channel(dma_chan);
679 static int tegra_spi_start_transfer_one(struct spi_device *spi,
680 struct spi_transfer *t, bool is_first_of_msg,
681 bool is_single_xfer)
683 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
684 u32 speed = t->speed_hz;
685 u8 bits_per_word = t->bits_per_word;
686 unsigned total_fifo_words;
687 int ret;
688 unsigned long command1;
689 int req_mode;
691 if (speed != tspi->cur_speed) {
692 clk_set_rate(tspi->clk, speed);
693 tspi->cur_speed = speed;
696 tspi->cur_spi = spi;
697 tspi->cur_pos = 0;
698 tspi->cur_rx_pos = 0;
699 tspi->cur_tx_pos = 0;
700 tspi->curr_xfer = t;
701 total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
703 if (is_first_of_msg) {
704 tegra_spi_clear_status(tspi);
706 command1 = tspi->def_command1_reg;
707 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
709 command1 &= ~SPI_CONTROL_MODE_MASK;
710 req_mode = spi->mode & 0x3;
711 if (req_mode == SPI_MODE_0)
712 command1 |= SPI_CONTROL_MODE_0;
713 else if (req_mode == SPI_MODE_1)
714 command1 |= SPI_CONTROL_MODE_1;
715 else if (req_mode == SPI_MODE_2)
716 command1 |= SPI_CONTROL_MODE_2;
717 else if (req_mode == SPI_MODE_3)
718 command1 |= SPI_CONTROL_MODE_3;
720 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
722 command1 |= SPI_CS_SW_HW;
723 if (spi->mode & SPI_CS_HIGH)
724 command1 |= SPI_CS_SS_VAL;
725 else
726 command1 &= ~SPI_CS_SS_VAL;
728 tegra_spi_writel(tspi, 0, SPI_COMMAND2);
729 } else {
730 command1 = tspi->command1_reg;
731 command1 &= ~SPI_BIT_LENGTH(~0);
732 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
735 if (tspi->is_packed)
736 command1 |= SPI_PACKED;
738 command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
739 tspi->cur_direction = 0;
740 if (t->rx_buf) {
741 command1 |= SPI_RX_EN;
742 tspi->cur_direction |= DATA_DIR_RX;
744 if (t->tx_buf) {
745 command1 |= SPI_TX_EN;
746 tspi->cur_direction |= DATA_DIR_TX;
748 command1 |= SPI_CS_SEL(spi->chip_select);
749 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
750 tspi->command1_reg = command1;
752 dev_dbg(tspi->dev, "The def 0x%x and written 0x%lx\n",
753 tspi->def_command1_reg, command1);
755 if (total_fifo_words > SPI_FIFO_DEPTH)
756 ret = tegra_spi_start_dma_based_transfer(tspi, t);
757 else
758 ret = tegra_spi_start_cpu_based_transfer(tspi, t);
759 return ret;
762 static int tegra_spi_setup(struct spi_device *spi)
764 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
765 unsigned long val;
766 unsigned long flags;
767 int ret;
768 unsigned int cs_pol_bit[MAX_CHIP_SELECT] = {
769 SPI_CS_POL_INACTIVE_0,
770 SPI_CS_POL_INACTIVE_1,
771 SPI_CS_POL_INACTIVE_2,
772 SPI_CS_POL_INACTIVE_3,
775 dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
776 spi->bits_per_word,
777 spi->mode & SPI_CPOL ? "" : "~",
778 spi->mode & SPI_CPHA ? "" : "~",
779 spi->max_speed_hz);
781 BUG_ON(spi->chip_select >= MAX_CHIP_SELECT);
783 /* Set speed to the spi max fequency if spi device has not set */
784 spi->max_speed_hz = spi->max_speed_hz ? : tspi->spi_max_frequency;
786 ret = pm_runtime_get_sync(tspi->dev);
787 if (ret < 0) {
788 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
789 return ret;
792 spin_lock_irqsave(&tspi->lock, flags);
793 val = tspi->def_command1_reg;
794 if (spi->mode & SPI_CS_HIGH)
795 val &= ~cs_pol_bit[spi->chip_select];
796 else
797 val |= cs_pol_bit[spi->chip_select];
798 tspi->def_command1_reg = val;
799 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
800 spin_unlock_irqrestore(&tspi->lock, flags);
802 pm_runtime_put(tspi->dev);
803 return 0;
806 static int tegra_spi_transfer_one_message(struct spi_master *master,
807 struct spi_message *msg)
809 bool is_first_msg = true;
810 int single_xfer;
811 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
812 struct spi_transfer *xfer;
813 struct spi_device *spi = msg->spi;
814 int ret;
816 msg->status = 0;
817 msg->actual_length = 0;
819 single_xfer = list_is_singular(&msg->transfers);
820 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
821 INIT_COMPLETION(tspi->xfer_completion);
822 ret = tegra_spi_start_transfer_one(spi, xfer,
823 is_first_msg, single_xfer);
824 if (ret < 0) {
825 dev_err(tspi->dev,
826 "spi can not start transfer, err %d\n", ret);
827 goto exit;
829 is_first_msg = false;
830 ret = wait_for_completion_timeout(&tspi->xfer_completion,
831 SPI_DMA_TIMEOUT);
832 if (WARN_ON(ret == 0)) {
833 dev_err(tspi->dev,
834 "spi trasfer timeout, err %d\n", ret);
835 ret = -EIO;
836 goto exit;
839 if (tspi->tx_status || tspi->rx_status) {
840 dev_err(tspi->dev, "Error in Transfer\n");
841 ret = -EIO;
842 goto exit;
844 msg->actual_length += xfer->len;
845 if (xfer->cs_change && xfer->delay_usecs) {
846 tegra_spi_writel(tspi, tspi->def_command1_reg,
847 SPI_COMMAND1);
848 udelay(xfer->delay_usecs);
851 ret = 0;
852 exit:
853 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
854 msg->status = ret;
855 spi_finalize_current_message(master);
856 return ret;
859 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
861 struct spi_transfer *t = tspi->curr_xfer;
862 unsigned long flags;
864 spin_lock_irqsave(&tspi->lock, flags);
865 if (tspi->tx_status || tspi->rx_status) {
866 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
867 tspi->status_reg);
868 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
869 tspi->command1_reg, tspi->dma_control_reg);
870 tegra_periph_reset_assert(tspi->clk);
871 udelay(2);
872 tegra_periph_reset_deassert(tspi->clk);
873 complete(&tspi->xfer_completion);
874 goto exit;
877 if (tspi->cur_direction & DATA_DIR_RX)
878 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
880 if (tspi->cur_direction & DATA_DIR_TX)
881 tspi->cur_pos = tspi->cur_tx_pos;
882 else
883 tspi->cur_pos = tspi->cur_rx_pos;
885 if (tspi->cur_pos == t->len) {
886 complete(&tspi->xfer_completion);
887 goto exit;
890 tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
891 tegra_spi_start_cpu_based_transfer(tspi, t);
892 exit:
893 spin_unlock_irqrestore(&tspi->lock, flags);
894 return IRQ_HANDLED;
897 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
899 struct spi_transfer *t = tspi->curr_xfer;
900 long wait_status;
901 int err = 0;
902 unsigned total_fifo_words;
903 unsigned long flags;
905 /* Abort dmas if any error */
906 if (tspi->cur_direction & DATA_DIR_TX) {
907 if (tspi->tx_status) {
908 dmaengine_terminate_all(tspi->tx_dma_chan);
909 err += 1;
910 } else {
911 wait_status = wait_for_completion_interruptible_timeout(
912 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
913 if (wait_status <= 0) {
914 dmaengine_terminate_all(tspi->tx_dma_chan);
915 dev_err(tspi->dev, "TxDma Xfer failed\n");
916 err += 1;
921 if (tspi->cur_direction & DATA_DIR_RX) {
922 if (tspi->rx_status) {
923 dmaengine_terminate_all(tspi->rx_dma_chan);
924 err += 2;
925 } else {
926 wait_status = wait_for_completion_interruptible_timeout(
927 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
928 if (wait_status <= 0) {
929 dmaengine_terminate_all(tspi->rx_dma_chan);
930 dev_err(tspi->dev, "RxDma Xfer failed\n");
931 err += 2;
936 spin_lock_irqsave(&tspi->lock, flags);
937 if (err) {
938 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
939 tspi->status_reg);
940 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
941 tspi->command1_reg, tspi->dma_control_reg);
942 tegra_periph_reset_assert(tspi->clk);
943 udelay(2);
944 tegra_periph_reset_deassert(tspi->clk);
945 complete(&tspi->xfer_completion);
946 spin_unlock_irqrestore(&tspi->lock, flags);
947 return IRQ_HANDLED;
950 if (tspi->cur_direction & DATA_DIR_RX)
951 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
953 if (tspi->cur_direction & DATA_DIR_TX)
954 tspi->cur_pos = tspi->cur_tx_pos;
955 else
956 tspi->cur_pos = tspi->cur_rx_pos;
958 if (tspi->cur_pos == t->len) {
959 complete(&tspi->xfer_completion);
960 goto exit;
963 /* Continue transfer in current message */
964 total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
965 tspi, t);
966 if (total_fifo_words > SPI_FIFO_DEPTH)
967 err = tegra_spi_start_dma_based_transfer(tspi, t);
968 else
969 err = tegra_spi_start_cpu_based_transfer(tspi, t);
971 exit:
972 spin_unlock_irqrestore(&tspi->lock, flags);
973 return IRQ_HANDLED;
976 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
978 struct tegra_spi_data *tspi = context_data;
980 if (!tspi->is_curr_dma_xfer)
981 return handle_cpu_based_xfer(tspi);
982 return handle_dma_based_xfer(tspi);
985 static irqreturn_t tegra_spi_isr(int irq, void *context_data)
987 struct tegra_spi_data *tspi = context_data;
989 tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
990 if (tspi->cur_direction & DATA_DIR_TX)
991 tspi->tx_status = tspi->status_reg &
992 (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
994 if (tspi->cur_direction & DATA_DIR_RX)
995 tspi->rx_status = tspi->status_reg &
996 (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
997 tegra_spi_clear_status(tspi);
999 return IRQ_WAKE_THREAD;
1002 static void tegra_spi_parse_dt(struct platform_device *pdev,
1003 struct tegra_spi_data *tspi)
1005 struct device_node *np = pdev->dev.of_node;
1006 u32 of_dma[2];
1008 if (of_property_read_u32_array(np, "nvidia,dma-request-selector",
1009 of_dma, 2) >= 0)
1010 tspi->dma_req_sel = of_dma[1];
1012 if (of_property_read_u32(np, "spi-max-frequency",
1013 &tspi->spi_max_frequency))
1014 tspi->spi_max_frequency = 25000000; /* 25MHz */
1017 static struct of_device_id tegra_spi_of_match[] = {
1018 { .compatible = "nvidia,tegra114-spi", },
1021 MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1023 static int tegra_spi_probe(struct platform_device *pdev)
1025 struct spi_master *master;
1026 struct tegra_spi_data *tspi;
1027 struct resource *r;
1028 int ret, spi_irq;
1030 master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1031 if (!master) {
1032 dev_err(&pdev->dev, "master allocation failed\n");
1033 return -ENOMEM;
1035 platform_set_drvdata(pdev, master);
1036 tspi = spi_master_get_devdata(master);
1038 /* Parse DT */
1039 tegra_spi_parse_dt(pdev, tspi);
1041 /* the spi->mode bits understood by this driver: */
1042 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1043 master->setup = tegra_spi_setup;
1044 master->transfer_one_message = tegra_spi_transfer_one_message;
1045 master->num_chipselect = MAX_CHIP_SELECT;
1046 master->bus_num = -1;
1047 master->auto_runtime_pm = true;
1049 tspi->master = master;
1050 tspi->dev = &pdev->dev;
1051 spin_lock_init(&tspi->lock);
1053 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1054 tspi->base = devm_ioremap_resource(&pdev->dev, r);
1055 if (IS_ERR(tspi->base)) {
1056 ret = PTR_ERR(tspi->base);
1057 goto exit_free_master;
1059 tspi->phys = r->start;
1061 spi_irq = platform_get_irq(pdev, 0);
1062 tspi->irq = spi_irq;
1063 ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1064 tegra_spi_isr_thread, IRQF_ONESHOT,
1065 dev_name(&pdev->dev), tspi);
1066 if (ret < 0) {
1067 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1068 tspi->irq);
1069 goto exit_free_master;
1072 tspi->clk = devm_clk_get(&pdev->dev, "spi");
1073 if (IS_ERR(tspi->clk)) {
1074 dev_err(&pdev->dev, "can not get clock\n");
1075 ret = PTR_ERR(tspi->clk);
1076 goto exit_free_irq;
1079 tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1080 tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1082 if (tspi->dma_req_sel) {
1083 ret = tegra_spi_init_dma_param(tspi, true);
1084 if (ret < 0) {
1085 dev_err(&pdev->dev, "RxDma Init failed, err %d\n", ret);
1086 goto exit_free_irq;
1089 ret = tegra_spi_init_dma_param(tspi, false);
1090 if (ret < 0) {
1091 dev_err(&pdev->dev, "TxDma Init failed, err %d\n", ret);
1092 goto exit_rx_dma_free;
1094 tspi->max_buf_size = tspi->dma_buf_size;
1095 init_completion(&tspi->tx_dma_complete);
1096 init_completion(&tspi->rx_dma_complete);
1099 init_completion(&tspi->xfer_completion);
1101 pm_runtime_enable(&pdev->dev);
1102 if (!pm_runtime_enabled(&pdev->dev)) {
1103 ret = tegra_spi_runtime_resume(&pdev->dev);
1104 if (ret)
1105 goto exit_pm_disable;
1108 ret = pm_runtime_get_sync(&pdev->dev);
1109 if (ret < 0) {
1110 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1111 goto exit_pm_disable;
1113 tspi->def_command1_reg = SPI_M_S;
1114 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1115 pm_runtime_put(&pdev->dev);
1117 master->dev.of_node = pdev->dev.of_node;
1118 ret = spi_register_master(master);
1119 if (ret < 0) {
1120 dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1121 goto exit_pm_disable;
1123 return ret;
1125 exit_pm_disable:
1126 pm_runtime_disable(&pdev->dev);
1127 if (!pm_runtime_status_suspended(&pdev->dev))
1128 tegra_spi_runtime_suspend(&pdev->dev);
1129 tegra_spi_deinit_dma_param(tspi, false);
1130 exit_rx_dma_free:
1131 tegra_spi_deinit_dma_param(tspi, true);
1132 exit_free_irq:
1133 free_irq(spi_irq, tspi);
1134 exit_free_master:
1135 spi_master_put(master);
1136 return ret;
1139 static int tegra_spi_remove(struct platform_device *pdev)
1141 struct spi_master *master = platform_get_drvdata(pdev);
1142 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1144 free_irq(tspi->irq, tspi);
1145 spi_unregister_master(master);
1147 if (tspi->tx_dma_chan)
1148 tegra_spi_deinit_dma_param(tspi, false);
1150 if (tspi->rx_dma_chan)
1151 tegra_spi_deinit_dma_param(tspi, true);
1153 pm_runtime_disable(&pdev->dev);
1154 if (!pm_runtime_status_suspended(&pdev->dev))
1155 tegra_spi_runtime_suspend(&pdev->dev);
1157 return 0;
1160 #ifdef CONFIG_PM_SLEEP
1161 static int tegra_spi_suspend(struct device *dev)
1163 struct spi_master *master = dev_get_drvdata(dev);
1165 return spi_master_suspend(master);
1168 static int tegra_spi_resume(struct device *dev)
1170 struct spi_master *master = dev_get_drvdata(dev);
1171 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1172 int ret;
1174 ret = pm_runtime_get_sync(dev);
1175 if (ret < 0) {
1176 dev_err(dev, "pm runtime failed, e = %d\n", ret);
1177 return ret;
1179 tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1180 pm_runtime_put(dev);
1182 return spi_master_resume(master);
1184 #endif
1186 static int tegra_spi_runtime_suspend(struct device *dev)
1188 struct spi_master *master = dev_get_drvdata(dev);
1189 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1191 /* Flush all write which are in PPSB queue by reading back */
1192 tegra_spi_readl(tspi, SPI_COMMAND1);
1194 clk_disable_unprepare(tspi->clk);
1195 return 0;
1198 static int tegra_spi_runtime_resume(struct device *dev)
1200 struct spi_master *master = dev_get_drvdata(dev);
1201 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1202 int ret;
1204 ret = clk_prepare_enable(tspi->clk);
1205 if (ret < 0) {
1206 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1207 return ret;
1209 return 0;
1212 static const struct dev_pm_ops tegra_spi_pm_ops = {
1213 SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1214 tegra_spi_runtime_resume, NULL)
1215 SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1217 static struct platform_driver tegra_spi_driver = {
1218 .driver = {
1219 .name = "spi-tegra114",
1220 .owner = THIS_MODULE,
1221 .pm = &tegra_spi_pm_ops,
1222 .of_match_table = tegra_spi_of_match,
1224 .probe = tegra_spi_probe,
1225 .remove = tegra_spi_remove,
1227 module_platform_driver(tegra_spi_driver);
1229 MODULE_ALIAS("platform:spi-tegra114");
1230 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1231 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1232 MODULE_LICENSE("GPL v2");