x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / spi / spi.c
blobd254477372b9e7c959ce700ae143ae580efab5a8
1 /*
2 * SPI init/core code
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/mutex.h>
28 #include <linux/of_device.h>
29 #include <linux/of_irq.h>
30 #include <linux/slab.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/spi/spi.h>
33 #include <linux/of_gpio.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/ioport.h>
40 #include <linux/acpi.h>
42 static void spidev_release(struct device *dev)
44 struct spi_device *spi = to_spi_device(dev);
46 /* spi masters may cleanup for released devices */
47 if (spi->master->cleanup)
48 spi->master->cleanup(spi);
50 spi_master_put(spi->master);
51 kfree(spi);
54 static ssize_t
55 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 const struct spi_device *spi = to_spi_device(dev);
59 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
62 static struct device_attribute spi_dev_attrs[] = {
63 __ATTR_RO(modalias),
64 __ATTR_NULL,
67 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
68 * and the sysfs version makes coldplug work too.
71 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
72 const struct spi_device *sdev)
74 while (id->name[0]) {
75 if (!strcmp(sdev->modalias, id->name))
76 return id;
77 id++;
79 return NULL;
82 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
84 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
86 return spi_match_id(sdrv->id_table, sdev);
88 EXPORT_SYMBOL_GPL(spi_get_device_id);
90 static int spi_match_device(struct device *dev, struct device_driver *drv)
92 const struct spi_device *spi = to_spi_device(dev);
93 const struct spi_driver *sdrv = to_spi_driver(drv);
95 /* Attempt an OF style match */
96 if (of_driver_match_device(dev, drv))
97 return 1;
99 /* Then try ACPI */
100 if (acpi_driver_match_device(dev, drv))
101 return 1;
103 if (sdrv->id_table)
104 return !!spi_match_id(sdrv->id_table, spi);
106 return strcmp(spi->modalias, drv->name) == 0;
109 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
111 const struct spi_device *spi = to_spi_device(dev);
113 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
114 return 0;
117 #ifdef CONFIG_PM_SLEEP
118 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
120 int value = 0;
121 struct spi_driver *drv = to_spi_driver(dev->driver);
123 /* suspend will stop irqs and dma; no more i/o */
124 if (drv) {
125 if (drv->suspend)
126 value = drv->suspend(to_spi_device(dev), message);
127 else
128 dev_dbg(dev, "... can't suspend\n");
130 return value;
133 static int spi_legacy_resume(struct device *dev)
135 int value = 0;
136 struct spi_driver *drv = to_spi_driver(dev->driver);
138 /* resume may restart the i/o queue */
139 if (drv) {
140 if (drv->resume)
141 value = drv->resume(to_spi_device(dev));
142 else
143 dev_dbg(dev, "... can't resume\n");
145 return value;
148 static int spi_pm_suspend(struct device *dev)
150 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
152 if (pm)
153 return pm_generic_suspend(dev);
154 else
155 return spi_legacy_suspend(dev, PMSG_SUSPEND);
158 static int spi_pm_resume(struct device *dev)
160 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
162 if (pm)
163 return pm_generic_resume(dev);
164 else
165 return spi_legacy_resume(dev);
168 static int spi_pm_freeze(struct device *dev)
170 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
172 if (pm)
173 return pm_generic_freeze(dev);
174 else
175 return spi_legacy_suspend(dev, PMSG_FREEZE);
178 static int spi_pm_thaw(struct device *dev)
180 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
182 if (pm)
183 return pm_generic_thaw(dev);
184 else
185 return spi_legacy_resume(dev);
188 static int spi_pm_poweroff(struct device *dev)
190 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
192 if (pm)
193 return pm_generic_poweroff(dev);
194 else
195 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
198 static int spi_pm_restore(struct device *dev)
200 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
202 if (pm)
203 return pm_generic_restore(dev);
204 else
205 return spi_legacy_resume(dev);
207 #else
208 #define spi_pm_suspend NULL
209 #define spi_pm_resume NULL
210 #define spi_pm_freeze NULL
211 #define spi_pm_thaw NULL
212 #define spi_pm_poweroff NULL
213 #define spi_pm_restore NULL
214 #endif
216 static const struct dev_pm_ops spi_pm = {
217 .suspend = spi_pm_suspend,
218 .resume = spi_pm_resume,
219 .freeze = spi_pm_freeze,
220 .thaw = spi_pm_thaw,
221 .poweroff = spi_pm_poweroff,
222 .restore = spi_pm_restore,
223 SET_RUNTIME_PM_OPS(
224 pm_generic_runtime_suspend,
225 pm_generic_runtime_resume,
226 NULL
230 struct bus_type spi_bus_type = {
231 .name = "spi",
232 .dev_attrs = spi_dev_attrs,
233 .match = spi_match_device,
234 .uevent = spi_uevent,
235 .pm = &spi_pm,
237 EXPORT_SYMBOL_GPL(spi_bus_type);
240 static int spi_drv_probe(struct device *dev)
242 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
244 return sdrv->probe(to_spi_device(dev));
247 static int spi_drv_remove(struct device *dev)
249 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
251 return sdrv->remove(to_spi_device(dev));
254 static void spi_drv_shutdown(struct device *dev)
256 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
258 sdrv->shutdown(to_spi_device(dev));
262 * spi_register_driver - register a SPI driver
263 * @sdrv: the driver to register
264 * Context: can sleep
266 int spi_register_driver(struct spi_driver *sdrv)
268 sdrv->driver.bus = &spi_bus_type;
269 if (sdrv->probe)
270 sdrv->driver.probe = spi_drv_probe;
271 if (sdrv->remove)
272 sdrv->driver.remove = spi_drv_remove;
273 if (sdrv->shutdown)
274 sdrv->driver.shutdown = spi_drv_shutdown;
275 return driver_register(&sdrv->driver);
277 EXPORT_SYMBOL_GPL(spi_register_driver);
279 /*-------------------------------------------------------------------------*/
281 /* SPI devices should normally not be created by SPI device drivers; that
282 * would make them board-specific. Similarly with SPI master drivers.
283 * Device registration normally goes into like arch/.../mach.../board-YYY.c
284 * with other readonly (flashable) information about mainboard devices.
287 struct boardinfo {
288 struct list_head list;
289 struct spi_board_info board_info;
292 static LIST_HEAD(board_list);
293 static LIST_HEAD(spi_master_list);
296 * Used to protect add/del opertion for board_info list and
297 * spi_master list, and their matching process
299 static DEFINE_MUTEX(board_lock);
302 * spi_alloc_device - Allocate a new SPI device
303 * @master: Controller to which device is connected
304 * Context: can sleep
306 * Allows a driver to allocate and initialize a spi_device without
307 * registering it immediately. This allows a driver to directly
308 * fill the spi_device with device parameters before calling
309 * spi_add_device() on it.
311 * Caller is responsible to call spi_add_device() on the returned
312 * spi_device structure to add it to the SPI master. If the caller
313 * needs to discard the spi_device without adding it, then it should
314 * call spi_dev_put() on it.
316 * Returns a pointer to the new device, or NULL.
318 struct spi_device *spi_alloc_device(struct spi_master *master)
320 struct spi_device *spi;
321 struct device *dev = master->dev.parent;
323 if (!spi_master_get(master))
324 return NULL;
326 spi = kzalloc(sizeof *spi, GFP_KERNEL);
327 if (!spi) {
328 dev_err(dev, "cannot alloc spi_device\n");
329 spi_master_put(master);
330 return NULL;
333 spi->master = master;
334 spi->dev.parent = &master->dev;
335 spi->dev.bus = &spi_bus_type;
336 spi->dev.release = spidev_release;
337 spi->cs_gpio = -ENOENT;
338 device_initialize(&spi->dev);
339 return spi;
341 EXPORT_SYMBOL_GPL(spi_alloc_device);
344 * spi_add_device - Add spi_device allocated with spi_alloc_device
345 * @spi: spi_device to register
347 * Companion function to spi_alloc_device. Devices allocated with
348 * spi_alloc_device can be added onto the spi bus with this function.
350 * Returns 0 on success; negative errno on failure
352 int spi_add_device(struct spi_device *spi)
354 static DEFINE_MUTEX(spi_add_lock);
355 struct spi_master *master = spi->master;
356 struct device *dev = master->dev.parent;
357 struct device *d;
358 int status;
360 /* Chipselects are numbered 0..max; validate. */
361 if (spi->chip_select >= master->num_chipselect) {
362 dev_err(dev, "cs%d >= max %d\n",
363 spi->chip_select,
364 master->num_chipselect);
365 return -EINVAL;
368 /* Set the bus ID string */
369 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
370 spi->chip_select);
373 /* We need to make sure there's no other device with this
374 * chipselect **BEFORE** we call setup(), else we'll trash
375 * its configuration. Lock against concurrent add() calls.
377 mutex_lock(&spi_add_lock);
379 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
380 if (d != NULL) {
381 dev_err(dev, "chipselect %d already in use\n",
382 spi->chip_select);
383 put_device(d);
384 status = -EBUSY;
385 goto done;
388 if (master->cs_gpios)
389 spi->cs_gpio = master->cs_gpios[spi->chip_select];
391 /* Drivers may modify this initial i/o setup, but will
392 * normally rely on the device being setup. Devices
393 * using SPI_CS_HIGH can't coexist well otherwise...
395 status = spi_setup(spi);
396 if (status < 0) {
397 dev_err(dev, "can't setup %s, status %d\n",
398 dev_name(&spi->dev), status);
399 goto done;
402 /* Device may be bound to an active driver when this returns */
403 status = device_add(&spi->dev);
404 if (status < 0)
405 dev_err(dev, "can't add %s, status %d\n",
406 dev_name(&spi->dev), status);
407 else
408 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
410 done:
411 mutex_unlock(&spi_add_lock);
412 return status;
414 EXPORT_SYMBOL_GPL(spi_add_device);
417 * spi_new_device - instantiate one new SPI device
418 * @master: Controller to which device is connected
419 * @chip: Describes the SPI device
420 * Context: can sleep
422 * On typical mainboards, this is purely internal; and it's not needed
423 * after board init creates the hard-wired devices. Some development
424 * platforms may not be able to use spi_register_board_info though, and
425 * this is exported so that for example a USB or parport based adapter
426 * driver could add devices (which it would learn about out-of-band).
428 * Returns the new device, or NULL.
430 struct spi_device *spi_new_device(struct spi_master *master,
431 struct spi_board_info *chip)
433 struct spi_device *proxy;
434 int status;
436 /* NOTE: caller did any chip->bus_num checks necessary.
438 * Also, unless we change the return value convention to use
439 * error-or-pointer (not NULL-or-pointer), troubleshootability
440 * suggests syslogged diagnostics are best here (ugh).
443 proxy = spi_alloc_device(master);
444 if (!proxy)
445 return NULL;
447 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
449 proxy->chip_select = chip->chip_select;
450 proxy->max_speed_hz = chip->max_speed_hz;
451 proxy->mode = chip->mode;
452 proxy->irq = chip->irq;
453 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
454 proxy->dev.platform_data = (void *) chip->platform_data;
455 proxy->controller_data = chip->controller_data;
456 proxy->controller_state = NULL;
458 status = spi_add_device(proxy);
459 if (status < 0) {
460 spi_dev_put(proxy);
461 return NULL;
464 return proxy;
466 EXPORT_SYMBOL_GPL(spi_new_device);
468 static void spi_match_master_to_boardinfo(struct spi_master *master,
469 struct spi_board_info *bi)
471 struct spi_device *dev;
473 if (master->bus_num != bi->bus_num)
474 return;
476 dev = spi_new_device(master, bi);
477 if (!dev)
478 dev_err(master->dev.parent, "can't create new device for %s\n",
479 bi->modalias);
483 * spi_register_board_info - register SPI devices for a given board
484 * @info: array of chip descriptors
485 * @n: how many descriptors are provided
486 * Context: can sleep
488 * Board-specific early init code calls this (probably during arch_initcall)
489 * with segments of the SPI device table. Any device nodes are created later,
490 * after the relevant parent SPI controller (bus_num) is defined. We keep
491 * this table of devices forever, so that reloading a controller driver will
492 * not make Linux forget about these hard-wired devices.
494 * Other code can also call this, e.g. a particular add-on board might provide
495 * SPI devices through its expansion connector, so code initializing that board
496 * would naturally declare its SPI devices.
498 * The board info passed can safely be __initdata ... but be careful of
499 * any embedded pointers (platform_data, etc), they're copied as-is.
501 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
503 struct boardinfo *bi;
504 int i;
506 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
507 if (!bi)
508 return -ENOMEM;
510 for (i = 0; i < n; i++, bi++, info++) {
511 struct spi_master *master;
513 memcpy(&bi->board_info, info, sizeof(*info));
514 mutex_lock(&board_lock);
515 list_add_tail(&bi->list, &board_list);
516 list_for_each_entry(master, &spi_master_list, list)
517 spi_match_master_to_boardinfo(master, &bi->board_info);
518 mutex_unlock(&board_lock);
521 return 0;
524 /*-------------------------------------------------------------------------*/
527 * spi_pump_messages - kthread work function which processes spi message queue
528 * @work: pointer to kthread work struct contained in the master struct
530 * This function checks if there is any spi message in the queue that
531 * needs processing and if so call out to the driver to initialize hardware
532 * and transfer each message.
535 static void spi_pump_messages(struct kthread_work *work)
537 struct spi_master *master =
538 container_of(work, struct spi_master, pump_messages);
539 unsigned long flags;
540 bool was_busy = false;
541 int ret;
543 /* Lock queue and check for queue work */
544 spin_lock_irqsave(&master->queue_lock, flags);
545 if (list_empty(&master->queue) || !master->running) {
546 if (!master->busy) {
547 spin_unlock_irqrestore(&master->queue_lock, flags);
548 return;
550 master->busy = false;
551 spin_unlock_irqrestore(&master->queue_lock, flags);
552 if (master->unprepare_transfer_hardware &&
553 master->unprepare_transfer_hardware(master))
554 dev_err(&master->dev,
555 "failed to unprepare transfer hardware\n");
556 if (master->auto_runtime_pm) {
557 pm_runtime_mark_last_busy(master->dev.parent);
558 pm_runtime_put_autosuspend(master->dev.parent);
560 return;
563 /* Make sure we are not already running a message */
564 if (master->cur_msg) {
565 spin_unlock_irqrestore(&master->queue_lock, flags);
566 return;
568 /* Extract head of queue */
569 master->cur_msg =
570 list_entry(master->queue.next, struct spi_message, queue);
572 list_del_init(&master->cur_msg->queue);
573 if (master->busy)
574 was_busy = true;
575 else
576 master->busy = true;
577 spin_unlock_irqrestore(&master->queue_lock, flags);
579 if (!was_busy && master->auto_runtime_pm) {
580 ret = pm_runtime_get_sync(master->dev.parent);
581 if (ret < 0) {
582 dev_err(&master->dev, "Failed to power device: %d\n",
583 ret);
584 return;
588 if (!was_busy && master->prepare_transfer_hardware) {
589 ret = master->prepare_transfer_hardware(master);
590 if (ret) {
591 dev_err(&master->dev,
592 "failed to prepare transfer hardware\n");
594 if (master->auto_runtime_pm)
595 pm_runtime_put(master->dev.parent);
596 return;
600 ret = master->transfer_one_message(master, master->cur_msg);
601 if (ret) {
602 dev_err(&master->dev,
603 "failed to transfer one message from queue\n");
604 return;
608 static int spi_init_queue(struct spi_master *master)
610 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
612 INIT_LIST_HEAD(&master->queue);
613 spin_lock_init(&master->queue_lock);
615 master->running = false;
616 master->busy = false;
618 init_kthread_worker(&master->kworker);
619 master->kworker_task = kthread_run(kthread_worker_fn,
620 &master->kworker, "%s",
621 dev_name(&master->dev));
622 if (IS_ERR(master->kworker_task)) {
623 dev_err(&master->dev, "failed to create message pump task\n");
624 return -ENOMEM;
626 init_kthread_work(&master->pump_messages, spi_pump_messages);
629 * Master config will indicate if this controller should run the
630 * message pump with high (realtime) priority to reduce the transfer
631 * latency on the bus by minimising the delay between a transfer
632 * request and the scheduling of the message pump thread. Without this
633 * setting the message pump thread will remain at default priority.
635 if (master->rt) {
636 dev_info(&master->dev,
637 "will run message pump with realtime priority\n");
638 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
641 return 0;
645 * spi_get_next_queued_message() - called by driver to check for queued
646 * messages
647 * @master: the master to check for queued messages
649 * If there are more messages in the queue, the next message is returned from
650 * this call.
652 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
654 struct spi_message *next;
655 unsigned long flags;
657 /* get a pointer to the next message, if any */
658 spin_lock_irqsave(&master->queue_lock, flags);
659 if (list_empty(&master->queue))
660 next = NULL;
661 else
662 next = list_entry(master->queue.next,
663 struct spi_message, queue);
664 spin_unlock_irqrestore(&master->queue_lock, flags);
666 return next;
668 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
671 * spi_finalize_current_message() - the current message is complete
672 * @master: the master to return the message to
674 * Called by the driver to notify the core that the message in the front of the
675 * queue is complete and can be removed from the queue.
677 void spi_finalize_current_message(struct spi_master *master)
679 struct spi_message *mesg;
680 unsigned long flags;
682 spin_lock_irqsave(&master->queue_lock, flags);
683 mesg = master->cur_msg;
684 master->cur_msg = NULL;
686 queue_kthread_work(&master->kworker, &master->pump_messages);
687 spin_unlock_irqrestore(&master->queue_lock, flags);
689 mesg->state = NULL;
690 if (mesg->complete)
691 mesg->complete(mesg->context);
693 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
695 static int spi_start_queue(struct spi_master *master)
697 unsigned long flags;
699 spin_lock_irqsave(&master->queue_lock, flags);
701 if (master->running || master->busy) {
702 spin_unlock_irqrestore(&master->queue_lock, flags);
703 return -EBUSY;
706 master->running = true;
707 master->cur_msg = NULL;
708 spin_unlock_irqrestore(&master->queue_lock, flags);
710 queue_kthread_work(&master->kworker, &master->pump_messages);
712 return 0;
715 static int spi_stop_queue(struct spi_master *master)
717 unsigned long flags;
718 unsigned limit = 500;
719 int ret = 0;
721 spin_lock_irqsave(&master->queue_lock, flags);
724 * This is a bit lame, but is optimized for the common execution path.
725 * A wait_queue on the master->busy could be used, but then the common
726 * execution path (pump_messages) would be required to call wake_up or
727 * friends on every SPI message. Do this instead.
729 while ((!list_empty(&master->queue) || master->busy) && limit--) {
730 spin_unlock_irqrestore(&master->queue_lock, flags);
731 msleep(10);
732 spin_lock_irqsave(&master->queue_lock, flags);
735 if (!list_empty(&master->queue) || master->busy)
736 ret = -EBUSY;
737 else
738 master->running = false;
740 spin_unlock_irqrestore(&master->queue_lock, flags);
742 if (ret) {
743 dev_warn(&master->dev,
744 "could not stop message queue\n");
745 return ret;
747 return ret;
750 static int spi_destroy_queue(struct spi_master *master)
752 int ret;
754 ret = spi_stop_queue(master);
757 * flush_kthread_worker will block until all work is done.
758 * If the reason that stop_queue timed out is that the work will never
759 * finish, then it does no good to call flush/stop thread, so
760 * return anyway.
762 if (ret) {
763 dev_err(&master->dev, "problem destroying queue\n");
764 return ret;
767 flush_kthread_worker(&master->kworker);
768 kthread_stop(master->kworker_task);
770 return 0;
774 * spi_queued_transfer - transfer function for queued transfers
775 * @spi: spi device which is requesting transfer
776 * @msg: spi message which is to handled is queued to driver queue
778 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
780 struct spi_master *master = spi->master;
781 unsigned long flags;
783 spin_lock_irqsave(&master->queue_lock, flags);
785 if (!master->running) {
786 spin_unlock_irqrestore(&master->queue_lock, flags);
787 return -ESHUTDOWN;
789 msg->actual_length = 0;
790 msg->status = -EINPROGRESS;
792 list_add_tail(&msg->queue, &master->queue);
793 if (!master->busy)
794 queue_kthread_work(&master->kworker, &master->pump_messages);
796 spin_unlock_irqrestore(&master->queue_lock, flags);
797 return 0;
800 static int spi_master_initialize_queue(struct spi_master *master)
802 int ret;
804 master->queued = true;
805 master->transfer = spi_queued_transfer;
807 /* Initialize and start queue */
808 ret = spi_init_queue(master);
809 if (ret) {
810 dev_err(&master->dev, "problem initializing queue\n");
811 goto err_init_queue;
813 ret = spi_start_queue(master);
814 if (ret) {
815 dev_err(&master->dev, "problem starting queue\n");
816 goto err_start_queue;
819 return 0;
821 err_start_queue:
822 err_init_queue:
823 spi_destroy_queue(master);
824 return ret;
827 /*-------------------------------------------------------------------------*/
829 #if defined(CONFIG_OF)
831 * of_register_spi_devices() - Register child devices onto the SPI bus
832 * @master: Pointer to spi_master device
834 * Registers an spi_device for each child node of master node which has a 'reg'
835 * property.
837 static void of_register_spi_devices(struct spi_master *master)
839 struct spi_device *spi;
840 struct device_node *nc;
841 const __be32 *prop;
842 char modalias[SPI_NAME_SIZE + 4];
843 int rc;
844 int len;
846 if (!master->dev.of_node)
847 return;
849 for_each_available_child_of_node(master->dev.of_node, nc) {
850 /* Alloc an spi_device */
851 spi = spi_alloc_device(master);
852 if (!spi) {
853 dev_err(&master->dev, "spi_device alloc error for %s\n",
854 nc->full_name);
855 spi_dev_put(spi);
856 continue;
859 /* Select device driver */
860 if (of_modalias_node(nc, spi->modalias,
861 sizeof(spi->modalias)) < 0) {
862 dev_err(&master->dev, "cannot find modalias for %s\n",
863 nc->full_name);
864 spi_dev_put(spi);
865 continue;
868 /* Device address */
869 prop = of_get_property(nc, "reg", &len);
870 if (!prop || len < sizeof(*prop)) {
871 dev_err(&master->dev, "%s has no 'reg' property\n",
872 nc->full_name);
873 spi_dev_put(spi);
874 continue;
876 spi->chip_select = be32_to_cpup(prop);
878 /* Mode (clock phase/polarity/etc.) */
879 if (of_find_property(nc, "spi-cpha", NULL))
880 spi->mode |= SPI_CPHA;
881 if (of_find_property(nc, "spi-cpol", NULL))
882 spi->mode |= SPI_CPOL;
883 if (of_find_property(nc, "spi-cs-high", NULL))
884 spi->mode |= SPI_CS_HIGH;
885 if (of_find_property(nc, "spi-3wire", NULL))
886 spi->mode |= SPI_3WIRE;
888 /* Device DUAL/QUAD mode */
889 prop = of_get_property(nc, "spi-tx-bus-width", &len);
890 if (prop && len == sizeof(*prop)) {
891 switch (be32_to_cpup(prop)) {
892 case SPI_NBITS_SINGLE:
893 break;
894 case SPI_NBITS_DUAL:
895 spi->mode |= SPI_TX_DUAL;
896 break;
897 case SPI_NBITS_QUAD:
898 spi->mode |= SPI_TX_QUAD;
899 break;
900 default:
901 dev_err(&master->dev,
902 "spi-tx-bus-width %d not supported\n",
903 be32_to_cpup(prop));
904 spi_dev_put(spi);
905 continue;
909 prop = of_get_property(nc, "spi-rx-bus-width", &len);
910 if (prop && len == sizeof(*prop)) {
911 switch (be32_to_cpup(prop)) {
912 case SPI_NBITS_SINGLE:
913 break;
914 case SPI_NBITS_DUAL:
915 spi->mode |= SPI_RX_DUAL;
916 break;
917 case SPI_NBITS_QUAD:
918 spi->mode |= SPI_RX_QUAD;
919 break;
920 default:
921 dev_err(&master->dev,
922 "spi-rx-bus-width %d not supported\n",
923 be32_to_cpup(prop));
924 spi_dev_put(spi);
925 continue;
929 /* Device speed */
930 prop = of_get_property(nc, "spi-max-frequency", &len);
931 if (!prop || len < sizeof(*prop)) {
932 dev_err(&master->dev, "%s has no 'spi-max-frequency' property\n",
933 nc->full_name);
934 spi_dev_put(spi);
935 continue;
937 spi->max_speed_hz = be32_to_cpup(prop);
939 /* IRQ */
940 spi->irq = irq_of_parse_and_map(nc, 0);
942 /* Store a pointer to the node in the device structure */
943 of_node_get(nc);
944 spi->dev.of_node = nc;
946 /* Register the new device */
947 snprintf(modalias, sizeof(modalias), "%s%s", SPI_MODULE_PREFIX,
948 spi->modalias);
949 request_module(modalias);
950 rc = spi_add_device(spi);
951 if (rc) {
952 dev_err(&master->dev, "spi_device register error %s\n",
953 nc->full_name);
954 spi_dev_put(spi);
959 #else
960 static void of_register_spi_devices(struct spi_master *master) { }
961 #endif
963 #ifdef CONFIG_ACPI
964 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
966 struct spi_device *spi = data;
968 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
969 struct acpi_resource_spi_serialbus *sb;
971 sb = &ares->data.spi_serial_bus;
972 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
973 spi->chip_select = sb->device_selection;
974 spi->max_speed_hz = sb->connection_speed;
976 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
977 spi->mode |= SPI_CPHA;
978 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
979 spi->mode |= SPI_CPOL;
980 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
981 spi->mode |= SPI_CS_HIGH;
983 } else if (spi->irq < 0) {
984 struct resource r;
986 if (acpi_dev_resource_interrupt(ares, 0, &r))
987 spi->irq = r.start;
990 /* Always tell the ACPI core to skip this resource */
991 return 1;
994 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
995 void *data, void **return_value)
997 struct spi_master *master = data;
998 struct list_head resource_list;
999 struct acpi_device *adev;
1000 struct spi_device *spi;
1001 int ret;
1003 if (acpi_bus_get_device(handle, &adev))
1004 return AE_OK;
1005 if (acpi_bus_get_status(adev) || !adev->status.present)
1006 return AE_OK;
1008 spi = spi_alloc_device(master);
1009 if (!spi) {
1010 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1011 dev_name(&adev->dev));
1012 return AE_NO_MEMORY;
1015 ACPI_HANDLE_SET(&spi->dev, handle);
1016 spi->irq = -1;
1018 INIT_LIST_HEAD(&resource_list);
1019 ret = acpi_dev_get_resources(adev, &resource_list,
1020 acpi_spi_add_resource, spi);
1021 acpi_dev_free_resource_list(&resource_list);
1023 if (ret < 0 || !spi->max_speed_hz) {
1024 spi_dev_put(spi);
1025 return AE_OK;
1028 strlcpy(spi->modalias, dev_name(&adev->dev), sizeof(spi->modalias));
1029 if (spi_add_device(spi)) {
1030 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1031 dev_name(&adev->dev));
1032 spi_dev_put(spi);
1035 return AE_OK;
1038 static void acpi_register_spi_devices(struct spi_master *master)
1040 acpi_status status;
1041 acpi_handle handle;
1043 handle = ACPI_HANDLE(master->dev.parent);
1044 if (!handle)
1045 return;
1047 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1048 acpi_spi_add_device, NULL,
1049 master, NULL);
1050 if (ACPI_FAILURE(status))
1051 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1053 #else
1054 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1055 #endif /* CONFIG_ACPI */
1057 static void spi_master_release(struct device *dev)
1059 struct spi_master *master;
1061 master = container_of(dev, struct spi_master, dev);
1062 kfree(master);
1065 static struct class spi_master_class = {
1066 .name = "spi_master",
1067 .owner = THIS_MODULE,
1068 .dev_release = spi_master_release,
1074 * spi_alloc_master - allocate SPI master controller
1075 * @dev: the controller, possibly using the platform_bus
1076 * @size: how much zeroed driver-private data to allocate; the pointer to this
1077 * memory is in the driver_data field of the returned device,
1078 * accessible with spi_master_get_devdata().
1079 * Context: can sleep
1081 * This call is used only by SPI master controller drivers, which are the
1082 * only ones directly touching chip registers. It's how they allocate
1083 * an spi_master structure, prior to calling spi_register_master().
1085 * This must be called from context that can sleep. It returns the SPI
1086 * master structure on success, else NULL.
1088 * The caller is responsible for assigning the bus number and initializing
1089 * the master's methods before calling spi_register_master(); and (after errors
1090 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1091 * leak.
1093 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1095 struct spi_master *master;
1097 if (!dev)
1098 return NULL;
1100 master = kzalloc(size + sizeof *master, GFP_KERNEL);
1101 if (!master)
1102 return NULL;
1104 device_initialize(&master->dev);
1105 master->bus_num = -1;
1106 master->num_chipselect = 1;
1107 master->dev.class = &spi_master_class;
1108 master->dev.parent = get_device(dev);
1109 spi_master_set_devdata(master, &master[1]);
1111 return master;
1113 EXPORT_SYMBOL_GPL(spi_alloc_master);
1115 #ifdef CONFIG_OF
1116 static int of_spi_register_master(struct spi_master *master)
1118 int nb, i, *cs;
1119 struct device_node *np = master->dev.of_node;
1121 if (!np)
1122 return 0;
1124 nb = of_gpio_named_count(np, "cs-gpios");
1125 master->num_chipselect = max(nb, (int)master->num_chipselect);
1127 /* Return error only for an incorrectly formed cs-gpios property */
1128 if (nb == 0 || nb == -ENOENT)
1129 return 0;
1130 else if (nb < 0)
1131 return nb;
1133 cs = devm_kzalloc(&master->dev,
1134 sizeof(int) * master->num_chipselect,
1135 GFP_KERNEL);
1136 master->cs_gpios = cs;
1138 if (!master->cs_gpios)
1139 return -ENOMEM;
1141 for (i = 0; i < master->num_chipselect; i++)
1142 cs[i] = -ENOENT;
1144 for (i = 0; i < nb; i++)
1145 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1147 return 0;
1149 #else
1150 static int of_spi_register_master(struct spi_master *master)
1152 return 0;
1154 #endif
1157 * spi_register_master - register SPI master controller
1158 * @master: initialized master, originally from spi_alloc_master()
1159 * Context: can sleep
1161 * SPI master controllers connect to their drivers using some non-SPI bus,
1162 * such as the platform bus. The final stage of probe() in that code
1163 * includes calling spi_register_master() to hook up to this SPI bus glue.
1165 * SPI controllers use board specific (often SOC specific) bus numbers,
1166 * and board-specific addressing for SPI devices combines those numbers
1167 * with chip select numbers. Since SPI does not directly support dynamic
1168 * device identification, boards need configuration tables telling which
1169 * chip is at which address.
1171 * This must be called from context that can sleep. It returns zero on
1172 * success, else a negative error code (dropping the master's refcount).
1173 * After a successful return, the caller is responsible for calling
1174 * spi_unregister_master().
1176 int spi_register_master(struct spi_master *master)
1178 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1179 struct device *dev = master->dev.parent;
1180 struct boardinfo *bi;
1181 int status = -ENODEV;
1182 int dynamic = 0;
1184 if (!dev)
1185 return -ENODEV;
1187 status = of_spi_register_master(master);
1188 if (status)
1189 return status;
1191 /* even if it's just one always-selected device, there must
1192 * be at least one chipselect
1194 if (master->num_chipselect == 0)
1195 return -EINVAL;
1197 if ((master->bus_num < 0) && master->dev.of_node)
1198 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1200 /* convention: dynamically assigned bus IDs count down from the max */
1201 if (master->bus_num < 0) {
1202 /* FIXME switch to an IDR based scheme, something like
1203 * I2C now uses, so we can't run out of "dynamic" IDs
1205 master->bus_num = atomic_dec_return(&dyn_bus_id);
1206 dynamic = 1;
1209 spin_lock_init(&master->bus_lock_spinlock);
1210 mutex_init(&master->bus_lock_mutex);
1211 master->bus_lock_flag = 0;
1213 /* register the device, then userspace will see it.
1214 * registration fails if the bus ID is in use.
1216 dev_set_name(&master->dev, "spi%u", master->bus_num);
1217 status = device_add(&master->dev);
1218 if (status < 0)
1219 goto done;
1220 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1221 dynamic ? " (dynamic)" : "");
1223 /* If we're using a queued driver, start the queue */
1224 if (master->transfer)
1225 dev_info(dev, "master is unqueued, this is deprecated\n");
1226 else {
1227 status = spi_master_initialize_queue(master);
1228 if (status) {
1229 device_del(&master->dev);
1230 goto done;
1234 mutex_lock(&board_lock);
1235 list_add_tail(&master->list, &spi_master_list);
1236 list_for_each_entry(bi, &board_list, list)
1237 spi_match_master_to_boardinfo(master, &bi->board_info);
1238 mutex_unlock(&board_lock);
1240 /* Register devices from the device tree and ACPI */
1241 of_register_spi_devices(master);
1242 acpi_register_spi_devices(master);
1243 done:
1244 return status;
1246 EXPORT_SYMBOL_GPL(spi_register_master);
1248 static int __unregister(struct device *dev, void *null)
1250 spi_unregister_device(to_spi_device(dev));
1251 return 0;
1255 * spi_unregister_master - unregister SPI master controller
1256 * @master: the master being unregistered
1257 * Context: can sleep
1259 * This call is used only by SPI master controller drivers, which are the
1260 * only ones directly touching chip registers.
1262 * This must be called from context that can sleep.
1264 void spi_unregister_master(struct spi_master *master)
1266 int dummy;
1268 if (master->queued) {
1269 if (spi_destroy_queue(master))
1270 dev_err(&master->dev, "queue remove failed\n");
1273 mutex_lock(&board_lock);
1274 list_del(&master->list);
1275 mutex_unlock(&board_lock);
1277 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1278 device_unregister(&master->dev);
1280 EXPORT_SYMBOL_GPL(spi_unregister_master);
1282 int spi_master_suspend(struct spi_master *master)
1284 int ret;
1286 /* Basically no-ops for non-queued masters */
1287 if (!master->queued)
1288 return 0;
1290 ret = spi_stop_queue(master);
1291 if (ret)
1292 dev_err(&master->dev, "queue stop failed\n");
1294 return ret;
1296 EXPORT_SYMBOL_GPL(spi_master_suspend);
1298 int spi_master_resume(struct spi_master *master)
1300 int ret;
1302 if (!master->queued)
1303 return 0;
1305 ret = spi_start_queue(master);
1306 if (ret)
1307 dev_err(&master->dev, "queue restart failed\n");
1309 return ret;
1311 EXPORT_SYMBOL_GPL(spi_master_resume);
1313 static int __spi_master_match(struct device *dev, const void *data)
1315 struct spi_master *m;
1316 const u16 *bus_num = data;
1318 m = container_of(dev, struct spi_master, dev);
1319 return m->bus_num == *bus_num;
1323 * spi_busnum_to_master - look up master associated with bus_num
1324 * @bus_num: the master's bus number
1325 * Context: can sleep
1327 * This call may be used with devices that are registered after
1328 * arch init time. It returns a refcounted pointer to the relevant
1329 * spi_master (which the caller must release), or NULL if there is
1330 * no such master registered.
1332 struct spi_master *spi_busnum_to_master(u16 bus_num)
1334 struct device *dev;
1335 struct spi_master *master = NULL;
1337 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1338 __spi_master_match);
1339 if (dev)
1340 master = container_of(dev, struct spi_master, dev);
1341 /* reference got in class_find_device */
1342 return master;
1344 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1347 /*-------------------------------------------------------------------------*/
1349 /* Core methods for SPI master protocol drivers. Some of the
1350 * other core methods are currently defined as inline functions.
1354 * spi_setup - setup SPI mode and clock rate
1355 * @spi: the device whose settings are being modified
1356 * Context: can sleep, and no requests are queued to the device
1358 * SPI protocol drivers may need to update the transfer mode if the
1359 * device doesn't work with its default. They may likewise need
1360 * to update clock rates or word sizes from initial values. This function
1361 * changes those settings, and must be called from a context that can sleep.
1362 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1363 * effect the next time the device is selected and data is transferred to
1364 * or from it. When this function returns, the spi device is deselected.
1366 * Note that this call will fail if the protocol driver specifies an option
1367 * that the underlying controller or its driver does not support. For
1368 * example, not all hardware supports wire transfers using nine bit words,
1369 * LSB-first wire encoding, or active-high chipselects.
1371 int spi_setup(struct spi_device *spi)
1373 unsigned bad_bits, ugly_bits;
1374 int status = 0;
1376 /* check mode to prevent that DUAL and QUAD set at the same time
1378 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1379 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1380 dev_err(&spi->dev,
1381 "setup: can not select dual and quad at the same time\n");
1382 return -EINVAL;
1384 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1386 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1387 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1388 return -EINVAL;
1389 /* help drivers fail *cleanly* when they need options
1390 * that aren't supported with their current master
1392 bad_bits = spi->mode & ~spi->master->mode_bits;
1393 ugly_bits = bad_bits &
1394 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1395 if (ugly_bits) {
1396 dev_warn(&spi->dev,
1397 "setup: ignoring unsupported mode bits %x\n",
1398 ugly_bits);
1399 spi->mode &= ~ugly_bits;
1400 bad_bits &= ~ugly_bits;
1402 if (bad_bits) {
1403 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1404 bad_bits);
1405 return -EINVAL;
1408 if (!spi->bits_per_word)
1409 spi->bits_per_word = 8;
1411 if (spi->master->setup)
1412 status = spi->master->setup(spi);
1414 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
1415 "%u bits/w, %u Hz max --> %d\n",
1416 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1417 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1418 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1419 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1420 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1421 spi->bits_per_word, spi->max_speed_hz,
1422 status);
1424 return status;
1426 EXPORT_SYMBOL_GPL(spi_setup);
1428 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1430 struct spi_master *master = spi->master;
1431 struct spi_transfer *xfer;
1433 if (list_empty(&message->transfers))
1434 return -EINVAL;
1435 if (!message->complete)
1436 return -EINVAL;
1438 /* Half-duplex links include original MicroWire, and ones with
1439 * only one data pin like SPI_3WIRE (switches direction) or where
1440 * either MOSI or MISO is missing. They can also be caused by
1441 * software limitations.
1443 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1444 || (spi->mode & SPI_3WIRE)) {
1445 unsigned flags = master->flags;
1447 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1448 if (xfer->rx_buf && xfer->tx_buf)
1449 return -EINVAL;
1450 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1451 return -EINVAL;
1452 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1453 return -EINVAL;
1458 * Set transfer bits_per_word and max speed as spi device default if
1459 * it is not set for this transfer.
1460 * Set transfer tx_nbits and rx_nbits as single transfer default
1461 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1463 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1464 message->frame_length += xfer->len;
1465 if (!xfer->bits_per_word)
1466 xfer->bits_per_word = spi->bits_per_word;
1467 if (!xfer->speed_hz) {
1468 xfer->speed_hz = spi->max_speed_hz;
1469 if (master->max_speed_hz &&
1470 xfer->speed_hz > master->max_speed_hz)
1471 xfer->speed_hz = master->max_speed_hz;
1474 if (master->bits_per_word_mask) {
1475 /* Only 32 bits fit in the mask */
1476 if (xfer->bits_per_word > 32)
1477 return -EINVAL;
1478 if (!(master->bits_per_word_mask &
1479 BIT(xfer->bits_per_word - 1)))
1480 return -EINVAL;
1483 if (xfer->speed_hz && master->min_speed_hz &&
1484 xfer->speed_hz < master->min_speed_hz)
1485 return -EINVAL;
1486 if (xfer->speed_hz && master->max_speed_hz &&
1487 xfer->speed_hz > master->max_speed_hz)
1488 return -EINVAL;
1490 if (xfer->tx_buf && !xfer->tx_nbits)
1491 xfer->tx_nbits = SPI_NBITS_SINGLE;
1492 if (xfer->rx_buf && !xfer->rx_nbits)
1493 xfer->rx_nbits = SPI_NBITS_SINGLE;
1494 /* check transfer tx/rx_nbits:
1495 * 1. keep the value is not out of single, dual and quad
1496 * 2. keep tx/rx_nbits is contained by mode in spi_device
1497 * 3. if SPI_3WIRE, tx/rx_nbits should be in single
1499 if (xfer->tx_buf) {
1500 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1501 xfer->tx_nbits != SPI_NBITS_DUAL &&
1502 xfer->tx_nbits != SPI_NBITS_QUAD)
1503 return -EINVAL;
1504 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1505 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1506 return -EINVAL;
1507 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1508 !(spi->mode & SPI_TX_QUAD))
1509 return -EINVAL;
1510 if ((spi->mode & SPI_3WIRE) &&
1511 (xfer->tx_nbits != SPI_NBITS_SINGLE))
1512 return -EINVAL;
1514 /* check transfer rx_nbits */
1515 if (xfer->rx_buf) {
1516 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1517 xfer->rx_nbits != SPI_NBITS_DUAL &&
1518 xfer->rx_nbits != SPI_NBITS_QUAD)
1519 return -EINVAL;
1520 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1521 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1522 return -EINVAL;
1523 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1524 !(spi->mode & SPI_RX_QUAD))
1525 return -EINVAL;
1526 if ((spi->mode & SPI_3WIRE) &&
1527 (xfer->rx_nbits != SPI_NBITS_SINGLE))
1528 return -EINVAL;
1532 message->spi = spi;
1533 message->status = -EINPROGRESS;
1534 return master->transfer(spi, message);
1538 * spi_async - asynchronous SPI transfer
1539 * @spi: device with which data will be exchanged
1540 * @message: describes the data transfers, including completion callback
1541 * Context: any (irqs may be blocked, etc)
1543 * This call may be used in_irq and other contexts which can't sleep,
1544 * as well as from task contexts which can sleep.
1546 * The completion callback is invoked in a context which can't sleep.
1547 * Before that invocation, the value of message->status is undefined.
1548 * When the callback is issued, message->status holds either zero (to
1549 * indicate complete success) or a negative error code. After that
1550 * callback returns, the driver which issued the transfer request may
1551 * deallocate the associated memory; it's no longer in use by any SPI
1552 * core or controller driver code.
1554 * Note that although all messages to a spi_device are handled in
1555 * FIFO order, messages may go to different devices in other orders.
1556 * Some device might be higher priority, or have various "hard" access
1557 * time requirements, for example.
1559 * On detection of any fault during the transfer, processing of
1560 * the entire message is aborted, and the device is deselected.
1561 * Until returning from the associated message completion callback,
1562 * no other spi_message queued to that device will be processed.
1563 * (This rule applies equally to all the synchronous transfer calls,
1564 * which are wrappers around this core asynchronous primitive.)
1566 int spi_async(struct spi_device *spi, struct spi_message *message)
1568 struct spi_master *master = spi->master;
1569 int ret;
1570 unsigned long flags;
1572 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1574 if (master->bus_lock_flag)
1575 ret = -EBUSY;
1576 else
1577 ret = __spi_async(spi, message);
1579 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1581 return ret;
1583 EXPORT_SYMBOL_GPL(spi_async);
1586 * spi_async_locked - version of spi_async with exclusive bus usage
1587 * @spi: device with which data will be exchanged
1588 * @message: describes the data transfers, including completion callback
1589 * Context: any (irqs may be blocked, etc)
1591 * This call may be used in_irq and other contexts which can't sleep,
1592 * as well as from task contexts which can sleep.
1594 * The completion callback is invoked in a context which can't sleep.
1595 * Before that invocation, the value of message->status is undefined.
1596 * When the callback is issued, message->status holds either zero (to
1597 * indicate complete success) or a negative error code. After that
1598 * callback returns, the driver which issued the transfer request may
1599 * deallocate the associated memory; it's no longer in use by any SPI
1600 * core or controller driver code.
1602 * Note that although all messages to a spi_device are handled in
1603 * FIFO order, messages may go to different devices in other orders.
1604 * Some device might be higher priority, or have various "hard" access
1605 * time requirements, for example.
1607 * On detection of any fault during the transfer, processing of
1608 * the entire message is aborted, and the device is deselected.
1609 * Until returning from the associated message completion callback,
1610 * no other spi_message queued to that device will be processed.
1611 * (This rule applies equally to all the synchronous transfer calls,
1612 * which are wrappers around this core asynchronous primitive.)
1614 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1616 struct spi_master *master = spi->master;
1617 int ret;
1618 unsigned long flags;
1620 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1622 ret = __spi_async(spi, message);
1624 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1626 return ret;
1629 EXPORT_SYMBOL_GPL(spi_async_locked);
1632 /*-------------------------------------------------------------------------*/
1634 /* Utility methods for SPI master protocol drivers, layered on
1635 * top of the core. Some other utility methods are defined as
1636 * inline functions.
1639 static void spi_complete(void *arg)
1641 complete(arg);
1644 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1645 int bus_locked)
1647 DECLARE_COMPLETION_ONSTACK(done);
1648 int status;
1649 struct spi_master *master = spi->master;
1651 message->complete = spi_complete;
1652 message->context = &done;
1654 if (!bus_locked)
1655 mutex_lock(&master->bus_lock_mutex);
1657 status = spi_async_locked(spi, message);
1659 if (!bus_locked)
1660 mutex_unlock(&master->bus_lock_mutex);
1662 if (status == 0) {
1663 wait_for_completion(&done);
1664 status = message->status;
1666 message->context = NULL;
1667 return status;
1671 * spi_sync - blocking/synchronous SPI data transfers
1672 * @spi: device with which data will be exchanged
1673 * @message: describes the data transfers
1674 * Context: can sleep
1676 * This call may only be used from a context that may sleep. The sleep
1677 * is non-interruptible, and has no timeout. Low-overhead controller
1678 * drivers may DMA directly into and out of the message buffers.
1680 * Note that the SPI device's chip select is active during the message,
1681 * and then is normally disabled between messages. Drivers for some
1682 * frequently-used devices may want to minimize costs of selecting a chip,
1683 * by leaving it selected in anticipation that the next message will go
1684 * to the same chip. (That may increase power usage.)
1686 * Also, the caller is guaranteeing that the memory associated with the
1687 * message will not be freed before this call returns.
1689 * It returns zero on success, else a negative error code.
1691 int spi_sync(struct spi_device *spi, struct spi_message *message)
1693 return __spi_sync(spi, message, 0);
1695 EXPORT_SYMBOL_GPL(spi_sync);
1698 * spi_sync_locked - version of spi_sync with exclusive bus usage
1699 * @spi: device with which data will be exchanged
1700 * @message: describes the data transfers
1701 * Context: can sleep
1703 * This call may only be used from a context that may sleep. The sleep
1704 * is non-interruptible, and has no timeout. Low-overhead controller
1705 * drivers may DMA directly into and out of the message buffers.
1707 * This call should be used by drivers that require exclusive access to the
1708 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1709 * be released by a spi_bus_unlock call when the exclusive access is over.
1711 * It returns zero on success, else a negative error code.
1713 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1715 return __spi_sync(spi, message, 1);
1717 EXPORT_SYMBOL_GPL(spi_sync_locked);
1720 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1721 * @master: SPI bus master that should be locked for exclusive bus access
1722 * Context: can sleep
1724 * This call may only be used from a context that may sleep. The sleep
1725 * is non-interruptible, and has no timeout.
1727 * This call should be used by drivers that require exclusive access to the
1728 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1729 * exclusive access is over. Data transfer must be done by spi_sync_locked
1730 * and spi_async_locked calls when the SPI bus lock is held.
1732 * It returns zero on success, else a negative error code.
1734 int spi_bus_lock(struct spi_master *master)
1736 unsigned long flags;
1738 mutex_lock(&master->bus_lock_mutex);
1740 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1741 master->bus_lock_flag = 1;
1742 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1744 /* mutex remains locked until spi_bus_unlock is called */
1746 return 0;
1748 EXPORT_SYMBOL_GPL(spi_bus_lock);
1751 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1752 * @master: SPI bus master that was locked for exclusive bus access
1753 * Context: can sleep
1755 * This call may only be used from a context that may sleep. The sleep
1756 * is non-interruptible, and has no timeout.
1758 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1759 * call.
1761 * It returns zero on success, else a negative error code.
1763 int spi_bus_unlock(struct spi_master *master)
1765 master->bus_lock_flag = 0;
1767 mutex_unlock(&master->bus_lock_mutex);
1769 return 0;
1771 EXPORT_SYMBOL_GPL(spi_bus_unlock);
1773 /* portable code must never pass more than 32 bytes */
1774 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
1776 static u8 *buf;
1779 * spi_write_then_read - SPI synchronous write followed by read
1780 * @spi: device with which data will be exchanged
1781 * @txbuf: data to be written (need not be dma-safe)
1782 * @n_tx: size of txbuf, in bytes
1783 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1784 * @n_rx: size of rxbuf, in bytes
1785 * Context: can sleep
1787 * This performs a half duplex MicroWire style transaction with the
1788 * device, sending txbuf and then reading rxbuf. The return value
1789 * is zero for success, else a negative errno status code.
1790 * This call may only be used from a context that may sleep.
1792 * Parameters to this routine are always copied using a small buffer;
1793 * portable code should never use this for more than 32 bytes.
1794 * Performance-sensitive or bulk transfer code should instead use
1795 * spi_{async,sync}() calls with dma-safe buffers.
1797 int spi_write_then_read(struct spi_device *spi,
1798 const void *txbuf, unsigned n_tx,
1799 void *rxbuf, unsigned n_rx)
1801 static DEFINE_MUTEX(lock);
1803 int status;
1804 struct spi_message message;
1805 struct spi_transfer x[2];
1806 u8 *local_buf;
1808 /* Use preallocated DMA-safe buffer if we can. We can't avoid
1809 * copying here, (as a pure convenience thing), but we can
1810 * keep heap costs out of the hot path unless someone else is
1811 * using the pre-allocated buffer or the transfer is too large.
1813 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
1814 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
1815 GFP_KERNEL | GFP_DMA);
1816 if (!local_buf)
1817 return -ENOMEM;
1818 } else {
1819 local_buf = buf;
1822 spi_message_init(&message);
1823 memset(x, 0, sizeof x);
1824 if (n_tx) {
1825 x[0].len = n_tx;
1826 spi_message_add_tail(&x[0], &message);
1828 if (n_rx) {
1829 x[1].len = n_rx;
1830 spi_message_add_tail(&x[1], &message);
1833 memcpy(local_buf, txbuf, n_tx);
1834 x[0].tx_buf = local_buf;
1835 x[1].rx_buf = local_buf + n_tx;
1837 /* do the i/o */
1838 status = spi_sync(spi, &message);
1839 if (status == 0)
1840 memcpy(rxbuf, x[1].rx_buf, n_rx);
1842 if (x[0].tx_buf == buf)
1843 mutex_unlock(&lock);
1844 else
1845 kfree(local_buf);
1847 return status;
1849 EXPORT_SYMBOL_GPL(spi_write_then_read);
1851 /*-------------------------------------------------------------------------*/
1853 static int __init spi_init(void)
1855 int status;
1857 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1858 if (!buf) {
1859 status = -ENOMEM;
1860 goto err0;
1863 status = bus_register(&spi_bus_type);
1864 if (status < 0)
1865 goto err1;
1867 status = class_register(&spi_master_class);
1868 if (status < 0)
1869 goto err2;
1870 return 0;
1872 err2:
1873 bus_unregister(&spi_bus_type);
1874 err1:
1875 kfree(buf);
1876 buf = NULL;
1877 err0:
1878 return status;
1881 /* board_info is normally registered in arch_initcall(),
1882 * but even essential drivers wait till later
1884 * REVISIT only boardinfo really needs static linking. the rest (device and
1885 * driver registration) _could_ be dynamically linked (modular) ... costs
1886 * include needing to have boardinfo data structures be much more public.
1888 postcore_initcall(spi_init);