x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / staging / vt6656 / bssdb.c
blobee79bbdf1a06ad0e48c23a24ba48f40be1d2778e
1 /*
2 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3 * All rights reserved.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
19 * File: bssdb.c
21 * Purpose: Handles the Basic Service Set & Node Database functions
23 * Functions:
24 * BSSpSearchBSSList - Search known BSS list for Desire SSID or BSSID
25 * BSSvClearBSSList - Clear BSS List
26 * BSSbInsertToBSSList - Insert a BSS set into known BSS list
27 * BSSbUpdateToBSSList - Update BSS set in known BSS list
28 * BSSbIsSTAInNodeDB - Search Node DB table to find the index of matched DstAddr
29 * BSSvCreateOneNode - Allocate an Node for Node DB
30 * BSSvUpdateAPNode - Update AP Node content in Index 0 of KnownNodeDB
31 * BSSvSecondCallBack - One second timer callback function to update Node DB info & AP link status
32 * BSSvUpdateNodeTxCounter - Update Tx attemps, Tx failure counter in Node DB for auto-fall back rate control
34 * Revision History:
36 * Author: Lyndon Chen
38 * Date: July 17, 2002
42 #include "tmacro.h"
43 #include "tether.h"
44 #include "device.h"
45 #include "80211hdr.h"
46 #include "bssdb.h"
47 #include "wmgr.h"
48 #include "datarate.h"
49 #include "desc.h"
50 #include "wcmd.h"
51 #include "wpa.h"
52 #include "baseband.h"
53 #include "rf.h"
54 #include "card.h"
55 #include "mac.h"
56 #include "wpa2.h"
57 #include "control.h"
58 #include "rndis.h"
59 #include "iowpa.h"
61 static int msglevel =MSG_LEVEL_INFO;
62 //static int msglevel =MSG_LEVEL_DEBUG;
64 const u16 awHWRetry0[5][5] = {
65 {RATE_18M, RATE_18M, RATE_12M, RATE_12M, RATE_12M},
66 {RATE_24M, RATE_24M, RATE_18M, RATE_12M, RATE_12M},
67 {RATE_36M, RATE_36M, RATE_24M, RATE_18M, RATE_18M},
68 {RATE_48M, RATE_48M, RATE_36M, RATE_24M, RATE_24M},
69 {RATE_54M, RATE_54M, RATE_48M, RATE_36M, RATE_36M}
71 const u16 awHWRetry1[5][5] = {
72 {RATE_18M, RATE_18M, RATE_12M, RATE_6M, RATE_6M},
73 {RATE_24M, RATE_24M, RATE_18M, RATE_6M, RATE_6M},
74 {RATE_36M, RATE_36M, RATE_24M, RATE_12M, RATE_12M},
75 {RATE_48M, RATE_48M, RATE_24M, RATE_12M, RATE_12M},
76 {RATE_54M, RATE_54M, RATE_36M, RATE_18M, RATE_18M}
79 static void s_vCheckSensitivity(struct vnt_private *pDevice);
80 static void s_vCheckPreEDThreshold(struct vnt_private *pDevice);
81 static void s_uCalculateLinkQual(struct vnt_private *pDevice);
83 /*+
85 * Routine Description:
86 * Search known BSS list for Desire SSID or BSSID.
88 * Return Value:
89 * PTR to KnownBSS or NULL
91 -*/
93 PKnownBSS BSSpSearchBSSList(struct vnt_private *pDevice,
94 u8 *pbyDesireBSSID, u8 *pbyDesireSSID,
95 CARD_PHY_TYPE ePhyType)
97 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
98 u8 *pbyBSSID = NULL;
99 PWLAN_IE_SSID pSSID = NULL;
100 PKnownBSS pCurrBSS = NULL;
101 PKnownBSS pSelect = NULL;
102 u8 ZeroBSSID[WLAN_BSSID_LEN] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
103 int ii = 0;
104 int jj = 0;
106 if (pbyDesireBSSID != NULL) {
107 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
108 "BSSpSearchBSSList BSSID[%pM]\n", pbyDesireBSSID);
109 if ((!is_broadcast_ether_addr(pbyDesireBSSID)) &&
110 (memcmp(pbyDesireBSSID, ZeroBSSID, 6)!= 0)){
111 pbyBSSID = pbyDesireBSSID;
114 if (pbyDesireSSID != NULL) {
115 if (((PWLAN_IE_SSID)pbyDesireSSID)->len != 0) {
116 pSSID = (PWLAN_IE_SSID) pbyDesireSSID;
120 if ((pbyBSSID != NULL)&&(pDevice->bRoaming == false)) {
121 // match BSSID first
122 for (ii = 0; ii <MAX_BSS_NUM; ii++) {
123 pCurrBSS = &(pMgmt->sBSSList[ii]);
125 pCurrBSS->bSelected = false;
127 if ((pCurrBSS->bActive) &&
128 (pCurrBSS->bSelected == false)) {
129 if (!compare_ether_addr(pCurrBSS->abyBSSID, pbyBSSID)) {
130 if (pSSID != NULL) {
131 // compare ssid
132 if ( !memcmp(pSSID->abySSID,
133 ((PWLAN_IE_SSID)pCurrBSS->abySSID)->abySSID,
134 pSSID->len)) {
135 if ((pMgmt->eConfigMode == WMAC_CONFIG_AUTO) ||
136 ((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
137 ((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo))
139 pCurrBSS->bSelected = true;
140 return(pCurrBSS);
143 } else {
144 if ((pMgmt->eConfigMode == WMAC_CONFIG_AUTO) ||
145 ((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
146 ((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo))
148 pCurrBSS->bSelected = true;
149 return(pCurrBSS);
155 } else {
156 // ignore BSSID
157 for (ii = 0; ii <MAX_BSS_NUM; ii++) {
158 pCurrBSS = &(pMgmt->sBSSList[ii]);
160 //2007-0721-01<Mark>by MikeLiu
161 // if ((pCurrBSS->bActive) &&
162 // (pCurrBSS->bSelected == false)) {
164 pCurrBSS->bSelected = false;
165 if (pCurrBSS->bActive) {
167 if (pSSID != NULL) {
168 // matched SSID
169 if (memcmp(pSSID->abySSID,
170 ((PWLAN_IE_SSID)pCurrBSS->abySSID)->abySSID,
171 pSSID->len) ||
172 (pSSID->len != ((PWLAN_IE_SSID)pCurrBSS->abySSID)->len)) {
173 // SSID not match skip this BSS
174 continue;
177 if (((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)) ||
178 ((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo))
180 // Type not match skip this BSS
181 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BSS type mismatch.... Config[%d] BSS[0x%04x]\n", pMgmt->eConfigMode, pCurrBSS->wCapInfo);
182 continue;
185 if (ePhyType != PHY_TYPE_AUTO) {
186 if (((ePhyType == PHY_TYPE_11A) && (PHY_TYPE_11A != pCurrBSS->eNetworkTypeInUse)) ||
187 ((ePhyType != PHY_TYPE_11A) && (PHY_TYPE_11A == pCurrBSS->eNetworkTypeInUse))) {
188 // PhyType not match skip this BSS
189 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Physical type mismatch.... ePhyType[%d] BSS[%d]\n", ePhyType, pCurrBSS->eNetworkTypeInUse);
190 continue;
194 pMgmt->pSameBSS[jj].uChannel = pCurrBSS->uChannel;
195 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
196 "BSSpSearchBSSList pSelect1[%pM]\n",
197 pCurrBSS->abyBSSID);
198 jj++;
200 if (pSelect == NULL) {
201 pSelect = pCurrBSS;
202 } else {
203 // compare RSSI, select the strongest signal
204 if (pCurrBSS->uRSSI < pSelect->uRSSI) {
205 pSelect = pCurrBSS;
211 pDevice->bSameBSSMaxNum = jj;
213 if (pSelect != NULL) {
214 pSelect->bSelected = true;
215 if (pDevice->bRoaming == false) {
216 // Einsn Add @20070907
217 memcpy(pbyDesireSSID,pCurrBSS->abySSID,WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1) ;
220 return(pSelect);
223 return(NULL);
229 * Routine Description:
230 * Clear BSS List
232 * Return Value:
233 * None.
237 void BSSvClearBSSList(struct vnt_private *pDevice, int bKeepCurrBSSID)
239 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
240 int ii;
242 for (ii = 0; ii < MAX_BSS_NUM; ii++) {
243 if (bKeepCurrBSSID) {
244 if (pMgmt->sBSSList[ii].bActive &&
245 !compare_ether_addr(pMgmt->sBSSList[ii].abyBSSID,
246 pMgmt->abyCurrBSSID)) {
247 //mike mark: there are two BSSID's in list. If that AP is in hidden ssid mode, one SSID is null,
248 // but other's might not be obvious, so if it associate's with your STA,
249 // you must keep the two of them!!
250 // bKeepCurrBSSID = false;
251 continue;
255 pMgmt->sBSSList[ii].bActive = false;
256 memset(&pMgmt->sBSSList[ii], 0, sizeof(KnownBSS));
258 BSSvClearAnyBSSJoinRecord(pDevice);
263 * Routine Description:
264 * search BSS list by BSSID & SSID if matched
266 * Return Value:
267 * true if found.
270 PKnownBSS BSSpAddrIsInBSSList(struct vnt_private *pDevice,
271 u8 *abyBSSID, PWLAN_IE_SSID pSSID)
273 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
274 PKnownBSS pBSSList = NULL;
275 int ii;
277 for (ii = 0; ii < MAX_BSS_NUM; ii++) {
278 pBSSList = &(pMgmt->sBSSList[ii]);
279 if (pBSSList->bActive) {
280 if (!compare_ether_addr(pBSSList->abyBSSID, abyBSSID)) {
281 if (pSSID->len == ((PWLAN_IE_SSID)pBSSList->abySSID)->len){
282 if (memcmp(pSSID->abySSID,
283 ((PWLAN_IE_SSID)pBSSList->abySSID)->abySSID,
284 pSSID->len) == 0)
285 return pBSSList;
291 return NULL;
296 * Routine Description:
297 * Insert a BSS set into known BSS list
299 * Return Value:
300 * true if success.
304 int BSSbInsertToBSSList(struct vnt_private *pDevice,
305 u8 *abyBSSIDAddr,
306 u64 qwTimestamp,
307 u16 wBeaconInterval,
308 u16 wCapInfo,
309 u8 byCurrChannel,
310 PWLAN_IE_SSID pSSID,
311 PWLAN_IE_SUPP_RATES pSuppRates,
312 PWLAN_IE_SUPP_RATES pExtSuppRates,
313 PERPObject psERP,
314 PWLAN_IE_RSN pRSN,
315 PWLAN_IE_RSN_EXT pRSNWPA,
316 PWLAN_IE_COUNTRY pIE_Country,
317 PWLAN_IE_QUIET pIE_Quiet,
318 u32 uIELength,
319 u8 *pbyIEs,
320 void *pRxPacketContext)
322 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
323 struct vnt_rx_mgmt *pRxPacket =
324 (struct vnt_rx_mgmt *)pRxPacketContext;
325 PKnownBSS pBSSList = NULL;
326 unsigned int ii;
327 bool bParsingQuiet = false;
329 pBSSList = (PKnownBSS)&(pMgmt->sBSSList[0]);
331 for (ii = 0; ii < MAX_BSS_NUM; ii++) {
332 pBSSList = (PKnownBSS)&(pMgmt->sBSSList[ii]);
333 if (!pBSSList->bActive)
334 break;
337 if (ii == MAX_BSS_NUM){
338 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Get free KnowBSS node failed.\n");
339 return false;
341 // save the BSS info
342 pBSSList->bActive = true;
343 memcpy( pBSSList->abyBSSID, abyBSSIDAddr, WLAN_BSSID_LEN);
344 pBSSList->qwBSSTimestamp = cpu_to_le64(qwTimestamp);
345 pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
346 pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
347 pBSSList->uClearCount = 0;
349 if (pSSID->len > WLAN_SSID_MAXLEN)
350 pSSID->len = WLAN_SSID_MAXLEN;
351 memcpy( pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);
353 pBSSList->uChannel = byCurrChannel;
355 if (pSuppRates->len > WLAN_RATES_MAXLEN)
356 pSuppRates->len = WLAN_RATES_MAXLEN;
357 memcpy( pBSSList->abySuppRates, pSuppRates, pSuppRates->len + WLAN_IEHDR_LEN);
359 if (pExtSuppRates != NULL) {
360 if (pExtSuppRates->len > WLAN_RATES_MAXLEN)
361 pExtSuppRates->len = WLAN_RATES_MAXLEN;
362 memcpy(pBSSList->abyExtSuppRates, pExtSuppRates, pExtSuppRates->len + WLAN_IEHDR_LEN);
363 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BSSbInsertToBSSList: pExtSuppRates->len = %d\n", pExtSuppRates->len);
365 } else {
366 memset(pBSSList->abyExtSuppRates, 0, WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
368 pBSSList->sERP.byERP = psERP->byERP;
369 pBSSList->sERP.bERPExist = psERP->bERPExist;
371 // Check if BSS is 802.11a/b/g
372 if (pBSSList->uChannel > CB_MAX_CHANNEL_24G) {
373 pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
374 } else {
375 if (pBSSList->sERP.bERPExist == true) {
376 pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
377 } else {
378 pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
382 pBSSList->byRxRate = pRxPacket->byRxRate;
383 pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
384 pBSSList->uRSSI = pRxPacket->uRSSI;
385 pBSSList->bySQ = pRxPacket->bySQ;
387 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
388 (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
389 // assoc with BSS
390 if (pBSSList == pMgmt->pCurrBSS) {
391 bParsingQuiet = true;
395 WPA_ClearRSN(pBSSList);
397 if (pRSNWPA != NULL) {
398 unsigned int uLen = pRSNWPA->len + 2;
400 if (uLen <= (uIELength -
401 (unsigned int) (u32) ((u8 *) pRSNWPA - pbyIEs))) {
402 pBSSList->wWPALen = uLen;
403 memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
404 WPA_ParseRSN(pBSSList, pRSNWPA);
408 WPA2_ClearRSN(pBSSList);
410 if (pRSN != NULL) {
411 unsigned int uLen = pRSN->len + 2;
413 if (uLen <= (uIELength -
414 (unsigned int) (u32) ((u8 *) pRSN - pbyIEs))) {
415 pBSSList->wRSNLen = uLen;
416 memcpy(pBSSList->byRSNIE, pRSN, uLen);
417 WPA2vParseRSN(pBSSList, pRSN);
421 if ((pMgmt->eAuthenMode == WMAC_AUTH_WPA2) || (pBSSList->bWPA2Valid == true)) {
423 PSKeyItem pTransmitKey = NULL;
424 bool bIs802_1x = false;
426 for (ii = 0; ii < pBSSList->wAKMSSAuthCount; ii ++) {
427 if (pBSSList->abyAKMSSAuthType[ii] == WLAN_11i_AKMSS_802_1X) {
428 bIs802_1x = true;
429 break;
432 if ((bIs802_1x == true) && (pSSID->len == ((PWLAN_IE_SSID)pMgmt->abyDesireSSID)->len) &&
433 ( !memcmp(pSSID->abySSID, ((PWLAN_IE_SSID)pMgmt->abyDesireSSID)->abySSID, pSSID->len))) {
435 bAdd_PMKID_Candidate((void *) pDevice,
436 pBSSList->abyBSSID,
437 &pBSSList->sRSNCapObj);
439 if ((pDevice->bLinkPass == true) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
440 if ((KeybGetTransmitKey(&(pDevice->sKey), pDevice->abyBSSID, PAIRWISE_KEY, &pTransmitKey) == true) ||
441 (KeybGetTransmitKey(&(pDevice->sKey), pDevice->abyBSSID, GROUP_KEY, &pTransmitKey) == true)) {
442 pDevice->gsPMKIDCandidate.StatusType = Ndis802_11StatusType_PMKID_CandidateList;
443 pDevice->gsPMKIDCandidate.Version = 1;
451 if (pDevice->bUpdateBBVGA) {
452 // Monitor if RSSI is too strong.
453 pBSSList->byRSSIStatCnt = 0;
454 RFvRSSITodBm(pDevice, (u8)(pRxPacket->uRSSI), &pBSSList->ldBmMAX);
455 pBSSList->ldBmAverage[0] = pBSSList->ldBmMAX;
456 pBSSList->ldBmAverRange = pBSSList->ldBmMAX;
457 for (ii = 1; ii < RSSI_STAT_COUNT; ii++)
458 pBSSList->ldBmAverage[ii] = 0;
461 pBSSList->uIELength = uIELength;
462 if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
463 pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
464 memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);
466 return true;
471 * Routine Description:
472 * Update BSS set in known BSS list
474 * Return Value:
475 * true if success.
478 // TODO: input structure modify
480 int BSSbUpdateToBSSList(struct vnt_private *pDevice,
481 u64 qwTimestamp,
482 u16 wBeaconInterval,
483 u16 wCapInfo,
484 u8 byCurrChannel,
485 int bChannelHit,
486 PWLAN_IE_SSID pSSID,
487 PWLAN_IE_SUPP_RATES pSuppRates,
488 PWLAN_IE_SUPP_RATES pExtSuppRates,
489 PERPObject psERP,
490 PWLAN_IE_RSN pRSN,
491 PWLAN_IE_RSN_EXT pRSNWPA,
492 PWLAN_IE_COUNTRY pIE_Country,
493 PWLAN_IE_QUIET pIE_Quiet,
494 PKnownBSS pBSSList,
495 u32 uIELength,
496 u8 *pbyIEs,
497 void *pRxPacketContext)
499 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
500 struct vnt_rx_mgmt *pRxPacket =
501 (struct vnt_rx_mgmt *)pRxPacketContext;
502 int ii, jj;
503 signed long ldBm, ldBmSum;
504 bool bParsingQuiet = false;
506 if (pBSSList == NULL)
507 return false;
509 pBSSList->qwBSSTimestamp = cpu_to_le64(qwTimestamp);
511 pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
512 pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
513 pBSSList->uClearCount = 0;
514 pBSSList->uChannel = byCurrChannel;
516 if (pSSID->len > WLAN_SSID_MAXLEN)
517 pSSID->len = WLAN_SSID_MAXLEN;
519 if ((pSSID->len != 0) && (pSSID->abySSID[0] != 0))
520 memcpy(pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);
521 memcpy(pBSSList->abySuppRates, pSuppRates,pSuppRates->len + WLAN_IEHDR_LEN);
523 if (pExtSuppRates != NULL) {
524 memcpy(pBSSList->abyExtSuppRates, pExtSuppRates,pExtSuppRates->len + WLAN_IEHDR_LEN);
525 } else {
526 memset(pBSSList->abyExtSuppRates, 0, WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
528 pBSSList->sERP.byERP = psERP->byERP;
529 pBSSList->sERP.bERPExist = psERP->bERPExist;
531 // Check if BSS is 802.11a/b/g
532 if (pBSSList->uChannel > CB_MAX_CHANNEL_24G) {
533 pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
534 } else {
535 if (pBSSList->sERP.bERPExist == true) {
536 pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
537 } else {
538 pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
542 pBSSList->byRxRate = pRxPacket->byRxRate;
543 pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
544 if(bChannelHit)
545 pBSSList->uRSSI = pRxPacket->uRSSI;
546 pBSSList->bySQ = pRxPacket->bySQ;
548 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
549 (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
550 // assoc with BSS
551 if (pBSSList == pMgmt->pCurrBSS) {
552 bParsingQuiet = true;
556 WPA_ClearRSN(pBSSList); //mike update
558 if (pRSNWPA != NULL) {
559 unsigned int uLen = pRSNWPA->len + 2;
560 if (uLen <= (uIELength -
561 (unsigned int) (u32) ((u8 *) pRSNWPA - pbyIEs))) {
562 pBSSList->wWPALen = uLen;
563 memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
564 WPA_ParseRSN(pBSSList, pRSNWPA);
568 WPA2_ClearRSN(pBSSList); //mike update
570 if (pRSN != NULL) {
571 unsigned int uLen = pRSN->len + 2;
572 if (uLen <= (uIELength -
573 (unsigned int) (u32) ((u8 *) pRSN - pbyIEs))) {
574 pBSSList->wRSNLen = uLen;
575 memcpy(pBSSList->byRSNIE, pRSN, uLen);
576 WPA2vParseRSN(pBSSList, pRSN);
580 if (pRxPacket->uRSSI != 0) {
581 RFvRSSITodBm(pDevice, (u8)(pRxPacket->uRSSI), &ldBm);
582 // Monitor if RSSI is too strong.
583 pBSSList->byRSSIStatCnt++;
584 pBSSList->byRSSIStatCnt %= RSSI_STAT_COUNT;
585 pBSSList->ldBmAverage[pBSSList->byRSSIStatCnt] = ldBm;
586 ldBmSum = 0;
587 for (ii = 0, jj = 0; ii < RSSI_STAT_COUNT; ii++) {
588 if (pBSSList->ldBmAverage[ii] != 0) {
589 pBSSList->ldBmMAX =
590 max(pBSSList->ldBmAverage[ii], ldBm);
591 ldBmSum +=
592 pBSSList->ldBmAverage[ii];
593 jj++;
596 pBSSList->ldBmAverRange = ldBmSum /jj;
599 pBSSList->uIELength = uIELength;
600 if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
601 pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
602 memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);
604 return true;
609 * Routine Description:
610 * Search Node DB table to find the index of matched DstAddr
612 * Return Value:
613 * None
617 int BSSbIsSTAInNodeDB(struct vnt_private *pDevice,
618 u8 *abyDstAddr, u32 *puNodeIndex)
620 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
621 unsigned int ii;
623 // Index = 0 reserved for AP Node
624 for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
625 if (pMgmt->sNodeDBTable[ii].bActive) {
626 if (!compare_ether_addr(abyDstAddr,
627 pMgmt->sNodeDBTable[ii].abyMACAddr)) {
628 *puNodeIndex = ii;
629 return true;
634 return false;
639 * Routine Description:
640 * Find an empty node and allocate it; if no empty node
641 * is found, then use the most inactive one.
643 * Return Value:
644 * None
647 void BSSvCreateOneNode(struct vnt_private *pDevice, u32 *puNodeIndex)
649 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
650 int ii;
651 u32 BigestCount = 0;
652 u32 SelectIndex;
653 struct sk_buff *skb;
655 // Index = 0 reserved for AP Node (In STA mode)
656 // Index = 0 reserved for Broadcast/MultiCast (In AP mode)
657 SelectIndex = 1;
658 for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
659 if (pMgmt->sNodeDBTable[ii].bActive) {
660 if (pMgmt->sNodeDBTable[ii].uInActiveCount > BigestCount) {
661 BigestCount = pMgmt->sNodeDBTable[ii].uInActiveCount;
662 SelectIndex = ii;
665 else {
666 break;
670 // if not found replace uInActiveCount with the largest one.
671 if ( ii == (MAX_NODE_NUM + 1)) {
672 *puNodeIndex = SelectIndex;
673 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Replace inactive node = %d\n", SelectIndex);
674 // clear ps buffer
675 if (pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue.next != NULL) {
676 while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue)) != NULL)
677 dev_kfree_skb(skb);
680 else {
681 *puNodeIndex = ii;
684 memset(&pMgmt->sNodeDBTable[*puNodeIndex], 0, sizeof(KnownNodeDB));
685 pMgmt->sNodeDBTable[*puNodeIndex].bActive = true;
686 pMgmt->sNodeDBTable[*puNodeIndex].uRatePollTimeout = FALLBACK_POLL_SECOND;
687 // for AP mode PS queue
688 skb_queue_head_init(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue);
689 pMgmt->sNodeDBTable[*puNodeIndex].byAuthSequence = 0;
690 pMgmt->sNodeDBTable[*puNodeIndex].wEnQueueCnt = 0;
691 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Create node index = %d\n", ii);
696 * Routine Description:
697 * Remove Node by NodeIndex
700 * Return Value:
701 * None
705 void BSSvRemoveOneNode(struct vnt_private *pDevice, u32 uNodeIndex)
707 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
708 u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
709 struct sk_buff *skb;
711 while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue)) != NULL)
712 dev_kfree_skb(skb);
713 // clear context
714 memset(&pMgmt->sNodeDBTable[uNodeIndex], 0, sizeof(KnownNodeDB));
715 // clear tx bit map
716 pMgmt->abyPSTxMap[pMgmt->sNodeDBTable[uNodeIndex].wAID >> 3] &= ~byMask[pMgmt->sNodeDBTable[uNodeIndex].wAID & 7];
720 * Routine Description:
721 * Update AP Node content in Index 0 of KnownNodeDB
724 * Return Value:
725 * None
729 void BSSvUpdateAPNode(struct vnt_private *pDevice, u16 *pwCapInfo,
730 PWLAN_IE_SUPP_RATES pSuppRates, PWLAN_IE_SUPP_RATES pExtSuppRates)
732 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
733 u32 uRateLen = WLAN_RATES_MAXLEN;
735 memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));
737 pMgmt->sNodeDBTable[0].bActive = true;
738 if (pDevice->byBBType == BB_TYPE_11B) {
739 uRateLen = WLAN_RATES_MAXLEN_11B;
741 pMgmt->abyCurrSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES)pSuppRates,
742 (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates,
743 uRateLen);
744 pMgmt->abyCurrExtSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES)pExtSuppRates,
745 (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates,
746 uRateLen);
747 RATEvParseMaxRate((void *) pDevice,
748 (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates,
749 (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates,
750 true,
751 &(pMgmt->sNodeDBTable[0].wMaxBasicRate),
752 &(pMgmt->sNodeDBTable[0].wMaxSuppRate),
753 &(pMgmt->sNodeDBTable[0].wSuppRate),
754 &(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
755 &(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate)
757 memcpy(pMgmt->sNodeDBTable[0].abyMACAddr, pMgmt->abyCurrBSSID, WLAN_ADDR_LEN);
758 pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxSuppRate;
759 pMgmt->sNodeDBTable[0].bShortPreamble = WLAN_GET_CAP_INFO_SHORTPREAMBLE(*pwCapInfo);
760 pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND;
761 // Auto rate fallback function initiation.
762 // RATEbInit(pDevice);
763 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"pMgmt->sNodeDBTable[0].wTxDataRate = %d \n", pMgmt->sNodeDBTable[0].wTxDataRate);
769 * Routine Description:
770 * Add Multicast Node content in Index 0 of KnownNodeDB
773 * Return Value:
774 * None
778 void BSSvAddMulticastNode(struct vnt_private *pDevice)
780 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
782 if (!pDevice->bEnableHostWEP)
783 memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));
784 memset(pMgmt->sNodeDBTable[0].abyMACAddr, 0xff, WLAN_ADDR_LEN);
785 pMgmt->sNodeDBTable[0].bActive = true;
786 pMgmt->sNodeDBTable[0].bPSEnable = false;
787 skb_queue_head_init(&pMgmt->sNodeDBTable[0].sTxPSQueue);
788 RATEvParseMaxRate((void *) pDevice,
789 (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates,
790 (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates,
791 true,
792 &(pMgmt->sNodeDBTable[0].wMaxBasicRate),
793 &(pMgmt->sNodeDBTable[0].wMaxSuppRate),
794 &(pMgmt->sNodeDBTable[0].wSuppRate),
795 &(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
796 &(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate)
798 pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxBasicRate;
799 pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND;
805 * Routine Description:
808 * Second call back function to update Node DB info & AP link status
811 * Return Value:
812 * none.
816 void BSSvSecondCallBack(struct vnt_private *pDevice)
818 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
819 int ii;
820 PWLAN_IE_SSID pItemSSID, pCurrSSID;
821 u32 uSleepySTACnt = 0;
822 u32 uNonShortSlotSTACnt = 0;
823 u32 uLongPreambleSTACnt = 0;
825 spin_lock_irq(&pDevice->lock);
827 pDevice->uAssocCount = 0;
829 //Power Saving Mode Tx Burst
830 if ( pDevice->bEnablePSMode == true ) {
831 pDevice->ulPSModeWaitTx++;
832 if ( pDevice->ulPSModeWaitTx >= 2 ) {
833 pDevice->ulPSModeWaitTx = 0;
834 pDevice->bPSModeTxBurst = false;
838 pDevice->byERPFlag &=
839 ~(WLAN_SET_ERP_BARKER_MODE(1) | WLAN_SET_ERP_NONERP_PRESENT(1));
841 if (pDevice->wUseProtectCntDown > 0) {
842 pDevice->wUseProtectCntDown --;
844 else {
845 // disable protect mode
846 pDevice->byERPFlag &= ~(WLAN_SET_ERP_USE_PROTECTION(1));
849 if(pDevice->byReAssocCount > 0) {
850 pDevice->byReAssocCount++;
851 if((pDevice->byReAssocCount > 10) && (pDevice->bLinkPass != true)) { //10 sec timeout
852 printk("Re-association timeout!!!\n");
853 pDevice->byReAssocCount = 0;
854 // if(pDevice->bWPASuppWextEnabled == true)
856 union iwreq_data wrqu;
857 memset(&wrqu, 0, sizeof (wrqu));
858 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
859 PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
860 wireless_send_event(pDevice->dev, SIOCGIWAP, &wrqu, NULL);
863 else if(pDevice->bLinkPass == true)
864 pDevice->byReAssocCount = 0;
867 pMgmt->eLastState = pMgmt->eCurrState ;
869 s_uCalculateLinkQual(pDevice);
871 for (ii = 0; ii < (MAX_NODE_NUM + 1); ii++) {
873 if (pMgmt->sNodeDBTable[ii].bActive) {
874 // Increase in-activity counter
875 pMgmt->sNodeDBTable[ii].uInActiveCount++;
877 if (ii > 0) {
878 if (pMgmt->sNodeDBTable[ii].uInActiveCount > MAX_INACTIVE_COUNT) {
879 BSSvRemoveOneNode(pDevice, ii);
880 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
881 "Inactive timeout [%d] sec, STA index = [%d] remove\n", MAX_INACTIVE_COUNT, ii);
882 continue;
885 if (pMgmt->sNodeDBTable[ii].eNodeState >= NODE_ASSOC) {
887 pDevice->uAssocCount++;
889 // check if Non ERP exist
890 if (pMgmt->sNodeDBTable[ii].uInActiveCount < ERP_RECOVER_COUNT) {
891 if (!pMgmt->sNodeDBTable[ii].bShortPreamble) {
892 pDevice->byERPFlag |= WLAN_SET_ERP_BARKER_MODE(1);
893 uLongPreambleSTACnt ++;
895 if (!pMgmt->sNodeDBTable[ii].bERPExist) {
896 pDevice->byERPFlag |= WLAN_SET_ERP_NONERP_PRESENT(1);
897 pDevice->byERPFlag |= WLAN_SET_ERP_USE_PROTECTION(1);
899 if (!pMgmt->sNodeDBTable[ii].bShortSlotTime)
900 uNonShortSlotSTACnt++;
904 // check if any STA in PS mode
905 if (pMgmt->sNodeDBTable[ii].bPSEnable)
906 uSleepySTACnt++;
910 // Rate fallback check
911 if (!pDevice->bFixRate) {
912 if (ii > 0) {
913 // ii = 0 for multicast node (AP & Adhoc)
914 RATEvTxRateFallBack((void *)pDevice,
915 &(pMgmt->sNodeDBTable[ii]));
917 else {
918 // ii = 0 reserved for unicast AP node (Infra STA)
919 if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA)
920 RATEvTxRateFallBack((void *)pDevice,
921 &(pMgmt->sNodeDBTable[ii]));
926 // check if pending PS queue
927 if (pMgmt->sNodeDBTable[ii].wEnQueueCnt != 0) {
928 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Index= %d, Queue = %d pending \n",
929 ii, pMgmt->sNodeDBTable[ii].wEnQueueCnt);
930 if ((ii >0) && (pMgmt->sNodeDBTable[ii].wEnQueueCnt > 15)) {
931 BSSvRemoveOneNode(pDevice, ii);
932 DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Pending many queues PS STA Index = %d remove \n", ii);
933 continue;
940 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) && (pDevice->byBBType == BB_TYPE_11G)) {
942 // on/off protect mode
943 if (WLAN_GET_ERP_USE_PROTECTION(pDevice->byERPFlag)) {
944 if (!pDevice->bProtectMode) {
945 MACvEnableProtectMD(pDevice);
946 pDevice->bProtectMode = true;
949 else {
950 if (pDevice->bProtectMode) {
951 MACvDisableProtectMD(pDevice);
952 pDevice->bProtectMode = false;
955 // on/off short slot time
957 if (uNonShortSlotSTACnt > 0) {
958 if (pDevice->bShortSlotTime) {
959 pDevice->bShortSlotTime = false;
960 BBvSetShortSlotTime(pDevice);
961 vUpdateIFS((void *)pDevice);
964 else {
965 if (!pDevice->bShortSlotTime) {
966 pDevice->bShortSlotTime = true;
967 BBvSetShortSlotTime(pDevice);
968 vUpdateIFS((void *)pDevice);
972 // on/off barker long preamble mode
974 if (uLongPreambleSTACnt > 0) {
975 if (!pDevice->bBarkerPreambleMd) {
976 MACvEnableBarkerPreambleMd(pDevice);
977 pDevice->bBarkerPreambleMd = true;
980 else {
981 if (pDevice->bBarkerPreambleMd) {
982 MACvDisableBarkerPreambleMd(pDevice);
983 pDevice->bBarkerPreambleMd = false;
989 // Check if any STA in PS mode, enable DTIM multicast deliver
990 if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
991 if (uSleepySTACnt > 0)
992 pMgmt->sNodeDBTable[0].bPSEnable = true;
993 else
994 pMgmt->sNodeDBTable[0].bPSEnable = false;
997 pItemSSID = (PWLAN_IE_SSID)pMgmt->abyDesireSSID;
998 pCurrSSID = (PWLAN_IE_SSID)pMgmt->abyCurrSSID;
1000 if ((pMgmt->eCurrMode == WMAC_MODE_STANDBY) ||
1001 (pMgmt->eCurrMode == WMAC_MODE_ESS_STA)) {
1003 if (pMgmt->sNodeDBTable[0].bActive) { // Assoc with BSS
1005 if (pDevice->bUpdateBBVGA) {
1006 s_vCheckSensitivity(pDevice);
1007 s_vCheckPreEDThreshold(pDevice);
1010 if ((pMgmt->sNodeDBTable[0].uInActiveCount >= (LOST_BEACON_COUNT/2)) &&
1011 (pDevice->byBBVGACurrent != pDevice->abyBBVGA[0]) ) {
1012 pDevice->byBBVGANew = pDevice->abyBBVGA[0];
1013 bScheduleCommand((void *) pDevice,
1014 WLAN_CMD_CHANGE_BBSENSITIVITY,
1015 NULL);
1018 if (pMgmt->sNodeDBTable[0].uInActiveCount >= LOST_BEACON_COUNT) {
1019 pMgmt->sNodeDBTable[0].bActive = false;
1020 pMgmt->eCurrMode = WMAC_MODE_STANDBY;
1021 pMgmt->eCurrState = WMAC_STATE_IDLE;
1022 netif_stop_queue(pDevice->dev);
1023 pDevice->bLinkPass = false;
1024 ControlvMaskByte(pDevice,MESSAGE_REQUEST_MACREG,MAC_REG_PAPEDELAY,LEDSTS_STS,LEDSTS_SLOW);
1025 pDevice->bRoaming = true;
1026 pDevice->bIsRoaming = false;
1028 DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Lost AP beacon [%d] sec, disconnected !\n", pMgmt->sNodeDBTable[0].uInActiveCount);
1029 /* let wpa supplicant know AP may disconnect */
1031 union iwreq_data wrqu;
1032 memset(&wrqu, 0, sizeof (wrqu));
1033 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1034 PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
1035 wireless_send_event(pDevice->dev, SIOCGIWAP, &wrqu, NULL);
1039 else if (pItemSSID->len != 0) {
1040 //Davidwang
1041 if ((pDevice->bEnableRoaming == true)&&(!(pMgmt->Cisco_cckm))) {
1042 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "bRoaming %d, !\n", pDevice->bRoaming );
1043 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "bIsRoaming %d, !\n", pDevice->bIsRoaming );
1044 if ((pDevice->bRoaming == true)&&(pDevice->bIsRoaming == true)){
1045 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Fast Roaming ...\n");
1046 BSSvClearBSSList((void *) pDevice, pDevice->bLinkPass);
1047 bScheduleCommand((void *) pDevice,
1048 WLAN_CMD_BSSID_SCAN,
1049 pMgmt->abyDesireSSID);
1050 bScheduleCommand((void *) pDevice,
1051 WLAN_CMD_SSID,
1052 pMgmt->abyDesireSSID);
1053 pDevice->uAutoReConnectTime = 0;
1054 pDevice->uIsroamingTime = 0;
1055 pDevice->bRoaming = false;
1057 else if ((pDevice->bRoaming == false)&&(pDevice->bIsRoaming == true)) {
1058 pDevice->uIsroamingTime++;
1059 if (pDevice->uIsroamingTime >= 20)
1060 pDevice->bIsRoaming = false;
1064 else {
1065 if (pDevice->uAutoReConnectTime < 10) {
1066 pDevice->uAutoReConnectTime++;
1067 //network manager support need not do Roaming scan???
1068 if(pDevice->bWPASuppWextEnabled ==true)
1069 pDevice->uAutoReConnectTime = 0;
1071 else {
1072 //mike use old encryption status for wpa reauthen
1073 if(pDevice->bWPADEVUp)
1074 pDevice->eEncryptionStatus = pDevice->eOldEncryptionStatus;
1076 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Roaming ...\n");
1077 BSSvClearBSSList((void *) pDevice, pDevice->bLinkPass);
1078 pMgmt->eScanType = WMAC_SCAN_ACTIVE;
1079 bScheduleCommand((void *) pDevice,
1080 WLAN_CMD_BSSID_SCAN,
1081 pMgmt->abyDesireSSID);
1082 bScheduleCommand((void *) pDevice,
1083 WLAN_CMD_SSID,
1084 pMgmt->abyDesireSSID);
1085 pDevice->uAutoReConnectTime = 0;
1091 if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
1092 // if adhoc started which essid is NULL string, rescanning.
1093 if ((pMgmt->eCurrState == WMAC_STATE_STARTED) && (pCurrSSID->len == 0)) {
1094 if (pDevice->uAutoReConnectTime < 10) {
1095 pDevice->uAutoReConnectTime++;
1097 else {
1098 DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Adhoc re-scanning ...\n");
1099 pMgmt->eScanType = WMAC_SCAN_ACTIVE;
1100 bScheduleCommand((void *) pDevice, WLAN_CMD_BSSID_SCAN, NULL);
1101 bScheduleCommand((void *) pDevice, WLAN_CMD_SSID, NULL);
1102 pDevice->uAutoReConnectTime = 0;
1105 if (pMgmt->eCurrState == WMAC_STATE_JOINTED) {
1107 if (pDevice->bUpdateBBVGA) {
1108 s_vCheckSensitivity(pDevice);
1109 s_vCheckPreEDThreshold(pDevice);
1111 if (pMgmt->sNodeDBTable[0].uInActiveCount >=ADHOC_LOST_BEACON_COUNT) {
1112 DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Lost other STA beacon [%d] sec, started !\n", pMgmt->sNodeDBTable[0].uInActiveCount);
1113 pMgmt->sNodeDBTable[0].uInActiveCount = 0;
1114 pMgmt->eCurrState = WMAC_STATE_STARTED;
1115 netif_stop_queue(pDevice->dev);
1116 pDevice->bLinkPass = false;
1117 ControlvMaskByte(pDevice,MESSAGE_REQUEST_MACREG,MAC_REG_PAPEDELAY,LEDSTS_STS,LEDSTS_SLOW);
1122 if (pDevice->bLinkPass == true) {
1123 if (netif_queue_stopped(pDevice->dev))
1124 netif_wake_queue(pDevice->dev);
1127 spin_unlock_irq(&pDevice->lock);
1129 pMgmt->sTimerSecondCallback.expires = RUN_AT(HZ);
1130 add_timer(&pMgmt->sTimerSecondCallback);
1135 * Routine Description:
1138 * Update Tx attemps, Tx failure counter in Node DB
1141 * Return Value:
1142 * none.
1146 void BSSvUpdateNodeTxCounter(struct vnt_private *pDevice,
1147 PSStatCounter pStatistic, u8 byTSR, u8 byPktNO)
1149 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1150 u32 uNodeIndex = 0;
1151 u8 byTxRetry;
1152 u16 wRate;
1153 u16 wFallBackRate = RATE_1M;
1154 u8 byFallBack;
1155 int ii;
1156 u8 *pbyDestAddr;
1157 u8 byPktNum;
1158 u16 wFIFOCtl;
1160 byPktNum = (byPktNO & 0x0F) >> 4;
1161 byTxRetry = (byTSR & 0xF0) >> 4;
1162 wRate = (u16) (byPktNO & 0xF0) >> 4;
1163 wFIFOCtl = pStatistic->abyTxPktInfo[byPktNum].wFIFOCtl;
1164 pbyDestAddr = (u8 *) &( pStatistic->abyTxPktInfo[byPktNum].abyDestAddr[0]);
1166 if (wFIFOCtl & FIFOCTL_AUTO_FB_0) {
1167 byFallBack = AUTO_FB_0;
1168 } else if (wFIFOCtl & FIFOCTL_AUTO_FB_1) {
1169 byFallBack = AUTO_FB_1;
1170 } else {
1171 byFallBack = AUTO_FB_NONE;
1174 // Only Unicast using support rates
1175 if (wFIFOCtl & FIFOCTL_NEEDACK) {
1176 if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA) {
1177 pMgmt->sNodeDBTable[0].uTxAttempts += 1;
1178 if ( !(byTSR & (TSR_TMO | TSR_RETRYTMO))) {
1179 // transmit success, TxAttempts at least plus one
1180 pMgmt->sNodeDBTable[0].uTxOk[MAX_RATE]++;
1181 if ( (byFallBack == AUTO_FB_NONE) ||
1182 (wRate < RATE_18M) ) {
1183 wFallBackRate = wRate;
1184 } else if (byFallBack == AUTO_FB_0) {
1185 if (byTxRetry < 5)
1186 wFallBackRate = awHWRetry0[wRate-RATE_18M][byTxRetry];
1187 else
1188 wFallBackRate = awHWRetry0[wRate-RATE_18M][4];
1189 } else if (byFallBack == AUTO_FB_1) {
1190 if (byTxRetry < 5)
1191 wFallBackRate = awHWRetry1[wRate-RATE_18M][byTxRetry];
1192 else
1193 wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
1195 pMgmt->sNodeDBTable[0].uTxOk[wFallBackRate]++;
1196 } else {
1197 pMgmt->sNodeDBTable[0].uTxFailures ++;
1199 pMgmt->sNodeDBTable[0].uTxRetry += byTxRetry;
1200 if (byTxRetry != 0) {
1201 pMgmt->sNodeDBTable[0].uTxFail[MAX_RATE]+=byTxRetry;
1202 if ( (byFallBack == AUTO_FB_NONE) ||
1203 (wRate < RATE_18M) ) {
1204 pMgmt->sNodeDBTable[0].uTxFail[wRate]+=byTxRetry;
1205 } else if (byFallBack == AUTO_FB_0) {
1206 for (ii = 0; ii < byTxRetry; ii++) {
1207 if (ii < 5)
1208 wFallBackRate =
1209 awHWRetry0[wRate-RATE_18M][ii];
1210 else
1211 wFallBackRate =
1212 awHWRetry0[wRate-RATE_18M][4];
1213 pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
1215 } else if (byFallBack == AUTO_FB_1) {
1216 for (ii = 0; ii < byTxRetry; ii++) {
1217 if (ii < 5)
1218 wFallBackRate =
1219 awHWRetry1[wRate-RATE_18M][ii];
1220 else
1221 wFallBackRate =
1222 awHWRetry1[wRate-RATE_18M][4];
1223 pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
1229 if ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ||
1230 (pMgmt->eCurrMode == WMAC_MODE_ESS_AP)) {
1232 if (BSSbIsSTAInNodeDB((void *) pDevice,
1233 pbyDestAddr,
1234 &uNodeIndex)) {
1235 pMgmt->sNodeDBTable[uNodeIndex].uTxAttempts += 1;
1236 if ( !(byTSR & (TSR_TMO | TSR_RETRYTMO))) {
1237 // transmit success, TxAttempts at least plus one
1238 pMgmt->sNodeDBTable[uNodeIndex].uTxOk[MAX_RATE]++;
1239 if ( (byFallBack == AUTO_FB_NONE) ||
1240 (wRate < RATE_18M) ) {
1241 wFallBackRate = wRate;
1242 } else if (byFallBack == AUTO_FB_0) {
1243 if (byTxRetry < 5)
1244 wFallBackRate = awHWRetry0[wRate-RATE_18M][byTxRetry];
1245 else
1246 wFallBackRate = awHWRetry0[wRate-RATE_18M][4];
1247 } else if (byFallBack == AUTO_FB_1) {
1248 if (byTxRetry < 5)
1249 wFallBackRate = awHWRetry1[wRate-RATE_18M][byTxRetry];
1250 else
1251 wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
1253 pMgmt->sNodeDBTable[uNodeIndex].uTxOk[wFallBackRate]++;
1254 } else {
1255 pMgmt->sNodeDBTable[uNodeIndex].uTxFailures ++;
1257 pMgmt->sNodeDBTable[uNodeIndex].uTxRetry += byTxRetry;
1258 if (byTxRetry != 0) {
1259 pMgmt->sNodeDBTable[uNodeIndex].uTxFail[MAX_RATE]+=byTxRetry;
1260 if ( (byFallBack == AUTO_FB_NONE) ||
1261 (wRate < RATE_18M) ) {
1262 pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wRate]+=byTxRetry;
1263 } else if (byFallBack == AUTO_FB_0) {
1264 for (ii = 0; ii < byTxRetry; ii++) {
1265 if (ii < 5)
1266 wFallBackRate =
1267 awHWRetry0[wRate-RATE_18M][ii];
1268 else
1269 wFallBackRate =
1270 awHWRetry0[wRate-RATE_18M][4];
1271 pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
1273 } else if (byFallBack == AUTO_FB_1) {
1274 for (ii = 0; ii < byTxRetry; ii++) {
1275 if (ii < 5)
1276 wFallBackRate = awHWRetry1[wRate-RATE_18M][ii];
1277 else
1278 wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
1279 pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
1290 * Routine Description:
1291 * Clear Nodes & skb in DB Table
1294 * Parameters:
1295 * In:
1296 * hDeviceContext - The adapter context.
1297 * uStartIndex - starting index
1298 * Out:
1299 * none
1301 * Return Value:
1302 * None.
1306 void BSSvClearNodeDBTable(struct vnt_private *pDevice, u32 uStartIndex)
1308 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1309 struct sk_buff *skb;
1310 int ii;
1312 for (ii = uStartIndex; ii < (MAX_NODE_NUM + 1); ii++) {
1313 if (pMgmt->sNodeDBTable[ii].bActive) {
1314 // check if sTxPSQueue has been initial
1315 if (pMgmt->sNodeDBTable[ii].sTxPSQueue.next != NULL) {
1316 while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[ii].sTxPSQueue)) != NULL){
1317 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "PS skb != NULL %d\n", ii);
1318 dev_kfree_skb(skb);
1321 memset(&pMgmt->sNodeDBTable[ii], 0, sizeof(KnownNodeDB));
1326 static void s_vCheckSensitivity(struct vnt_private *pDevice)
1328 PKnownBSS pBSSList = NULL;
1329 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1330 int ii;
1332 if ((pMgmt->eCurrState == WMAC_STATE_ASSOC) ||
1333 ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) && (pMgmt->eCurrState == WMAC_STATE_JOINTED))) {
1334 pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID, (PWLAN_IE_SSID)pMgmt->abyCurrSSID);
1335 if (pBSSList != NULL) {
1336 /* Update BB register if RSSI is too strong */
1337 signed long LocalldBmAverage = 0;
1338 signed long uNumofdBm = 0;
1339 for (ii = 0; ii < RSSI_STAT_COUNT; ii++) {
1340 if (pBSSList->ldBmAverage[ii] != 0) {
1341 uNumofdBm ++;
1342 LocalldBmAverage += pBSSList->ldBmAverage[ii];
1345 if (uNumofdBm > 0) {
1346 LocalldBmAverage = LocalldBmAverage/uNumofdBm;
1347 for (ii=0;ii<BB_VGA_LEVEL;ii++) {
1348 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"LocalldBmAverage:%ld, %ld %02x\n", LocalldBmAverage, pDevice->ldBmThreshold[ii], pDevice->abyBBVGA[ii]);
1349 if (LocalldBmAverage < pDevice->ldBmThreshold[ii]) {
1350 pDevice->byBBVGANew = pDevice->abyBBVGA[ii];
1351 break;
1354 if (pDevice->byBBVGANew != pDevice->byBBVGACurrent) {
1355 pDevice->uBBVGADiffCount++;
1356 if (pDevice->uBBVGADiffCount >= BB_VGA_CHANGE_THRESHOLD)
1357 bScheduleCommand(pDevice,
1358 WLAN_CMD_CHANGE_BBSENSITIVITY,
1359 NULL);
1360 } else {
1361 pDevice->uBBVGADiffCount = 0;
1368 static void s_uCalculateLinkQual(struct vnt_private *pDevice)
1370 unsigned long TxOkRatio, TxCnt;
1371 unsigned long RxOkRatio, RxCnt;
1372 unsigned long RssiRatio;
1373 long ldBm;
1375 TxCnt = pDevice->scStatistic.TxNoRetryOkCount +
1376 pDevice->scStatistic.TxRetryOkCount +
1377 pDevice->scStatistic.TxFailCount;
1378 RxCnt = pDevice->scStatistic.RxFcsErrCnt +
1379 pDevice->scStatistic.RxOkCnt;
1380 TxOkRatio = (TxCnt < 6) ? 4000:((pDevice->scStatistic.TxNoRetryOkCount * 4000) / TxCnt);
1381 RxOkRatio = (RxCnt < 6) ? 2000:((pDevice->scStatistic.RxOkCnt * 2000) / RxCnt);
1382 //decide link quality
1383 if(pDevice->bLinkPass !=true)
1385 pDevice->scStatistic.LinkQuality = 0;
1386 pDevice->scStatistic.SignalStren = 0;
1388 else
1390 RFvRSSITodBm(pDevice, (u8)(pDevice->uCurrRSSI), &ldBm);
1391 if(-ldBm < 50) {
1392 RssiRatio = 4000;
1394 else if(-ldBm > 90) {
1395 RssiRatio = 0;
1397 else {
1398 RssiRatio = (40-(-ldBm-50))*4000/40;
1400 pDevice->scStatistic.SignalStren = RssiRatio/40;
1401 pDevice->scStatistic.LinkQuality = (RssiRatio+TxOkRatio+RxOkRatio)/100;
1403 pDevice->scStatistic.RxFcsErrCnt = 0;
1404 pDevice->scStatistic.RxOkCnt = 0;
1405 pDevice->scStatistic.TxFailCount = 0;
1406 pDevice->scStatistic.TxNoRetryOkCount = 0;
1407 pDevice->scStatistic.TxRetryOkCount = 0;
1410 void BSSvClearAnyBSSJoinRecord(struct vnt_private *pDevice)
1412 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1413 int ii;
1415 for (ii = 0; ii < MAX_BSS_NUM; ii++)
1416 pMgmt->sBSSList[ii].bSelected = false;
1418 return;
1421 static void s_vCheckPreEDThreshold(struct vnt_private *pDevice)
1423 PKnownBSS pBSSList = NULL;
1424 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1426 if ((pMgmt->eCurrState == WMAC_STATE_ASSOC) ||
1427 ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) && (pMgmt->eCurrState == WMAC_STATE_JOINTED))) {
1428 pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID, (PWLAN_IE_SSID)pMgmt->abyCurrSSID);
1429 if (pBSSList != NULL) {
1430 pDevice->byBBPreEDRSSI = (u8) (~(pBSSList->ldBmAverRange) + 1);
1431 BBvUpdatePreEDThreshold(pDevice, false);