x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / staging / vt6656 / rxtx.c
blob14f3e852215da5fb27702b4b91687047b9a290c2
1 /*
2 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3 * All rights reserved.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
19 * File: rxtx.c
21 * Purpose: handle WMAC/802.3/802.11 rx & tx functions
23 * Author: Lyndon Chen
25 * Date: May 20, 2003
27 * Functions:
28 * s_vGenerateTxParameter - Generate tx dma required parameter.
29 * s_vGenerateMACHeader - Translate 802.3 to 802.11 header
30 * csBeacon_xmit - beacon tx function
31 * csMgmt_xmit - management tx function
32 * s_uGetDataDuration - get tx data required duration
33 * s_uFillDataHead- fulfill tx data duration header
34 * s_uGetRTSCTSDuration- get rtx/cts required duration
35 * s_uGetRTSCTSRsvTime- get rts/cts reserved time
36 * s_uGetTxRsvTime- get frame reserved time
37 * s_vFillCTSHead- fulfill CTS ctl header
38 * s_vFillFragParameter- Set fragment ctl parameter.
39 * s_vFillRTSHead- fulfill RTS ctl header
40 * s_vFillTxKey- fulfill tx encrypt key
41 * s_vSWencryption- Software encrypt header
42 * vDMA0_tx_80211- tx 802.11 frame via dma0
43 * vGenerateFIFOHeader- Generate tx FIFO ctl header
45 * Revision History:
49 #include "device.h"
50 #include "rxtx.h"
51 #include "tether.h"
52 #include "card.h"
53 #include "bssdb.h"
54 #include "mac.h"
55 #include "michael.h"
56 #include "tkip.h"
57 #include "tcrc.h"
58 #include "wctl.h"
59 #include "hostap.h"
60 #include "rf.h"
61 #include "datarate.h"
62 #include "usbpipe.h"
63 #include "iocmd.h"
65 static int msglevel = MSG_LEVEL_INFO;
67 const u16 wTimeStampOff[2][MAX_RATE] = {
68 {384, 288, 226, 209, 54, 43, 37, 31, 28, 25, 24, 23}, // Long Preamble
69 {384, 192, 130, 113, 54, 43, 37, 31, 28, 25, 24, 23}, // Short Preamble
72 const u16 wFB_Opt0[2][5] = {
73 {RATE_12M, RATE_18M, RATE_24M, RATE_36M, RATE_48M}, // fallback_rate0
74 {RATE_12M, RATE_12M, RATE_18M, RATE_24M, RATE_36M}, // fallback_rate1
76 const u16 wFB_Opt1[2][5] = {
77 {RATE_12M, RATE_18M, RATE_24M, RATE_24M, RATE_36M}, // fallback_rate0
78 {RATE_6M , RATE_6M, RATE_12M, RATE_12M, RATE_18M}, // fallback_rate1
81 #define RTSDUR_BB 0
82 #define RTSDUR_BA 1
83 #define RTSDUR_AA 2
84 #define CTSDUR_BA 3
85 #define RTSDUR_BA_F0 4
86 #define RTSDUR_AA_F0 5
87 #define RTSDUR_BA_F1 6
88 #define RTSDUR_AA_F1 7
89 #define CTSDUR_BA_F0 8
90 #define CTSDUR_BA_F1 9
91 #define DATADUR_B 10
92 #define DATADUR_A 11
93 #define DATADUR_A_F0 12
94 #define DATADUR_A_F1 13
96 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
97 u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl);
99 static void *s_vGetFreeContext(struct vnt_private *pDevice);
101 static void s_vGenerateTxParameter(struct vnt_private *pDevice,
102 u8 byPktType, u16 wCurrentRate, void *pTxBufHead, void *pvRrvTime,
103 void *rts_cts, u32 cbFrameSize, int bNeedACK, u32 uDMAIdx,
104 struct ethhdr *psEthHeader, bool need_rts);
106 static u32 s_uFillDataHead(struct vnt_private *pDevice,
107 u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
108 u32 uDMAIdx, int bNeedAck, u8 byFBOption);
110 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
111 u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
112 int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx);
114 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
115 u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf, u16 wPayloadLen,
116 struct vnt_mic_hdr *mic_hdr);
118 static void s_vSWencryption(struct vnt_private *pDevice,
119 PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize);
121 static unsigned int s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
122 u32 cbFrameLength, u16 wRate, int bNeedAck);
124 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice, u8 byRTSRsvType,
125 u8 byPktType, u32 cbFrameLength, u16 wCurrentRate);
127 static void s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
128 u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
129 int bNeedAck, u16 wCurrentRate, u8 byFBOption);
131 static void s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
132 union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
133 struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption);
135 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
136 u8 byPktType, int bNeedAck);
138 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice,
139 u8 byDurType, u32 cbFrameLength, u8 byPktType, u16 wRate,
140 int bNeedAck, u8 byFBOption);
142 static void *s_vGetFreeContext(struct vnt_private *pDevice)
144 struct vnt_usb_send_context *pContext = NULL;
145 struct vnt_usb_send_context *pReturnContext = NULL;
146 int ii;
148 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"GetFreeContext()\n");
150 for (ii = 0; ii < pDevice->cbTD; ii++) {
151 if (!pDevice->apTD[ii])
152 return NULL;
153 pContext = pDevice->apTD[ii];
154 if (pContext->bBoolInUse == false) {
155 pContext->bBoolInUse = true;
156 memset(pContext->Data, 0, MAX_TOTAL_SIZE_WITH_ALL_HEADERS);
157 pReturnContext = pContext;
158 break;
161 if ( ii == pDevice->cbTD ) {
162 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Free Tx Context\n");
164 return (void *) pReturnContext;
167 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
168 u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl)
170 PSStatCounter pStatistic = &pDevice->scStatistic;
172 if (is_broadcast_ether_addr(pbyDestAddr))
173 pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_BROAD;
174 else if (is_multicast_ether_addr(pbyDestAddr))
175 pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_MULTI;
176 else
177 pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_UNI;
179 pStatistic->abyTxPktInfo[byPktNum].wLength = wPktLength;
180 pStatistic->abyTxPktInfo[byPktNum].wFIFOCtl = wFIFOCtl;
181 memcpy(pStatistic->abyTxPktInfo[byPktNum].abyDestAddr,
182 pbyDestAddr,
183 ETH_ALEN);
186 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
187 u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf,
188 u16 wPayloadLen, struct vnt_mic_hdr *mic_hdr)
190 u32 *pdwIV = (u32 *)pbyIVHead;
191 u32 *pdwExtIV = (u32 *)((u8 *)pbyIVHead + 4);
192 struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyHdrBuf;
193 u32 dwRevIVCounter;
195 /* Fill TXKEY */
196 if (pTransmitKey == NULL)
197 return;
199 dwRevIVCounter = cpu_to_le32(pDevice->dwIVCounter);
200 *pdwIV = pDevice->dwIVCounter;
201 pDevice->byKeyIndex = pTransmitKey->dwKeyIndex & 0xf;
203 switch (pTransmitKey->byCipherSuite) {
204 case KEY_CTL_WEP:
205 if (pTransmitKey->uKeyLength == WLAN_WEP232_KEYLEN) {
206 memcpy(pDevice->abyPRNG, (u8 *)&dwRevIVCounter, 3);
207 memcpy(pDevice->abyPRNG + 3, pTransmitKey->abyKey,
208 pTransmitKey->uKeyLength);
209 } else {
210 memcpy(pbyBuf, (u8 *)&dwRevIVCounter, 3);
211 memcpy(pbyBuf + 3, pTransmitKey->abyKey,
212 pTransmitKey->uKeyLength);
213 if (pTransmitKey->uKeyLength == WLAN_WEP40_KEYLEN) {
214 memcpy(pbyBuf+8, (u8 *)&dwRevIVCounter, 3);
215 memcpy(pbyBuf+11, pTransmitKey->abyKey,
216 pTransmitKey->uKeyLength);
219 memcpy(pDevice->abyPRNG, pbyBuf, 16);
221 /* Append IV after Mac Header */
222 *pdwIV &= WEP_IV_MASK;
223 *pdwIV |= (u32)pDevice->byKeyIndex << 30;
224 *pdwIV = cpu_to_le32(*pdwIV);
226 pDevice->dwIVCounter++;
227 if (pDevice->dwIVCounter > WEP_IV_MASK)
228 pDevice->dwIVCounter = 0;
230 break;
231 case KEY_CTL_TKIP:
232 pTransmitKey->wTSC15_0++;
233 if (pTransmitKey->wTSC15_0 == 0)
234 pTransmitKey->dwTSC47_16++;
236 TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
237 pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16,
238 pDevice->abyPRNG);
239 memcpy(pbyBuf, pDevice->abyPRNG, 16);
241 /* Make IV */
242 memcpy(pdwIV, pDevice->abyPRNG, 3);
244 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
245 0xc0) | 0x20);
246 /* Append IV&ExtIV after Mac Header */
247 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
249 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
250 "vFillTxKey()---- pdwExtIV: %x\n", *pdwExtIV);
252 break;
253 case KEY_CTL_CCMP:
254 pTransmitKey->wTSC15_0++;
255 if (pTransmitKey->wTSC15_0 == 0)
256 pTransmitKey->dwTSC47_16++;
258 memcpy(pbyBuf, pTransmitKey->abyKey, 16);
260 /* Make IV */
261 *pdwIV = 0;
262 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
263 0xc0) | 0x20);
265 *pdwIV |= cpu_to_le16((u16)(pTransmitKey->wTSC15_0));
267 /* Append IV&ExtIV after Mac Header */
268 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
270 if (!mic_hdr)
271 return;
273 /* MICHDR0 */
274 mic_hdr->id = 0x59;
275 mic_hdr->payload_len = cpu_to_be16(wPayloadLen);
276 memcpy(mic_hdr->mic_addr2, pMACHeader->addr2, ETH_ALEN);
278 mic_hdr->tsc_47_16 = cpu_to_be32(pTransmitKey->dwTSC47_16);
279 mic_hdr->tsc_15_0 = cpu_to_be16(pTransmitKey->wTSC15_0);
281 /* MICHDR1 */
282 if (pDevice->bLongHeader)
283 mic_hdr->hlen = cpu_to_be16(28);
284 else
285 mic_hdr->hlen = cpu_to_be16(22);
287 memcpy(mic_hdr->addr1, pMACHeader->addr1, ETH_ALEN);
288 memcpy(mic_hdr->addr2, pMACHeader->addr2, ETH_ALEN);
290 /* MICHDR2 */
291 memcpy(mic_hdr->addr3, pMACHeader->addr3, ETH_ALEN);
292 mic_hdr->frame_control = cpu_to_le16(pMACHeader->frame_control
293 & 0xc78f);
294 mic_hdr->seq_ctrl = cpu_to_le16(pMACHeader->seq_ctrl & 0xf);
296 if (pDevice->bLongHeader)
297 memcpy(mic_hdr->addr4, pMACHeader->addr4, ETH_ALEN);
301 static void s_vSWencryption(struct vnt_private *pDevice,
302 PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize)
304 u32 cbICVlen = 4;
305 u32 dwICV = 0xffffffff;
306 u32 *pdwICV;
308 if (pTransmitKey == NULL)
309 return;
311 if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
312 //=======================================================================
313 // Append ICV after payload
314 dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
315 pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
316 // finally, we must invert dwCRC to get the correct answer
317 *pdwICV = cpu_to_le32(~dwICV);
318 // RC4 encryption
319 rc4_init(&pDevice->SBox, pDevice->abyPRNG, pTransmitKey->uKeyLength + 3);
320 rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
321 //=======================================================================
322 } else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
323 //=======================================================================
324 //Append ICV after payload
325 dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
326 pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
327 // finally, we must invert dwCRC to get the correct answer
328 *pdwICV = cpu_to_le32(~dwICV);
329 // RC4 encryption
330 rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
331 rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
332 //=======================================================================
336 static u16 vnt_time_stamp_off(struct vnt_private *priv, u16 rate)
338 return cpu_to_le16(wTimeStampOff[priv->byPreambleType % 2]
339 [rate % MAX_RATE]);
342 /*byPktType : PK_TYPE_11A 0
343 PK_TYPE_11B 1
344 PK_TYPE_11GB 2
345 PK_TYPE_11GA 3
347 static u32 s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
348 u32 cbFrameLength, u16 wRate, int bNeedAck)
350 u32 uDataTime, uAckTime;
352 uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wRate);
353 if (byPktType == PK_TYPE_11B) {//llb,CCK mode
354 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopCCKBasicRate);
355 } else {//11g 2.4G OFDM mode & 11a 5G OFDM mode
356 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopOFDMBasicRate);
359 if (bNeedAck) {
360 return (uDataTime + pDevice->uSIFS + uAckTime);
362 else {
363 return uDataTime;
367 static u16 vnt_rxtx_rsvtime_le16(struct vnt_private *priv, u8 pkt_type,
368 u32 frame_length, u16 rate, int need_ack)
370 return cpu_to_le16((u16)s_uGetTxRsvTime(priv, pkt_type,
371 frame_length, rate, need_ack));
374 //byFreqType: 0=>5GHZ 1=>2.4GHZ
375 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice,
376 u8 byRTSRsvType, u8 byPktType, u32 cbFrameLength, u16 wCurrentRate)
378 u32 uRrvTime, uRTSTime, uCTSTime, uAckTime, uDataTime;
380 uRrvTime = uRTSTime = uCTSTime = uAckTime = uDataTime = 0;
382 uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wCurrentRate);
383 if (byRTSRsvType == 0) { //RTSTxRrvTime_bb
384 uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
385 uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
387 else if (byRTSRsvType == 1){ //RTSTxRrvTime_ba, only in 2.4GHZ
388 uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
389 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
390 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
392 else if (byRTSRsvType == 2) { //RTSTxRrvTime_aa
393 uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopOFDMBasicRate);
394 uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
396 else if (byRTSRsvType == 3) { //CTSTxRrvTime_ba, only in 2.4GHZ
397 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
398 uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
399 uRrvTime = uCTSTime + uAckTime + uDataTime + 2*pDevice->uSIFS;
400 return uRrvTime;
403 //RTSRrvTime
404 uRrvTime = uRTSTime + uCTSTime + uAckTime + uDataTime + 3*pDevice->uSIFS;
405 return cpu_to_le16((u16)uRrvTime);
408 //byFreqType 0: 5GHz, 1:2.4Ghz
409 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
410 u8 byPktType, int bNeedAck)
412 u32 uAckTime = 0;
414 if (bNeedAck) {
415 if (byPktType == PK_TYPE_11B)
416 uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
417 byPktType, 14, pDevice->byTopCCKBasicRate);
418 else
419 uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
420 byPktType, 14, pDevice->byTopOFDMBasicRate);
421 return cpu_to_le16((u16)(pDevice->uSIFS + uAckTime));
424 return 0;
427 //byFreqType: 0=>5GHZ 1=>2.4GHZ
428 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice, u8 byDurType,
429 u32 cbFrameLength, u8 byPktType, u16 wRate, int bNeedAck,
430 u8 byFBOption)
432 u32 uCTSTime = 0, uDurTime = 0;
434 switch (byDurType) {
436 case RTSDUR_BB: //RTSDuration_bb
437 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
438 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
439 break;
441 case RTSDUR_BA: //RTSDuration_ba
442 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
443 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
444 break;
446 case RTSDUR_AA: //RTSDuration_aa
447 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
448 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
449 break;
451 case CTSDUR_BA: //CTSDuration_ba
452 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
453 break;
455 case RTSDUR_BA_F0: //RTSDuration_ba_f0
456 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
457 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
458 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
459 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
460 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
462 break;
464 case RTSDUR_AA_F0: //RTSDuration_aa_f0
465 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
466 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
467 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
468 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
469 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
471 break;
473 case RTSDUR_BA_F1: //RTSDuration_ba_f1
474 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
475 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
476 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
477 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
478 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
480 break;
482 case RTSDUR_AA_F1: //RTSDuration_aa_f1
483 uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
484 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
485 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
486 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
487 uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
489 break;
491 case CTSDUR_BA_F0: //CTSDuration_ba_f0
492 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
493 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
494 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
495 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
497 break;
499 case CTSDUR_BA_F1: //CTSDuration_ba_f1
500 if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
501 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
502 } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
503 uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
505 break;
507 default:
508 break;
511 return cpu_to_le16((u16)uDurTime);
514 static u32 s_uFillDataHead(struct vnt_private *pDevice,
515 u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
516 u32 uDMAIdx, int bNeedAck, u8 byFBOption)
519 if (pTxDataHead == NULL) {
520 return 0;
523 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
524 if (byFBOption == AUTO_FB_NONE) {
525 struct vnt_tx_datahead_g *pBuf =
526 (struct vnt_tx_datahead_g *)pTxDataHead;
527 //Get SignalField,ServiceField,Length
528 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
529 byPktType, &pBuf->a);
530 BBvCalculateParameter(pDevice, cbFrameLength,
531 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
532 //Get Duration and TimeStamp
533 pBuf->wDuration_a = s_uGetDataDuration(pDevice,
534 byPktType, bNeedAck);
535 pBuf->wDuration_b = s_uGetDataDuration(pDevice,
536 PK_TYPE_11B, bNeedAck);
538 pBuf->wTimeStampOff_a = vnt_time_stamp_off(pDevice,
539 wCurrentRate);
540 pBuf->wTimeStampOff_b = vnt_time_stamp_off(pDevice,
541 pDevice->byTopCCKBasicRate);
542 return (pBuf->wDuration_a);
543 } else {
544 // Auto Fallback
545 struct vnt_tx_datahead_g_fb *pBuf =
546 (struct vnt_tx_datahead_g_fb *)pTxDataHead;
547 //Get SignalField,ServiceField,Length
548 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
549 byPktType, &pBuf->a);
550 BBvCalculateParameter(pDevice, cbFrameLength,
551 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
552 //Get Duration and TimeStamp
553 pBuf->wDuration_a = s_uGetDataDuration(pDevice,
554 byPktType, bNeedAck);
555 pBuf->wDuration_b = s_uGetDataDuration(pDevice,
556 PK_TYPE_11B, bNeedAck);
557 pBuf->wDuration_a_f0 = s_uGetDataDuration(pDevice,
558 byPktType, bNeedAck);
559 pBuf->wDuration_a_f1 = s_uGetDataDuration(pDevice,
560 byPktType, bNeedAck);
561 pBuf->wTimeStampOff_a = vnt_time_stamp_off(pDevice,
562 wCurrentRate);
563 pBuf->wTimeStampOff_b = vnt_time_stamp_off(pDevice,
564 pDevice->byTopCCKBasicRate);
565 return (pBuf->wDuration_a);
566 } //if (byFBOption == AUTO_FB_NONE)
568 else if (byPktType == PK_TYPE_11A) {
569 if (byFBOption != AUTO_FB_NONE) {
570 struct vnt_tx_datahead_a_fb *pBuf =
571 (struct vnt_tx_datahead_a_fb *)pTxDataHead;
572 //Get SignalField,ServiceField,Length
573 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
574 byPktType, &pBuf->a);
575 //Get Duration and TimeStampOff
576 pBuf->wDuration = s_uGetDataDuration(pDevice,
577 byPktType, bNeedAck);
578 pBuf->wDuration_f0 = s_uGetDataDuration(pDevice,
579 byPktType, bNeedAck);
580 pBuf->wDuration_f1 = s_uGetDataDuration(pDevice,
581 byPktType, bNeedAck);
582 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
583 wCurrentRate);
584 return (pBuf->wDuration);
585 } else {
586 struct vnt_tx_datahead_ab *pBuf =
587 (struct vnt_tx_datahead_ab *)pTxDataHead;
588 //Get SignalField,ServiceField,Length
589 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
590 byPktType, &pBuf->ab);
591 //Get Duration and TimeStampOff
592 pBuf->wDuration = s_uGetDataDuration(pDevice,
593 byPktType, bNeedAck);
594 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
595 wCurrentRate);
596 return (pBuf->wDuration);
599 else if (byPktType == PK_TYPE_11B) {
600 struct vnt_tx_datahead_ab *pBuf =
601 (struct vnt_tx_datahead_ab *)pTxDataHead;
602 //Get SignalField,ServiceField,Length
603 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
604 byPktType, &pBuf->ab);
605 //Get Duration and TimeStampOff
606 pBuf->wDuration = s_uGetDataDuration(pDevice,
607 byPktType, bNeedAck);
608 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
609 wCurrentRate);
610 return (pBuf->wDuration);
612 return 0;
615 static int vnt_fill_ieee80211_rts(struct vnt_private *priv,
616 struct ieee80211_rts *rts, struct ethhdr *eth_hdr,
617 u16 duration)
619 rts->duration = duration;
620 rts->frame_control = TYPE_CTL_RTS;
622 if (priv->eOPMode == OP_MODE_ADHOC || priv->eOPMode == OP_MODE_AP)
623 memcpy(rts->ra, eth_hdr->h_dest, ETH_ALEN);
624 else
625 memcpy(rts->ra, priv->abyBSSID, ETH_ALEN);
627 if (priv->eOPMode == OP_MODE_AP)
628 memcpy(rts->ta, priv->abyBSSID, ETH_ALEN);
629 else
630 memcpy(rts->ta, eth_hdr->h_source, ETH_ALEN);
632 return 0;
635 static int vnt_rxtx_rts_g_head(struct vnt_private *priv,
636 struct vnt_rts_g *buf, struct ethhdr *eth_hdr,
637 u8 pkt_type, u32 frame_len, int need_ack,
638 u16 current_rate, u8 fb_option)
640 u16 rts_frame_len = 20;
642 BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
643 PK_TYPE_11B, &buf->b);
644 BBvCalculateParameter(priv, rts_frame_len,
645 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
647 buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
648 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
649 buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
650 pkt_type, current_rate, need_ack, fb_option);
651 buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
652 pkt_type, current_rate, need_ack, fb_option);
654 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
656 return 0;
659 static int vnt_rxtx_rts_g_fb_head(struct vnt_private *priv,
660 struct vnt_rts_g_fb *buf, struct ethhdr *eth_hdr,
661 u8 pkt_type, u32 frame_len, int need_ack,
662 u16 current_rate, u8 fb_option)
664 u16 rts_frame_len = 20;
666 BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
667 PK_TYPE_11B, &buf->b);
668 BBvCalculateParameter(priv, rts_frame_len,
669 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
672 buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
673 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
674 buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
675 pkt_type, current_rate, need_ack, fb_option);
676 buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
677 pkt_type, current_rate, need_ack, fb_option);
680 buf->wRTSDuration_ba_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F0,
681 frame_len, pkt_type, current_rate, need_ack, fb_option);
682 buf->wRTSDuration_aa_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
683 frame_len, pkt_type, current_rate, need_ack, fb_option);
684 buf->wRTSDuration_ba_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F1,
685 frame_len, pkt_type, current_rate, need_ack, fb_option);
686 buf->wRTSDuration_aa_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
687 frame_len, pkt_type, current_rate, need_ack, fb_option);
689 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
691 return 0;
694 static int vnt_rxtx_rts_ab_head(struct vnt_private *priv,
695 struct vnt_rts_ab *buf, struct ethhdr *eth_hdr,
696 u8 pkt_type, u32 frame_len, int need_ack,
697 u16 current_rate, u8 fb_option)
699 u16 rts_frame_len = 20;
701 BBvCalculateParameter(priv, rts_frame_len,
702 priv->byTopOFDMBasicRate, pkt_type, &buf->ab);
704 buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
705 pkt_type, current_rate, need_ack, fb_option);
707 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
709 return 0;
712 static int vnt_rxtx_rts_a_fb_head(struct vnt_private *priv,
713 struct vnt_rts_a_fb *buf, struct ethhdr *eth_hdr,
714 u8 pkt_type, u32 frame_len, int need_ack,
715 u16 current_rate, u8 fb_option)
717 u16 rts_frame_len = 20;
719 BBvCalculateParameter(priv, rts_frame_len,
720 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
722 buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
723 pkt_type, current_rate, need_ack, fb_option);
725 buf->wRTSDuration_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
726 frame_len, pkt_type, current_rate, need_ack, fb_option);
728 buf->wRTSDuration_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
729 frame_len, pkt_type, current_rate, need_ack, fb_option);
731 vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
733 return 0;
736 static void s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
737 union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
738 struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption)
741 if (!head)
742 return;
744 /* Note: So far RTSHead doesn't appear in ATIM
745 * & Beacom DMA, so we don't need to take them
746 * into account.
747 * Otherwise, we need to modified codes for them.
749 switch (byPktType) {
750 case PK_TYPE_11GB:
751 case PK_TYPE_11GA:
752 if (byFBOption == AUTO_FB_NONE)
753 vnt_rxtx_rts_g_head(pDevice, &head->rts_g,
754 psEthHeader, byPktType, cbFrameLength,
755 bNeedAck, wCurrentRate, byFBOption);
756 else
757 vnt_rxtx_rts_g_fb_head(pDevice, &head->rts_g_fb,
758 psEthHeader, byPktType, cbFrameLength,
759 bNeedAck, wCurrentRate, byFBOption);
760 break;
761 case PK_TYPE_11A:
762 if (byFBOption) {
763 vnt_rxtx_rts_a_fb_head(pDevice, &head->rts_a_fb,
764 psEthHeader, byPktType, cbFrameLength,
765 bNeedAck, wCurrentRate, byFBOption);
766 break;
768 case PK_TYPE_11B:
769 vnt_rxtx_rts_ab_head(pDevice, &head->rts_ab,
770 psEthHeader, byPktType, cbFrameLength,
771 bNeedAck, wCurrentRate, byFBOption);
775 static void s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
776 u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
777 int bNeedAck, u16 wCurrentRate, u8 byFBOption)
779 u32 uCTSFrameLen = 14;
781 if (!head)
782 return;
784 if (byFBOption != AUTO_FB_NONE) {
785 /* Auto Fall back */
786 struct vnt_cts_fb *pBuf = &head->cts_g_fb;
787 /* Get SignalField,ServiceField,Length */
788 BBvCalculateParameter(pDevice, uCTSFrameLen,
789 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
790 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice, CTSDUR_BA,
791 cbFrameLength, byPktType,
792 wCurrentRate, bNeedAck, byFBOption);
793 /* Get CTSDuration_ba_f0 */
794 pBuf->wCTSDuration_ba_f0 = s_uGetRTSCTSDuration(pDevice,
795 CTSDUR_BA_F0, cbFrameLength, byPktType, wCurrentRate,
796 bNeedAck, byFBOption);
797 /* Get CTSDuration_ba_f1 */
798 pBuf->wCTSDuration_ba_f1 = s_uGetRTSCTSDuration(pDevice,
799 CTSDUR_BA_F1, cbFrameLength, byPktType, wCurrentRate,
800 bNeedAck, byFBOption);
801 /* Get CTS Frame body */
802 pBuf->data.duration = pBuf->wDuration_ba;
803 pBuf->data.frame_control = TYPE_CTL_CTS;
804 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
805 } else {
806 struct vnt_cts *pBuf = &head->cts_g;
807 /* Get SignalField,ServiceField,Length */
808 BBvCalculateParameter(pDevice, uCTSFrameLen,
809 pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
810 /* Get CTSDuration_ba */
811 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice,
812 CTSDUR_BA, cbFrameLength, byPktType,
813 wCurrentRate, bNeedAck, byFBOption);
814 /*Get CTS Frame body*/
815 pBuf->data.duration = pBuf->wDuration_ba;
816 pBuf->data.frame_control = TYPE_CTL_CTS;
817 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
823 * Description:
824 * Generate FIFO control for MAC & Baseband controller
826 * Parameters:
827 * In:
828 * pDevice - Pointer to adpater
829 * pTxDataHead - Transmit Data Buffer
830 * pTxBufHead - pTxBufHead
831 * pvRrvTime - pvRrvTime
832 * pvRTS - RTS Buffer
833 * pCTS - CTS Buffer
834 * cbFrameSize - Transmit Data Length (Hdr+Payload+FCS)
835 * bNeedACK - If need ACK
836 * uDMAIdx - DMA Index
837 * Out:
838 * none
840 * Return Value: none
844 static void s_vGenerateTxParameter(struct vnt_private *pDevice,
845 u8 byPktType, u16 wCurrentRate, void *pTxBufHead, void *pvRrvTime,
846 void *rts_cts, u32 cbFrameSize, int bNeedACK, u32 uDMAIdx,
847 struct ethhdr *psEthHeader, bool need_rts)
849 union vnt_tx_data_head *head = rts_cts;
850 u32 cbMACHdLen = WLAN_HDR_ADDR3_LEN; /* 24 */
851 u16 wFifoCtl;
852 u8 byFBOption = AUTO_FB_NONE;
854 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter...\n");
855 PSTxBufHead pFifoHead = (PSTxBufHead)pTxBufHead;
856 pFifoHead->wReserved = wCurrentRate;
857 wFifoCtl = pFifoHead->wFIFOCtl;
859 if (wFifoCtl & FIFOCTL_AUTO_FB_0) {
860 byFBOption = AUTO_FB_0;
862 else if (wFifoCtl & FIFOCTL_AUTO_FB_1) {
863 byFBOption = AUTO_FB_1;
866 if (!pvRrvTime)
867 return;
869 if (pDevice->bLongHeader)
870 cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
872 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
873 if (need_rts) {
874 //Fill RsvTime
875 struct vnt_rrv_time_rts *pBuf =
876 (struct vnt_rrv_time_rts *)pvRrvTime;
877 pBuf->wRTSTxRrvTime_aa = s_uGetRTSCTSRsvTime(pDevice, 2,
878 byPktType, cbFrameSize, wCurrentRate);
879 pBuf->wRTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 1,
880 byPktType, cbFrameSize, wCurrentRate);
881 pBuf->wRTSTxRrvTime_bb = s_uGetRTSCTSRsvTime(pDevice, 0,
882 byPktType, cbFrameSize, wCurrentRate);
883 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice,
884 byPktType, cbFrameSize, wCurrentRate, bNeedACK);
885 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
886 PK_TYPE_11B, cbFrameSize, pDevice->byTopCCKBasicRate,
887 bNeedACK);
888 /* Fill RTS */
889 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
890 bNeedACK, psEthHeader, wCurrentRate, byFBOption);
892 else {//RTS_needless, PCF mode
893 //Fill RsvTime
894 struct vnt_rrv_time_cts *pBuf =
895 (struct vnt_rrv_time_cts *)pvRrvTime;
896 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
897 cbFrameSize, wCurrentRate, bNeedACK);
898 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
899 PK_TYPE_11B, cbFrameSize,
900 pDevice->byTopCCKBasicRate, bNeedACK);
901 pBuf->wCTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 3,
902 byPktType, cbFrameSize, wCurrentRate);
903 /* Fill CTS */
904 s_vFillCTSHead(pDevice, uDMAIdx, byPktType, head,
905 cbFrameSize, bNeedACK, wCurrentRate, byFBOption);
908 else if (byPktType == PK_TYPE_11A) {
909 if (need_rts) {
910 //Fill RsvTime
911 struct vnt_rrv_time_ab *pBuf =
912 (struct vnt_rrv_time_ab *)pvRrvTime;
913 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 2,
914 byPktType, cbFrameSize, wCurrentRate);
915 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
916 cbFrameSize, wCurrentRate, bNeedACK);
917 /* Fill RTS */
918 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
919 bNeedACK, psEthHeader, wCurrentRate, byFBOption);
920 } else {
921 //Fill RsvTime
922 struct vnt_rrv_time_ab *pBuf =
923 (struct vnt_rrv_time_ab *)pvRrvTime;
924 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11A,
925 cbFrameSize, wCurrentRate, bNeedACK);
928 else if (byPktType == PK_TYPE_11B) {
929 if (need_rts) {
930 //Fill RsvTime
931 struct vnt_rrv_time_ab *pBuf =
932 (struct vnt_rrv_time_ab *)pvRrvTime;
933 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 0,
934 byPktType, cbFrameSize, wCurrentRate);
935 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
936 cbFrameSize, wCurrentRate, bNeedACK);
937 /* Fill RTS */
938 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
939 bNeedACK, psEthHeader, wCurrentRate, byFBOption);
941 else { //RTS_needless, non PCF mode
942 //Fill RsvTime
943 struct vnt_rrv_time_ab *pBuf =
944 (struct vnt_rrv_time_ab *)pvRrvTime;
945 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
946 cbFrameSize, wCurrentRate, bNeedACK);
949 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter END.\n");
952 u8 * pbyBuffer,//point to pTxBufHead
953 u16 wFragType,//00:Non-Frag, 01:Start, 02:Mid, 03:Last
954 unsigned int cbFragmentSize,//Hdr+payoad+FCS
957 static int s_bPacketToWirelessUsb(struct vnt_private *pDevice, u8 byPktType,
958 struct vnt_tx_buffer *pTxBufHead, int bNeedEncryption,
959 u32 uSkbPacketLen, u32 uDMAIdx, struct ethhdr *psEthHeader,
960 u8 *pPacket, PSKeyItem pTransmitKey, u32 uNodeIndex, u16 wCurrentRate,
961 u32 *pcbHeaderLen, u32 *pcbTotalLen)
963 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
964 u32 cbFrameSize, cbFrameBodySize;
965 u32 cb802_1_H_len;
966 u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbMACHdLen = 0;
967 u32 cbFCSlen = 4, cbMICHDR = 0;
968 int bNeedACK;
969 bool bRTS = false;
970 u8 *pbyType, *pbyMacHdr, *pbyIVHead, *pbyPayloadHead, *pbyTxBufferAddr;
971 u8 abySNAP_RFC1042[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00};
972 u8 abySNAP_Bridgetunnel[ETH_ALEN]
973 = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0xF8};
974 u32 uDuration;
975 u32 cbHeaderLength = 0, uPadding = 0;
976 void *pvRrvTime;
977 struct vnt_mic_hdr *pMICHDR;
978 void *rts_cts = NULL;
979 void *pvTxDataHd;
980 u8 byFBOption = AUTO_FB_NONE, byFragType;
981 u16 wTxBufSize;
982 u32 dwMICKey0, dwMICKey1, dwMIC_Priority;
983 u32 *pdwMIC_L, *pdwMIC_R;
984 int bSoftWEP = false;
986 pvRrvTime = pMICHDR = pvTxDataHd = NULL;
988 if (bNeedEncryption && pTransmitKey->pvKeyTable) {
989 if (((PSKeyTable)pTransmitKey->pvKeyTable)->bSoftWEP == true)
990 bSoftWEP = true; /* WEP 256 */
993 // Get pkt type
994 if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
995 if (pDevice->dwDiagRefCount == 0) {
996 cb802_1_H_len = 8;
997 } else {
998 cb802_1_H_len = 2;
1000 } else {
1001 cb802_1_H_len = 0;
1004 cbFrameBodySize = uSkbPacketLen - ETH_HLEN + cb802_1_H_len;
1006 //Set packet type
1007 pTxBufHead->wFIFOCtl |= (u16)(byPktType<<8);
1009 if (pDevice->dwDiagRefCount != 0) {
1010 bNeedACK = false;
1011 pTxBufHead->wFIFOCtl = pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1012 } else { //if (pDevice->dwDiagRefCount != 0) {
1013 if ((pDevice->eOPMode == OP_MODE_ADHOC) ||
1014 (pDevice->eOPMode == OP_MODE_AP)) {
1015 if (is_multicast_ether_addr(psEthHeader->h_dest)) {
1016 bNeedACK = false;
1017 pTxBufHead->wFIFOCtl =
1018 pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1019 } else {
1020 bNeedACK = true;
1021 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1024 else {
1025 // MSDUs in Infra mode always need ACK
1026 bNeedACK = true;
1027 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1029 } //if (pDevice->dwDiagRefCount != 0) {
1031 pTxBufHead->wTimeStamp = DEFAULT_MSDU_LIFETIME_RES_64us;
1033 //Set FIFOCTL_LHEAD
1034 if (pDevice->bLongHeader)
1035 pTxBufHead->wFIFOCtl |= FIFOCTL_LHEAD;
1037 //Set FRAGCTL_MACHDCNT
1038 if (pDevice->bLongHeader) {
1039 cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
1040 } else {
1041 cbMACHdLen = WLAN_HDR_ADDR3_LEN;
1043 pTxBufHead->wFragCtl |= (u16)(cbMACHdLen << 10);
1045 //Set FIFOCTL_GrpAckPolicy
1046 if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1047 pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1050 //Set Auto Fallback Ctl
1051 if (wCurrentRate >= RATE_18M) {
1052 if (pDevice->byAutoFBCtrl == AUTO_FB_0) {
1053 pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_0;
1054 byFBOption = AUTO_FB_0;
1055 } else if (pDevice->byAutoFBCtrl == AUTO_FB_1) {
1056 pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_1;
1057 byFBOption = AUTO_FB_1;
1061 if (bSoftWEP != true) {
1062 if ((bNeedEncryption) && (pTransmitKey != NULL)) { //WEP enabled
1063 if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) { //WEP40 or WEP104
1064 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1066 if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1067 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Tx Set wFragCtl == FRAGCTL_TKIP\n");
1068 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1070 else if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) { //CCMP
1071 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1076 if ((bNeedEncryption) && (pTransmitKey != NULL)) {
1077 if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
1078 cbIVlen = 4;
1079 cbICVlen = 4;
1081 else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1082 cbIVlen = 8;//IV+ExtIV
1083 cbMIClen = 8;
1084 cbICVlen = 4;
1086 if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) {
1087 cbIVlen = 8;//RSN Header
1088 cbICVlen = 8;//MIC
1089 cbMICHDR = sizeof(struct vnt_mic_hdr);
1091 if (bSoftWEP == false) {
1092 //MAC Header should be padding 0 to DW alignment.
1093 uPadding = 4 - (cbMACHdLen%4);
1094 uPadding %= 4;
1098 cbFrameSize = cbMACHdLen + cbIVlen + (cbFrameBodySize + cbMIClen) + cbICVlen + cbFCSlen;
1100 if ( (bNeedACK == false) ||(cbFrameSize < pDevice->wRTSThreshold) ) {
1101 bRTS = false;
1102 } else {
1103 bRTS = true;
1104 pTxBufHead->wFIFOCtl |= (FIFOCTL_RTS | FIFOCTL_LRETRY);
1107 pbyTxBufferAddr = (u8 *) &(pTxBufHead->adwTxKey[0]);
1108 wTxBufSize = sizeof(STxBufHead);
1109 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1110 if (byFBOption == AUTO_FB_NONE) {
1111 if (bRTS == true) {//RTS_need
1112 pvRrvTime = (struct vnt_rrv_time_rts *)
1113 (pbyTxBufferAddr + wTxBufSize);
1114 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1115 sizeof(struct vnt_rrv_time_rts));
1116 rts_cts = (struct vnt_rts_g *) (pbyTxBufferAddr + wTxBufSize +
1117 sizeof(struct vnt_rrv_time_rts) + cbMICHDR);
1118 pvTxDataHd = (struct vnt_tx_datahead_g *) (pbyTxBufferAddr +
1119 wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1120 cbMICHDR + sizeof(struct vnt_rts_g));
1121 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1122 cbMICHDR + sizeof(struct vnt_rts_g) +
1123 sizeof(struct vnt_tx_datahead_g);
1125 else { //RTS_needless
1126 pvRrvTime = (struct vnt_rrv_time_cts *)
1127 (pbyTxBufferAddr + wTxBufSize);
1128 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1129 sizeof(struct vnt_rrv_time_cts));
1130 rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
1131 sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
1132 pvTxDataHd = (struct vnt_tx_datahead_g *)(pbyTxBufferAddr +
1133 wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1134 cbMICHDR + sizeof(struct vnt_cts));
1135 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1136 cbMICHDR + sizeof(struct vnt_cts) +
1137 sizeof(struct vnt_tx_datahead_g);
1139 } else {
1140 // Auto Fall Back
1141 if (bRTS == true) {//RTS_need
1142 pvRrvTime = (struct vnt_rrv_time_rts *)(pbyTxBufferAddr +
1143 wTxBufSize);
1144 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1145 sizeof(struct vnt_rrv_time_rts));
1146 rts_cts = (struct vnt_rts_g_fb *)(pbyTxBufferAddr + wTxBufSize +
1147 sizeof(struct vnt_rrv_time_rts) + cbMICHDR);
1148 pvTxDataHd = (struct vnt_tx_datahead_g_fb *) (pbyTxBufferAddr +
1149 wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1150 cbMICHDR + sizeof(struct vnt_rts_g_fb));
1151 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1152 cbMICHDR + sizeof(struct vnt_rts_g_fb) +
1153 sizeof(struct vnt_tx_datahead_g_fb);
1155 else if (bRTS == false) { //RTS_needless
1156 pvRrvTime = (struct vnt_rrv_time_cts *)
1157 (pbyTxBufferAddr + wTxBufSize);
1158 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1159 sizeof(struct vnt_rrv_time_cts));
1160 rts_cts = (struct vnt_cts_fb *) (pbyTxBufferAddr + wTxBufSize +
1161 sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
1162 pvTxDataHd = (struct vnt_tx_datahead_g_fb *) (pbyTxBufferAddr +
1163 wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1164 cbMICHDR + sizeof(struct vnt_cts_fb));
1165 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1166 cbMICHDR + sizeof(struct vnt_cts_fb) +
1167 sizeof(struct vnt_tx_datahead_g_fb);
1169 } // Auto Fall Back
1171 else {//802.11a/b packet
1172 if (byFBOption == AUTO_FB_NONE) {
1173 if (bRTS == true) {//RTS_need
1174 pvRrvTime = (struct vnt_rrv_time_ab *) (pbyTxBufferAddr +
1175 wTxBufSize);
1176 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1177 sizeof(struct vnt_rrv_time_ab));
1178 rts_cts = (struct vnt_rts_ab *) (pbyTxBufferAddr + wTxBufSize +
1179 sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1180 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1181 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1182 sizeof(struct vnt_rts_ab));
1183 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1184 cbMICHDR + sizeof(struct vnt_rts_ab) +
1185 sizeof(struct vnt_tx_datahead_ab);
1187 else if (bRTS == false) { //RTS_needless, no MICHDR
1188 pvRrvTime = (struct vnt_rrv_time_ab *)(pbyTxBufferAddr +
1189 wTxBufSize);
1190 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1191 sizeof(struct vnt_rrv_time_ab));
1192 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1193 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1194 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1195 cbMICHDR + sizeof(struct vnt_tx_datahead_ab);
1197 } else {
1198 // Auto Fall Back
1199 if (bRTS == true) {//RTS_need
1200 pvRrvTime = (struct vnt_rrv_time_ab *)(pbyTxBufferAddr +
1201 wTxBufSize);
1202 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1203 sizeof(struct vnt_rrv_time_ab));
1204 rts_cts = (struct vnt_rts_a_fb *)(pbyTxBufferAddr + wTxBufSize +
1205 sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1206 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1207 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1208 sizeof(struct vnt_rts_a_fb));
1209 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1210 cbMICHDR + sizeof(struct vnt_rts_a_fb) +
1211 sizeof(struct vnt_tx_datahead_a_fb);
1213 else if (bRTS == false) { //RTS_needless
1214 pvRrvTime = (struct vnt_rrv_time_ab *)(pbyTxBufferAddr +
1215 wTxBufSize);
1216 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1217 sizeof(struct vnt_rrv_time_ab));
1218 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1219 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1220 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1221 cbMICHDR + sizeof(struct vnt_tx_datahead_a_fb);
1223 } // Auto Fall Back
1226 pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderLength);
1227 pbyIVHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding);
1228 pbyPayloadHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding + cbIVlen);
1230 //=========================
1231 // No Fragmentation
1232 //=========================
1233 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Fragmentation...\n");
1234 byFragType = FRAGCTL_NONFRAG;
1235 //uDMAIdx = TYPE_AC0DMA;
1236 //pTxBufHead = (PSTxBufHead) &(pTxBufHead->adwTxKey[0]);
1238 //Fill FIFO,RrvTime,RTS,and CTS
1239 s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1240 (void *)pbyTxBufferAddr, pvRrvTime, rts_cts,
1241 cbFrameSize, bNeedACK, uDMAIdx, psEthHeader, bRTS);
1242 //Fill DataHead
1243 uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, uDMAIdx, bNeedACK,
1244 byFBOption);
1245 // Generate TX MAC Header
1246 s_vGenerateMACHeader(pDevice, pbyMacHdr, (u16)uDuration, psEthHeader, bNeedEncryption,
1247 byFragType, uDMAIdx, 0);
1249 if (bNeedEncryption == true) {
1250 //Fill TXKEY
1251 s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1252 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
1254 if (pDevice->bEnableHostWEP) {
1255 pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
1256 pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
1260 // 802.1H
1261 if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
1262 if (pDevice->dwDiagRefCount == 0) {
1263 if ((psEthHeader->h_proto == cpu_to_be16(ETH_P_IPX)) ||
1264 (psEthHeader->h_proto == cpu_to_le16(0xF380))) {
1265 memcpy((u8 *) (pbyPayloadHead),
1266 abySNAP_Bridgetunnel, 6);
1267 } else {
1268 memcpy((u8 *) (pbyPayloadHead), &abySNAP_RFC1042[0], 6);
1270 pbyType = (u8 *) (pbyPayloadHead + 6);
1271 memcpy(pbyType, &(psEthHeader->h_proto), sizeof(u16));
1272 } else {
1273 memcpy((u8 *) (pbyPayloadHead), &(psEthHeader->h_proto), sizeof(u16));
1279 if (pPacket != NULL) {
1280 // Copy the Packet into a tx Buffer
1281 memcpy((pbyPayloadHead + cb802_1_H_len),
1282 (pPacket + ETH_HLEN),
1283 uSkbPacketLen - ETH_HLEN
1286 } else {
1287 // while bRelayPacketSend psEthHeader is point to header+payload
1288 memcpy((pbyPayloadHead + cb802_1_H_len), ((u8 *)psEthHeader) + ETH_HLEN, uSkbPacketLen - ETH_HLEN);
1291 if ((bNeedEncryption == true) && (pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
1293 ///////////////////////////////////////////////////////////////////
1295 if (pDevice->vnt_mgmt.eAuthenMode == WMAC_AUTH_WPANONE) {
1296 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1297 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1299 else if ((pTransmitKey->dwKeyIndex & AUTHENTICATOR_KEY) != 0) {
1300 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1301 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1303 else {
1304 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[24]);
1305 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[28]);
1307 // DO Software Michael
1308 MIC_vInit(dwMICKey0, dwMICKey1);
1309 MIC_vAppend((u8 *)&(psEthHeader->h_dest[0]), 12);
1310 dwMIC_Priority = 0;
1311 MIC_vAppend((u8 *)&dwMIC_Priority, 4);
1312 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC KEY: %X, %X\n",
1313 dwMICKey0, dwMICKey1);
1315 ///////////////////////////////////////////////////////////////////
1317 //DBG_PRN_GRP12(("Length:%d, %d\n", cbFrameBodySize, uFromHDtoPLDLength));
1318 //for (ii = 0; ii < cbFrameBodySize; ii++) {
1319 // DBG_PRN_GRP12(("%02x ", *((u8 *)((pbyPayloadHead + cb802_1_H_len) + ii))));
1321 //DBG_PRN_GRP12(("\n\n\n"));
1323 MIC_vAppend(pbyPayloadHead, cbFrameBodySize);
1325 pdwMIC_L = (u32 *)(pbyPayloadHead + cbFrameBodySize);
1326 pdwMIC_R = (u32 *)(pbyPayloadHead + cbFrameBodySize + 4);
1328 MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
1329 MIC_vUnInit();
1331 if (pDevice->bTxMICFail == true) {
1332 *pdwMIC_L = 0;
1333 *pdwMIC_R = 0;
1334 pDevice->bTxMICFail = false;
1336 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
1337 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderLength, uPadding, cbIVlen);
1338 //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%lX, %lX\n", *pdwMIC_L, *pdwMIC_R);
1341 if (bSoftWEP == true) {
1343 s_vSWencryption(pDevice, pTransmitKey, (pbyPayloadHead), (u16)(cbFrameBodySize + cbMIClen));
1345 } else if ( ((pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) && (bNeedEncryption == true)) ||
1346 ((pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) && (bNeedEncryption == true)) ||
1347 ((pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) && (bNeedEncryption == true)) ) {
1348 cbFrameSize -= cbICVlen;
1351 cbFrameSize -= cbFCSlen;
1353 *pcbHeaderLen = cbHeaderLength;
1354 *pcbTotalLen = cbHeaderLength + cbFrameSize ;
1356 //Set FragCtl in TxBufferHead
1357 pTxBufHead->wFragCtl |= (u16)byFragType;
1359 return true;
1365 * Description:
1366 * Translate 802.3 to 802.11 header
1368 * Parameters:
1369 * In:
1370 * pDevice - Pointer to adapter
1371 * dwTxBufferAddr - Transmit Buffer
1372 * pPacket - Packet from upper layer
1373 * cbPacketSize - Transmit Data Length
1374 * Out:
1375 * pcbHeadSize - Header size of MAC&Baseband control and 802.11 Header
1376 * pcbAppendPayload - size of append payload for 802.1H translation
1378 * Return Value: none
1382 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
1383 u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
1384 int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx)
1386 struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyBufferAddr;
1388 pMACHeader->frame_control = TYPE_802_11_DATA;
1390 if (pDevice->eOPMode == OP_MODE_AP) {
1391 memcpy(&(pMACHeader->addr1[0]),
1392 &(psEthHeader->h_dest[0]),
1393 ETH_ALEN);
1394 memcpy(&(pMACHeader->addr2[0]), &(pDevice->abyBSSID[0]), ETH_ALEN);
1395 memcpy(&(pMACHeader->addr3[0]),
1396 &(psEthHeader->h_source[0]),
1397 ETH_ALEN);
1398 pMACHeader->frame_control |= FC_FROMDS;
1399 } else {
1400 if (pDevice->eOPMode == OP_MODE_ADHOC) {
1401 memcpy(&(pMACHeader->addr1[0]),
1402 &(psEthHeader->h_dest[0]),
1403 ETH_ALEN);
1404 memcpy(&(pMACHeader->addr2[0]),
1405 &(psEthHeader->h_source[0]),
1406 ETH_ALEN);
1407 memcpy(&(pMACHeader->addr3[0]),
1408 &(pDevice->abyBSSID[0]),
1409 ETH_ALEN);
1410 } else {
1411 memcpy(&(pMACHeader->addr3[0]),
1412 &(psEthHeader->h_dest[0]),
1413 ETH_ALEN);
1414 memcpy(&(pMACHeader->addr2[0]),
1415 &(psEthHeader->h_source[0]),
1416 ETH_ALEN);
1417 memcpy(&(pMACHeader->addr1[0]),
1418 &(pDevice->abyBSSID[0]),
1419 ETH_ALEN);
1420 pMACHeader->frame_control |= FC_TODS;
1424 if (bNeedEncrypt)
1425 pMACHeader->frame_control |= cpu_to_le16((u16)WLAN_SET_FC_ISWEP(1));
1427 pMACHeader->duration_id = cpu_to_le16(wDuration);
1429 if (pDevice->bLongHeader) {
1430 PWLAN_80211HDR_A4 pMACA4Header = (PWLAN_80211HDR_A4) pbyBufferAddr;
1431 pMACHeader->frame_control |= (FC_TODS | FC_FROMDS);
1432 memcpy(pMACA4Header->abyAddr4, pDevice->abyBSSID, WLAN_ADDR_LEN);
1434 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1436 //Set FragNumber in Sequence Control
1437 pMACHeader->seq_ctrl |= cpu_to_le16((u16)uFragIdx);
1439 if ((wFragType == FRAGCTL_ENDFRAG) || (wFragType == FRAGCTL_NONFRAG)) {
1440 pDevice->wSeqCounter++;
1441 if (pDevice->wSeqCounter > 0x0fff)
1442 pDevice->wSeqCounter = 0;
1445 if ((wFragType == FRAGCTL_STAFRAG) || (wFragType == FRAGCTL_MIDFRAG)) { //StartFrag or MidFrag
1446 pMACHeader->frame_control |= FC_MOREFRAG;
1452 * Description:
1453 * Request instructs a MAC to transmit a 802.11 management packet through
1454 * the adapter onto the medium.
1456 * Parameters:
1457 * In:
1458 * hDeviceContext - Pointer to the adapter
1459 * pPacket - A pointer to a descriptor for the packet to transmit
1460 * Out:
1461 * none
1463 * Return Value: CMD_STATUS_PENDING if MAC Tx resource available; otherwise false
1467 CMD_STATUS csMgmt_xmit(struct vnt_private *pDevice,
1468 struct vnt_tx_mgmt *pPacket)
1470 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1471 struct vnt_tx_buffer *pTX_Buffer;
1472 PSTxBufHead pTxBufHead;
1473 struct vnt_usb_send_context *pContext;
1474 struct ieee80211_hdr *pMACHeader;
1475 struct ethhdr sEthHeader;
1476 u8 byPktType, *pbyTxBufferAddr;
1477 void *rts_cts = NULL;
1478 void *pvTxDataHd, *pvRrvTime, *pMICHDR;
1479 u32 uDuration, cbReqCount, cbHeaderSize, cbFrameBodySize, cbFrameSize;
1480 int bNeedACK, bIsPSPOLL = false;
1481 u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1482 u32 uPadding = 0;
1483 u16 wTxBufSize;
1484 u32 cbMacHdLen;
1485 u16 wCurrentRate = RATE_1M;
1487 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1489 if (NULL == pContext) {
1490 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1491 return CMD_STATUS_RESOURCES;
1494 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1495 pbyTxBufferAddr = (u8 *)&(pTX_Buffer->adwTxKey[0]);
1496 cbFrameBodySize = pPacket->cbPayloadLen;
1497 pTxBufHead = (PSTxBufHead) pbyTxBufferAddr;
1498 wTxBufSize = sizeof(STxBufHead);
1500 if (pDevice->byBBType == BB_TYPE_11A) {
1501 wCurrentRate = RATE_6M;
1502 byPktType = PK_TYPE_11A;
1503 } else {
1504 wCurrentRate = RATE_1M;
1505 byPktType = PK_TYPE_11B;
1508 // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1509 // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1510 // And cmd timer will wait data pkt TX finish before scanning so it's OK
1511 // to set power here.
1512 if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1513 RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1514 } else {
1515 RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1517 pDevice->wCurrentRate = wCurrentRate;
1519 //Set packet type
1520 if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1521 pTxBufHead->wFIFOCtl = 0;
1523 else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1524 pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1526 else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1527 pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1529 else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1530 pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1533 pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1534 pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1536 if (is_multicast_ether_addr(pPacket->p80211Header->sA3.abyAddr1)) {
1537 bNeedACK = false;
1539 else {
1540 bNeedACK = true;
1541 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1544 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1545 (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1547 pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1548 //Set Preamble type always long
1549 //pDevice->byPreambleType = PREAMBLE_LONG;
1550 // probe-response don't retry
1551 //if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1552 // bNeedACK = false;
1553 // pTxBufHead->wFIFOCtl &= (~FIFOCTL_NEEDACK);
1557 pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1559 if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1560 bIsPSPOLL = true;
1561 cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1562 } else {
1563 cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1566 //Set FRAGCTL_MACHDCNT
1567 pTxBufHead->wFragCtl |= cpu_to_le16((u16)(cbMacHdLen << 10));
1569 // Notes:
1570 // Although spec says MMPDU can be fragmented; In most case,
1571 // no one will send a MMPDU under fragmentation. With RTS may occur.
1572 pDevice->bAES = false; //Set FRAGCTL_WEPTYP
1574 if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1575 if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1576 cbIVlen = 4;
1577 cbICVlen = 4;
1578 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1580 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1581 cbIVlen = 8;//IV+ExtIV
1582 cbMIClen = 8;
1583 cbICVlen = 4;
1584 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1585 //We need to get seed here for filling TxKey entry.
1586 //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1587 // pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1589 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1590 cbIVlen = 8;//RSN Header
1591 cbICVlen = 8;//MIC
1592 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1593 pDevice->bAES = true;
1595 //MAC Header should be padding 0 to DW alignment.
1596 uPadding = 4 - (cbMacHdLen%4);
1597 uPadding %= 4;
1600 cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen;
1602 //Set FIFOCTL_GrpAckPolicy
1603 if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1604 pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1606 //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
1608 //Set RrvTime/RTS/CTS Buffer
1609 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1611 pvRrvTime = (struct vnt_rrv_time_cts *) (pbyTxBufferAddr + wTxBufSize);
1612 pMICHDR = NULL;
1613 rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
1614 sizeof(struct vnt_rrv_time_cts));
1615 pvTxDataHd = (struct vnt_tx_datahead_g *)(pbyTxBufferAddr + wTxBufSize +
1616 sizeof(struct vnt_rrv_time_cts) + sizeof(struct vnt_cts));
1617 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1618 sizeof(struct vnt_cts) + sizeof(struct vnt_tx_datahead_g);
1620 else { // 802.11a/b packet
1621 pvRrvTime = (struct vnt_rrv_time_ab *) (pbyTxBufferAddr + wTxBufSize);
1622 pMICHDR = NULL;
1623 pvTxDataHd = (struct vnt_tx_datahead_ab *) (pbyTxBufferAddr +
1624 wTxBufSize + sizeof(struct vnt_rrv_time_ab));
1625 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1626 sizeof(struct vnt_tx_datahead_ab);
1629 memcpy(&(sEthHeader.h_dest[0]),
1630 &(pPacket->p80211Header->sA3.abyAddr1[0]),
1631 ETH_ALEN);
1632 memcpy(&(sEthHeader.h_source[0]),
1633 &(pPacket->p80211Header->sA3.abyAddr2[0]),
1634 ETH_ALEN);
1635 //=========================
1636 // No Fragmentation
1637 //=========================
1638 pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
1640 /* Fill FIFO,RrvTime,RTS,and CTS */
1641 s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1642 pbyTxBufferAddr, pvRrvTime, rts_cts,
1643 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
1645 //Fill DataHead
1646 uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
1647 AUTO_FB_NONE);
1649 pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
1651 cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + cbFrameBodySize;
1653 if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1654 u8 * pbyIVHead;
1655 u8 * pbyPayloadHead;
1656 u8 * pbyBSSID;
1657 PSKeyItem pTransmitKey = NULL;
1659 pbyIVHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding);
1660 pbyPayloadHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding + cbIVlen);
1661 do {
1662 if ((pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) &&
1663 (pDevice->bLinkPass == true)) {
1664 pbyBSSID = pDevice->abyBSSID;
1665 // get pairwise key
1666 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
1667 // get group key
1668 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
1669 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1670 break;
1672 } else {
1673 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get PTK.\n");
1674 break;
1677 // get group key
1678 pbyBSSID = pDevice->abyBroadcastAddr;
1679 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
1680 pTransmitKey = NULL;
1681 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"KEY is NULL. OP Mode[%d]\n", pDevice->eOPMode);
1682 } else {
1683 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1685 } while(false);
1686 //Fill TXKEY
1687 s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1688 (u8 *)pMACHeader, (u16)cbFrameBodySize, NULL);
1690 memcpy(pMACHeader, pPacket->p80211Header, cbMacHdLen);
1691 memcpy(pbyPayloadHead, ((u8 *)(pPacket->p80211Header) + cbMacHdLen),
1692 cbFrameBodySize);
1694 else {
1695 // Copy the Packet into a tx Buffer
1696 memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1699 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1700 pDevice->wSeqCounter++ ;
1701 if (pDevice->wSeqCounter > 0x0fff)
1702 pDevice->wSeqCounter = 0;
1704 if (bIsPSPOLL) {
1705 // The MAC will automatically replace the Duration-field of MAC header by Duration-field
1706 // of FIFO control header.
1707 // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
1708 // in the same place of other packet's Duration-field).
1709 // And it will cause Cisco-AP to issue Disassociation-packet
1710 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
1711 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_a =
1712 cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1713 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_b =
1714 cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1715 } else {
1716 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
1717 cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1721 pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
1722 pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1723 pTX_Buffer->byType = 0x00;
1725 pContext->pPacket = NULL;
1726 pContext->Type = CONTEXT_MGMT_PACKET;
1727 pContext->uBufLen = (u16)cbReqCount + 4; //USB header
1729 if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
1730 s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pMACHeader->addr1[0]), (u16)cbFrameSize, pTX_Buffer->wFIFOCtl);
1732 else {
1733 s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pMACHeader->addr3[0]), (u16)cbFrameSize, pTX_Buffer->wFIFOCtl);
1736 PIPEnsSendBulkOut(pDevice,pContext);
1737 return CMD_STATUS_PENDING;
1740 CMD_STATUS csBeacon_xmit(struct vnt_private *pDevice,
1741 struct vnt_tx_mgmt *pPacket)
1743 struct vnt_beacon_buffer *pTX_Buffer;
1744 u32 cbFrameSize = pPacket->cbMPDULen + WLAN_FCS_LEN;
1745 u32 cbHeaderSize = 0;
1746 u16 wTxBufSize = sizeof(STxShortBufHead);
1747 PSTxShortBufHead pTxBufHead;
1748 struct ieee80211_hdr *pMACHeader;
1749 struct vnt_tx_datahead_ab *pTxDataHead;
1750 u16 wCurrentRate;
1751 u32 cbFrameBodySize;
1752 u32 cbReqCount;
1753 u8 *pbyTxBufferAddr;
1754 struct vnt_usb_send_context *pContext;
1755 CMD_STATUS status;
1757 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1758 if (NULL == pContext) {
1759 status = CMD_STATUS_RESOURCES;
1760 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1761 return status ;
1764 pTX_Buffer = (struct vnt_beacon_buffer *)&pContext->Data[0];
1765 pbyTxBufferAddr = (u8 *)&(pTX_Buffer->wFIFOCtl);
1767 cbFrameBodySize = pPacket->cbPayloadLen;
1769 pTxBufHead = (PSTxShortBufHead) pbyTxBufferAddr;
1770 wTxBufSize = sizeof(STxShortBufHead);
1772 if (pDevice->byBBType == BB_TYPE_11A) {
1773 wCurrentRate = RATE_6M;
1774 pTxDataHead = (struct vnt_tx_datahead_ab *)
1775 (pbyTxBufferAddr + wTxBufSize);
1776 //Get SignalField,ServiceField,Length
1777 BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11A,
1778 &pTxDataHead->ab);
1779 //Get Duration and TimeStampOff
1780 pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1781 PK_TYPE_11A, false);
1782 pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1783 cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1784 } else {
1785 wCurrentRate = RATE_1M;
1786 pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1787 pTxDataHead = (struct vnt_tx_datahead_ab *)
1788 (pbyTxBufferAddr + wTxBufSize);
1789 //Get SignalField,ServiceField,Length
1790 BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11B,
1791 &pTxDataHead->ab);
1792 //Get Duration and TimeStampOff
1793 pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1794 PK_TYPE_11B, false);
1795 pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1796 cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1799 //Generate Beacon Header
1800 pMACHeader = (struct ieee80211_hdr *)(pbyTxBufferAddr + cbHeaderSize);
1801 memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1803 pMACHeader->duration_id = 0;
1804 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1805 pDevice->wSeqCounter++ ;
1806 if (pDevice->wSeqCounter > 0x0fff)
1807 pDevice->wSeqCounter = 0;
1809 cbReqCount = cbHeaderSize + WLAN_HDR_ADDR3_LEN + cbFrameBodySize;
1811 pTX_Buffer->wTxByteCount = (u16)cbReqCount;
1812 pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1813 pTX_Buffer->byType = 0x01;
1815 pContext->pPacket = NULL;
1816 pContext->Type = CONTEXT_MGMT_PACKET;
1817 pContext->uBufLen = (u16)cbReqCount + 4; //USB header
1819 PIPEnsSendBulkOut(pDevice,pContext);
1820 return CMD_STATUS_PENDING;
1824 void vDMA0_tx_80211(struct vnt_private *pDevice, struct sk_buff *skb)
1826 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1827 struct vnt_tx_buffer *pTX_Buffer;
1828 u8 byPktType;
1829 u8 *pbyTxBufferAddr;
1830 void *rts_cts = NULL;
1831 void *pvTxDataHd;
1832 u32 uDuration, cbReqCount;
1833 struct ieee80211_hdr *pMACHeader;
1834 u32 cbHeaderSize, cbFrameBodySize;
1835 int bNeedACK, bIsPSPOLL = false;
1836 PSTxBufHead pTxBufHead;
1837 u32 cbFrameSize;
1838 u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1839 u32 uPadding = 0;
1840 u32 cbMICHDR = 0, uLength = 0;
1841 u32 dwMICKey0, dwMICKey1;
1842 u32 dwMIC_Priority;
1843 u32 *pdwMIC_L, *pdwMIC_R;
1844 u16 wTxBufSize;
1845 u32 cbMacHdLen;
1846 struct ethhdr sEthHeader;
1847 void *pvRrvTime, *pMICHDR;
1848 u32 wCurrentRate = RATE_1M;
1849 PUWLAN_80211HDR p80211Header;
1850 u32 uNodeIndex = 0;
1851 int bNodeExist = false;
1852 SKeyItem STempKey;
1853 PSKeyItem pTransmitKey = NULL;
1854 u8 *pbyIVHead, *pbyPayloadHead, *pbyMacHdr;
1855 u32 cbExtSuppRate = 0;
1856 struct vnt_usb_send_context *pContext;
1858 pvRrvTime = pMICHDR = pvTxDataHd = NULL;
1860 if(skb->len <= WLAN_HDR_ADDR3_LEN) {
1861 cbFrameBodySize = 0;
1863 else {
1864 cbFrameBodySize = skb->len - WLAN_HDR_ADDR3_LEN;
1866 p80211Header = (PUWLAN_80211HDR)skb->data;
1868 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1870 if (NULL == pContext) {
1871 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0 TX...NO CONTEXT!\n");
1872 dev_kfree_skb_irq(skb);
1873 return ;
1876 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1877 pbyTxBufferAddr = (u8 *)(&pTX_Buffer->adwTxKey[0]);
1878 pTxBufHead = (PSTxBufHead) pbyTxBufferAddr;
1879 wTxBufSize = sizeof(STxBufHead);
1881 if (pDevice->byBBType == BB_TYPE_11A) {
1882 wCurrentRate = RATE_6M;
1883 byPktType = PK_TYPE_11A;
1884 } else {
1885 wCurrentRate = RATE_1M;
1886 byPktType = PK_TYPE_11B;
1889 // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1890 // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1891 // And cmd timer will wait data pkt TX finish before scanning so it's OK
1892 // to set power here.
1893 if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1894 RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1895 } else {
1896 RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1899 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"vDMA0_tx_80211: p80211Header->sA3.wFrameCtl = %x \n", p80211Header->sA3.wFrameCtl);
1901 //Set packet type
1902 if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1903 pTxBufHead->wFIFOCtl = 0;
1905 else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1906 pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1908 else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1909 pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1911 else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1912 pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1915 pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1916 pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1918 if (is_multicast_ether_addr(p80211Header->sA3.abyAddr1)) {
1919 bNeedACK = false;
1920 if (pDevice->bEnableHostWEP) {
1921 uNodeIndex = 0;
1922 bNodeExist = true;
1925 else {
1926 if (pDevice->bEnableHostWEP) {
1927 if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(p80211Header->sA3.abyAddr1), &uNodeIndex))
1928 bNodeExist = true;
1930 bNeedACK = true;
1931 pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1934 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1935 (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1937 pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1938 //Set Preamble type always long
1939 //pDevice->byPreambleType = PREAMBLE_LONG;
1941 // probe-response don't retry
1942 //if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1943 // bNeedACK = false;
1944 // pTxBufHead->wFIFOCtl &= (~FIFOCTL_NEEDACK);
1948 pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1950 if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1951 bIsPSPOLL = true;
1952 cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1953 } else {
1954 cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1957 // hostapd daemon ext support rate patch
1958 if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
1960 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0) {
1961 cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN;
1964 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0) {
1965 cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN;
1968 if (cbExtSuppRate >0) {
1969 cbFrameBodySize = WLAN_ASSOCRESP_OFF_SUPP_RATES;
1973 //Set FRAGCTL_MACHDCNT
1974 pTxBufHead->wFragCtl |= cpu_to_le16((u16)cbMacHdLen << 10);
1976 // Notes:
1977 // Although spec says MMPDU can be fragmented; In most case,
1978 // no one will send a MMPDU under fragmentation. With RTS may occur.
1979 pDevice->bAES = false; //Set FRAGCTL_WEPTYP
1981 if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
1982 if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1983 cbIVlen = 4;
1984 cbICVlen = 4;
1985 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1987 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1988 cbIVlen = 8;//IV+ExtIV
1989 cbMIClen = 8;
1990 cbICVlen = 4;
1991 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1992 //We need to get seed here for filling TxKey entry.
1993 //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1994 // pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1996 else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1997 cbIVlen = 8;//RSN Header
1998 cbICVlen = 8;//MIC
1999 cbMICHDR = sizeof(struct vnt_mic_hdr);
2000 pTxBufHead->wFragCtl |= FRAGCTL_AES;
2001 pDevice->bAES = true;
2003 //MAC Header should be padding 0 to DW alignment.
2004 uPadding = 4 - (cbMacHdLen%4);
2005 uPadding %= 4;
2008 cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen + cbExtSuppRate;
2010 //Set FIFOCTL_GrpAckPolicy
2011 if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
2012 pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
2014 //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
2016 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
2017 pvRrvTime = (struct vnt_rrv_time_cts *) (pbyTxBufferAddr + wTxBufSize);
2018 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
2019 sizeof(struct vnt_rrv_time_cts));
2020 rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
2021 sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
2022 pvTxDataHd = (struct vnt_tx_datahead_g *) (pbyTxBufferAddr +
2023 wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
2024 sizeof(struct vnt_cts));
2025 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
2026 sizeof(struct vnt_cts) + sizeof(struct vnt_tx_datahead_g);
2029 else {//802.11a/b packet
2031 pvRrvTime = (struct vnt_rrv_time_ab *) (pbyTxBufferAddr + wTxBufSize);
2032 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
2033 sizeof(struct vnt_rrv_time_ab));
2034 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
2035 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
2036 cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
2037 sizeof(struct vnt_tx_datahead_ab);
2039 memcpy(&(sEthHeader.h_dest[0]),
2040 &(p80211Header->sA3.abyAddr1[0]),
2041 ETH_ALEN);
2042 memcpy(&(sEthHeader.h_source[0]),
2043 &(p80211Header->sA3.abyAddr2[0]),
2044 ETH_ALEN);
2045 //=========================
2046 // No Fragmentation
2047 //=========================
2048 pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
2050 /* Fill FIFO,RrvTime,RTS,and CTS */
2051 s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
2052 pbyTxBufferAddr, pvRrvTime, rts_cts,
2053 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
2055 //Fill DataHead
2056 uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
2057 AUTO_FB_NONE);
2059 pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
2061 cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + (cbFrameBodySize + cbMIClen) + cbExtSuppRate;
2063 pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderSize);
2064 pbyPayloadHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding + cbIVlen);
2065 pbyIVHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding);
2067 // Copy the Packet into a tx Buffer
2068 memcpy(pbyMacHdr, skb->data, cbMacHdLen);
2070 // version set to 0, patch for hostapd deamon
2071 pMACHeader->frame_control &= cpu_to_le16(0xfffc);
2072 memcpy(pbyPayloadHead, (skb->data + cbMacHdLen), cbFrameBodySize);
2074 // replace support rate, patch for hostapd daemon( only support 11M)
2075 if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
2076 if (cbExtSuppRate != 0) {
2077 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0)
2078 memcpy((pbyPayloadHead + cbFrameBodySize),
2079 pMgmt->abyCurrSuppRates,
2080 ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN
2082 if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0)
2083 memcpy((pbyPayloadHead + cbFrameBodySize) + ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN,
2084 pMgmt->abyCurrExtSuppRates,
2085 ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN
2090 // Set wep
2091 if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
2093 if (pDevice->bEnableHostWEP) {
2094 pTransmitKey = &STempKey;
2095 pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2096 pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2097 pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2098 pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2099 pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2100 memcpy(pTransmitKey->abyKey,
2101 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2102 pTransmitKey->uKeyLength
2106 if ((pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
2108 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
2109 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
2111 // DO Software Michael
2112 MIC_vInit(dwMICKey0, dwMICKey1);
2113 MIC_vAppend((u8 *)&(sEthHeader.h_dest[0]), 12);
2114 dwMIC_Priority = 0;
2115 MIC_vAppend((u8 *)&dwMIC_Priority, 4);
2116 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0_tx_8021:MIC KEY:"\
2117 " %X, %X\n", dwMICKey0, dwMICKey1);
2119 uLength = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen;
2121 MIC_vAppend((pbyTxBufferAddr + uLength), cbFrameBodySize);
2123 pdwMIC_L = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize);
2124 pdwMIC_R = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize + 4);
2126 MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
2127 MIC_vUnInit();
2129 if (pDevice->bTxMICFail == true) {
2130 *pdwMIC_L = 0;
2131 *pdwMIC_R = 0;
2132 pDevice->bTxMICFail = false;
2135 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
2136 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderSize, uPadding, cbIVlen);
2137 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%x, %x\n",
2138 *pdwMIC_L, *pdwMIC_R);
2142 s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
2143 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
2145 if (pDevice->bEnableHostWEP) {
2146 pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
2147 pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
2150 if ((pDevice->byLocalID <= REV_ID_VT3253_A1)) {
2151 s_vSWencryption(pDevice, pTransmitKey, pbyPayloadHead, (u16)(cbFrameBodySize + cbMIClen));
2155 pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
2156 pDevice->wSeqCounter++ ;
2157 if (pDevice->wSeqCounter > 0x0fff)
2158 pDevice->wSeqCounter = 0;
2160 if (bIsPSPOLL) {
2161 // The MAC will automatically replace the Duration-field of MAC header by Duration-field
2162 // of FIFO control header.
2163 // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
2164 // in the same place of other packet's Duration-field).
2165 // And it will cause Cisco-AP to issue Disassociation-packet
2166 if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
2167 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_a =
2168 cpu_to_le16(p80211Header->sA2.wDurationID);
2169 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_b =
2170 cpu_to_le16(p80211Header->sA2.wDurationID);
2171 } else {
2172 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
2173 cpu_to_le16(p80211Header->sA2.wDurationID);
2177 pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
2178 pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2179 pTX_Buffer->byType = 0x00;
2181 pContext->pPacket = skb;
2182 pContext->Type = CONTEXT_MGMT_PACKET;
2183 pContext->uBufLen = (u16)cbReqCount + 4; //USB header
2185 if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
2186 s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pMACHeader->addr1[0]), (u16)cbFrameSize, pTX_Buffer->wFIFOCtl);
2188 else {
2189 s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pMACHeader->addr3[0]), (u16)cbFrameSize, pTX_Buffer->wFIFOCtl);
2191 PIPEnsSendBulkOut(pDevice,pContext);
2192 return ;
2196 //TYPE_AC0DMA data tx
2198 * Description:
2199 * Tx packet via AC0DMA(DMA1)
2201 * Parameters:
2202 * In:
2203 * pDevice - Pointer to the adapter
2204 * skb - Pointer to tx skb packet
2205 * Out:
2206 * void
2208 * Return Value: NULL
2211 int nsDMA_tx_packet(struct vnt_private *pDevice,
2212 u32 uDMAIdx, struct sk_buff *skb)
2214 struct net_device_stats *pStats = &pDevice->stats;
2215 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2216 struct vnt_tx_buffer *pTX_Buffer;
2217 u32 BytesToWrite = 0, uHeaderLen = 0;
2218 u32 uNodeIndex = 0;
2219 u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
2220 u16 wAID;
2221 u8 byPktType;
2222 int bNeedEncryption = false;
2223 PSKeyItem pTransmitKey = NULL;
2224 SKeyItem STempKey;
2225 int ii;
2226 int bTKIP_UseGTK = false;
2227 int bNeedDeAuth = false;
2228 u8 *pbyBSSID;
2229 int bNodeExist = false;
2230 struct vnt_usb_send_context *pContext;
2231 bool fConvertedPacket;
2232 u32 status;
2233 u16 wKeepRate = pDevice->wCurrentRate;
2234 int bTxeapol_key = false;
2236 if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
2238 if (pDevice->uAssocCount == 0) {
2239 dev_kfree_skb_irq(skb);
2240 return 0;
2243 if (is_multicast_ether_addr((u8 *)(skb->data))) {
2244 uNodeIndex = 0;
2245 bNodeExist = true;
2246 if (pMgmt->sNodeDBTable[0].bPSEnable) {
2248 skb_queue_tail(&(pMgmt->sNodeDBTable[0].sTxPSQueue), skb);
2249 pMgmt->sNodeDBTable[0].wEnQueueCnt++;
2250 // set tx map
2251 pMgmt->abyPSTxMap[0] |= byMask[0];
2252 return 0;
2254 // multicast/broadcast data rate
2256 if (pDevice->byBBType != BB_TYPE_11A)
2257 pDevice->wCurrentRate = RATE_2M;
2258 else
2259 pDevice->wCurrentRate = RATE_24M;
2260 // long preamble type
2261 pDevice->byPreambleType = PREAMBLE_SHORT;
2263 }else {
2265 if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(skb->data), &uNodeIndex)) {
2267 if (pMgmt->sNodeDBTable[uNodeIndex].bPSEnable) {
2269 skb_queue_tail(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue, skb);
2271 pMgmt->sNodeDBTable[uNodeIndex].wEnQueueCnt++;
2272 // set tx map
2273 wAID = pMgmt->sNodeDBTable[uNodeIndex].wAID;
2274 pMgmt->abyPSTxMap[wAID >> 3] |= byMask[wAID & 7];
2275 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Set:pMgmt->abyPSTxMap[%d]= %d\n",
2276 (wAID >> 3), pMgmt->abyPSTxMap[wAID >> 3]);
2278 return 0;
2280 // AP rate decided from node
2281 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2282 // tx preamble decided from node
2284 if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2285 pDevice->byPreambleType = pDevice->byShortPreamble;
2287 }else {
2288 pDevice->byPreambleType = PREAMBLE_LONG;
2290 bNodeExist = true;
2294 if (bNodeExist == false) {
2295 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Unknown STA not found in node DB \n");
2296 dev_kfree_skb_irq(skb);
2297 return 0;
2301 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2303 if (pContext == NULL) {
2304 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG" pContext == NULL\n");
2305 dev_kfree_skb_irq(skb);
2306 return STATUS_RESOURCES;
2309 memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)(skb->data), ETH_HLEN);
2311 //mike add:station mode check eapol-key challenge--->
2313 u8 Protocol_Version; //802.1x Authentication
2314 u8 Packet_Type; //802.1x Authentication
2315 u8 Descriptor_type;
2316 u16 Key_info;
2318 Protocol_Version = skb->data[ETH_HLEN];
2319 Packet_Type = skb->data[ETH_HLEN+1];
2320 Descriptor_type = skb->data[ETH_HLEN+1+1+2];
2321 Key_info = (skb->data[ETH_HLEN+1+1+2+1] << 8)|(skb->data[ETH_HLEN+1+1+2+2]);
2322 if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2323 /* 802.1x OR eapol-key challenge frame transfer */
2324 if (((Protocol_Version == 1) || (Protocol_Version == 2)) &&
2325 (Packet_Type == 3)) {
2326 bTxeapol_key = true;
2327 if(!(Key_info & BIT3) && //WPA or RSN group-key challenge
2328 (Key_info & BIT8) && (Key_info & BIT9)) { //send 2/2 key
2329 if(Descriptor_type==254) {
2330 pDevice->fWPA_Authened = true;
2331 PRINT_K("WPA ");
2333 else {
2334 pDevice->fWPA_Authened = true;
2335 PRINT_K("WPA2(re-keying) ");
2337 PRINT_K("Authentication completed!!\n");
2339 else if((Key_info & BIT3) && (Descriptor_type==2) && //RSN pairwise-key challenge
2340 (Key_info & BIT8) && (Key_info & BIT9)) {
2341 pDevice->fWPA_Authened = true;
2342 PRINT_K("WPA2 Authentication completed!!\n");
2347 //mike add:station mode check eapol-key challenge<---
2349 if (pDevice->bEncryptionEnable == true) {
2350 bNeedEncryption = true;
2351 // get Transmit key
2352 do {
2353 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
2354 (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2355 pbyBSSID = pDevice->abyBSSID;
2356 // get pairwise key
2357 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
2358 // get group key
2359 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
2360 bTKIP_UseGTK = true;
2361 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2362 break;
2364 } else {
2365 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get PTK.\n");
2366 break;
2368 }else if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2369 /* TO_DS = 0 and FROM_DS = 0 --> 802.11 MAC Address1 */
2370 pbyBSSID = pDevice->sTxEthHeader.h_dest;
2371 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS Serach Key: \n");
2372 for (ii = 0; ii< 6; ii++)
2373 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"%x \n", *(pbyBSSID+ii));
2374 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"\n");
2376 // get pairwise key
2377 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == true)
2378 break;
2380 // get group key
2381 pbyBSSID = pDevice->abyBroadcastAddr;
2382 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2383 pTransmitKey = NULL;
2384 if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2385 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2387 else
2388 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"NOT IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2389 } else {
2390 bTKIP_UseGTK = true;
2391 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2393 } while(false);
2396 if (pDevice->bEnableHostWEP) {
2397 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"acdma0: STA index %d\n", uNodeIndex);
2398 if (pDevice->bEncryptionEnable == true) {
2399 pTransmitKey = &STempKey;
2400 pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2401 pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2402 pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2403 pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2404 pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2405 memcpy(pTransmitKey->abyKey,
2406 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2407 pTransmitKey->uKeyLength
2412 byPktType = (u8)pDevice->byPacketType;
2414 if (pDevice->bFixRate) {
2415 if (pDevice->byBBType == BB_TYPE_11B) {
2416 if (pDevice->uConnectionRate >= RATE_11M) {
2417 pDevice->wCurrentRate = RATE_11M;
2418 } else {
2419 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2421 } else {
2422 if ((pDevice->byBBType == BB_TYPE_11A) &&
2423 (pDevice->uConnectionRate <= RATE_6M)) {
2424 pDevice->wCurrentRate = RATE_6M;
2425 } else {
2426 if (pDevice->uConnectionRate >= RATE_54M)
2427 pDevice->wCurrentRate = RATE_54M;
2428 else
2429 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2433 else {
2434 if (pDevice->eOPMode == OP_MODE_ADHOC) {
2435 // Adhoc Tx rate decided from node DB
2436 if (is_multicast_ether_addr(pDevice->sTxEthHeader.h_dest)) {
2437 // Multicast use highest data rate
2438 pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2439 // preamble type
2440 pDevice->byPreambleType = pDevice->byShortPreamble;
2442 else {
2443 if (BSSbIsSTAInNodeDB(pDevice, &(pDevice->sTxEthHeader.h_dest[0]), &uNodeIndex)) {
2444 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2445 if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2446 pDevice->byPreambleType = pDevice->byShortPreamble;
2449 else {
2450 pDevice->byPreambleType = PREAMBLE_LONG;
2452 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Found Node Index is [%d] Tx Data Rate:[%d]\n",uNodeIndex, pDevice->wCurrentRate);
2454 else {
2455 if (pDevice->byBBType != BB_TYPE_11A)
2456 pDevice->wCurrentRate = RATE_2M;
2457 else
2458 pDevice->wCurrentRate = RATE_24M; // refer to vMgrCreateOwnIBSS()'s
2459 // abyCurrExtSuppRates[]
2460 pDevice->byPreambleType = PREAMBLE_SHORT;
2461 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Not Found Node use highest basic Rate.....\n");
2465 if (pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) {
2466 // Infra STA rate decided from AP Node, index = 0
2467 pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2471 if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2472 if (pDevice->byBBType != BB_TYPE_11A) {
2473 pDevice->wCurrentRate = RATE_1M;
2474 pDevice->byACKRate = RATE_1M;
2475 pDevice->byTopCCKBasicRate = RATE_1M;
2476 pDevice->byTopOFDMBasicRate = RATE_6M;
2477 } else {
2478 pDevice->wCurrentRate = RATE_6M;
2479 pDevice->byACKRate = RATE_6M;
2480 pDevice->byTopCCKBasicRate = RATE_1M;
2481 pDevice->byTopOFDMBasicRate = RATE_6M;
2485 DBG_PRT(MSG_LEVEL_DEBUG,
2486 KERN_INFO "dma_tx: pDevice->wCurrentRate = %d\n",
2487 pDevice->wCurrentRate);
2489 if (wKeepRate != pDevice->wCurrentRate) {
2490 bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2493 if (pDevice->wCurrentRate <= RATE_11M) {
2494 byPktType = PK_TYPE_11B;
2497 if (bNeedEncryption == true) {
2498 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ntohs Pkt Type=%04x\n", ntohs(pDevice->sTxEthHeader.h_proto));
2499 if ((pDevice->sTxEthHeader.h_proto) == cpu_to_be16(ETH_P_PAE)) {
2500 bNeedEncryption = false;
2501 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Pkt Type=%04x\n", (pDevice->sTxEthHeader.h_proto));
2502 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2503 if (pTransmitKey == NULL) {
2504 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Don't Find TX KEY\n");
2506 else {
2507 if (bTKIP_UseGTK == true) {
2508 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"error: KEY is GTK!!~~\n");
2510 else {
2511 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2512 pTransmitKey->dwKeyIndex);
2513 bNeedEncryption = true;
2518 if (pDevice->bEnableHostWEP) {
2519 if ((uNodeIndex != 0) &&
2520 (pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex & PAIRWISE_KEY)) {
2521 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2522 pTransmitKey->dwKeyIndex);
2523 bNeedEncryption = true;
2527 else {
2529 if (pTransmitKey == NULL) {
2530 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"return no tx key\n");
2531 pContext->bBoolInUse = false;
2532 dev_kfree_skb_irq(skb);
2533 pStats->tx_dropped++;
2534 return STATUS_FAILURE;
2539 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2541 fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2542 pTX_Buffer, bNeedEncryption,
2543 skb->len, uDMAIdx, &pDevice->sTxEthHeader,
2544 (u8 *)skb->data, pTransmitKey, uNodeIndex,
2545 pDevice->wCurrentRate,
2546 &uHeaderLen, &BytesToWrite
2549 if (fConvertedPacket == false) {
2550 pContext->bBoolInUse = false;
2551 dev_kfree_skb_irq(skb);
2552 return STATUS_FAILURE;
2555 if ( pDevice->bEnablePSMode == true ) {
2556 if ( !pDevice->bPSModeTxBurst ) {
2557 bScheduleCommand((void *) pDevice,
2558 WLAN_CMD_MAC_DISPOWERSAVING,
2559 NULL);
2560 pDevice->bPSModeTxBurst = true;
2564 pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2565 pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2567 pContext->pPacket = skb;
2568 pContext->Type = CONTEXT_DATA_PACKET;
2569 pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2571 s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pContext->sEthHeader.h_dest[0]), (u16) (BytesToWrite-uHeaderLen), pTX_Buffer->wFIFOCtl);
2573 status = PIPEnsSendBulkOut(pDevice,pContext);
2575 if (bNeedDeAuth == true) {
2576 u16 wReason = WLAN_MGMT_REASON_MIC_FAILURE;
2578 bScheduleCommand((void *) pDevice, WLAN_CMD_DEAUTH, (u8 *) &wReason);
2581 if(status!=STATUS_PENDING) {
2582 pContext->bBoolInUse = false;
2583 dev_kfree_skb_irq(skb);
2584 return STATUS_FAILURE;
2586 else
2587 return 0;
2592 * Description:
2593 * Relay packet send (AC1DMA) from rx dpc.
2595 * Parameters:
2596 * In:
2597 * pDevice - Pointer to the adapter
2598 * pPacket - Pointer to rx packet
2599 * cbPacketSize - rx ethernet frame size
2600 * Out:
2601 * TURE, false
2603 * Return Value: Return true if packet is copy to dma1; otherwise false
2606 int bRelayPacketSend(struct vnt_private *pDevice, u8 *pbySkbData, u32 uDataLen,
2607 u32 uNodeIndex)
2609 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2610 struct vnt_tx_buffer *pTX_Buffer;
2611 u32 BytesToWrite = 0, uHeaderLen = 0;
2612 u8 byPktType = PK_TYPE_11B;
2613 int bNeedEncryption = false;
2614 SKeyItem STempKey;
2615 PSKeyItem pTransmitKey = NULL;
2616 u8 *pbyBSSID;
2617 struct vnt_usb_send_context *pContext;
2618 u8 byPktTyp;
2619 int fConvertedPacket;
2620 u32 status;
2621 u16 wKeepRate = pDevice->wCurrentRate;
2623 pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2625 if (NULL == pContext) {
2626 return false;
2629 memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)pbySkbData, ETH_HLEN);
2631 if (pDevice->bEncryptionEnable == true) {
2632 bNeedEncryption = true;
2633 // get group key
2634 pbyBSSID = pDevice->abyBroadcastAddr;
2635 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2636 pTransmitKey = NULL;
2637 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2638 } else {
2639 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2643 if (pDevice->bEnableHostWEP) {
2644 if (uNodeIndex < MAX_NODE_NUM + 1) {
2645 pTransmitKey = &STempKey;
2646 pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2647 pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2648 pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2649 pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2650 pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2651 memcpy(pTransmitKey->abyKey,
2652 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2653 pTransmitKey->uKeyLength
2658 if ( bNeedEncryption && (pTransmitKey == NULL) ) {
2659 pContext->bBoolInUse = false;
2660 return false;
2663 byPktTyp = (u8)pDevice->byPacketType;
2665 if (pDevice->bFixRate) {
2666 if (pDevice->byBBType == BB_TYPE_11B) {
2667 if (pDevice->uConnectionRate >= RATE_11M) {
2668 pDevice->wCurrentRate = RATE_11M;
2669 } else {
2670 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2672 } else {
2673 if ((pDevice->byBBType == BB_TYPE_11A) &&
2674 (pDevice->uConnectionRate <= RATE_6M)) {
2675 pDevice->wCurrentRate = RATE_6M;
2676 } else {
2677 if (pDevice->uConnectionRate >= RATE_54M)
2678 pDevice->wCurrentRate = RATE_54M;
2679 else
2680 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2684 else {
2685 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2688 if (wKeepRate != pDevice->wCurrentRate) {
2689 bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2692 if (pDevice->wCurrentRate <= RATE_11M)
2693 byPktType = PK_TYPE_11B;
2695 BytesToWrite = uDataLen + ETH_FCS_LEN;
2697 // Convert the packet to an usb frame and copy into our buffer
2698 // and send the irp.
2700 pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2702 fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2703 pTX_Buffer, bNeedEncryption,
2704 uDataLen, TYPE_AC0DMA, &pDevice->sTxEthHeader,
2705 pbySkbData, pTransmitKey, uNodeIndex,
2706 pDevice->wCurrentRate,
2707 &uHeaderLen, &BytesToWrite
2710 if (fConvertedPacket == false) {
2711 pContext->bBoolInUse = false;
2712 return false;
2715 pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2716 pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2718 pContext->pPacket = NULL;
2719 pContext->Type = CONTEXT_DATA_PACKET;
2720 pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2722 s_vSaveTxPktInfo(pDevice, (u8) (pTX_Buffer->byPKTNO & 0x0F), &(pContext->sEthHeader.h_dest[0]), (u16) (BytesToWrite-uHeaderLen), pTX_Buffer->wFIFOCtl);
2724 status = PIPEnsSendBulkOut(pDevice,pContext);
2726 return true;