x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / tty / ehv_bytechan.c
blob9bffcec5ad82a4bcf0f05e3a89c73cf0b62433dc
1 /* ePAPR hypervisor byte channel device driver
3 * Copyright 2009-2011 Freescale Semiconductor, Inc.
5 * Author: Timur Tabi <timur@freescale.com>
7 * This file is licensed under the terms of the GNU General Public License
8 * version 2. This program is licensed "as is" without any warranty of any
9 * kind, whether express or implied.
11 * This driver support three distinct interfaces, all of which are related to
12 * ePAPR hypervisor byte channels.
14 * 1) An early-console (udbg) driver. This provides early console output
15 * through a byte channel. The byte channel handle must be specified in a
16 * Kconfig option.
18 * 2) A normal console driver. Output is sent to the byte channel designated
19 * for stdout in the device tree. The console driver is for handling kernel
20 * printk calls.
22 * 3) A tty driver, which is used to handle user-space input and output. The
23 * byte channel used for the console is designated as the default tty.
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/slab.h>
29 #include <linux/err.h>
30 #include <linux/interrupt.h>
31 #include <linux/fs.h>
32 #include <linux/poll.h>
33 #include <asm/epapr_hcalls.h>
34 #include <linux/of.h>
35 #include <linux/platform_device.h>
36 #include <linux/cdev.h>
37 #include <linux/console.h>
38 #include <linux/tty.h>
39 #include <linux/tty_flip.h>
40 #include <linux/circ_buf.h>
41 #include <asm/udbg.h>
43 /* The size of the transmit circular buffer. This must be a power of two. */
44 #define BUF_SIZE 2048
46 /* Per-byte channel private data */
47 struct ehv_bc_data {
48 struct device *dev;
49 struct tty_port port;
50 uint32_t handle;
51 unsigned int rx_irq;
52 unsigned int tx_irq;
54 spinlock_t lock; /* lock for transmit buffer */
55 unsigned char buf[BUF_SIZE]; /* transmit circular buffer */
56 unsigned int head; /* circular buffer head */
57 unsigned int tail; /* circular buffer tail */
59 int tx_irq_enabled; /* true == TX interrupt is enabled */
62 /* Array of byte channel objects */
63 static struct ehv_bc_data *bcs;
65 /* Byte channel handle for stdout (and stdin), taken from device tree */
66 static unsigned int stdout_bc;
68 /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */
69 static unsigned int stdout_irq;
71 /**************************** SUPPORT FUNCTIONS ****************************/
74 * Enable the transmit interrupt
76 * Unlike a serial device, byte channels have no mechanism for disabling their
77 * own receive or transmit interrupts. To emulate that feature, we toggle
78 * the IRQ in the kernel.
80 * We cannot just blindly call enable_irq() or disable_irq(), because these
81 * calls are reference counted. This means that we cannot call enable_irq()
82 * if interrupts are already enabled. This can happen in two situations:
84 * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write()
85 * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue()
87 * To work around this, we keep a flag to tell us if the IRQ is enabled or not.
89 static void enable_tx_interrupt(struct ehv_bc_data *bc)
91 if (!bc->tx_irq_enabled) {
92 enable_irq(bc->tx_irq);
93 bc->tx_irq_enabled = 1;
97 static void disable_tx_interrupt(struct ehv_bc_data *bc)
99 if (bc->tx_irq_enabled) {
100 disable_irq_nosync(bc->tx_irq);
101 bc->tx_irq_enabled = 0;
106 * find the byte channel handle to use for the console
108 * The byte channel to be used for the console is specified via a "stdout"
109 * property in the /chosen node.
111 * For compatible with legacy device trees, we also look for a "stdout" alias.
113 static int find_console_handle(void)
115 struct device_node *np, *np2;
116 const char *sprop = NULL;
117 const uint32_t *iprop;
119 np = of_find_node_by_path("/chosen");
120 if (np)
121 sprop = of_get_property(np, "stdout-path", NULL);
123 if (!np || !sprop) {
124 of_node_put(np);
125 np = of_find_node_by_name(NULL, "aliases");
126 if (np)
127 sprop = of_get_property(np, "stdout", NULL);
130 if (!sprop) {
131 of_node_put(np);
132 return 0;
135 /* We don't care what the aliased node is actually called. We only
136 * care if it's compatible with "epapr,hv-byte-channel", because that
137 * indicates that it's a byte channel node. We use a temporary
138 * variable, 'np2', because we can't release 'np' until we're done with
139 * 'sprop'.
141 np2 = of_find_node_by_path(sprop);
142 of_node_put(np);
143 np = np2;
144 if (!np) {
145 pr_warning("ehv-bc: stdout node '%s' does not exist\n", sprop);
146 return 0;
149 /* Is it a byte channel? */
150 if (!of_device_is_compatible(np, "epapr,hv-byte-channel")) {
151 of_node_put(np);
152 return 0;
155 stdout_irq = irq_of_parse_and_map(np, 0);
156 if (stdout_irq == NO_IRQ) {
157 pr_err("ehv-bc: no 'interrupts' property in %s node\n", sprop);
158 of_node_put(np);
159 return 0;
163 * The 'hv-handle' property contains the handle for this byte channel.
165 iprop = of_get_property(np, "hv-handle", NULL);
166 if (!iprop) {
167 pr_err("ehv-bc: no 'hv-handle' property in %s node\n",
168 np->name);
169 of_node_put(np);
170 return 0;
172 stdout_bc = be32_to_cpu(*iprop);
174 of_node_put(np);
175 return 1;
178 /*************************** EARLY CONSOLE DRIVER ***************************/
180 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
183 * send a byte to a byte channel, wait if necessary
185 * This function sends a byte to a byte channel, and it waits and
186 * retries if the byte channel is full. It returns if the character
187 * has been sent, or if some error has occurred.
190 static void byte_channel_spin_send(const char data)
192 int ret, count;
194 do {
195 count = 1;
196 ret = ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
197 &count, &data);
198 } while (ret == EV_EAGAIN);
202 * The udbg subsystem calls this function to display a single character.
203 * We convert CR to a CR/LF.
205 static void ehv_bc_udbg_putc(char c)
207 if (c == '\n')
208 byte_channel_spin_send('\r');
210 byte_channel_spin_send(c);
214 * early console initialization
216 * PowerPC kernels support an early printk console, also known as udbg.
217 * This function must be called via the ppc_md.init_early function pointer.
218 * At this point, the device tree has been unflattened, so we can obtain the
219 * byte channel handle for stdout.
221 * We only support displaying of characters (putc). We do not support
222 * keyboard input.
224 void __init udbg_init_ehv_bc(void)
226 unsigned int rx_count, tx_count;
227 unsigned int ret;
229 /* Verify the byte channel handle */
230 ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
231 &rx_count, &tx_count);
232 if (ret)
233 return;
235 udbg_putc = ehv_bc_udbg_putc;
236 register_early_udbg_console();
238 udbg_printf("ehv-bc: early console using byte channel handle %u\n",
239 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
242 #endif
244 /****************************** CONSOLE DRIVER ******************************/
246 static struct tty_driver *ehv_bc_driver;
249 * Byte channel console sending worker function.
251 * For consoles, if the output buffer is full, we should just spin until it
252 * clears.
254 static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s,
255 unsigned int count)
257 unsigned int len;
258 int ret = 0;
260 while (count) {
261 len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES);
262 do {
263 ret = ev_byte_channel_send(handle, &len, s);
264 } while (ret == EV_EAGAIN);
265 count -= len;
266 s += len;
269 return ret;
273 * write a string to the console
275 * This function gets called to write a string from the kernel, typically from
276 * a printk(). This function spins until all data is written.
278 * We copy the data to a temporary buffer because we need to insert a \r in
279 * front of every \n. It's more efficient to copy the data to the buffer than
280 * it is to make multiple hcalls for each character or each newline.
282 static void ehv_bc_console_write(struct console *co, const char *s,
283 unsigned int count)
285 char s2[EV_BYTE_CHANNEL_MAX_BYTES];
286 unsigned int i, j = 0;
287 char c;
289 for (i = 0; i < count; i++) {
290 c = *s++;
292 if (c == '\n')
293 s2[j++] = '\r';
295 s2[j++] = c;
296 if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) {
297 if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j))
298 return;
299 j = 0;
303 if (j)
304 ehv_bc_console_byte_channel_send(stdout_bc, s2, j);
308 * When /dev/console is opened, the kernel iterates the console list looking
309 * for one with ->device and then calls that method. On success, it expects
310 * the passed-in int* to contain the minor number to use.
312 static struct tty_driver *ehv_bc_console_device(struct console *co, int *index)
314 *index = co->index;
316 return ehv_bc_driver;
319 static struct console ehv_bc_console = {
320 .name = "ttyEHV",
321 .write = ehv_bc_console_write,
322 .device = ehv_bc_console_device,
323 .flags = CON_PRINTBUFFER | CON_ENABLED,
327 * Console initialization
329 * This is the first function that is called after the device tree is
330 * available, so here is where we determine the byte channel handle and IRQ for
331 * stdout/stdin, even though that information is used by the tty and character
332 * drivers.
334 static int __init ehv_bc_console_init(void)
336 if (!find_console_handle()) {
337 pr_debug("ehv-bc: stdout is not a byte channel\n");
338 return -ENODEV;
341 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
342 /* Print a friendly warning if the user chose the wrong byte channel
343 * handle for udbg.
345 if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE)
346 pr_warning("ehv-bc: udbg handle %u is not the stdout handle\n",
347 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
348 #endif
350 /* add_preferred_console() must be called before register_console(),
351 otherwise it won't work. However, we don't want to enumerate all the
352 byte channels here, either, since we only care about one. */
354 add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL);
355 register_console(&ehv_bc_console);
357 pr_info("ehv-bc: registered console driver for byte channel %u\n",
358 stdout_bc);
360 return 0;
362 console_initcall(ehv_bc_console_init);
364 /******************************** TTY DRIVER ********************************/
367 * byte channel receive interupt handler
369 * This ISR is called whenever data is available on a byte channel.
371 static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data)
373 struct ehv_bc_data *bc = data;
374 unsigned int rx_count, tx_count, len;
375 int count;
376 char buffer[EV_BYTE_CHANNEL_MAX_BYTES];
377 int ret;
379 /* Find out how much data needs to be read, and then ask the TTY layer
380 * if it can handle that much. We want to ensure that every byte we
381 * read from the byte channel will be accepted by the TTY layer.
383 ev_byte_channel_poll(bc->handle, &rx_count, &tx_count);
384 count = tty_buffer_request_room(&bc->port, rx_count);
386 /* 'count' is the maximum amount of data the TTY layer can accept at
387 * this time. However, during testing, I was never able to get 'count'
388 * to be less than 'rx_count'. I'm not sure whether I'm calling it
389 * correctly.
392 while (count > 0) {
393 len = min_t(unsigned int, count, sizeof(buffer));
395 /* Read some data from the byte channel. This function will
396 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes.
398 ev_byte_channel_receive(bc->handle, &len, buffer);
400 /* 'len' is now the amount of data that's been received. 'len'
401 * can't be zero, and most likely it's equal to one.
404 /* Pass the received data to the tty layer. */
405 ret = tty_insert_flip_string(&bc->port, buffer, len);
407 /* 'ret' is the number of bytes that the TTY layer accepted.
408 * If it's not equal to 'len', then it means the buffer is
409 * full, which should never happen. If it does happen, we can
410 * exit gracefully, but we drop the last 'len - ret' characters
411 * that we read from the byte channel.
413 if (ret != len)
414 break;
416 count -= len;
419 /* Tell the tty layer that we're done. */
420 tty_flip_buffer_push(&bc->port);
422 return IRQ_HANDLED;
426 * dequeue the transmit buffer to the hypervisor
428 * This function, which can be called in interrupt context, dequeues as much
429 * data as possible from the transmit buffer to the byte channel.
431 static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc)
433 unsigned int count;
434 unsigned int len, ret;
435 unsigned long flags;
437 do {
438 spin_lock_irqsave(&bc->lock, flags);
439 len = min_t(unsigned int,
440 CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE),
441 EV_BYTE_CHANNEL_MAX_BYTES);
443 ret = ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail);
445 /* 'len' is valid only if the return code is 0 or EV_EAGAIN */
446 if (!ret || (ret == EV_EAGAIN))
447 bc->tail = (bc->tail + len) & (BUF_SIZE - 1);
449 count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE);
450 spin_unlock_irqrestore(&bc->lock, flags);
451 } while (count && !ret);
453 spin_lock_irqsave(&bc->lock, flags);
454 if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE))
456 * If we haven't emptied the buffer, then enable the TX IRQ.
457 * We'll get an interrupt when there's more room in the
458 * hypervisor's output buffer.
460 enable_tx_interrupt(bc);
461 else
462 disable_tx_interrupt(bc);
463 spin_unlock_irqrestore(&bc->lock, flags);
467 * byte channel transmit interupt handler
469 * This ISR is called whenever space becomes available for transmitting
470 * characters on a byte channel.
472 static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data)
474 struct ehv_bc_data *bc = data;
476 ehv_bc_tx_dequeue(bc);
477 tty_port_tty_wakeup(&bc->port);
479 return IRQ_HANDLED;
483 * This function is called when the tty layer has data for us send. We store
484 * the data first in a circular buffer, and then dequeue as much of that data
485 * as possible.
487 * We don't need to worry about whether there is enough room in the buffer for
488 * all the data. The purpose of ehv_bc_tty_write_room() is to tell the tty
489 * layer how much data it can safely send to us. We guarantee that
490 * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us
491 * too much data.
493 static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s,
494 int count)
496 struct ehv_bc_data *bc = ttys->driver_data;
497 unsigned long flags;
498 unsigned int len;
499 unsigned int written = 0;
501 while (1) {
502 spin_lock_irqsave(&bc->lock, flags);
503 len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE);
504 if (count < len)
505 len = count;
506 if (len) {
507 memcpy(bc->buf + bc->head, s, len);
508 bc->head = (bc->head + len) & (BUF_SIZE - 1);
510 spin_unlock_irqrestore(&bc->lock, flags);
511 if (!len)
512 break;
514 s += len;
515 count -= len;
516 written += len;
519 ehv_bc_tx_dequeue(bc);
521 return written;
525 * This function can be called multiple times for a given tty_struct, which is
526 * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead.
528 * The tty layer will still call this function even if the device was not
529 * registered (i.e. tty_register_device() was not called). This happens
530 * because tty_register_device() is optional and some legacy drivers don't
531 * use it. So we need to check for that.
533 static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp)
535 struct ehv_bc_data *bc = &bcs[ttys->index];
537 if (!bc->dev)
538 return -ENODEV;
540 return tty_port_open(&bc->port, ttys, filp);
544 * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will
545 * still call this function to close the tty device. So we can't assume that
546 * the tty port has been initialized.
548 static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp)
550 struct ehv_bc_data *bc = &bcs[ttys->index];
552 if (bc->dev)
553 tty_port_close(&bc->port, ttys, filp);
557 * Return the amount of space in the output buffer
559 * This is actually a contract between the driver and the tty layer outlining
560 * how much write room the driver can guarantee will be sent OR BUFFERED. This
561 * driver MUST honor the return value.
563 static int ehv_bc_tty_write_room(struct tty_struct *ttys)
565 struct ehv_bc_data *bc = ttys->driver_data;
566 unsigned long flags;
567 int count;
569 spin_lock_irqsave(&bc->lock, flags);
570 count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE);
571 spin_unlock_irqrestore(&bc->lock, flags);
573 return count;
577 * Stop sending data to the tty layer
579 * This function is called when the tty layer's input buffers are getting full,
580 * so the driver should stop sending it data. The easiest way to do this is to
581 * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being
582 * called.
584 * The hypervisor will continue to queue up any incoming data. If there is any
585 * data in the queue when the RX interrupt is enabled, we'll immediately get an
586 * RX interrupt.
588 static void ehv_bc_tty_throttle(struct tty_struct *ttys)
590 struct ehv_bc_data *bc = ttys->driver_data;
592 disable_irq(bc->rx_irq);
596 * Resume sending data to the tty layer
598 * This function is called after previously calling ehv_bc_tty_throttle(). The
599 * tty layer's input buffers now have more room, so the driver can resume
600 * sending it data.
602 static void ehv_bc_tty_unthrottle(struct tty_struct *ttys)
604 struct ehv_bc_data *bc = ttys->driver_data;
606 /* If there is any data in the queue when the RX interrupt is enabled,
607 * we'll immediately get an RX interrupt.
609 enable_irq(bc->rx_irq);
612 static void ehv_bc_tty_hangup(struct tty_struct *ttys)
614 struct ehv_bc_data *bc = ttys->driver_data;
616 ehv_bc_tx_dequeue(bc);
617 tty_port_hangup(&bc->port);
621 * TTY driver operations
623 * If we could ask the hypervisor how much data is still in the TX buffer, or
624 * at least how big the TX buffers are, then we could implement the
625 * .wait_until_sent and .chars_in_buffer functions.
627 static const struct tty_operations ehv_bc_ops = {
628 .open = ehv_bc_tty_open,
629 .close = ehv_bc_tty_close,
630 .write = ehv_bc_tty_write,
631 .write_room = ehv_bc_tty_write_room,
632 .throttle = ehv_bc_tty_throttle,
633 .unthrottle = ehv_bc_tty_unthrottle,
634 .hangup = ehv_bc_tty_hangup,
638 * initialize the TTY port
640 * This function will only be called once, no matter how many times
641 * ehv_bc_tty_open() is called. That's why we register the ISR here, and also
642 * why we initialize tty_struct-related variables here.
644 static int ehv_bc_tty_port_activate(struct tty_port *port,
645 struct tty_struct *ttys)
647 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
648 int ret;
650 ttys->driver_data = bc;
652 ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc);
653 if (ret < 0) {
654 dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n",
655 bc->rx_irq, ret);
656 return ret;
659 /* request_irq also enables the IRQ */
660 bc->tx_irq_enabled = 1;
662 ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc);
663 if (ret < 0) {
664 dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n",
665 bc->tx_irq, ret);
666 free_irq(bc->rx_irq, bc);
667 return ret;
670 /* The TX IRQ is enabled only when we can't write all the data to the
671 * byte channel at once, so by default it's disabled.
673 disable_tx_interrupt(bc);
675 return 0;
678 static void ehv_bc_tty_port_shutdown(struct tty_port *port)
680 struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
682 free_irq(bc->tx_irq, bc);
683 free_irq(bc->rx_irq, bc);
686 static const struct tty_port_operations ehv_bc_tty_port_ops = {
687 .activate = ehv_bc_tty_port_activate,
688 .shutdown = ehv_bc_tty_port_shutdown,
691 static int ehv_bc_tty_probe(struct platform_device *pdev)
693 struct device_node *np = pdev->dev.of_node;
694 struct ehv_bc_data *bc;
695 const uint32_t *iprop;
696 unsigned int handle;
697 int ret;
698 static unsigned int index = 1;
699 unsigned int i;
701 iprop = of_get_property(np, "hv-handle", NULL);
702 if (!iprop) {
703 dev_err(&pdev->dev, "no 'hv-handle' property in %s node\n",
704 np->name);
705 return -ENODEV;
708 /* We already told the console layer that the index for the console
709 * device is zero, so we need to make sure that we use that index when
710 * we probe the console byte channel node.
712 handle = be32_to_cpu(*iprop);
713 i = (handle == stdout_bc) ? 0 : index++;
714 bc = &bcs[i];
716 bc->handle = handle;
717 bc->head = 0;
718 bc->tail = 0;
719 spin_lock_init(&bc->lock);
721 bc->rx_irq = irq_of_parse_and_map(np, 0);
722 bc->tx_irq = irq_of_parse_and_map(np, 1);
723 if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) {
724 dev_err(&pdev->dev, "no 'interrupts' property in %s node\n",
725 np->name);
726 ret = -ENODEV;
727 goto error;
730 tty_port_init(&bc->port);
731 bc->port.ops = &ehv_bc_tty_port_ops;
733 bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i,
734 &pdev->dev);
735 if (IS_ERR(bc->dev)) {
736 ret = PTR_ERR(bc->dev);
737 dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret);
738 goto error;
741 dev_set_drvdata(&pdev->dev, bc);
743 dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n",
744 ehv_bc_driver->name, i, bc->handle);
746 return 0;
748 error:
749 tty_port_destroy(&bc->port);
750 irq_dispose_mapping(bc->tx_irq);
751 irq_dispose_mapping(bc->rx_irq);
753 memset(bc, 0, sizeof(struct ehv_bc_data));
754 return ret;
757 static int ehv_bc_tty_remove(struct platform_device *pdev)
759 struct ehv_bc_data *bc = dev_get_drvdata(&pdev->dev);
761 tty_unregister_device(ehv_bc_driver, bc - bcs);
763 tty_port_destroy(&bc->port);
764 irq_dispose_mapping(bc->tx_irq);
765 irq_dispose_mapping(bc->rx_irq);
767 return 0;
770 static const struct of_device_id ehv_bc_tty_of_ids[] = {
771 { .compatible = "epapr,hv-byte-channel" },
775 static struct platform_driver ehv_bc_tty_driver = {
776 .driver = {
777 .owner = THIS_MODULE,
778 .name = "ehv-bc",
779 .of_match_table = ehv_bc_tty_of_ids,
781 .probe = ehv_bc_tty_probe,
782 .remove = ehv_bc_tty_remove,
786 * ehv_bc_init - ePAPR hypervisor byte channel driver initialization
788 * This function is called when this module is loaded.
790 static int __init ehv_bc_init(void)
792 struct device_node *np;
793 unsigned int count = 0; /* Number of elements in bcs[] */
794 int ret;
796 pr_info("ePAPR hypervisor byte channel driver\n");
798 /* Count the number of byte channels */
799 for_each_compatible_node(np, NULL, "epapr,hv-byte-channel")
800 count++;
802 if (!count)
803 return -ENODEV;
805 /* The array index of an element in bcs[] is the same as the tty index
806 * for that element. If you know the address of an element in the
807 * array, then you can use pointer math (e.g. "bc - bcs") to get its
808 * tty index.
810 bcs = kzalloc(count * sizeof(struct ehv_bc_data), GFP_KERNEL);
811 if (!bcs)
812 return -ENOMEM;
814 ehv_bc_driver = alloc_tty_driver(count);
815 if (!ehv_bc_driver) {
816 ret = -ENOMEM;
817 goto error;
820 ehv_bc_driver->driver_name = "ehv-bc";
821 ehv_bc_driver->name = ehv_bc_console.name;
822 ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE;
823 ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE;
824 ehv_bc_driver->init_termios = tty_std_termios;
825 ehv_bc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
826 tty_set_operations(ehv_bc_driver, &ehv_bc_ops);
828 ret = tty_register_driver(ehv_bc_driver);
829 if (ret) {
830 pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret);
831 goto error;
834 ret = platform_driver_register(&ehv_bc_tty_driver);
835 if (ret) {
836 pr_err("ehv-bc: could not register platform driver (ret=%i)\n",
837 ret);
838 goto error;
841 return 0;
843 error:
844 if (ehv_bc_driver) {
845 tty_unregister_driver(ehv_bc_driver);
846 put_tty_driver(ehv_bc_driver);
849 kfree(bcs);
851 return ret;
856 * ehv_bc_exit - ePAPR hypervisor byte channel driver termination
858 * This function is called when this driver is unloaded.
860 static void __exit ehv_bc_exit(void)
862 platform_driver_unregister(&ehv_bc_tty_driver);
863 tty_unregister_driver(ehv_bc_driver);
864 put_tty_driver(ehv_bc_driver);
865 kfree(bcs);
868 module_init(ehv_bc_init);
869 module_exit(ehv_bc_exit);
871 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
872 MODULE_DESCRIPTION("ePAPR hypervisor byte channel driver");
873 MODULE_LICENSE("GPL v2");