x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / tty / serial / amba-pl011.c
bloba976ba99a006e7c0f68f76fa58930007b5bb9219
1 /*
2 * Driver for AMBA serial ports
4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6 * Copyright 1999 ARM Limited
7 * Copyright (C) 2000 Deep Blue Solutions Ltd.
8 * Copyright (C) 2010 ST-Ericsson SA
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 * This is a generic driver for ARM AMBA-type serial ports. They
25 * have a lot of 16550-like features, but are not register compatible.
26 * Note that although they do have CTS, DCD and DSR inputs, they do
27 * not have an RI input, nor do they have DTR or RTS outputs. If
28 * required, these have to be supplied via some other means (eg, GPIO)
29 * and hooked into this driver.
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34 #define SUPPORT_SYSRQ
35 #endif
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
60 #include <linux/io.h>
62 #define UART_NR 14
64 #define SERIAL_AMBA_MAJOR 204
65 #define SERIAL_AMBA_MINOR 64
66 #define SERIAL_AMBA_NR UART_NR
68 #define AMBA_ISR_PASS_LIMIT 256
70 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
71 #define UART_DUMMY_DR_RX (1 << 16)
73 /* There is by now at least one vendor with differing details, so handle it */
74 struct vendor_data {
75 unsigned int ifls;
76 unsigned int lcrh_tx;
77 unsigned int lcrh_rx;
78 bool oversampling;
79 bool dma_threshold;
80 bool cts_event_workaround;
82 unsigned int (*get_fifosize)(struct amba_device *dev);
85 static unsigned int get_fifosize_arm(struct amba_device *dev)
87 return amba_rev(dev) < 3 ? 16 : 32;
90 static struct vendor_data vendor_arm = {
91 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
92 .lcrh_tx = UART011_LCRH,
93 .lcrh_rx = UART011_LCRH,
94 .oversampling = false,
95 .dma_threshold = false,
96 .cts_event_workaround = false,
97 .get_fifosize = get_fifosize_arm,
100 static unsigned int get_fifosize_st(struct amba_device *dev)
102 return 64;
105 static struct vendor_data vendor_st = {
106 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
107 .lcrh_tx = ST_UART011_LCRH_TX,
108 .lcrh_rx = ST_UART011_LCRH_RX,
109 .oversampling = true,
110 .dma_threshold = true,
111 .cts_event_workaround = true,
112 .get_fifosize = get_fifosize_st,
115 static struct uart_amba_port *amba_ports[UART_NR];
117 /* Deals with DMA transactions */
119 struct pl011_sgbuf {
120 struct scatterlist sg;
121 char *buf;
124 struct pl011_dmarx_data {
125 struct dma_chan *chan;
126 struct completion complete;
127 bool use_buf_b;
128 struct pl011_sgbuf sgbuf_a;
129 struct pl011_sgbuf sgbuf_b;
130 dma_cookie_t cookie;
131 bool running;
132 struct timer_list timer;
133 unsigned int last_residue;
134 unsigned long last_jiffies;
135 bool auto_poll_rate;
136 unsigned int poll_rate;
137 unsigned int poll_timeout;
140 struct pl011_dmatx_data {
141 struct dma_chan *chan;
142 struct scatterlist sg;
143 char *buf;
144 bool queued;
148 * We wrap our port structure around the generic uart_port.
150 struct uart_amba_port {
151 struct uart_port port;
152 struct clk *clk;
153 const struct vendor_data *vendor;
154 unsigned int dmacr; /* dma control reg */
155 unsigned int im; /* interrupt mask */
156 unsigned int old_status;
157 unsigned int fifosize; /* vendor-specific */
158 unsigned int lcrh_tx; /* vendor-specific */
159 unsigned int lcrh_rx; /* vendor-specific */
160 unsigned int old_cr; /* state during shutdown */
161 bool autorts;
162 char type[12];
163 #ifdef CONFIG_DMA_ENGINE
164 /* DMA stuff */
165 bool using_tx_dma;
166 bool using_rx_dma;
167 struct pl011_dmarx_data dmarx;
168 struct pl011_dmatx_data dmatx;
169 #endif
173 * Reads up to 256 characters from the FIFO or until it's empty and
174 * inserts them into the TTY layer. Returns the number of characters
175 * read from the FIFO.
177 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
179 u16 status, ch;
180 unsigned int flag, max_count = 256;
181 int fifotaken = 0;
183 while (max_count--) {
184 status = readw(uap->port.membase + UART01x_FR);
185 if (status & UART01x_FR_RXFE)
186 break;
188 /* Take chars from the FIFO and update status */
189 ch = readw(uap->port.membase + UART01x_DR) |
190 UART_DUMMY_DR_RX;
191 flag = TTY_NORMAL;
192 uap->port.icount.rx++;
193 fifotaken++;
195 if (unlikely(ch & UART_DR_ERROR)) {
196 if (ch & UART011_DR_BE) {
197 ch &= ~(UART011_DR_FE | UART011_DR_PE);
198 uap->port.icount.brk++;
199 if (uart_handle_break(&uap->port))
200 continue;
201 } else if (ch & UART011_DR_PE)
202 uap->port.icount.parity++;
203 else if (ch & UART011_DR_FE)
204 uap->port.icount.frame++;
205 if (ch & UART011_DR_OE)
206 uap->port.icount.overrun++;
208 ch &= uap->port.read_status_mask;
210 if (ch & UART011_DR_BE)
211 flag = TTY_BREAK;
212 else if (ch & UART011_DR_PE)
213 flag = TTY_PARITY;
214 else if (ch & UART011_DR_FE)
215 flag = TTY_FRAME;
218 if (uart_handle_sysrq_char(&uap->port, ch & 255))
219 continue;
221 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
224 return fifotaken;
229 * All the DMA operation mode stuff goes inside this ifdef.
230 * This assumes that you have a generic DMA device interface,
231 * no custom DMA interfaces are supported.
233 #ifdef CONFIG_DMA_ENGINE
235 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
237 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
238 enum dma_data_direction dir)
240 dma_addr_t dma_addr;
242 sg->buf = dma_alloc_coherent(chan->device->dev,
243 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
244 if (!sg->buf)
245 return -ENOMEM;
247 sg_init_table(&sg->sg, 1);
248 sg_set_page(&sg->sg, phys_to_page(dma_addr),
249 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
250 sg_dma_address(&sg->sg) = dma_addr;
252 return 0;
255 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
256 enum dma_data_direction dir)
258 if (sg->buf) {
259 dma_free_coherent(chan->device->dev,
260 PL011_DMA_BUFFER_SIZE, sg->buf,
261 sg_dma_address(&sg->sg));
265 static void pl011_dma_probe_initcall(struct device *dev, struct uart_amba_port *uap)
267 /* DMA is the sole user of the platform data right now */
268 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
269 struct dma_slave_config tx_conf = {
270 .dst_addr = uap->port.mapbase + UART01x_DR,
271 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
272 .direction = DMA_MEM_TO_DEV,
273 .dst_maxburst = uap->fifosize >> 1,
274 .device_fc = false,
276 struct dma_chan *chan;
277 dma_cap_mask_t mask;
279 chan = dma_request_slave_channel(dev, "tx");
281 if (!chan) {
282 /* We need platform data */
283 if (!plat || !plat->dma_filter) {
284 dev_info(uap->port.dev, "no DMA platform data\n");
285 return;
288 /* Try to acquire a generic DMA engine slave TX channel */
289 dma_cap_zero(mask);
290 dma_cap_set(DMA_SLAVE, mask);
292 chan = dma_request_channel(mask, plat->dma_filter,
293 plat->dma_tx_param);
294 if (!chan) {
295 dev_err(uap->port.dev, "no TX DMA channel!\n");
296 return;
300 dmaengine_slave_config(chan, &tx_conf);
301 uap->dmatx.chan = chan;
303 dev_info(uap->port.dev, "DMA channel TX %s\n",
304 dma_chan_name(uap->dmatx.chan));
306 /* Optionally make use of an RX channel as well */
307 chan = dma_request_slave_channel(dev, "rx");
309 if (!chan && plat->dma_rx_param) {
310 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
312 if (!chan) {
313 dev_err(uap->port.dev, "no RX DMA channel!\n");
314 return;
318 if (chan) {
319 struct dma_slave_config rx_conf = {
320 .src_addr = uap->port.mapbase + UART01x_DR,
321 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
322 .direction = DMA_DEV_TO_MEM,
323 .src_maxburst = uap->fifosize >> 1,
324 .device_fc = false,
327 dmaengine_slave_config(chan, &rx_conf);
328 uap->dmarx.chan = chan;
330 if (plat && plat->dma_rx_poll_enable) {
331 /* Set poll rate if specified. */
332 if (plat->dma_rx_poll_rate) {
333 uap->dmarx.auto_poll_rate = false;
334 uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
335 } else {
337 * 100 ms defaults to poll rate if not
338 * specified. This will be adjusted with
339 * the baud rate at set_termios.
341 uap->dmarx.auto_poll_rate = true;
342 uap->dmarx.poll_rate = 100;
344 /* 3 secs defaults poll_timeout if not specified. */
345 if (plat->dma_rx_poll_timeout)
346 uap->dmarx.poll_timeout =
347 plat->dma_rx_poll_timeout;
348 else
349 uap->dmarx.poll_timeout = 3000;
350 } else
351 uap->dmarx.auto_poll_rate = false;
353 dev_info(uap->port.dev, "DMA channel RX %s\n",
354 dma_chan_name(uap->dmarx.chan));
358 #ifndef MODULE
360 * Stack up the UARTs and let the above initcall be done at device
361 * initcall time, because the serial driver is called as an arch
362 * initcall, and at this time the DMA subsystem is not yet registered.
363 * At this point the driver will switch over to using DMA where desired.
365 struct dma_uap {
366 struct list_head node;
367 struct uart_amba_port *uap;
368 struct device *dev;
371 static LIST_HEAD(pl011_dma_uarts);
373 static int __init pl011_dma_initcall(void)
375 struct list_head *node, *tmp;
377 list_for_each_safe(node, tmp, &pl011_dma_uarts) {
378 struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
379 pl011_dma_probe_initcall(dmau->dev, dmau->uap);
380 list_del(node);
381 kfree(dmau);
383 return 0;
386 device_initcall(pl011_dma_initcall);
388 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
390 struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
391 if (dmau) {
392 dmau->uap = uap;
393 dmau->dev = dev;
394 list_add_tail(&dmau->node, &pl011_dma_uarts);
397 #else
398 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
400 pl011_dma_probe_initcall(dev, uap);
402 #endif
404 static void pl011_dma_remove(struct uart_amba_port *uap)
406 /* TODO: remove the initcall if it has not yet executed */
407 if (uap->dmatx.chan)
408 dma_release_channel(uap->dmatx.chan);
409 if (uap->dmarx.chan)
410 dma_release_channel(uap->dmarx.chan);
413 /* Forward declare this for the refill routine */
414 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
417 * The current DMA TX buffer has been sent.
418 * Try to queue up another DMA buffer.
420 static void pl011_dma_tx_callback(void *data)
422 struct uart_amba_port *uap = data;
423 struct pl011_dmatx_data *dmatx = &uap->dmatx;
424 unsigned long flags;
425 u16 dmacr;
427 spin_lock_irqsave(&uap->port.lock, flags);
428 if (uap->dmatx.queued)
429 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
430 DMA_TO_DEVICE);
432 dmacr = uap->dmacr;
433 uap->dmacr = dmacr & ~UART011_TXDMAE;
434 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
437 * If TX DMA was disabled, it means that we've stopped the DMA for
438 * some reason (eg, XOFF received, or we want to send an X-char.)
440 * Note: we need to be careful here of a potential race between DMA
441 * and the rest of the driver - if the driver disables TX DMA while
442 * a TX buffer completing, we must update the tx queued status to
443 * get further refills (hence we check dmacr).
445 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
446 uart_circ_empty(&uap->port.state->xmit)) {
447 uap->dmatx.queued = false;
448 spin_unlock_irqrestore(&uap->port.lock, flags);
449 return;
452 if (pl011_dma_tx_refill(uap) <= 0) {
454 * We didn't queue a DMA buffer for some reason, but we
455 * have data pending to be sent. Re-enable the TX IRQ.
457 uap->im |= UART011_TXIM;
458 writew(uap->im, uap->port.membase + UART011_IMSC);
460 spin_unlock_irqrestore(&uap->port.lock, flags);
464 * Try to refill the TX DMA buffer.
465 * Locking: called with port lock held and IRQs disabled.
466 * Returns:
467 * 1 if we queued up a TX DMA buffer.
468 * 0 if we didn't want to handle this by DMA
469 * <0 on error
471 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
473 struct pl011_dmatx_data *dmatx = &uap->dmatx;
474 struct dma_chan *chan = dmatx->chan;
475 struct dma_device *dma_dev = chan->device;
476 struct dma_async_tx_descriptor *desc;
477 struct circ_buf *xmit = &uap->port.state->xmit;
478 unsigned int count;
481 * Try to avoid the overhead involved in using DMA if the
482 * transaction fits in the first half of the FIFO, by using
483 * the standard interrupt handling. This ensures that we
484 * issue a uart_write_wakeup() at the appropriate time.
486 count = uart_circ_chars_pending(xmit);
487 if (count < (uap->fifosize >> 1)) {
488 uap->dmatx.queued = false;
489 return 0;
493 * Bodge: don't send the last character by DMA, as this
494 * will prevent XON from notifying us to restart DMA.
496 count -= 1;
498 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
499 if (count > PL011_DMA_BUFFER_SIZE)
500 count = PL011_DMA_BUFFER_SIZE;
502 if (xmit->tail < xmit->head)
503 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
504 else {
505 size_t first = UART_XMIT_SIZE - xmit->tail;
506 size_t second = xmit->head;
508 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
509 if (second)
510 memcpy(&dmatx->buf[first], &xmit->buf[0], second);
513 dmatx->sg.length = count;
515 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
516 uap->dmatx.queued = false;
517 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
518 return -EBUSY;
521 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
522 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
523 if (!desc) {
524 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
525 uap->dmatx.queued = false;
527 * If DMA cannot be used right now, we complete this
528 * transaction via IRQ and let the TTY layer retry.
530 dev_dbg(uap->port.dev, "TX DMA busy\n");
531 return -EBUSY;
534 /* Some data to go along to the callback */
535 desc->callback = pl011_dma_tx_callback;
536 desc->callback_param = uap;
538 /* All errors should happen at prepare time */
539 dmaengine_submit(desc);
541 /* Fire the DMA transaction */
542 dma_dev->device_issue_pending(chan);
544 uap->dmacr |= UART011_TXDMAE;
545 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
546 uap->dmatx.queued = true;
549 * Now we know that DMA will fire, so advance the ring buffer
550 * with the stuff we just dispatched.
552 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
553 uap->port.icount.tx += count;
555 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
556 uart_write_wakeup(&uap->port);
558 return 1;
562 * We received a transmit interrupt without a pending X-char but with
563 * pending characters.
564 * Locking: called with port lock held and IRQs disabled.
565 * Returns:
566 * false if we want to use PIO to transmit
567 * true if we queued a DMA buffer
569 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
571 if (!uap->using_tx_dma)
572 return false;
575 * If we already have a TX buffer queued, but received a
576 * TX interrupt, it will be because we've just sent an X-char.
577 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
579 if (uap->dmatx.queued) {
580 uap->dmacr |= UART011_TXDMAE;
581 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
582 uap->im &= ~UART011_TXIM;
583 writew(uap->im, uap->port.membase + UART011_IMSC);
584 return true;
588 * We don't have a TX buffer queued, so try to queue one.
589 * If we successfully queued a buffer, mask the TX IRQ.
591 if (pl011_dma_tx_refill(uap) > 0) {
592 uap->im &= ~UART011_TXIM;
593 writew(uap->im, uap->port.membase + UART011_IMSC);
594 return true;
596 return false;
600 * Stop the DMA transmit (eg, due to received XOFF).
601 * Locking: called with port lock held and IRQs disabled.
603 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
605 if (uap->dmatx.queued) {
606 uap->dmacr &= ~UART011_TXDMAE;
607 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
612 * Try to start a DMA transmit, or in the case of an XON/OFF
613 * character queued for send, try to get that character out ASAP.
614 * Locking: called with port lock held and IRQs disabled.
615 * Returns:
616 * false if we want the TX IRQ to be enabled
617 * true if we have a buffer queued
619 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
621 u16 dmacr;
623 if (!uap->using_tx_dma)
624 return false;
626 if (!uap->port.x_char) {
627 /* no X-char, try to push chars out in DMA mode */
628 bool ret = true;
630 if (!uap->dmatx.queued) {
631 if (pl011_dma_tx_refill(uap) > 0) {
632 uap->im &= ~UART011_TXIM;
633 ret = true;
634 } else {
635 uap->im |= UART011_TXIM;
636 ret = false;
638 writew(uap->im, uap->port.membase + UART011_IMSC);
639 } else if (!(uap->dmacr & UART011_TXDMAE)) {
640 uap->dmacr |= UART011_TXDMAE;
641 writew(uap->dmacr,
642 uap->port.membase + UART011_DMACR);
644 return ret;
648 * We have an X-char to send. Disable DMA to prevent it loading
649 * the TX fifo, and then see if we can stuff it into the FIFO.
651 dmacr = uap->dmacr;
652 uap->dmacr &= ~UART011_TXDMAE;
653 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
655 if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
657 * No space in the FIFO, so enable the transmit interrupt
658 * so we know when there is space. Note that once we've
659 * loaded the character, we should just re-enable DMA.
661 return false;
664 writew(uap->port.x_char, uap->port.membase + UART01x_DR);
665 uap->port.icount.tx++;
666 uap->port.x_char = 0;
668 /* Success - restore the DMA state */
669 uap->dmacr = dmacr;
670 writew(dmacr, uap->port.membase + UART011_DMACR);
672 return true;
676 * Flush the transmit buffer.
677 * Locking: called with port lock held and IRQs disabled.
679 static void pl011_dma_flush_buffer(struct uart_port *port)
680 __releases(&uap->port.lock)
681 __acquires(&uap->port.lock)
683 struct uart_amba_port *uap = (struct uart_amba_port *)port;
685 if (!uap->using_tx_dma)
686 return;
688 /* Avoid deadlock with the DMA engine callback */
689 spin_unlock(&uap->port.lock);
690 dmaengine_terminate_all(uap->dmatx.chan);
691 spin_lock(&uap->port.lock);
692 if (uap->dmatx.queued) {
693 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
694 DMA_TO_DEVICE);
695 uap->dmatx.queued = false;
696 uap->dmacr &= ~UART011_TXDMAE;
697 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
701 static void pl011_dma_rx_callback(void *data);
703 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
705 struct dma_chan *rxchan = uap->dmarx.chan;
706 struct pl011_dmarx_data *dmarx = &uap->dmarx;
707 struct dma_async_tx_descriptor *desc;
708 struct pl011_sgbuf *sgbuf;
710 if (!rxchan)
711 return -EIO;
713 /* Start the RX DMA job */
714 sgbuf = uap->dmarx.use_buf_b ?
715 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
716 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
717 DMA_DEV_TO_MEM,
718 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
720 * If the DMA engine is busy and cannot prepare a
721 * channel, no big deal, the driver will fall back
722 * to interrupt mode as a result of this error code.
724 if (!desc) {
725 uap->dmarx.running = false;
726 dmaengine_terminate_all(rxchan);
727 return -EBUSY;
730 /* Some data to go along to the callback */
731 desc->callback = pl011_dma_rx_callback;
732 desc->callback_param = uap;
733 dmarx->cookie = dmaengine_submit(desc);
734 dma_async_issue_pending(rxchan);
736 uap->dmacr |= UART011_RXDMAE;
737 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
738 uap->dmarx.running = true;
740 uap->im &= ~UART011_RXIM;
741 writew(uap->im, uap->port.membase + UART011_IMSC);
743 return 0;
747 * This is called when either the DMA job is complete, or
748 * the FIFO timeout interrupt occurred. This must be called
749 * with the port spinlock uap->port.lock held.
751 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
752 u32 pending, bool use_buf_b,
753 bool readfifo)
755 struct tty_port *port = &uap->port.state->port;
756 struct pl011_sgbuf *sgbuf = use_buf_b ?
757 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
758 int dma_count = 0;
759 u32 fifotaken = 0; /* only used for vdbg() */
761 struct pl011_dmarx_data *dmarx = &uap->dmarx;
762 int dmataken = 0;
764 if (uap->dmarx.poll_rate) {
765 /* The data can be taken by polling */
766 dmataken = sgbuf->sg.length - dmarx->last_residue;
767 /* Recalculate the pending size */
768 if (pending >= dmataken)
769 pending -= dmataken;
772 /* Pick the remain data from the DMA */
773 if (pending) {
776 * First take all chars in the DMA pipe, then look in the FIFO.
777 * Note that tty_insert_flip_buf() tries to take as many chars
778 * as it can.
780 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
781 pending);
783 uap->port.icount.rx += dma_count;
784 if (dma_count < pending)
785 dev_warn(uap->port.dev,
786 "couldn't insert all characters (TTY is full?)\n");
789 /* Reset the last_residue for Rx DMA poll */
790 if (uap->dmarx.poll_rate)
791 dmarx->last_residue = sgbuf->sg.length;
794 * Only continue with trying to read the FIFO if all DMA chars have
795 * been taken first.
797 if (dma_count == pending && readfifo) {
798 /* Clear any error flags */
799 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
800 uap->port.membase + UART011_ICR);
803 * If we read all the DMA'd characters, and we had an
804 * incomplete buffer, that could be due to an rx error, or
805 * maybe we just timed out. Read any pending chars and check
806 * the error status.
808 * Error conditions will only occur in the FIFO, these will
809 * trigger an immediate interrupt and stop the DMA job, so we
810 * will always find the error in the FIFO, never in the DMA
811 * buffer.
813 fifotaken = pl011_fifo_to_tty(uap);
816 spin_unlock(&uap->port.lock);
817 dev_vdbg(uap->port.dev,
818 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
819 dma_count, fifotaken);
820 tty_flip_buffer_push(port);
821 spin_lock(&uap->port.lock);
824 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
826 struct pl011_dmarx_data *dmarx = &uap->dmarx;
827 struct dma_chan *rxchan = dmarx->chan;
828 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
829 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
830 size_t pending;
831 struct dma_tx_state state;
832 enum dma_status dmastat;
835 * Pause the transfer so we can trust the current counter,
836 * do this before we pause the PL011 block, else we may
837 * overflow the FIFO.
839 if (dmaengine_pause(rxchan))
840 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
841 dmastat = rxchan->device->device_tx_status(rxchan,
842 dmarx->cookie, &state);
843 if (dmastat != DMA_PAUSED)
844 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
846 /* Disable RX DMA - incoming data will wait in the FIFO */
847 uap->dmacr &= ~UART011_RXDMAE;
848 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
849 uap->dmarx.running = false;
851 pending = sgbuf->sg.length - state.residue;
852 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
853 /* Then we terminate the transfer - we now know our residue */
854 dmaengine_terminate_all(rxchan);
857 * This will take the chars we have so far and insert
858 * into the framework.
860 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
862 /* Switch buffer & re-trigger DMA job */
863 dmarx->use_buf_b = !dmarx->use_buf_b;
864 if (pl011_dma_rx_trigger_dma(uap)) {
865 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
866 "fall back to interrupt mode\n");
867 uap->im |= UART011_RXIM;
868 writew(uap->im, uap->port.membase + UART011_IMSC);
872 static void pl011_dma_rx_callback(void *data)
874 struct uart_amba_port *uap = data;
875 struct pl011_dmarx_data *dmarx = &uap->dmarx;
876 struct dma_chan *rxchan = dmarx->chan;
877 bool lastbuf = dmarx->use_buf_b;
878 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
879 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
880 size_t pending;
881 struct dma_tx_state state;
882 int ret;
885 * This completion interrupt occurs typically when the
886 * RX buffer is totally stuffed but no timeout has yet
887 * occurred. When that happens, we just want the RX
888 * routine to flush out the secondary DMA buffer while
889 * we immediately trigger the next DMA job.
891 spin_lock_irq(&uap->port.lock);
893 * Rx data can be taken by the UART interrupts during
894 * the DMA irq handler. So we check the residue here.
896 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
897 pending = sgbuf->sg.length - state.residue;
898 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
899 /* Then we terminate the transfer - we now know our residue */
900 dmaengine_terminate_all(rxchan);
902 uap->dmarx.running = false;
903 dmarx->use_buf_b = !lastbuf;
904 ret = pl011_dma_rx_trigger_dma(uap);
906 pl011_dma_rx_chars(uap, pending, lastbuf, false);
907 spin_unlock_irq(&uap->port.lock);
909 * Do this check after we picked the DMA chars so we don't
910 * get some IRQ immediately from RX.
912 if (ret) {
913 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
914 "fall back to interrupt mode\n");
915 uap->im |= UART011_RXIM;
916 writew(uap->im, uap->port.membase + UART011_IMSC);
921 * Stop accepting received characters, when we're shutting down or
922 * suspending this port.
923 * Locking: called with port lock held and IRQs disabled.
925 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
927 /* FIXME. Just disable the DMA enable */
928 uap->dmacr &= ~UART011_RXDMAE;
929 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
933 * Timer handler for Rx DMA polling.
934 * Every polling, It checks the residue in the dma buffer and transfer
935 * data to the tty. Also, last_residue is updated for the next polling.
937 static void pl011_dma_rx_poll(unsigned long args)
939 struct uart_amba_port *uap = (struct uart_amba_port *)args;
940 struct tty_port *port = &uap->port.state->port;
941 struct pl011_dmarx_data *dmarx = &uap->dmarx;
942 struct dma_chan *rxchan = uap->dmarx.chan;
943 unsigned long flags = 0;
944 unsigned int dmataken = 0;
945 unsigned int size = 0;
946 struct pl011_sgbuf *sgbuf;
947 int dma_count;
948 struct dma_tx_state state;
950 sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
951 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
952 if (likely(state.residue < dmarx->last_residue)) {
953 dmataken = sgbuf->sg.length - dmarx->last_residue;
954 size = dmarx->last_residue - state.residue;
955 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
956 size);
957 if (dma_count == size)
958 dmarx->last_residue = state.residue;
959 dmarx->last_jiffies = jiffies;
961 tty_flip_buffer_push(port);
964 * If no data is received in poll_timeout, the driver will fall back
965 * to interrupt mode. We will retrigger DMA at the first interrupt.
967 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
968 > uap->dmarx.poll_timeout) {
970 spin_lock_irqsave(&uap->port.lock, flags);
971 pl011_dma_rx_stop(uap);
972 spin_unlock_irqrestore(&uap->port.lock, flags);
974 uap->dmarx.running = false;
975 dmaengine_terminate_all(rxchan);
976 del_timer(&uap->dmarx.timer);
977 } else {
978 mod_timer(&uap->dmarx.timer,
979 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
983 static void pl011_dma_startup(struct uart_amba_port *uap)
985 int ret;
987 if (!uap->dmatx.chan)
988 return;
990 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
991 if (!uap->dmatx.buf) {
992 dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
993 uap->port.fifosize = uap->fifosize;
994 return;
997 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
999 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1000 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1001 uap->using_tx_dma = true;
1003 if (!uap->dmarx.chan)
1004 goto skip_rx;
1006 /* Allocate and map DMA RX buffers */
1007 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1008 DMA_FROM_DEVICE);
1009 if (ret) {
1010 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1011 "RX buffer A", ret);
1012 goto skip_rx;
1015 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1016 DMA_FROM_DEVICE);
1017 if (ret) {
1018 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1019 "RX buffer B", ret);
1020 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1021 DMA_FROM_DEVICE);
1022 goto skip_rx;
1025 uap->using_rx_dma = true;
1027 skip_rx:
1028 /* Turn on DMA error (RX/TX will be enabled on demand) */
1029 uap->dmacr |= UART011_DMAONERR;
1030 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1033 * ST Micro variants has some specific dma burst threshold
1034 * compensation. Set this to 16 bytes, so burst will only
1035 * be issued above/below 16 bytes.
1037 if (uap->vendor->dma_threshold)
1038 writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1039 uap->port.membase + ST_UART011_DMAWM);
1041 if (uap->using_rx_dma) {
1042 if (pl011_dma_rx_trigger_dma(uap))
1043 dev_dbg(uap->port.dev, "could not trigger initial "
1044 "RX DMA job, fall back to interrupt mode\n");
1045 if (uap->dmarx.poll_rate) {
1046 init_timer(&(uap->dmarx.timer));
1047 uap->dmarx.timer.function = pl011_dma_rx_poll;
1048 uap->dmarx.timer.data = (unsigned long)uap;
1049 mod_timer(&uap->dmarx.timer,
1050 jiffies +
1051 msecs_to_jiffies(uap->dmarx.poll_rate));
1052 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1053 uap->dmarx.last_jiffies = jiffies;
1058 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1060 if (!(uap->using_tx_dma || uap->using_rx_dma))
1061 return;
1063 /* Disable RX and TX DMA */
1064 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1065 barrier();
1067 spin_lock_irq(&uap->port.lock);
1068 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1069 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1070 spin_unlock_irq(&uap->port.lock);
1072 if (uap->using_tx_dma) {
1073 /* In theory, this should already be done by pl011_dma_flush_buffer */
1074 dmaengine_terminate_all(uap->dmatx.chan);
1075 if (uap->dmatx.queued) {
1076 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1077 DMA_TO_DEVICE);
1078 uap->dmatx.queued = false;
1081 kfree(uap->dmatx.buf);
1082 uap->using_tx_dma = false;
1085 if (uap->using_rx_dma) {
1086 dmaengine_terminate_all(uap->dmarx.chan);
1087 /* Clean up the RX DMA */
1088 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1089 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1090 if (uap->dmarx.poll_rate)
1091 del_timer_sync(&uap->dmarx.timer);
1092 uap->using_rx_dma = false;
1096 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1098 return uap->using_rx_dma;
1101 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1103 return uap->using_rx_dma && uap->dmarx.running;
1106 #else
1107 /* Blank functions if the DMA engine is not available */
1108 static inline void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
1112 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1116 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1120 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1124 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1126 return false;
1129 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1133 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1135 return false;
1138 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1142 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1146 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1148 return -EIO;
1151 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1153 return false;
1156 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1158 return false;
1161 #define pl011_dma_flush_buffer NULL
1162 #endif
1164 static void pl011_stop_tx(struct uart_port *port)
1166 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1168 uap->im &= ~UART011_TXIM;
1169 writew(uap->im, uap->port.membase + UART011_IMSC);
1170 pl011_dma_tx_stop(uap);
1173 static void pl011_start_tx(struct uart_port *port)
1175 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1177 if (!pl011_dma_tx_start(uap)) {
1178 uap->im |= UART011_TXIM;
1179 writew(uap->im, uap->port.membase + UART011_IMSC);
1183 static void pl011_stop_rx(struct uart_port *port)
1185 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1187 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1188 UART011_PEIM|UART011_BEIM|UART011_OEIM);
1189 writew(uap->im, uap->port.membase + UART011_IMSC);
1191 pl011_dma_rx_stop(uap);
1194 static void pl011_enable_ms(struct uart_port *port)
1196 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1198 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1199 writew(uap->im, uap->port.membase + UART011_IMSC);
1202 static void pl011_rx_chars(struct uart_amba_port *uap)
1203 __releases(&uap->port.lock)
1204 __acquires(&uap->port.lock)
1206 pl011_fifo_to_tty(uap);
1208 spin_unlock(&uap->port.lock);
1209 tty_flip_buffer_push(&uap->port.state->port);
1211 * If we were temporarily out of DMA mode for a while,
1212 * attempt to switch back to DMA mode again.
1214 if (pl011_dma_rx_available(uap)) {
1215 if (pl011_dma_rx_trigger_dma(uap)) {
1216 dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1217 "fall back to interrupt mode again\n");
1218 uap->im |= UART011_RXIM;
1219 } else {
1220 uap->im &= ~UART011_RXIM;
1221 #ifdef CONFIG_DMA_ENGINE
1222 /* Start Rx DMA poll */
1223 if (uap->dmarx.poll_rate) {
1224 uap->dmarx.last_jiffies = jiffies;
1225 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1226 mod_timer(&uap->dmarx.timer,
1227 jiffies +
1228 msecs_to_jiffies(uap->dmarx.poll_rate));
1230 #endif
1233 writew(uap->im, uap->port.membase + UART011_IMSC);
1235 spin_lock(&uap->port.lock);
1238 static void pl011_tx_chars(struct uart_amba_port *uap)
1240 struct circ_buf *xmit = &uap->port.state->xmit;
1241 int count;
1243 if (uap->port.x_char) {
1244 writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1245 uap->port.icount.tx++;
1246 uap->port.x_char = 0;
1247 return;
1249 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1250 pl011_stop_tx(&uap->port);
1251 return;
1254 /* If we are using DMA mode, try to send some characters. */
1255 if (pl011_dma_tx_irq(uap))
1256 return;
1258 count = uap->fifosize >> 1;
1259 do {
1260 writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1261 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1262 uap->port.icount.tx++;
1263 if (uart_circ_empty(xmit))
1264 break;
1265 } while (--count > 0);
1267 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1268 uart_write_wakeup(&uap->port);
1270 if (uart_circ_empty(xmit))
1271 pl011_stop_tx(&uap->port);
1274 static void pl011_modem_status(struct uart_amba_port *uap)
1276 unsigned int status, delta;
1278 status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1280 delta = status ^ uap->old_status;
1281 uap->old_status = status;
1283 if (!delta)
1284 return;
1286 if (delta & UART01x_FR_DCD)
1287 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1289 if (delta & UART01x_FR_DSR)
1290 uap->port.icount.dsr++;
1292 if (delta & UART01x_FR_CTS)
1293 uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1295 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1298 static irqreturn_t pl011_int(int irq, void *dev_id)
1300 struct uart_amba_port *uap = dev_id;
1301 unsigned long flags;
1302 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1303 int handled = 0;
1304 unsigned int dummy_read;
1306 spin_lock_irqsave(&uap->port.lock, flags);
1307 status = readw(uap->port.membase + UART011_MIS);
1308 if (status) {
1309 do {
1310 if (uap->vendor->cts_event_workaround) {
1311 /* workaround to make sure that all bits are unlocked.. */
1312 writew(0x00, uap->port.membase + UART011_ICR);
1315 * WA: introduce 26ns(1 uart clk) delay before W1C;
1316 * single apb access will incur 2 pclk(133.12Mhz) delay,
1317 * so add 2 dummy reads
1319 dummy_read = readw(uap->port.membase + UART011_ICR);
1320 dummy_read = readw(uap->port.membase + UART011_ICR);
1323 writew(status & ~(UART011_TXIS|UART011_RTIS|
1324 UART011_RXIS),
1325 uap->port.membase + UART011_ICR);
1327 if (status & (UART011_RTIS|UART011_RXIS)) {
1328 if (pl011_dma_rx_running(uap))
1329 pl011_dma_rx_irq(uap);
1330 else
1331 pl011_rx_chars(uap);
1333 if (status & (UART011_DSRMIS|UART011_DCDMIS|
1334 UART011_CTSMIS|UART011_RIMIS))
1335 pl011_modem_status(uap);
1336 if (status & UART011_TXIS)
1337 pl011_tx_chars(uap);
1339 if (pass_counter-- == 0)
1340 break;
1342 status = readw(uap->port.membase + UART011_MIS);
1343 } while (status != 0);
1344 handled = 1;
1347 spin_unlock_irqrestore(&uap->port.lock, flags);
1349 return IRQ_RETVAL(handled);
1352 static unsigned int pl011_tx_empty(struct uart_port *port)
1354 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1355 unsigned int status = readw(uap->port.membase + UART01x_FR);
1356 return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1359 static unsigned int pl011_get_mctrl(struct uart_port *port)
1361 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1362 unsigned int result = 0;
1363 unsigned int status = readw(uap->port.membase + UART01x_FR);
1365 #define TIOCMBIT(uartbit, tiocmbit) \
1366 if (status & uartbit) \
1367 result |= tiocmbit
1369 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1370 TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1371 TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1372 TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1373 #undef TIOCMBIT
1374 return result;
1377 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1379 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1380 unsigned int cr;
1382 cr = readw(uap->port.membase + UART011_CR);
1384 #define TIOCMBIT(tiocmbit, uartbit) \
1385 if (mctrl & tiocmbit) \
1386 cr |= uartbit; \
1387 else \
1388 cr &= ~uartbit
1390 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1391 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1392 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1393 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1394 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1396 if (uap->autorts) {
1397 /* We need to disable auto-RTS if we want to turn RTS off */
1398 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1400 #undef TIOCMBIT
1402 writew(cr, uap->port.membase + UART011_CR);
1405 static void pl011_break_ctl(struct uart_port *port, int break_state)
1407 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1408 unsigned long flags;
1409 unsigned int lcr_h;
1411 spin_lock_irqsave(&uap->port.lock, flags);
1412 lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1413 if (break_state == -1)
1414 lcr_h |= UART01x_LCRH_BRK;
1415 else
1416 lcr_h &= ~UART01x_LCRH_BRK;
1417 writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1418 spin_unlock_irqrestore(&uap->port.lock, flags);
1421 #ifdef CONFIG_CONSOLE_POLL
1423 static void pl011_quiesce_irqs(struct uart_port *port)
1425 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1426 unsigned char __iomem *regs = uap->port.membase;
1428 writew(readw(regs + UART011_MIS), regs + UART011_ICR);
1430 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1431 * we simply mask it. start_tx() will unmask it.
1433 * Note we can race with start_tx(), and if the race happens, the
1434 * polling user might get another interrupt just after we clear it.
1435 * But it should be OK and can happen even w/o the race, e.g.
1436 * controller immediately got some new data and raised the IRQ.
1438 * And whoever uses polling routines assumes that it manages the device
1439 * (including tx queue), so we're also fine with start_tx()'s caller
1440 * side.
1442 writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC);
1445 static int pl011_get_poll_char(struct uart_port *port)
1447 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1448 unsigned int status;
1451 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1452 * debugger.
1454 pl011_quiesce_irqs(port);
1456 status = readw(uap->port.membase + UART01x_FR);
1457 if (status & UART01x_FR_RXFE)
1458 return NO_POLL_CHAR;
1460 return readw(uap->port.membase + UART01x_DR);
1463 static void pl011_put_poll_char(struct uart_port *port,
1464 unsigned char ch)
1466 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1468 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1469 barrier();
1471 writew(ch, uap->port.membase + UART01x_DR);
1474 #endif /* CONFIG_CONSOLE_POLL */
1476 static int pl011_hwinit(struct uart_port *port)
1478 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1479 int retval;
1481 /* Optionaly enable pins to be muxed in and configured */
1482 pinctrl_pm_select_default_state(port->dev);
1485 * Try to enable the clock producer.
1487 retval = clk_prepare_enable(uap->clk);
1488 if (retval)
1489 goto out;
1491 uap->port.uartclk = clk_get_rate(uap->clk);
1493 /* Clear pending error and receive interrupts */
1494 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1495 UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
1498 * Save interrupts enable mask, and enable RX interrupts in case if
1499 * the interrupt is used for NMI entry.
1501 uap->im = readw(uap->port.membase + UART011_IMSC);
1502 writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC);
1504 if (dev_get_platdata(uap->port.dev)) {
1505 struct amba_pl011_data *plat;
1507 plat = dev_get_platdata(uap->port.dev);
1508 if (plat->init)
1509 plat->init();
1511 return 0;
1512 out:
1513 return retval;
1516 static int pl011_startup(struct uart_port *port)
1518 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1519 unsigned int cr;
1520 int retval;
1522 retval = pl011_hwinit(port);
1523 if (retval)
1524 goto clk_dis;
1526 writew(uap->im, uap->port.membase + UART011_IMSC);
1529 * Allocate the IRQ
1531 retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1532 if (retval)
1533 goto clk_dis;
1535 writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1538 * Provoke TX FIFO interrupt into asserting.
1540 spin_lock_irq(&uap->port.lock);
1542 cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1543 writew(cr, uap->port.membase + UART011_CR);
1544 writew(0, uap->port.membase + UART011_FBRD);
1545 writew(1, uap->port.membase + UART011_IBRD);
1546 writew(0, uap->port.membase + uap->lcrh_rx);
1547 if (uap->lcrh_tx != uap->lcrh_rx) {
1548 int i;
1550 * Wait 10 PCLKs before writing LCRH_TX register,
1551 * to get this delay write read only register 10 times
1553 for (i = 0; i < 10; ++i)
1554 writew(0xff, uap->port.membase + UART011_MIS);
1555 writew(0, uap->port.membase + uap->lcrh_tx);
1557 writew(0, uap->port.membase + UART01x_DR);
1558 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1559 barrier();
1561 /* restore RTS and DTR */
1562 cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1563 cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1564 writew(cr, uap->port.membase + UART011_CR);
1566 spin_unlock_irq(&uap->port.lock);
1569 * initialise the old status of the modem signals
1571 uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1573 /* Startup DMA */
1574 pl011_dma_startup(uap);
1577 * Finally, enable interrupts, only timeouts when using DMA
1578 * if initial RX DMA job failed, start in interrupt mode
1579 * as well.
1581 spin_lock_irq(&uap->port.lock);
1582 /* Clear out any spuriously appearing RX interrupts */
1583 writew(UART011_RTIS | UART011_RXIS,
1584 uap->port.membase + UART011_ICR);
1585 uap->im = UART011_RTIM;
1586 if (!pl011_dma_rx_running(uap))
1587 uap->im |= UART011_RXIM;
1588 writew(uap->im, uap->port.membase + UART011_IMSC);
1589 spin_unlock_irq(&uap->port.lock);
1591 return 0;
1593 clk_dis:
1594 clk_disable_unprepare(uap->clk);
1595 return retval;
1598 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1599 unsigned int lcrh)
1601 unsigned long val;
1603 val = readw(uap->port.membase + lcrh);
1604 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1605 writew(val, uap->port.membase + lcrh);
1608 static void pl011_shutdown(struct uart_port *port)
1610 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1611 unsigned int cr;
1614 * disable all interrupts
1616 spin_lock_irq(&uap->port.lock);
1617 uap->im = 0;
1618 writew(uap->im, uap->port.membase + UART011_IMSC);
1619 writew(0xffff, uap->port.membase + UART011_ICR);
1620 spin_unlock_irq(&uap->port.lock);
1622 pl011_dma_shutdown(uap);
1625 * Free the interrupt
1627 free_irq(uap->port.irq, uap);
1630 * disable the port
1631 * disable the port. It should not disable RTS and DTR.
1632 * Also RTS and DTR state should be preserved to restore
1633 * it during startup().
1635 uap->autorts = false;
1636 spin_lock_irq(&uap->port.lock);
1637 cr = readw(uap->port.membase + UART011_CR);
1638 uap->old_cr = cr;
1639 cr &= UART011_CR_RTS | UART011_CR_DTR;
1640 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1641 writew(cr, uap->port.membase + UART011_CR);
1642 spin_unlock_irq(&uap->port.lock);
1645 * disable break condition and fifos
1647 pl011_shutdown_channel(uap, uap->lcrh_rx);
1648 if (uap->lcrh_rx != uap->lcrh_tx)
1649 pl011_shutdown_channel(uap, uap->lcrh_tx);
1652 * Shut down the clock producer
1654 clk_disable_unprepare(uap->clk);
1655 /* Optionally let pins go into sleep states */
1656 pinctrl_pm_select_sleep_state(port->dev);
1658 if (dev_get_platdata(uap->port.dev)) {
1659 struct amba_pl011_data *plat;
1661 plat = dev_get_platdata(uap->port.dev);
1662 if (plat->exit)
1663 plat->exit();
1668 static void
1669 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1670 struct ktermios *old)
1672 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1673 unsigned int lcr_h, old_cr;
1674 unsigned long flags;
1675 unsigned int baud, quot, clkdiv;
1677 if (uap->vendor->oversampling)
1678 clkdiv = 8;
1679 else
1680 clkdiv = 16;
1683 * Ask the core to calculate the divisor for us.
1685 baud = uart_get_baud_rate(port, termios, old, 0,
1686 port->uartclk / clkdiv);
1687 #ifdef CONFIG_DMA_ENGINE
1689 * Adjust RX DMA polling rate with baud rate if not specified.
1691 if (uap->dmarx.auto_poll_rate)
1692 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1693 #endif
1695 if (baud > port->uartclk/16)
1696 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1697 else
1698 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1700 switch (termios->c_cflag & CSIZE) {
1701 case CS5:
1702 lcr_h = UART01x_LCRH_WLEN_5;
1703 break;
1704 case CS6:
1705 lcr_h = UART01x_LCRH_WLEN_6;
1706 break;
1707 case CS7:
1708 lcr_h = UART01x_LCRH_WLEN_7;
1709 break;
1710 default: // CS8
1711 lcr_h = UART01x_LCRH_WLEN_8;
1712 break;
1714 if (termios->c_cflag & CSTOPB)
1715 lcr_h |= UART01x_LCRH_STP2;
1716 if (termios->c_cflag & PARENB) {
1717 lcr_h |= UART01x_LCRH_PEN;
1718 if (!(termios->c_cflag & PARODD))
1719 lcr_h |= UART01x_LCRH_EPS;
1721 if (uap->fifosize > 1)
1722 lcr_h |= UART01x_LCRH_FEN;
1724 spin_lock_irqsave(&port->lock, flags);
1727 * Update the per-port timeout.
1729 uart_update_timeout(port, termios->c_cflag, baud);
1731 port->read_status_mask = UART011_DR_OE | 255;
1732 if (termios->c_iflag & INPCK)
1733 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1734 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1735 port->read_status_mask |= UART011_DR_BE;
1738 * Characters to ignore
1740 port->ignore_status_mask = 0;
1741 if (termios->c_iflag & IGNPAR)
1742 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1743 if (termios->c_iflag & IGNBRK) {
1744 port->ignore_status_mask |= UART011_DR_BE;
1746 * If we're ignoring parity and break indicators,
1747 * ignore overruns too (for real raw support).
1749 if (termios->c_iflag & IGNPAR)
1750 port->ignore_status_mask |= UART011_DR_OE;
1754 * Ignore all characters if CREAD is not set.
1756 if ((termios->c_cflag & CREAD) == 0)
1757 port->ignore_status_mask |= UART_DUMMY_DR_RX;
1759 if (UART_ENABLE_MS(port, termios->c_cflag))
1760 pl011_enable_ms(port);
1762 /* first, disable everything */
1763 old_cr = readw(port->membase + UART011_CR);
1764 writew(0, port->membase + UART011_CR);
1766 if (termios->c_cflag & CRTSCTS) {
1767 if (old_cr & UART011_CR_RTS)
1768 old_cr |= UART011_CR_RTSEN;
1770 old_cr |= UART011_CR_CTSEN;
1771 uap->autorts = true;
1772 } else {
1773 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1774 uap->autorts = false;
1777 if (uap->vendor->oversampling) {
1778 if (baud > port->uartclk / 16)
1779 old_cr |= ST_UART011_CR_OVSFACT;
1780 else
1781 old_cr &= ~ST_UART011_CR_OVSFACT;
1785 * Workaround for the ST Micro oversampling variants to
1786 * increase the bitrate slightly, by lowering the divisor,
1787 * to avoid delayed sampling of start bit at high speeds,
1788 * else we see data corruption.
1790 if (uap->vendor->oversampling) {
1791 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1792 quot -= 1;
1793 else if ((baud > 3250000) && (quot > 2))
1794 quot -= 2;
1796 /* Set baud rate */
1797 writew(quot & 0x3f, port->membase + UART011_FBRD);
1798 writew(quot >> 6, port->membase + UART011_IBRD);
1801 * ----------v----------v----------v----------v-----
1802 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
1803 * UART011_FBRD & UART011_IBRD.
1804 * ----------^----------^----------^----------^-----
1806 writew(lcr_h, port->membase + uap->lcrh_rx);
1807 if (uap->lcrh_rx != uap->lcrh_tx) {
1808 int i;
1810 * Wait 10 PCLKs before writing LCRH_TX register,
1811 * to get this delay write read only register 10 times
1813 for (i = 0; i < 10; ++i)
1814 writew(0xff, uap->port.membase + UART011_MIS);
1815 writew(lcr_h, port->membase + uap->lcrh_tx);
1817 writew(old_cr, port->membase + UART011_CR);
1819 spin_unlock_irqrestore(&port->lock, flags);
1822 static const char *pl011_type(struct uart_port *port)
1824 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1825 return uap->port.type == PORT_AMBA ? uap->type : NULL;
1829 * Release the memory region(s) being used by 'port'
1831 static void pl011_release_port(struct uart_port *port)
1833 release_mem_region(port->mapbase, SZ_4K);
1837 * Request the memory region(s) being used by 'port'
1839 static int pl011_request_port(struct uart_port *port)
1841 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1842 != NULL ? 0 : -EBUSY;
1846 * Configure/autoconfigure the port.
1848 static void pl011_config_port(struct uart_port *port, int flags)
1850 if (flags & UART_CONFIG_TYPE) {
1851 port->type = PORT_AMBA;
1852 pl011_request_port(port);
1857 * verify the new serial_struct (for TIOCSSERIAL).
1859 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
1861 int ret = 0;
1862 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1863 ret = -EINVAL;
1864 if (ser->irq < 0 || ser->irq >= nr_irqs)
1865 ret = -EINVAL;
1866 if (ser->baud_base < 9600)
1867 ret = -EINVAL;
1868 return ret;
1871 static struct uart_ops amba_pl011_pops = {
1872 .tx_empty = pl011_tx_empty,
1873 .set_mctrl = pl011_set_mctrl,
1874 .get_mctrl = pl011_get_mctrl,
1875 .stop_tx = pl011_stop_tx,
1876 .start_tx = pl011_start_tx,
1877 .stop_rx = pl011_stop_rx,
1878 .enable_ms = pl011_enable_ms,
1879 .break_ctl = pl011_break_ctl,
1880 .startup = pl011_startup,
1881 .shutdown = pl011_shutdown,
1882 .flush_buffer = pl011_dma_flush_buffer,
1883 .set_termios = pl011_set_termios,
1884 .type = pl011_type,
1885 .release_port = pl011_release_port,
1886 .request_port = pl011_request_port,
1887 .config_port = pl011_config_port,
1888 .verify_port = pl011_verify_port,
1889 #ifdef CONFIG_CONSOLE_POLL
1890 .poll_init = pl011_hwinit,
1891 .poll_get_char = pl011_get_poll_char,
1892 .poll_put_char = pl011_put_poll_char,
1893 #endif
1896 static struct uart_amba_port *amba_ports[UART_NR];
1898 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1900 static void pl011_console_putchar(struct uart_port *port, int ch)
1902 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1904 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1905 barrier();
1906 writew(ch, uap->port.membase + UART01x_DR);
1909 static void
1910 pl011_console_write(struct console *co, const char *s, unsigned int count)
1912 struct uart_amba_port *uap = amba_ports[co->index];
1913 unsigned int status, old_cr, new_cr;
1914 unsigned long flags;
1915 int locked = 1;
1917 clk_enable(uap->clk);
1919 local_irq_save(flags);
1920 if (uap->port.sysrq)
1921 locked = 0;
1922 else if (oops_in_progress)
1923 locked = spin_trylock(&uap->port.lock);
1924 else
1925 spin_lock(&uap->port.lock);
1928 * First save the CR then disable the interrupts
1930 old_cr = readw(uap->port.membase + UART011_CR);
1931 new_cr = old_cr & ~UART011_CR_CTSEN;
1932 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1933 writew(new_cr, uap->port.membase + UART011_CR);
1935 uart_console_write(&uap->port, s, count, pl011_console_putchar);
1938 * Finally, wait for transmitter to become empty
1939 * and restore the TCR
1941 do {
1942 status = readw(uap->port.membase + UART01x_FR);
1943 } while (status & UART01x_FR_BUSY);
1944 writew(old_cr, uap->port.membase + UART011_CR);
1946 if (locked)
1947 spin_unlock(&uap->port.lock);
1948 local_irq_restore(flags);
1950 clk_disable(uap->clk);
1953 static void __init
1954 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1955 int *parity, int *bits)
1957 if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1958 unsigned int lcr_h, ibrd, fbrd;
1960 lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1962 *parity = 'n';
1963 if (lcr_h & UART01x_LCRH_PEN) {
1964 if (lcr_h & UART01x_LCRH_EPS)
1965 *parity = 'e';
1966 else
1967 *parity = 'o';
1970 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1971 *bits = 7;
1972 else
1973 *bits = 8;
1975 ibrd = readw(uap->port.membase + UART011_IBRD);
1976 fbrd = readw(uap->port.membase + UART011_FBRD);
1978 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1980 if (uap->vendor->oversampling) {
1981 if (readw(uap->port.membase + UART011_CR)
1982 & ST_UART011_CR_OVSFACT)
1983 *baud *= 2;
1988 static int __init pl011_console_setup(struct console *co, char *options)
1990 struct uart_amba_port *uap;
1991 int baud = 38400;
1992 int bits = 8;
1993 int parity = 'n';
1994 int flow = 'n';
1995 int ret;
1998 * Check whether an invalid uart number has been specified, and
1999 * if so, search for the first available port that does have
2000 * console support.
2002 if (co->index >= UART_NR)
2003 co->index = 0;
2004 uap = amba_ports[co->index];
2005 if (!uap)
2006 return -ENODEV;
2008 /* Allow pins to be muxed in and configured */
2009 pinctrl_pm_select_default_state(uap->port.dev);
2011 ret = clk_prepare(uap->clk);
2012 if (ret)
2013 return ret;
2015 if (dev_get_platdata(uap->port.dev)) {
2016 struct amba_pl011_data *plat;
2018 plat = dev_get_platdata(uap->port.dev);
2019 if (plat->init)
2020 plat->init();
2023 uap->port.uartclk = clk_get_rate(uap->clk);
2025 if (options)
2026 uart_parse_options(options, &baud, &parity, &bits, &flow);
2027 else
2028 pl011_console_get_options(uap, &baud, &parity, &bits);
2030 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2033 static struct uart_driver amba_reg;
2034 static struct console amba_console = {
2035 .name = "ttyAMA",
2036 .write = pl011_console_write,
2037 .device = uart_console_device,
2038 .setup = pl011_console_setup,
2039 .flags = CON_PRINTBUFFER,
2040 .index = -1,
2041 .data = &amba_reg,
2044 #define AMBA_CONSOLE (&amba_console)
2045 #else
2046 #define AMBA_CONSOLE NULL
2047 #endif
2049 static struct uart_driver amba_reg = {
2050 .owner = THIS_MODULE,
2051 .driver_name = "ttyAMA",
2052 .dev_name = "ttyAMA",
2053 .major = SERIAL_AMBA_MAJOR,
2054 .minor = SERIAL_AMBA_MINOR,
2055 .nr = UART_NR,
2056 .cons = AMBA_CONSOLE,
2059 static int pl011_probe_dt_alias(int index, struct device *dev)
2061 struct device_node *np;
2062 static bool seen_dev_with_alias = false;
2063 static bool seen_dev_without_alias = false;
2064 int ret = index;
2066 if (!IS_ENABLED(CONFIG_OF))
2067 return ret;
2069 np = dev->of_node;
2070 if (!np)
2071 return ret;
2073 ret = of_alias_get_id(np, "serial");
2074 if (IS_ERR_VALUE(ret)) {
2075 seen_dev_without_alias = true;
2076 ret = index;
2077 } else {
2078 seen_dev_with_alias = true;
2079 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2080 dev_warn(dev, "requested serial port %d not available.\n", ret);
2081 ret = index;
2085 if (seen_dev_with_alias && seen_dev_without_alias)
2086 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2088 return ret;
2091 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2093 struct uart_amba_port *uap;
2094 struct vendor_data *vendor = id->data;
2095 void __iomem *base;
2096 int i, ret;
2098 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2099 if (amba_ports[i] == NULL)
2100 break;
2102 if (i == ARRAY_SIZE(amba_ports)) {
2103 ret = -EBUSY;
2104 goto out;
2107 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2108 GFP_KERNEL);
2109 if (uap == NULL) {
2110 ret = -ENOMEM;
2111 goto out;
2114 i = pl011_probe_dt_alias(i, &dev->dev);
2116 base = devm_ioremap(&dev->dev, dev->res.start,
2117 resource_size(&dev->res));
2118 if (!base) {
2119 ret = -ENOMEM;
2120 goto out;
2123 uap->clk = devm_clk_get(&dev->dev, NULL);
2124 if (IS_ERR(uap->clk)) {
2125 ret = PTR_ERR(uap->clk);
2126 goto out;
2129 uap->vendor = vendor;
2130 uap->lcrh_rx = vendor->lcrh_rx;
2131 uap->lcrh_tx = vendor->lcrh_tx;
2132 uap->old_cr = 0;
2133 uap->fifosize = vendor->get_fifosize(dev);
2134 uap->port.dev = &dev->dev;
2135 uap->port.mapbase = dev->res.start;
2136 uap->port.membase = base;
2137 uap->port.iotype = UPIO_MEM;
2138 uap->port.irq = dev->irq[0];
2139 uap->port.fifosize = uap->fifosize;
2140 uap->port.ops = &amba_pl011_pops;
2141 uap->port.flags = UPF_BOOT_AUTOCONF;
2142 uap->port.line = i;
2143 pl011_dma_probe(&dev->dev, uap);
2145 /* Ensure interrupts from this UART are masked and cleared */
2146 writew(0, uap->port.membase + UART011_IMSC);
2147 writew(0xffff, uap->port.membase + UART011_ICR);
2149 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2151 amba_ports[i] = uap;
2153 amba_set_drvdata(dev, uap);
2154 ret = uart_add_one_port(&amba_reg, &uap->port);
2155 if (ret) {
2156 amba_set_drvdata(dev, NULL);
2157 amba_ports[i] = NULL;
2158 pl011_dma_remove(uap);
2160 out:
2161 return ret;
2164 static int pl011_remove(struct amba_device *dev)
2166 struct uart_amba_port *uap = amba_get_drvdata(dev);
2167 int i;
2169 amba_set_drvdata(dev, NULL);
2171 uart_remove_one_port(&amba_reg, &uap->port);
2173 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2174 if (amba_ports[i] == uap)
2175 amba_ports[i] = NULL;
2177 pl011_dma_remove(uap);
2178 return 0;
2181 #ifdef CONFIG_PM
2182 static int pl011_suspend(struct amba_device *dev, pm_message_t state)
2184 struct uart_amba_port *uap = amba_get_drvdata(dev);
2186 if (!uap)
2187 return -EINVAL;
2189 return uart_suspend_port(&amba_reg, &uap->port);
2192 static int pl011_resume(struct amba_device *dev)
2194 struct uart_amba_port *uap = amba_get_drvdata(dev);
2196 if (!uap)
2197 return -EINVAL;
2199 return uart_resume_port(&amba_reg, &uap->port);
2201 #endif
2203 static struct amba_id pl011_ids[] = {
2205 .id = 0x00041011,
2206 .mask = 0x000fffff,
2207 .data = &vendor_arm,
2210 .id = 0x00380802,
2211 .mask = 0x00ffffff,
2212 .data = &vendor_st,
2214 { 0, 0 },
2217 MODULE_DEVICE_TABLE(amba, pl011_ids);
2219 static struct amba_driver pl011_driver = {
2220 .drv = {
2221 .name = "uart-pl011",
2223 .id_table = pl011_ids,
2224 .probe = pl011_probe,
2225 .remove = pl011_remove,
2226 #ifdef CONFIG_PM
2227 .suspend = pl011_suspend,
2228 .resume = pl011_resume,
2229 #endif
2232 static int __init pl011_init(void)
2234 int ret;
2235 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2237 ret = uart_register_driver(&amba_reg);
2238 if (ret == 0) {
2239 ret = amba_driver_register(&pl011_driver);
2240 if (ret)
2241 uart_unregister_driver(&amba_reg);
2243 return ret;
2246 static void __exit pl011_exit(void)
2248 amba_driver_unregister(&pl011_driver);
2249 uart_unregister_driver(&amba_reg);
2253 * While this can be a module, if builtin it's most likely the console
2254 * So let's leave module_exit but move module_init to an earlier place
2256 arch_initcall(pl011_init);
2257 module_exit(pl011_exit);
2259 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2260 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2261 MODULE_LICENSE("GPL");