x86/xen: resume timer irqs early
[linux/fpc-iii.git] / drivers / xen / swiotlb-xen.c
blob1b2277c311d22e31fc276b09cb6bd1ce3b783e39
1 /*
2 * Copyright 2010
3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License v2.0 as published by
9 * the Free Software Foundation
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * PV guests under Xen are running in an non-contiguous memory architecture.
18 * When PCI pass-through is utilized, this necessitates an IOMMU for
19 * translating bus (DMA) to virtual and vice-versa and also providing a
20 * mechanism to have contiguous pages for device drivers operations (say DMA
21 * operations).
23 * Specifically, under Xen the Linux idea of pages is an illusion. It
24 * assumes that pages start at zero and go up to the available memory. To
25 * help with that, the Linux Xen MMU provides a lookup mechanism to
26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28 * memory is not contiguous. Xen hypervisor stitches memory for guests
29 * from different pools, which means there is no guarantee that PFN==MFN
30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31 * allocated in descending order (high to low), meaning the guest might
32 * never get any MFN's under the 4GB mark.
36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
38 #include <linux/bootmem.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/export.h>
41 #include <xen/swiotlb-xen.h>
42 #include <xen/page.h>
43 #include <xen/xen-ops.h>
44 #include <xen/hvc-console.h>
46 * Used to do a quick range check in swiotlb_tbl_unmap_single and
47 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
48 * API.
51 static char *xen_io_tlb_start, *xen_io_tlb_end;
52 static unsigned long xen_io_tlb_nslabs;
54 * Quick lookup value of the bus address of the IOTLB.
57 static u64 start_dma_addr;
59 static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
61 return phys_to_machine(XPADDR(paddr)).maddr;
64 static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
66 return machine_to_phys(XMADDR(baddr)).paddr;
69 static dma_addr_t xen_virt_to_bus(void *address)
71 return xen_phys_to_bus(virt_to_phys(address));
74 static int check_pages_physically_contiguous(unsigned long pfn,
75 unsigned int offset,
76 size_t length)
78 unsigned long next_mfn;
79 int i;
80 int nr_pages;
82 next_mfn = pfn_to_mfn(pfn);
83 nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
85 for (i = 1; i < nr_pages; i++) {
86 if (pfn_to_mfn(++pfn) != ++next_mfn)
87 return 0;
89 return 1;
92 static int range_straddles_page_boundary(phys_addr_t p, size_t size)
94 unsigned long pfn = PFN_DOWN(p);
95 unsigned int offset = p & ~PAGE_MASK;
97 if (offset + size <= PAGE_SIZE)
98 return 0;
99 if (check_pages_physically_contiguous(pfn, offset, size))
100 return 0;
101 return 1;
104 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
106 unsigned long mfn = PFN_DOWN(dma_addr);
107 unsigned long pfn = mfn_to_local_pfn(mfn);
108 phys_addr_t paddr;
110 /* If the address is outside our domain, it CAN
111 * have the same virtual address as another address
112 * in our domain. Therefore _only_ check address within our domain.
114 if (pfn_valid(pfn)) {
115 paddr = PFN_PHYS(pfn);
116 return paddr >= virt_to_phys(xen_io_tlb_start) &&
117 paddr < virt_to_phys(xen_io_tlb_end);
119 return 0;
122 static int max_dma_bits = 32;
124 static int
125 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
127 int i, rc;
128 int dma_bits;
130 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
132 i = 0;
133 do {
134 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
136 do {
137 rc = xen_create_contiguous_region(
138 (unsigned long)buf + (i << IO_TLB_SHIFT),
139 get_order(slabs << IO_TLB_SHIFT),
140 dma_bits);
141 } while (rc && dma_bits++ < max_dma_bits);
142 if (rc)
143 return rc;
145 i += slabs;
146 } while (i < nslabs);
147 return 0;
149 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
151 if (!nr_tbl) {
152 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
153 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
154 } else
155 xen_io_tlb_nslabs = nr_tbl;
157 return xen_io_tlb_nslabs << IO_TLB_SHIFT;
160 enum xen_swiotlb_err {
161 XEN_SWIOTLB_UNKNOWN = 0,
162 XEN_SWIOTLB_ENOMEM,
163 XEN_SWIOTLB_EFIXUP
166 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
168 switch (err) {
169 case XEN_SWIOTLB_ENOMEM:
170 return "Cannot allocate Xen-SWIOTLB buffer\n";
171 case XEN_SWIOTLB_EFIXUP:
172 return "Failed to get contiguous memory for DMA from Xen!\n"\
173 "You either: don't have the permissions, do not have"\
174 " enough free memory under 4GB, or the hypervisor memory"\
175 " is too fragmented!";
176 default:
177 break;
179 return "";
181 int __ref xen_swiotlb_init(int verbose, bool early)
183 unsigned long bytes, order;
184 int rc = -ENOMEM;
185 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
186 unsigned int repeat = 3;
188 xen_io_tlb_nslabs = swiotlb_nr_tbl();
189 retry:
190 bytes = xen_set_nslabs(xen_io_tlb_nslabs);
191 order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
193 * Get IO TLB memory from any location.
195 if (early)
196 xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
197 else {
198 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
199 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
200 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
201 xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order);
202 if (xen_io_tlb_start)
203 break;
204 order--;
206 if (order != get_order(bytes)) {
207 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
208 (PAGE_SIZE << order) >> 20);
209 xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
210 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
213 if (!xen_io_tlb_start) {
214 m_ret = XEN_SWIOTLB_ENOMEM;
215 goto error;
217 xen_io_tlb_end = xen_io_tlb_start + bytes;
219 * And replace that memory with pages under 4GB.
221 rc = xen_swiotlb_fixup(xen_io_tlb_start,
222 bytes,
223 xen_io_tlb_nslabs);
224 if (rc) {
225 if (early)
226 free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
227 else {
228 free_pages((unsigned long)xen_io_tlb_start, order);
229 xen_io_tlb_start = NULL;
231 m_ret = XEN_SWIOTLB_EFIXUP;
232 goto error;
234 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
235 if (early) {
236 if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
237 verbose))
238 panic("Cannot allocate SWIOTLB buffer");
239 rc = 0;
240 } else
241 rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
242 return rc;
243 error:
244 if (repeat--) {
245 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
246 (xen_io_tlb_nslabs >> 1));
247 pr_info("Lowering to %luMB\n",
248 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
249 goto retry;
251 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
252 if (early)
253 panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
254 else
255 free_pages((unsigned long)xen_io_tlb_start, order);
256 return rc;
258 void *
259 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
260 dma_addr_t *dma_handle, gfp_t flags,
261 struct dma_attrs *attrs)
263 void *ret;
264 int order = get_order(size);
265 u64 dma_mask = DMA_BIT_MASK(32);
266 unsigned long vstart;
267 phys_addr_t phys;
268 dma_addr_t dev_addr;
271 * Ignore region specifiers - the kernel's ideas of
272 * pseudo-phys memory layout has nothing to do with the
273 * machine physical layout. We can't allocate highmem
274 * because we can't return a pointer to it.
276 flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
278 if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
279 return ret;
281 vstart = __get_free_pages(flags, order);
282 ret = (void *)vstart;
284 if (!ret)
285 return ret;
287 if (hwdev && hwdev->coherent_dma_mask)
288 dma_mask = dma_alloc_coherent_mask(hwdev, flags);
290 phys = virt_to_phys(ret);
291 dev_addr = xen_phys_to_bus(phys);
292 if (((dev_addr + size - 1 <= dma_mask)) &&
293 !range_straddles_page_boundary(phys, size))
294 *dma_handle = dev_addr;
295 else {
296 if (xen_create_contiguous_region(vstart, order,
297 fls64(dma_mask)) != 0) {
298 free_pages(vstart, order);
299 return NULL;
301 *dma_handle = virt_to_machine(ret).maddr;
303 memset(ret, 0, size);
304 return ret;
306 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
308 void
309 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
310 dma_addr_t dev_addr, struct dma_attrs *attrs)
312 int order = get_order(size);
313 phys_addr_t phys;
314 u64 dma_mask = DMA_BIT_MASK(32);
316 if (dma_release_from_coherent(hwdev, order, vaddr))
317 return;
319 if (hwdev && hwdev->coherent_dma_mask)
320 dma_mask = hwdev->coherent_dma_mask;
322 phys = virt_to_phys(vaddr);
324 if (((dev_addr + size - 1 > dma_mask)) ||
325 range_straddles_page_boundary(phys, size))
326 xen_destroy_contiguous_region((unsigned long)vaddr, order);
328 free_pages((unsigned long)vaddr, order);
330 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
334 * Map a single buffer of the indicated size for DMA in streaming mode. The
335 * physical address to use is returned.
337 * Once the device is given the dma address, the device owns this memory until
338 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
340 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
341 unsigned long offset, size_t size,
342 enum dma_data_direction dir,
343 struct dma_attrs *attrs)
345 phys_addr_t map, phys = page_to_phys(page) + offset;
346 dma_addr_t dev_addr = xen_phys_to_bus(phys);
348 BUG_ON(dir == DMA_NONE);
350 * If the address happens to be in the device's DMA window,
351 * we can safely return the device addr and not worry about bounce
352 * buffering it.
354 if (dma_capable(dev, dev_addr, size) &&
355 !range_straddles_page_boundary(phys, size) && !swiotlb_force)
356 return dev_addr;
359 * Oh well, have to allocate and map a bounce buffer.
361 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
362 if (map == SWIOTLB_MAP_ERROR)
363 return DMA_ERROR_CODE;
365 dev_addr = xen_phys_to_bus(map);
368 * Ensure that the address returned is DMA'ble
370 if (!dma_capable(dev, dev_addr, size)) {
371 swiotlb_tbl_unmap_single(dev, map, size, dir);
372 dev_addr = 0;
374 return dev_addr;
376 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
379 * Unmap a single streaming mode DMA translation. The dma_addr and size must
380 * match what was provided for in a previous xen_swiotlb_map_page call. All
381 * other usages are undefined.
383 * After this call, reads by the cpu to the buffer are guaranteed to see
384 * whatever the device wrote there.
386 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
387 size_t size, enum dma_data_direction dir)
389 phys_addr_t paddr = xen_bus_to_phys(dev_addr);
391 BUG_ON(dir == DMA_NONE);
393 /* NOTE: We use dev_addr here, not paddr! */
394 if (is_xen_swiotlb_buffer(dev_addr)) {
395 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
396 return;
399 if (dir != DMA_FROM_DEVICE)
400 return;
403 * phys_to_virt doesn't work with hihgmem page but we could
404 * call dma_mark_clean() with hihgmem page here. However, we
405 * are fine since dma_mark_clean() is null on POWERPC. We can
406 * make dma_mark_clean() take a physical address if necessary.
408 dma_mark_clean(phys_to_virt(paddr), size);
411 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
412 size_t size, enum dma_data_direction dir,
413 struct dma_attrs *attrs)
415 xen_unmap_single(hwdev, dev_addr, size, dir);
417 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
420 * Make physical memory consistent for a single streaming mode DMA translation
421 * after a transfer.
423 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
424 * using the cpu, yet do not wish to teardown the dma mapping, you must
425 * call this function before doing so. At the next point you give the dma
426 * address back to the card, you must first perform a
427 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
429 static void
430 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
431 size_t size, enum dma_data_direction dir,
432 enum dma_sync_target target)
434 phys_addr_t paddr = xen_bus_to_phys(dev_addr);
436 BUG_ON(dir == DMA_NONE);
438 /* NOTE: We use dev_addr here, not paddr! */
439 if (is_xen_swiotlb_buffer(dev_addr)) {
440 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
441 return;
444 if (dir != DMA_FROM_DEVICE)
445 return;
447 dma_mark_clean(phys_to_virt(paddr), size);
450 void
451 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
452 size_t size, enum dma_data_direction dir)
454 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
456 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
458 void
459 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
460 size_t size, enum dma_data_direction dir)
462 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
464 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
467 * Map a set of buffers described by scatterlist in streaming mode for DMA.
468 * This is the scatter-gather version of the above xen_swiotlb_map_page
469 * interface. Here the scatter gather list elements are each tagged with the
470 * appropriate dma address and length. They are obtained via
471 * sg_dma_{address,length}(SG).
473 * NOTE: An implementation may be able to use a smaller number of
474 * DMA address/length pairs than there are SG table elements.
475 * (for example via virtual mapping capabilities)
476 * The routine returns the number of addr/length pairs actually
477 * used, at most nents.
479 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
480 * same here.
483 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
484 int nelems, enum dma_data_direction dir,
485 struct dma_attrs *attrs)
487 struct scatterlist *sg;
488 int i;
490 BUG_ON(dir == DMA_NONE);
492 for_each_sg(sgl, sg, nelems, i) {
493 phys_addr_t paddr = sg_phys(sg);
494 dma_addr_t dev_addr = xen_phys_to_bus(paddr);
496 if (swiotlb_force ||
497 !dma_capable(hwdev, dev_addr, sg->length) ||
498 range_straddles_page_boundary(paddr, sg->length)) {
499 phys_addr_t map = swiotlb_tbl_map_single(hwdev,
500 start_dma_addr,
501 sg_phys(sg),
502 sg->length,
503 dir);
504 if (map == SWIOTLB_MAP_ERROR) {
505 /* Don't panic here, we expect map_sg users
506 to do proper error handling. */
507 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
508 attrs);
509 sg_dma_len(sgl) = 0;
510 return DMA_ERROR_CODE;
512 sg->dma_address = xen_phys_to_bus(map);
513 } else
514 sg->dma_address = dev_addr;
515 sg_dma_len(sg) = sg->length;
517 return nelems;
519 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
522 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
523 * concerning calls here are the same as for swiotlb_unmap_page() above.
525 void
526 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
527 int nelems, enum dma_data_direction dir,
528 struct dma_attrs *attrs)
530 struct scatterlist *sg;
531 int i;
533 BUG_ON(dir == DMA_NONE);
535 for_each_sg(sgl, sg, nelems, i)
536 xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir);
539 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
542 * Make physical memory consistent for a set of streaming mode DMA translations
543 * after a transfer.
545 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
546 * and usage.
548 static void
549 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
550 int nelems, enum dma_data_direction dir,
551 enum dma_sync_target target)
553 struct scatterlist *sg;
554 int i;
556 for_each_sg(sgl, sg, nelems, i)
557 xen_swiotlb_sync_single(hwdev, sg->dma_address,
558 sg_dma_len(sg), dir, target);
561 void
562 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
563 int nelems, enum dma_data_direction dir)
565 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
567 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
569 void
570 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
571 int nelems, enum dma_data_direction dir)
573 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
575 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
578 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
580 return !dma_addr;
582 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
585 * Return whether the given device DMA address mask can be supported
586 * properly. For example, if your device can only drive the low 24-bits
587 * during bus mastering, then you would pass 0x00ffffff as the mask to
588 * this function.
591 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
593 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
595 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);