x86/xen: resume timer irqs early
[linux/fpc-iii.git] / fs / btrfs / root-tree.c
blobec71ea44d2b4626c9a2bcc73b5fb94af666eaf5b
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/uuid.h>
20 #include "ctree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
26 * Read a root item from the tree. In case we detect a root item smaller then
27 * sizeof(root_item), we know it's an old version of the root structure and
28 * initialize all new fields to zero. The same happens if we detect mismatching
29 * generation numbers as then we know the root was once mounted with an older
30 * kernel that was not aware of the root item structure change.
32 static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
33 struct btrfs_root_item *item)
35 uuid_le uuid;
36 int len;
37 int need_reset = 0;
39 len = btrfs_item_size_nr(eb, slot);
40 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
41 min_t(int, len, (int)sizeof(*item)));
42 if (len < sizeof(*item))
43 need_reset = 1;
44 if (!need_reset && btrfs_root_generation(item)
45 != btrfs_root_generation_v2(item)) {
46 if (btrfs_root_generation_v2(item) != 0) {
47 printk(KERN_WARNING "btrfs: mismatching "
48 "generation and generation_v2 "
49 "found in root item. This root "
50 "was probably mounted with an "
51 "older kernel. Resetting all "
52 "new fields.\n");
54 need_reset = 1;
56 if (need_reset) {
57 memset(&item->generation_v2, 0,
58 sizeof(*item) - offsetof(struct btrfs_root_item,
59 generation_v2));
61 uuid_le_gen(&uuid);
62 memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
67 * btrfs_find_root - lookup the root by the key.
68 * root: the root of the root tree
69 * search_key: the key to search
70 * path: the path we search
71 * root_item: the root item of the tree we look for
72 * root_key: the reak key of the tree we look for
74 * If ->offset of 'seach_key' is -1ULL, it means we are not sure the offset
75 * of the search key, just lookup the root with the highest offset for a
76 * given objectid.
78 * If we find something return 0, otherwise > 0, < 0 on error.
80 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
81 struct btrfs_path *path, struct btrfs_root_item *root_item,
82 struct btrfs_key *root_key)
84 struct btrfs_key found_key;
85 struct extent_buffer *l;
86 int ret;
87 int slot;
89 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
90 if (ret < 0)
91 return ret;
93 if (search_key->offset != -1ULL) { /* the search key is exact */
94 if (ret > 0)
95 goto out;
96 } else {
97 BUG_ON(ret == 0); /* Logical error */
98 if (path->slots[0] == 0)
99 goto out;
100 path->slots[0]--;
101 ret = 0;
104 l = path->nodes[0];
105 slot = path->slots[0];
107 btrfs_item_key_to_cpu(l, &found_key, slot);
108 if (found_key.objectid != search_key->objectid ||
109 found_key.type != BTRFS_ROOT_ITEM_KEY) {
110 ret = 1;
111 goto out;
114 if (root_item)
115 btrfs_read_root_item(l, slot, root_item);
116 if (root_key)
117 memcpy(root_key, &found_key, sizeof(found_key));
118 out:
119 btrfs_release_path(path);
120 return ret;
123 void btrfs_set_root_node(struct btrfs_root_item *item,
124 struct extent_buffer *node)
126 btrfs_set_root_bytenr(item, node->start);
127 btrfs_set_root_level(item, btrfs_header_level(node));
128 btrfs_set_root_generation(item, btrfs_header_generation(node));
132 * copy the data in 'item' into the btree
134 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
135 *root, struct btrfs_key *key, struct btrfs_root_item
136 *item)
138 struct btrfs_path *path;
139 struct extent_buffer *l;
140 int ret;
141 int slot;
142 unsigned long ptr;
143 int old_len;
145 path = btrfs_alloc_path();
146 if (!path)
147 return -ENOMEM;
149 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
150 if (ret < 0) {
151 btrfs_abort_transaction(trans, root, ret);
152 goto out;
155 if (ret != 0) {
156 btrfs_print_leaf(root, path->nodes[0]);
157 printk(KERN_CRIT "unable to update root key %llu %u %llu\n",
158 key->objectid, key->type, key->offset);
159 BUG_ON(1);
162 l = path->nodes[0];
163 slot = path->slots[0];
164 ptr = btrfs_item_ptr_offset(l, slot);
165 old_len = btrfs_item_size_nr(l, slot);
168 * If this is the first time we update the root item which originated
169 * from an older kernel, we need to enlarge the item size to make room
170 * for the added fields.
172 if (old_len < sizeof(*item)) {
173 btrfs_release_path(path);
174 ret = btrfs_search_slot(trans, root, key, path,
175 -1, 1);
176 if (ret < 0) {
177 btrfs_abort_transaction(trans, root, ret);
178 goto out;
181 ret = btrfs_del_item(trans, root, path);
182 if (ret < 0) {
183 btrfs_abort_transaction(trans, root, ret);
184 goto out;
186 btrfs_release_path(path);
187 ret = btrfs_insert_empty_item(trans, root, path,
188 key, sizeof(*item));
189 if (ret < 0) {
190 btrfs_abort_transaction(trans, root, ret);
191 goto out;
193 l = path->nodes[0];
194 slot = path->slots[0];
195 ptr = btrfs_item_ptr_offset(l, slot);
199 * Update generation_v2 so at the next mount we know the new root
200 * fields are valid.
202 btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
204 write_extent_buffer(l, item, ptr, sizeof(*item));
205 btrfs_mark_buffer_dirty(path->nodes[0]);
206 out:
207 btrfs_free_path(path);
208 return ret;
211 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
212 struct btrfs_key *key, struct btrfs_root_item *item)
215 * Make sure generation v1 and v2 match. See update_root for details.
217 btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
218 return btrfs_insert_item(trans, root, key, item, sizeof(*item));
221 int btrfs_find_orphan_roots(struct btrfs_root *tree_root)
223 struct extent_buffer *leaf;
224 struct btrfs_path *path;
225 struct btrfs_key key;
226 struct btrfs_key root_key;
227 struct btrfs_root *root;
228 int err = 0;
229 int ret;
230 bool can_recover = true;
232 if (tree_root->fs_info->sb->s_flags & MS_RDONLY)
233 can_recover = false;
235 path = btrfs_alloc_path();
236 if (!path)
237 return -ENOMEM;
239 key.objectid = BTRFS_ORPHAN_OBJECTID;
240 key.type = BTRFS_ORPHAN_ITEM_KEY;
241 key.offset = 0;
243 root_key.type = BTRFS_ROOT_ITEM_KEY;
244 root_key.offset = (u64)-1;
246 while (1) {
247 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
248 if (ret < 0) {
249 err = ret;
250 break;
253 leaf = path->nodes[0];
254 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
255 ret = btrfs_next_leaf(tree_root, path);
256 if (ret < 0)
257 err = ret;
258 if (ret != 0)
259 break;
260 leaf = path->nodes[0];
263 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
264 btrfs_release_path(path);
266 if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
267 key.type != BTRFS_ORPHAN_ITEM_KEY)
268 break;
270 root_key.objectid = key.offset;
271 key.offset++;
273 root = btrfs_read_fs_root(tree_root, &root_key);
274 err = PTR_RET(root);
275 if (err && err != -ENOENT) {
276 break;
277 } else if (err == -ENOENT) {
278 struct btrfs_trans_handle *trans;
280 btrfs_release_path(path);
282 trans = btrfs_join_transaction(tree_root);
283 if (IS_ERR(trans)) {
284 err = PTR_ERR(trans);
285 btrfs_error(tree_root->fs_info, err,
286 "Failed to start trans to delete "
287 "orphan item");
288 break;
290 err = btrfs_del_orphan_item(trans, tree_root,
291 root_key.objectid);
292 btrfs_end_transaction(trans, tree_root);
293 if (err) {
294 btrfs_error(tree_root->fs_info, err,
295 "Failed to delete root orphan "
296 "item");
297 break;
299 continue;
302 err = btrfs_init_fs_root(root);
303 if (err) {
304 btrfs_free_fs_root(root);
305 break;
308 root->orphan_item_inserted = 1;
310 err = btrfs_insert_fs_root(root->fs_info, root);
311 if (err) {
312 BUG_ON(err == -EEXIST);
313 btrfs_free_fs_root(root);
314 break;
317 if (btrfs_root_refs(&root->root_item) == 0)
318 btrfs_add_dead_root(root);
321 btrfs_free_path(path);
322 return err;
325 /* drop the root item for 'key' from 'root' */
326 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
327 struct btrfs_key *key)
329 struct btrfs_path *path;
330 int ret;
332 path = btrfs_alloc_path();
333 if (!path)
334 return -ENOMEM;
335 ret = btrfs_search_slot(trans, root, key, path, -1, 1);
336 if (ret < 0)
337 goto out;
339 BUG_ON(ret != 0);
341 ret = btrfs_del_item(trans, root, path);
342 out:
343 btrfs_free_path(path);
344 return ret;
347 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
348 struct btrfs_root *tree_root,
349 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
350 const char *name, int name_len)
353 struct btrfs_path *path;
354 struct btrfs_root_ref *ref;
355 struct extent_buffer *leaf;
356 struct btrfs_key key;
357 unsigned long ptr;
358 int err = 0;
359 int ret;
361 path = btrfs_alloc_path();
362 if (!path)
363 return -ENOMEM;
365 key.objectid = root_id;
366 key.type = BTRFS_ROOT_BACKREF_KEY;
367 key.offset = ref_id;
368 again:
369 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
370 BUG_ON(ret < 0);
371 if (ret == 0) {
372 leaf = path->nodes[0];
373 ref = btrfs_item_ptr(leaf, path->slots[0],
374 struct btrfs_root_ref);
376 WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
377 WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
378 ptr = (unsigned long)(ref + 1);
379 WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
380 *sequence = btrfs_root_ref_sequence(leaf, ref);
382 ret = btrfs_del_item(trans, tree_root, path);
383 if (ret) {
384 err = ret;
385 goto out;
387 } else
388 err = -ENOENT;
390 if (key.type == BTRFS_ROOT_BACKREF_KEY) {
391 btrfs_release_path(path);
392 key.objectid = ref_id;
393 key.type = BTRFS_ROOT_REF_KEY;
394 key.offset = root_id;
395 goto again;
398 out:
399 btrfs_free_path(path);
400 return err;
403 int btrfs_find_root_ref(struct btrfs_root *tree_root,
404 struct btrfs_path *path,
405 u64 root_id, u64 ref_id)
407 struct btrfs_key key;
408 int ret;
410 key.objectid = root_id;
411 key.type = BTRFS_ROOT_REF_KEY;
412 key.offset = ref_id;
414 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
415 return ret;
419 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY
420 * or BTRFS_ROOT_BACKREF_KEY.
422 * The dirid, sequence, name and name_len refer to the directory entry
423 * that is referencing the root.
425 * For a forward ref, the root_id is the id of the tree referencing
426 * the root and ref_id is the id of the subvol or snapshot.
428 * For a back ref the root_id is the id of the subvol or snapshot and
429 * ref_id is the id of the tree referencing it.
431 * Will return 0, -ENOMEM, or anything from the CoW path
433 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
434 struct btrfs_root *tree_root,
435 u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
436 const char *name, int name_len)
438 struct btrfs_key key;
439 int ret;
440 struct btrfs_path *path;
441 struct btrfs_root_ref *ref;
442 struct extent_buffer *leaf;
443 unsigned long ptr;
445 path = btrfs_alloc_path();
446 if (!path)
447 return -ENOMEM;
449 key.objectid = root_id;
450 key.type = BTRFS_ROOT_BACKREF_KEY;
451 key.offset = ref_id;
452 again:
453 ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
454 sizeof(*ref) + name_len);
455 if (ret) {
456 btrfs_abort_transaction(trans, tree_root, ret);
457 btrfs_free_path(path);
458 return ret;
461 leaf = path->nodes[0];
462 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
463 btrfs_set_root_ref_dirid(leaf, ref, dirid);
464 btrfs_set_root_ref_sequence(leaf, ref, sequence);
465 btrfs_set_root_ref_name_len(leaf, ref, name_len);
466 ptr = (unsigned long)(ref + 1);
467 write_extent_buffer(leaf, name, ptr, name_len);
468 btrfs_mark_buffer_dirty(leaf);
470 if (key.type == BTRFS_ROOT_BACKREF_KEY) {
471 btrfs_release_path(path);
472 key.objectid = ref_id;
473 key.type = BTRFS_ROOT_REF_KEY;
474 key.offset = root_id;
475 goto again;
478 btrfs_free_path(path);
479 return 0;
483 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
484 * for subvolumes. To work around this problem, we steal a bit from
485 * root_item->inode_item->flags, and use it to indicate if those fields
486 * have been properly initialized.
488 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
490 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
492 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
493 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
494 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
495 btrfs_set_root_flags(root_item, 0);
496 btrfs_set_root_limit(root_item, 0);
500 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
501 struct btrfs_root *root)
503 struct btrfs_root_item *item = &root->root_item;
504 struct timespec ct = CURRENT_TIME;
506 spin_lock(&root->root_item_lock);
507 btrfs_set_root_ctransid(item, trans->transid);
508 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
509 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
510 spin_unlock(&root->root_item_lock);