2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/crc32c.h>
28 #include <linux/vmalloc.h>
29 #include <linux/string.h>
35 #include "btrfs_inode.h"
36 #include "transaction.h"
38 static int g_verbose
= 0;
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
43 * A fs_path is a helper to dynamically build path names with unknown size.
44 * It reallocates the internal buffer on demand.
45 * It allows fast adding of path elements on the right side (normal path) and
46 * fast adding to the left side (reversed path). A reversed path can also be
47 * unreversed if needed.
58 unsigned int reversed
:1;
59 unsigned int virtual_mem
:1;
65 #define FS_PATH_INLINE_SIZE \
66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
69 /* reused for each extent */
71 struct btrfs_root
*root
;
78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
82 struct file
*send_filp
;
88 u64 cmd_send_size
[BTRFS_SEND_C_MAX
+ 1];
89 u64 flags
; /* 'flags' member of btrfs_ioctl_send_args is u64 */
93 struct btrfs_root
*send_root
;
94 struct btrfs_root
*parent_root
;
95 struct clone_root
*clone_roots
;
98 /* current state of the compare_tree call */
99 struct btrfs_path
*left_path
;
100 struct btrfs_path
*right_path
;
101 struct btrfs_key
*cmp_key
;
104 * infos of the currently processed inode. In case of deleted inodes,
105 * these are the values from the deleted inode.
110 int cur_inode_new_gen
;
111 int cur_inode_deleted
;
117 struct list_head new_refs
;
118 struct list_head deleted_refs
;
120 struct radix_tree_root name_cache
;
121 struct list_head name_cache_list
;
127 struct name_cache_entry
{
128 struct list_head list
;
130 * radix_tree has only 32bit entries but we need to handle 64bit inums.
131 * We use the lower 32bit of the 64bit inum to store it in the tree. If
132 * more then one inum would fall into the same entry, we use radix_list
133 * to store the additional entries. radix_list is also used to store
134 * entries where two entries have the same inum but different
137 struct list_head radix_list
;
143 int need_later_update
;
148 static void fs_path_reset(struct fs_path
*p
)
151 p
->start
= p
->buf
+ p
->buf_len
- 1;
161 static struct fs_path
*fs_path_alloc(void)
165 p
= kmalloc(sizeof(*p
), GFP_NOFS
);
170 p
->buf
= p
->inline_buf
;
171 p
->buf_len
= FS_PATH_INLINE_SIZE
;
176 static struct fs_path
*fs_path_alloc_reversed(void)
188 static void fs_path_free(struct fs_path
*p
)
192 if (p
->buf
!= p
->inline_buf
) {
201 static int fs_path_len(struct fs_path
*p
)
203 return p
->end
- p
->start
;
206 static int fs_path_ensure_buf(struct fs_path
*p
, int len
)
214 if (p
->buf_len
>= len
)
217 path_len
= p
->end
- p
->start
;
218 old_buf_len
= p
->buf_len
;
219 len
= PAGE_ALIGN(len
);
221 if (p
->buf
== p
->inline_buf
) {
222 tmp_buf
= kmalloc(len
, GFP_NOFS
| __GFP_NOWARN
);
224 tmp_buf
= vmalloc(len
);
229 memcpy(tmp_buf
, p
->buf
, p
->buf_len
);
233 if (p
->virtual_mem
) {
234 tmp_buf
= vmalloc(len
);
237 memcpy(tmp_buf
, p
->buf
, p
->buf_len
);
240 tmp_buf
= krealloc(p
->buf
, len
, GFP_NOFS
);
242 tmp_buf
= vmalloc(len
);
245 memcpy(tmp_buf
, p
->buf
, p
->buf_len
);
254 tmp_buf
= p
->buf
+ old_buf_len
- path_len
- 1;
255 p
->end
= p
->buf
+ p
->buf_len
- 1;
256 p
->start
= p
->end
- path_len
;
257 memmove(p
->start
, tmp_buf
, path_len
+ 1);
260 p
->end
= p
->start
+ path_len
;
265 static int fs_path_prepare_for_add(struct fs_path
*p
, int name_len
)
270 new_len
= p
->end
- p
->start
+ name_len
;
271 if (p
->start
!= p
->end
)
273 ret
= fs_path_ensure_buf(p
, new_len
);
278 if (p
->start
!= p
->end
)
280 p
->start
-= name_len
;
281 p
->prepared
= p
->start
;
283 if (p
->start
!= p
->end
)
285 p
->prepared
= p
->end
;
294 static int fs_path_add(struct fs_path
*p
, const char *name
, int name_len
)
298 ret
= fs_path_prepare_for_add(p
, name_len
);
301 memcpy(p
->prepared
, name
, name_len
);
308 static int fs_path_add_path(struct fs_path
*p
, struct fs_path
*p2
)
312 ret
= fs_path_prepare_for_add(p
, p2
->end
- p2
->start
);
315 memcpy(p
->prepared
, p2
->start
, p2
->end
- p2
->start
);
322 static int fs_path_add_from_extent_buffer(struct fs_path
*p
,
323 struct extent_buffer
*eb
,
324 unsigned long off
, int len
)
328 ret
= fs_path_prepare_for_add(p
, len
);
332 read_extent_buffer(eb
, p
->prepared
, off
, len
);
340 static void fs_path_remove(struct fs_path
*p
)
343 while (p
->start
!= p
->end
&& *p
->end
!= '/')
349 static int fs_path_copy(struct fs_path
*p
, struct fs_path
*from
)
353 p
->reversed
= from
->reversed
;
356 ret
= fs_path_add_path(p
, from
);
362 static void fs_path_unreverse(struct fs_path
*p
)
371 len
= p
->end
- p
->start
;
373 p
->end
= p
->start
+ len
;
374 memmove(p
->start
, tmp
, len
+ 1);
378 static struct btrfs_path
*alloc_path_for_send(void)
380 struct btrfs_path
*path
;
382 path
= btrfs_alloc_path();
385 path
->search_commit_root
= 1;
386 path
->skip_locking
= 1;
390 static int write_buf(struct file
*filp
, const void *buf
, u32 len
, loff_t
*off
)
400 ret
= vfs_write(filp
, (char *)buf
+ pos
, len
- pos
, off
);
401 /* TODO handle that correctly */
402 /*if (ret == -ERESTARTSYS) {
421 static int tlv_put(struct send_ctx
*sctx
, u16 attr
, const void *data
, int len
)
423 struct btrfs_tlv_header
*hdr
;
424 int total_len
= sizeof(*hdr
) + len
;
425 int left
= sctx
->send_max_size
- sctx
->send_size
;
427 if (unlikely(left
< total_len
))
430 hdr
= (struct btrfs_tlv_header
*) (sctx
->send_buf
+ sctx
->send_size
);
431 hdr
->tlv_type
= cpu_to_le16(attr
);
432 hdr
->tlv_len
= cpu_to_le16(len
);
433 memcpy(hdr
+ 1, data
, len
);
434 sctx
->send_size
+= total_len
;
440 static int tlv_put_u8(struct send_ctx
*sctx
, u16 attr
, u8 value
)
442 return tlv_put(sctx
, attr
, &value
, sizeof(value
));
445 static int tlv_put_u16(struct send_ctx
*sctx
, u16 attr
, u16 value
)
447 __le16 tmp
= cpu_to_le16(value
);
448 return tlv_put(sctx
, attr
, &tmp
, sizeof(tmp
));
451 static int tlv_put_u32(struct send_ctx
*sctx
, u16 attr
, u32 value
)
453 __le32 tmp
= cpu_to_le32(value
);
454 return tlv_put(sctx
, attr
, &tmp
, sizeof(tmp
));
458 static int tlv_put_u64(struct send_ctx
*sctx
, u16 attr
, u64 value
)
460 __le64 tmp
= cpu_to_le64(value
);
461 return tlv_put(sctx
, attr
, &tmp
, sizeof(tmp
));
464 static int tlv_put_string(struct send_ctx
*sctx
, u16 attr
,
465 const char *str
, int len
)
469 return tlv_put(sctx
, attr
, str
, len
);
472 static int tlv_put_uuid(struct send_ctx
*sctx
, u16 attr
,
475 return tlv_put(sctx
, attr
, uuid
, BTRFS_UUID_SIZE
);
479 static int tlv_put_timespec(struct send_ctx
*sctx
, u16 attr
,
482 struct btrfs_timespec bts
;
483 bts
.sec
= cpu_to_le64(ts
->tv_sec
);
484 bts
.nsec
= cpu_to_le32(ts
->tv_nsec
);
485 return tlv_put(sctx
, attr
, &bts
, sizeof(bts
));
489 static int tlv_put_btrfs_timespec(struct send_ctx
*sctx
, u16 attr
,
490 struct extent_buffer
*eb
,
491 struct btrfs_timespec
*ts
)
493 struct btrfs_timespec bts
;
494 read_extent_buffer(eb
, &bts
, (unsigned long)ts
, sizeof(bts
));
495 return tlv_put(sctx
, attr
, &bts
, sizeof(bts
));
499 #define TLV_PUT(sctx, attrtype, attrlen, data) \
501 ret = tlv_put(sctx, attrtype, attrlen, data); \
503 goto tlv_put_failure; \
506 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
508 ret = tlv_put_u##bits(sctx, attrtype, value); \
510 goto tlv_put_failure; \
513 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
514 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
515 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
516 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
517 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
519 ret = tlv_put_string(sctx, attrtype, str, len); \
521 goto tlv_put_failure; \
523 #define TLV_PUT_PATH(sctx, attrtype, p) \
525 ret = tlv_put_string(sctx, attrtype, p->start, \
526 p->end - p->start); \
528 goto tlv_put_failure; \
530 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
532 ret = tlv_put_uuid(sctx, attrtype, uuid); \
534 goto tlv_put_failure; \
536 #define TLV_PUT_TIMESPEC(sctx, attrtype, ts) \
538 ret = tlv_put_timespec(sctx, attrtype, ts); \
540 goto tlv_put_failure; \
542 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
544 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
546 goto tlv_put_failure; \
549 static int send_header(struct send_ctx
*sctx
)
551 struct btrfs_stream_header hdr
;
553 strcpy(hdr
.magic
, BTRFS_SEND_STREAM_MAGIC
);
554 hdr
.version
= cpu_to_le32(BTRFS_SEND_STREAM_VERSION
);
556 return write_buf(sctx
->send_filp
, &hdr
, sizeof(hdr
),
561 * For each command/item we want to send to userspace, we call this function.
563 static int begin_cmd(struct send_ctx
*sctx
, int cmd
)
565 struct btrfs_cmd_header
*hdr
;
567 if (!sctx
->send_buf
) {
572 BUG_ON(sctx
->send_size
);
574 sctx
->send_size
+= sizeof(*hdr
);
575 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
576 hdr
->cmd
= cpu_to_le16(cmd
);
581 static int send_cmd(struct send_ctx
*sctx
)
584 struct btrfs_cmd_header
*hdr
;
587 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
588 hdr
->len
= cpu_to_le32(sctx
->send_size
- sizeof(*hdr
));
591 crc
= crc32c(0, (unsigned char *)sctx
->send_buf
, sctx
->send_size
);
592 hdr
->crc
= cpu_to_le32(crc
);
594 ret
= write_buf(sctx
->send_filp
, sctx
->send_buf
, sctx
->send_size
,
597 sctx
->total_send_size
+= sctx
->send_size
;
598 sctx
->cmd_send_size
[le16_to_cpu(hdr
->cmd
)] += sctx
->send_size
;
605 * Sends a move instruction to user space
607 static int send_rename(struct send_ctx
*sctx
,
608 struct fs_path
*from
, struct fs_path
*to
)
612 verbose_printk("btrfs: send_rename %s -> %s\n", from
->start
, to
->start
);
614 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RENAME
);
618 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, from
);
619 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_TO
, to
);
621 ret
= send_cmd(sctx
);
629 * Sends a link instruction to user space
631 static int send_link(struct send_ctx
*sctx
,
632 struct fs_path
*path
, struct fs_path
*lnk
)
636 verbose_printk("btrfs: send_link %s -> %s\n", path
->start
, lnk
->start
);
638 ret
= begin_cmd(sctx
, BTRFS_SEND_C_LINK
);
642 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
643 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, lnk
);
645 ret
= send_cmd(sctx
);
653 * Sends an unlink instruction to user space
655 static int send_unlink(struct send_ctx
*sctx
, struct fs_path
*path
)
659 verbose_printk("btrfs: send_unlink %s\n", path
->start
);
661 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UNLINK
);
665 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
667 ret
= send_cmd(sctx
);
675 * Sends a rmdir instruction to user space
677 static int send_rmdir(struct send_ctx
*sctx
, struct fs_path
*path
)
681 verbose_printk("btrfs: send_rmdir %s\n", path
->start
);
683 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RMDIR
);
687 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
689 ret
= send_cmd(sctx
);
697 * Helper function to retrieve some fields from an inode item.
699 static int get_inode_info(struct btrfs_root
*root
,
700 u64 ino
, u64
*size
, u64
*gen
,
701 u64
*mode
, u64
*uid
, u64
*gid
,
705 struct btrfs_inode_item
*ii
;
706 struct btrfs_key key
;
707 struct btrfs_path
*path
;
709 path
= alloc_path_for_send();
714 key
.type
= BTRFS_INODE_ITEM_KEY
;
716 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
724 ii
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
725 struct btrfs_inode_item
);
727 *size
= btrfs_inode_size(path
->nodes
[0], ii
);
729 *gen
= btrfs_inode_generation(path
->nodes
[0], ii
);
731 *mode
= btrfs_inode_mode(path
->nodes
[0], ii
);
733 *uid
= btrfs_inode_uid(path
->nodes
[0], ii
);
735 *gid
= btrfs_inode_gid(path
->nodes
[0], ii
);
737 *rdev
= btrfs_inode_rdev(path
->nodes
[0], ii
);
740 btrfs_free_path(path
);
744 typedef int (*iterate_inode_ref_t
)(int num
, u64 dir
, int index
,
749 * Helper function to iterate the entries in ONE btrfs_inode_ref or
750 * btrfs_inode_extref.
751 * The iterate callback may return a non zero value to stop iteration. This can
752 * be a negative value for error codes or 1 to simply stop it.
754 * path must point to the INODE_REF or INODE_EXTREF when called.
756 static int iterate_inode_ref(struct btrfs_root
*root
, struct btrfs_path
*path
,
757 struct btrfs_key
*found_key
, int resolve
,
758 iterate_inode_ref_t iterate
, void *ctx
)
760 struct extent_buffer
*eb
= path
->nodes
[0];
761 struct btrfs_item
*item
;
762 struct btrfs_inode_ref
*iref
;
763 struct btrfs_inode_extref
*extref
;
764 struct btrfs_path
*tmp_path
;
768 int slot
= path
->slots
[0];
775 unsigned long name_off
;
776 unsigned long elem_size
;
779 p
= fs_path_alloc_reversed();
783 tmp_path
= alloc_path_for_send();
790 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
791 ptr
= (unsigned long)btrfs_item_ptr(eb
, slot
,
792 struct btrfs_inode_ref
);
793 item
= btrfs_item_nr(eb
, slot
);
794 total
= btrfs_item_size(eb
, item
);
795 elem_size
= sizeof(*iref
);
797 ptr
= btrfs_item_ptr_offset(eb
, slot
);
798 total
= btrfs_item_size_nr(eb
, slot
);
799 elem_size
= sizeof(*extref
);
802 while (cur
< total
) {
805 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
806 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur
);
807 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
808 name_off
= (unsigned long)(iref
+ 1);
809 index
= btrfs_inode_ref_index(eb
, iref
);
810 dir
= found_key
->offset
;
812 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur
);
813 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
814 name_off
= (unsigned long)&extref
->name
;
815 index
= btrfs_inode_extref_index(eb
, extref
);
816 dir
= btrfs_inode_extref_parent(eb
, extref
);
820 start
= btrfs_ref_to_path(root
, tmp_path
, name_len
,
824 ret
= PTR_ERR(start
);
827 if (start
< p
->buf
) {
828 /* overflow , try again with larger buffer */
829 ret
= fs_path_ensure_buf(p
,
830 p
->buf_len
+ p
->buf
- start
);
833 start
= btrfs_ref_to_path(root
, tmp_path
,
838 ret
= PTR_ERR(start
);
841 BUG_ON(start
< p
->buf
);
845 ret
= fs_path_add_from_extent_buffer(p
, eb
, name_off
,
851 cur
+= elem_size
+ name_len
;
852 ret
= iterate(num
, dir
, index
, p
, ctx
);
859 btrfs_free_path(tmp_path
);
864 typedef int (*iterate_dir_item_t
)(int num
, struct btrfs_key
*di_key
,
865 const char *name
, int name_len
,
866 const char *data
, int data_len
,
870 * Helper function to iterate the entries in ONE btrfs_dir_item.
871 * The iterate callback may return a non zero value to stop iteration. This can
872 * be a negative value for error codes or 1 to simply stop it.
874 * path must point to the dir item when called.
876 static int iterate_dir_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
877 struct btrfs_key
*found_key
,
878 iterate_dir_item_t iterate
, void *ctx
)
881 struct extent_buffer
*eb
;
882 struct btrfs_item
*item
;
883 struct btrfs_dir_item
*di
;
884 struct btrfs_key di_key
;
899 buf
= kmalloc(buf_len
, GFP_NOFS
);
906 slot
= path
->slots
[0];
907 item
= btrfs_item_nr(eb
, slot
);
908 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
911 total
= btrfs_item_size(eb
, item
);
914 while (cur
< total
) {
915 name_len
= btrfs_dir_name_len(eb
, di
);
916 data_len
= btrfs_dir_data_len(eb
, di
);
917 type
= btrfs_dir_type(eb
, di
);
918 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
920 if (name_len
+ data_len
> buf_len
) {
921 buf_len
= PAGE_ALIGN(name_len
+ data_len
);
923 buf2
= vmalloc(buf_len
);
930 buf2
= krealloc(buf
, buf_len
, GFP_NOFS
);
932 buf2
= vmalloc(buf_len
);
946 read_extent_buffer(eb
, buf
, (unsigned long)(di
+ 1),
947 name_len
+ data_len
);
949 len
= sizeof(*di
) + name_len
+ data_len
;
950 di
= (struct btrfs_dir_item
*)((char *)di
+ len
);
953 ret
= iterate(num
, &di_key
, buf
, name_len
, buf
+ name_len
,
954 data_len
, type
, ctx
);
973 static int __copy_first_ref(int num
, u64 dir
, int index
,
974 struct fs_path
*p
, void *ctx
)
977 struct fs_path
*pt
= ctx
;
979 ret
= fs_path_copy(pt
, p
);
983 /* we want the first only */
988 * Retrieve the first path of an inode. If an inode has more then one
989 * ref/hardlink, this is ignored.
991 static int get_inode_path(struct btrfs_root
*root
,
992 u64 ino
, struct fs_path
*path
)
995 struct btrfs_key key
, found_key
;
996 struct btrfs_path
*p
;
998 p
= alloc_path_for_send();
1002 fs_path_reset(path
);
1005 key
.type
= BTRFS_INODE_REF_KEY
;
1008 ret
= btrfs_search_slot_for_read(root
, &key
, p
, 1, 0);
1015 btrfs_item_key_to_cpu(p
->nodes
[0], &found_key
, p
->slots
[0]);
1016 if (found_key
.objectid
!= ino
||
1017 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1018 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1023 ret
= iterate_inode_ref(root
, p
, &found_key
, 1,
1024 __copy_first_ref
, path
);
1034 struct backref_ctx
{
1035 struct send_ctx
*sctx
;
1037 /* number of total found references */
1041 * used for clones found in send_root. clones found behind cur_objectid
1042 * and cur_offset are not considered as allowed clones.
1047 /* may be truncated in case it's the last extent in a file */
1050 /* Just to check for bugs in backref resolving */
1054 static int __clone_root_cmp_bsearch(const void *key
, const void *elt
)
1056 u64 root
= (u64
)(uintptr_t)key
;
1057 struct clone_root
*cr
= (struct clone_root
*)elt
;
1059 if (root
< cr
->root
->objectid
)
1061 if (root
> cr
->root
->objectid
)
1066 static int __clone_root_cmp_sort(const void *e1
, const void *e2
)
1068 struct clone_root
*cr1
= (struct clone_root
*)e1
;
1069 struct clone_root
*cr2
= (struct clone_root
*)e2
;
1071 if (cr1
->root
->objectid
< cr2
->root
->objectid
)
1073 if (cr1
->root
->objectid
> cr2
->root
->objectid
)
1079 * Called for every backref that is found for the current extent.
1080 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1082 static int __iterate_backrefs(u64 ino
, u64 offset
, u64 root
, void *ctx_
)
1084 struct backref_ctx
*bctx
= ctx_
;
1085 struct clone_root
*found
;
1089 /* First check if the root is in the list of accepted clone sources */
1090 found
= bsearch((void *)(uintptr_t)root
, bctx
->sctx
->clone_roots
,
1091 bctx
->sctx
->clone_roots_cnt
,
1092 sizeof(struct clone_root
),
1093 __clone_root_cmp_bsearch
);
1097 if (found
->root
== bctx
->sctx
->send_root
&&
1098 ino
== bctx
->cur_objectid
&&
1099 offset
== bctx
->cur_offset
) {
1100 bctx
->found_itself
= 1;
1104 * There are inodes that have extents that lie behind its i_size. Don't
1105 * accept clones from these extents.
1107 ret
= get_inode_info(found
->root
, ino
, &i_size
, NULL
, NULL
, NULL
, NULL
,
1112 if (offset
+ bctx
->extent_len
> i_size
)
1116 * Make sure we don't consider clones from send_root that are
1117 * behind the current inode/offset.
1119 if (found
->root
== bctx
->sctx
->send_root
) {
1121 * TODO for the moment we don't accept clones from the inode
1122 * that is currently send. We may change this when
1123 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1126 if (ino
>= bctx
->cur_objectid
)
1129 if (ino
> bctx
->cur_objectid
)
1131 if (offset
+ bctx
->extent_len
> bctx
->cur_offset
)
1137 found
->found_refs
++;
1138 if (ino
< found
->ino
) {
1140 found
->offset
= offset
;
1141 } else if (found
->ino
== ino
) {
1143 * same extent found more then once in the same file.
1145 if (found
->offset
> offset
+ bctx
->extent_len
)
1146 found
->offset
= offset
;
1153 * Given an inode, offset and extent item, it finds a good clone for a clone
1154 * instruction. Returns -ENOENT when none could be found. The function makes
1155 * sure that the returned clone is usable at the point where sending is at the
1156 * moment. This means, that no clones are accepted which lie behind the current
1159 * path must point to the extent item when called.
1161 static int find_extent_clone(struct send_ctx
*sctx
,
1162 struct btrfs_path
*path
,
1163 u64 ino
, u64 data_offset
,
1165 struct clone_root
**found
)
1172 u64 extent_item_pos
;
1174 struct btrfs_file_extent_item
*fi
;
1175 struct extent_buffer
*eb
= path
->nodes
[0];
1176 struct backref_ctx
*backref_ctx
= NULL
;
1177 struct clone_root
*cur_clone_root
;
1178 struct btrfs_key found_key
;
1179 struct btrfs_path
*tmp_path
;
1183 tmp_path
= alloc_path_for_send();
1187 backref_ctx
= kmalloc(sizeof(*backref_ctx
), GFP_NOFS
);
1193 if (data_offset
>= ino_size
) {
1195 * There may be extents that lie behind the file's size.
1196 * I at least had this in combination with snapshotting while
1197 * writing large files.
1203 fi
= btrfs_item_ptr(eb
, path
->slots
[0],
1204 struct btrfs_file_extent_item
);
1205 extent_type
= btrfs_file_extent_type(eb
, fi
);
1206 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1210 compressed
= btrfs_file_extent_compression(eb
, fi
);
1212 num_bytes
= btrfs_file_extent_num_bytes(eb
, fi
);
1213 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
1214 if (disk_byte
== 0) {
1218 logical
= disk_byte
+ btrfs_file_extent_offset(eb
, fi
);
1220 ret
= extent_from_logical(sctx
->send_root
->fs_info
, disk_byte
, tmp_path
,
1221 &found_key
, &flags
);
1222 btrfs_release_path(tmp_path
);
1226 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1232 * Setup the clone roots.
1234 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1235 cur_clone_root
= sctx
->clone_roots
+ i
;
1236 cur_clone_root
->ino
= (u64
)-1;
1237 cur_clone_root
->offset
= 0;
1238 cur_clone_root
->found_refs
= 0;
1241 backref_ctx
->sctx
= sctx
;
1242 backref_ctx
->found
= 0;
1243 backref_ctx
->cur_objectid
= ino
;
1244 backref_ctx
->cur_offset
= data_offset
;
1245 backref_ctx
->found_itself
= 0;
1246 backref_ctx
->extent_len
= num_bytes
;
1249 * The last extent of a file may be too large due to page alignment.
1250 * We need to adjust extent_len in this case so that the checks in
1251 * __iterate_backrefs work.
1253 if (data_offset
+ num_bytes
>= ino_size
)
1254 backref_ctx
->extent_len
= ino_size
- data_offset
;
1257 * Now collect all backrefs.
1259 if (compressed
== BTRFS_COMPRESS_NONE
)
1260 extent_item_pos
= logical
- found_key
.objectid
;
1262 extent_item_pos
= 0;
1264 extent_item_pos
= logical
- found_key
.objectid
;
1265 ret
= iterate_extent_inodes(sctx
->send_root
->fs_info
,
1266 found_key
.objectid
, extent_item_pos
, 1,
1267 __iterate_backrefs
, backref_ctx
);
1272 if (!backref_ctx
->found_itself
) {
1273 /* found a bug in backref code? */
1275 printk(KERN_ERR
"btrfs: ERROR did not find backref in "
1276 "send_root. inode=%llu, offset=%llu, "
1277 "disk_byte=%llu found extent=%llu\n",
1278 ino
, data_offset
, disk_byte
, found_key
.objectid
);
1282 verbose_printk(KERN_DEBUG
"btrfs: find_extent_clone: data_offset=%llu, "
1284 "num_bytes=%llu, logical=%llu\n",
1285 data_offset
, ino
, num_bytes
, logical
);
1287 if (!backref_ctx
->found
)
1288 verbose_printk("btrfs: no clones found\n");
1290 cur_clone_root
= NULL
;
1291 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1292 if (sctx
->clone_roots
[i
].found_refs
) {
1293 if (!cur_clone_root
)
1294 cur_clone_root
= sctx
->clone_roots
+ i
;
1295 else if (sctx
->clone_roots
[i
].root
== sctx
->send_root
)
1296 /* prefer clones from send_root over others */
1297 cur_clone_root
= sctx
->clone_roots
+ i
;
1302 if (cur_clone_root
) {
1303 *found
= cur_clone_root
;
1310 btrfs_free_path(tmp_path
);
1315 static int read_symlink(struct btrfs_root
*root
,
1317 struct fs_path
*dest
)
1320 struct btrfs_path
*path
;
1321 struct btrfs_key key
;
1322 struct btrfs_file_extent_item
*ei
;
1328 path
= alloc_path_for_send();
1333 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1335 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1340 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1341 struct btrfs_file_extent_item
);
1342 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
1343 compression
= btrfs_file_extent_compression(path
->nodes
[0], ei
);
1344 BUG_ON(type
!= BTRFS_FILE_EXTENT_INLINE
);
1345 BUG_ON(compression
);
1347 off
= btrfs_file_extent_inline_start(ei
);
1348 len
= btrfs_file_extent_inline_len(path
->nodes
[0], ei
);
1350 ret
= fs_path_add_from_extent_buffer(dest
, path
->nodes
[0], off
, len
);
1353 btrfs_free_path(path
);
1358 * Helper function to generate a file name that is unique in the root of
1359 * send_root and parent_root. This is used to generate names for orphan inodes.
1361 static int gen_unique_name(struct send_ctx
*sctx
,
1363 struct fs_path
*dest
)
1366 struct btrfs_path
*path
;
1367 struct btrfs_dir_item
*di
;
1372 path
= alloc_path_for_send();
1377 len
= snprintf(tmp
, sizeof(tmp
) - 1, "o%llu-%llu-%llu",
1379 if (len
>= sizeof(tmp
)) {
1380 /* should really not happen */
1385 di
= btrfs_lookup_dir_item(NULL
, sctx
->send_root
,
1386 path
, BTRFS_FIRST_FREE_OBJECTID
,
1387 tmp
, strlen(tmp
), 0);
1388 btrfs_release_path(path
);
1394 /* not unique, try again */
1399 if (!sctx
->parent_root
) {
1405 di
= btrfs_lookup_dir_item(NULL
, sctx
->parent_root
,
1406 path
, BTRFS_FIRST_FREE_OBJECTID
,
1407 tmp
, strlen(tmp
), 0);
1408 btrfs_release_path(path
);
1414 /* not unique, try again */
1422 ret
= fs_path_add(dest
, tmp
, strlen(tmp
));
1425 btrfs_free_path(path
);
1430 inode_state_no_change
,
1431 inode_state_will_create
,
1432 inode_state_did_create
,
1433 inode_state_will_delete
,
1434 inode_state_did_delete
,
1437 static int get_cur_inode_state(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1445 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &left_gen
, NULL
, NULL
,
1447 if (ret
< 0 && ret
!= -ENOENT
)
1451 if (!sctx
->parent_root
) {
1452 right_ret
= -ENOENT
;
1454 ret
= get_inode_info(sctx
->parent_root
, ino
, NULL
, &right_gen
,
1455 NULL
, NULL
, NULL
, NULL
);
1456 if (ret
< 0 && ret
!= -ENOENT
)
1461 if (!left_ret
&& !right_ret
) {
1462 if (left_gen
== gen
&& right_gen
== gen
) {
1463 ret
= inode_state_no_change
;
1464 } else if (left_gen
== gen
) {
1465 if (ino
< sctx
->send_progress
)
1466 ret
= inode_state_did_create
;
1468 ret
= inode_state_will_create
;
1469 } else if (right_gen
== gen
) {
1470 if (ino
< sctx
->send_progress
)
1471 ret
= inode_state_did_delete
;
1473 ret
= inode_state_will_delete
;
1477 } else if (!left_ret
) {
1478 if (left_gen
== gen
) {
1479 if (ino
< sctx
->send_progress
)
1480 ret
= inode_state_did_create
;
1482 ret
= inode_state_will_create
;
1486 } else if (!right_ret
) {
1487 if (right_gen
== gen
) {
1488 if (ino
< sctx
->send_progress
)
1489 ret
= inode_state_did_delete
;
1491 ret
= inode_state_will_delete
;
1503 static int is_inode_existent(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1507 ret
= get_cur_inode_state(sctx
, ino
, gen
);
1511 if (ret
== inode_state_no_change
||
1512 ret
== inode_state_did_create
||
1513 ret
== inode_state_will_delete
)
1523 * Helper function to lookup a dir item in a dir.
1525 static int lookup_dir_item_inode(struct btrfs_root
*root
,
1526 u64 dir
, const char *name
, int name_len
,
1531 struct btrfs_dir_item
*di
;
1532 struct btrfs_key key
;
1533 struct btrfs_path
*path
;
1535 path
= alloc_path_for_send();
1539 di
= btrfs_lookup_dir_item(NULL
, root
, path
,
1540 dir
, name
, name_len
, 0);
1549 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1550 if (key
.type
== BTRFS_ROOT_ITEM_KEY
) {
1554 *found_inode
= key
.objectid
;
1555 *found_type
= btrfs_dir_type(path
->nodes
[0], di
);
1558 btrfs_free_path(path
);
1563 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1564 * generation of the parent dir and the name of the dir entry.
1566 static int get_first_ref(struct btrfs_root
*root
, u64 ino
,
1567 u64
*dir
, u64
*dir_gen
, struct fs_path
*name
)
1570 struct btrfs_key key
;
1571 struct btrfs_key found_key
;
1572 struct btrfs_path
*path
;
1576 path
= alloc_path_for_send();
1581 key
.type
= BTRFS_INODE_REF_KEY
;
1584 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
1588 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1590 if (ret
|| found_key
.objectid
!= ino
||
1591 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1592 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1597 if (key
.type
== BTRFS_INODE_REF_KEY
) {
1598 struct btrfs_inode_ref
*iref
;
1599 iref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1600 struct btrfs_inode_ref
);
1601 len
= btrfs_inode_ref_name_len(path
->nodes
[0], iref
);
1602 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1603 (unsigned long)(iref
+ 1),
1605 parent_dir
= found_key
.offset
;
1607 struct btrfs_inode_extref
*extref
;
1608 extref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1609 struct btrfs_inode_extref
);
1610 len
= btrfs_inode_extref_name_len(path
->nodes
[0], extref
);
1611 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1612 (unsigned long)&extref
->name
, len
);
1613 parent_dir
= btrfs_inode_extref_parent(path
->nodes
[0], extref
);
1617 btrfs_release_path(path
);
1619 ret
= get_inode_info(root
, parent_dir
, NULL
, dir_gen
, NULL
, NULL
,
1627 btrfs_free_path(path
);
1631 static int is_first_ref(struct btrfs_root
*root
,
1633 const char *name
, int name_len
)
1636 struct fs_path
*tmp_name
;
1640 tmp_name
= fs_path_alloc();
1644 ret
= get_first_ref(root
, ino
, &tmp_dir
, &tmp_dir_gen
, tmp_name
);
1648 if (dir
!= tmp_dir
|| name_len
!= fs_path_len(tmp_name
)) {
1653 ret
= !memcmp(tmp_name
->start
, name
, name_len
);
1656 fs_path_free(tmp_name
);
1661 * Used by process_recorded_refs to determine if a new ref would overwrite an
1662 * already existing ref. In case it detects an overwrite, it returns the
1663 * inode/gen in who_ino/who_gen.
1664 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1665 * to make sure later references to the overwritten inode are possible.
1666 * Orphanizing is however only required for the first ref of an inode.
1667 * process_recorded_refs does an additional is_first_ref check to see if
1668 * orphanizing is really required.
1670 static int will_overwrite_ref(struct send_ctx
*sctx
, u64 dir
, u64 dir_gen
,
1671 const char *name
, int name_len
,
1672 u64
*who_ino
, u64
*who_gen
)
1676 u64 other_inode
= 0;
1679 if (!sctx
->parent_root
)
1682 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1687 * If we have a parent root we need to verify that the parent dir was
1688 * not delted and then re-created, if it was then we have no overwrite
1689 * and we can just unlink this entry.
1691 if (sctx
->parent_root
) {
1692 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &gen
, NULL
,
1694 if (ret
< 0 && ret
!= -ENOENT
)
1704 ret
= lookup_dir_item_inode(sctx
->parent_root
, dir
, name
, name_len
,
1705 &other_inode
, &other_type
);
1706 if (ret
< 0 && ret
!= -ENOENT
)
1714 * Check if the overwritten ref was already processed. If yes, the ref
1715 * was already unlinked/moved, so we can safely assume that we will not
1716 * overwrite anything at this point in time.
1718 if (other_inode
> sctx
->send_progress
) {
1719 ret
= get_inode_info(sctx
->parent_root
, other_inode
, NULL
,
1720 who_gen
, NULL
, NULL
, NULL
, NULL
);
1725 *who_ino
= other_inode
;
1735 * Checks if the ref was overwritten by an already processed inode. This is
1736 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1737 * thus the orphan name needs be used.
1738 * process_recorded_refs also uses it to avoid unlinking of refs that were
1741 static int did_overwrite_ref(struct send_ctx
*sctx
,
1742 u64 dir
, u64 dir_gen
,
1743 u64 ino
, u64 ino_gen
,
1744 const char *name
, int name_len
)
1751 if (!sctx
->parent_root
)
1754 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1758 /* check if the ref was overwritten by another ref */
1759 ret
= lookup_dir_item_inode(sctx
->send_root
, dir
, name
, name_len
,
1760 &ow_inode
, &other_type
);
1761 if (ret
< 0 && ret
!= -ENOENT
)
1764 /* was never and will never be overwritten */
1769 ret
= get_inode_info(sctx
->send_root
, ow_inode
, NULL
, &gen
, NULL
, NULL
,
1774 if (ow_inode
== ino
&& gen
== ino_gen
) {
1779 /* we know that it is or will be overwritten. check this now */
1780 if (ow_inode
< sctx
->send_progress
)
1790 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1791 * that got overwritten. This is used by process_recorded_refs to determine
1792 * if it has to use the path as returned by get_cur_path or the orphan name.
1794 static int did_overwrite_first_ref(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1797 struct fs_path
*name
= NULL
;
1801 if (!sctx
->parent_root
)
1804 name
= fs_path_alloc();
1808 ret
= get_first_ref(sctx
->parent_root
, ino
, &dir
, &dir_gen
, name
);
1812 ret
= did_overwrite_ref(sctx
, dir
, dir_gen
, ino
, gen
,
1813 name
->start
, fs_path_len(name
));
1821 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1822 * so we need to do some special handling in case we have clashes. This function
1823 * takes care of this with the help of name_cache_entry::radix_list.
1824 * In case of error, nce is kfreed.
1826 static int name_cache_insert(struct send_ctx
*sctx
,
1827 struct name_cache_entry
*nce
)
1830 struct list_head
*nce_head
;
1832 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
1833 (unsigned long)nce
->ino
);
1835 nce_head
= kmalloc(sizeof(*nce_head
), GFP_NOFS
);
1840 INIT_LIST_HEAD(nce_head
);
1842 ret
= radix_tree_insert(&sctx
->name_cache
, nce
->ino
, nce_head
);
1849 list_add_tail(&nce
->radix_list
, nce_head
);
1850 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
1851 sctx
->name_cache_size
++;
1856 static void name_cache_delete(struct send_ctx
*sctx
,
1857 struct name_cache_entry
*nce
)
1859 struct list_head
*nce_head
;
1861 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
1862 (unsigned long)nce
->ino
);
1865 list_del(&nce
->radix_list
);
1866 list_del(&nce
->list
);
1867 sctx
->name_cache_size
--;
1869 if (list_empty(nce_head
)) {
1870 radix_tree_delete(&sctx
->name_cache
, (unsigned long)nce
->ino
);
1875 static struct name_cache_entry
*name_cache_search(struct send_ctx
*sctx
,
1878 struct list_head
*nce_head
;
1879 struct name_cache_entry
*cur
;
1881 nce_head
= radix_tree_lookup(&sctx
->name_cache
, (unsigned long)ino
);
1885 list_for_each_entry(cur
, nce_head
, radix_list
) {
1886 if (cur
->ino
== ino
&& cur
->gen
== gen
)
1893 * Removes the entry from the list and adds it back to the end. This marks the
1894 * entry as recently used so that name_cache_clean_unused does not remove it.
1896 static void name_cache_used(struct send_ctx
*sctx
, struct name_cache_entry
*nce
)
1898 list_del(&nce
->list
);
1899 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
1903 * Remove some entries from the beginning of name_cache_list.
1905 static void name_cache_clean_unused(struct send_ctx
*sctx
)
1907 struct name_cache_entry
*nce
;
1909 if (sctx
->name_cache_size
< SEND_CTX_NAME_CACHE_CLEAN_SIZE
)
1912 while (sctx
->name_cache_size
> SEND_CTX_MAX_NAME_CACHE_SIZE
) {
1913 nce
= list_entry(sctx
->name_cache_list
.next
,
1914 struct name_cache_entry
, list
);
1915 name_cache_delete(sctx
, nce
);
1920 static void name_cache_free(struct send_ctx
*sctx
)
1922 struct name_cache_entry
*nce
;
1924 while (!list_empty(&sctx
->name_cache_list
)) {
1925 nce
= list_entry(sctx
->name_cache_list
.next
,
1926 struct name_cache_entry
, list
);
1927 name_cache_delete(sctx
, nce
);
1933 * Used by get_cur_path for each ref up to the root.
1934 * Returns 0 if it succeeded.
1935 * Returns 1 if the inode is not existent or got overwritten. In that case, the
1936 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
1937 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
1938 * Returns <0 in case of error.
1940 static int __get_cur_name_and_parent(struct send_ctx
*sctx
,
1944 struct fs_path
*dest
)
1948 struct btrfs_path
*path
= NULL
;
1949 struct name_cache_entry
*nce
= NULL
;
1952 * First check if we already did a call to this function with the same
1953 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
1954 * return the cached result.
1956 nce
= name_cache_search(sctx
, ino
, gen
);
1958 if (ino
< sctx
->send_progress
&& nce
->need_later_update
) {
1959 name_cache_delete(sctx
, nce
);
1963 name_cache_used(sctx
, nce
);
1964 *parent_ino
= nce
->parent_ino
;
1965 *parent_gen
= nce
->parent_gen
;
1966 ret
= fs_path_add(dest
, nce
->name
, nce
->name_len
);
1974 path
= alloc_path_for_send();
1979 * If the inode is not existent yet, add the orphan name and return 1.
1980 * This should only happen for the parent dir that we determine in
1983 ret
= is_inode_existent(sctx
, ino
, gen
);
1988 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
1996 * Depending on whether the inode was already processed or not, use
1997 * send_root or parent_root for ref lookup.
1999 if (ino
< sctx
->send_progress
)
2000 ret
= get_first_ref(sctx
->send_root
, ino
,
2001 parent_ino
, parent_gen
, dest
);
2003 ret
= get_first_ref(sctx
->parent_root
, ino
,
2004 parent_ino
, parent_gen
, dest
);
2009 * Check if the ref was overwritten by an inode's ref that was processed
2010 * earlier. If yes, treat as orphan and return 1.
2012 ret
= did_overwrite_ref(sctx
, *parent_ino
, *parent_gen
, ino
, gen
,
2013 dest
->start
, dest
->end
- dest
->start
);
2017 fs_path_reset(dest
);
2018 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
2026 * Store the result of the lookup in the name cache.
2028 nce
= kmalloc(sizeof(*nce
) + fs_path_len(dest
) + 1, GFP_NOFS
);
2036 nce
->parent_ino
= *parent_ino
;
2037 nce
->parent_gen
= *parent_gen
;
2038 nce
->name_len
= fs_path_len(dest
);
2040 strcpy(nce
->name
, dest
->start
);
2042 if (ino
< sctx
->send_progress
)
2043 nce
->need_later_update
= 0;
2045 nce
->need_later_update
= 1;
2047 nce_ret
= name_cache_insert(sctx
, nce
);
2050 name_cache_clean_unused(sctx
);
2053 btrfs_free_path(path
);
2058 * Magic happens here. This function returns the first ref to an inode as it
2059 * would look like while receiving the stream at this point in time.
2060 * We walk the path up to the root. For every inode in between, we check if it
2061 * was already processed/sent. If yes, we continue with the parent as found
2062 * in send_root. If not, we continue with the parent as found in parent_root.
2063 * If we encounter an inode that was deleted at this point in time, we use the
2064 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2065 * that were not created yet and overwritten inodes/refs.
2067 * When do we have have orphan inodes:
2068 * 1. When an inode is freshly created and thus no valid refs are available yet
2069 * 2. When a directory lost all it's refs (deleted) but still has dir items
2070 * inside which were not processed yet (pending for move/delete). If anyone
2071 * tried to get the path to the dir items, it would get a path inside that
2073 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2074 * of an unprocessed inode. If in that case the first ref would be
2075 * overwritten, the overwritten inode gets "orphanized". Later when we
2076 * process this overwritten inode, it is restored at a new place by moving
2079 * sctx->send_progress tells this function at which point in time receiving
2082 static int get_cur_path(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2083 struct fs_path
*dest
)
2086 struct fs_path
*name
= NULL
;
2087 u64 parent_inode
= 0;
2091 name
= fs_path_alloc();
2098 fs_path_reset(dest
);
2100 while (!stop
&& ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
2101 fs_path_reset(name
);
2103 ret
= __get_cur_name_and_parent(sctx
, ino
, gen
,
2104 &parent_inode
, &parent_gen
, name
);
2110 ret
= fs_path_add_path(dest
, name
);
2121 fs_path_unreverse(dest
);
2126 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2128 static int send_subvol_begin(struct send_ctx
*sctx
)
2131 struct btrfs_root
*send_root
= sctx
->send_root
;
2132 struct btrfs_root
*parent_root
= sctx
->parent_root
;
2133 struct btrfs_path
*path
;
2134 struct btrfs_key key
;
2135 struct btrfs_root_ref
*ref
;
2136 struct extent_buffer
*leaf
;
2140 path
= alloc_path_for_send();
2144 name
= kmalloc(BTRFS_PATH_NAME_MAX
, GFP_NOFS
);
2146 btrfs_free_path(path
);
2150 key
.objectid
= send_root
->objectid
;
2151 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
2154 ret
= btrfs_search_slot_for_read(send_root
->fs_info
->tree_root
,
2163 leaf
= path
->nodes
[0];
2164 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2165 if (key
.type
!= BTRFS_ROOT_BACKREF_KEY
||
2166 key
.objectid
!= send_root
->objectid
) {
2170 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
2171 namelen
= btrfs_root_ref_name_len(leaf
, ref
);
2172 read_extent_buffer(leaf
, name
, (unsigned long)(ref
+ 1), namelen
);
2173 btrfs_release_path(path
);
2176 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SNAPSHOT
);
2180 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SUBVOL
);
2185 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_PATH
, name
, namelen
);
2186 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_UUID
,
2187 sctx
->send_root
->root_item
.uuid
);
2188 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CTRANSID
,
2189 sctx
->send_root
->root_item
.ctransid
);
2191 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
2192 sctx
->parent_root
->root_item
.uuid
);
2193 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
2194 sctx
->parent_root
->root_item
.ctransid
);
2197 ret
= send_cmd(sctx
);
2201 btrfs_free_path(path
);
2206 static int send_truncate(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 size
)
2211 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino
, size
);
2213 p
= fs_path_alloc();
2217 ret
= begin_cmd(sctx
, BTRFS_SEND_C_TRUNCATE
);
2221 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2224 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2225 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, size
);
2227 ret
= send_cmd(sctx
);
2235 static int send_chmod(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 mode
)
2240 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino
, mode
);
2242 p
= fs_path_alloc();
2246 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHMOD
);
2250 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2253 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2254 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
& 07777);
2256 ret
= send_cmd(sctx
);
2264 static int send_chown(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 uid
, u64 gid
)
2269 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino
, uid
, gid
);
2271 p
= fs_path_alloc();
2275 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHOWN
);
2279 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2282 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2283 TLV_PUT_U64(sctx
, BTRFS_SEND_A_UID
, uid
);
2284 TLV_PUT_U64(sctx
, BTRFS_SEND_A_GID
, gid
);
2286 ret
= send_cmd(sctx
);
2294 static int send_utimes(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
2297 struct fs_path
*p
= NULL
;
2298 struct btrfs_inode_item
*ii
;
2299 struct btrfs_path
*path
= NULL
;
2300 struct extent_buffer
*eb
;
2301 struct btrfs_key key
;
2304 verbose_printk("btrfs: send_utimes %llu\n", ino
);
2306 p
= fs_path_alloc();
2310 path
= alloc_path_for_send();
2317 key
.type
= BTRFS_INODE_ITEM_KEY
;
2319 ret
= btrfs_search_slot(NULL
, sctx
->send_root
, &key
, path
, 0, 0);
2323 eb
= path
->nodes
[0];
2324 slot
= path
->slots
[0];
2325 ii
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
2327 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UTIMES
);
2331 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2334 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2335 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_ATIME
, eb
,
2336 btrfs_inode_atime(ii
));
2337 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_MTIME
, eb
,
2338 btrfs_inode_mtime(ii
));
2339 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_CTIME
, eb
,
2340 btrfs_inode_ctime(ii
));
2341 /* TODO Add otime support when the otime patches get into upstream */
2343 ret
= send_cmd(sctx
);
2348 btrfs_free_path(path
);
2353 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2354 * a valid path yet because we did not process the refs yet. So, the inode
2355 * is created as orphan.
2357 static int send_create_inode(struct send_ctx
*sctx
, u64 ino
)
2366 verbose_printk("btrfs: send_create_inode %llu\n", ino
);
2368 p
= fs_path_alloc();
2372 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &gen
, &mode
, NULL
,
2377 if (S_ISREG(mode
)) {
2378 cmd
= BTRFS_SEND_C_MKFILE
;
2379 } else if (S_ISDIR(mode
)) {
2380 cmd
= BTRFS_SEND_C_MKDIR
;
2381 } else if (S_ISLNK(mode
)) {
2382 cmd
= BTRFS_SEND_C_SYMLINK
;
2383 } else if (S_ISCHR(mode
) || S_ISBLK(mode
)) {
2384 cmd
= BTRFS_SEND_C_MKNOD
;
2385 } else if (S_ISFIFO(mode
)) {
2386 cmd
= BTRFS_SEND_C_MKFIFO
;
2387 } else if (S_ISSOCK(mode
)) {
2388 cmd
= BTRFS_SEND_C_MKSOCK
;
2390 printk(KERN_WARNING
"btrfs: unexpected inode type %o",
2391 (int)(mode
& S_IFMT
));
2396 ret
= begin_cmd(sctx
, cmd
);
2400 ret
= gen_unique_name(sctx
, ino
, gen
, p
);
2404 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2405 TLV_PUT_U64(sctx
, BTRFS_SEND_A_INO
, ino
);
2407 if (S_ISLNK(mode
)) {
2409 ret
= read_symlink(sctx
->send_root
, ino
, p
);
2412 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, p
);
2413 } else if (S_ISCHR(mode
) || S_ISBLK(mode
) ||
2414 S_ISFIFO(mode
) || S_ISSOCK(mode
)) {
2415 TLV_PUT_U64(sctx
, BTRFS_SEND_A_RDEV
, new_encode_dev(rdev
));
2416 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
);
2419 ret
= send_cmd(sctx
);
2431 * We need some special handling for inodes that get processed before the parent
2432 * directory got created. See process_recorded_refs for details.
2433 * This function does the check if we already created the dir out of order.
2435 static int did_create_dir(struct send_ctx
*sctx
, u64 dir
)
2438 struct btrfs_path
*path
= NULL
;
2439 struct btrfs_key key
;
2440 struct btrfs_key found_key
;
2441 struct btrfs_key di_key
;
2442 struct extent_buffer
*eb
;
2443 struct btrfs_dir_item
*di
;
2446 path
= alloc_path_for_send();
2453 key
.type
= BTRFS_DIR_INDEX_KEY
;
2456 ret
= btrfs_search_slot_for_read(sctx
->send_root
, &key
, path
,
2461 eb
= path
->nodes
[0];
2462 slot
= path
->slots
[0];
2463 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
2465 if (ret
|| found_key
.objectid
!= key
.objectid
||
2466 found_key
.type
!= key
.type
) {
2471 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
2472 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
2474 if (di_key
.type
!= BTRFS_ROOT_ITEM_KEY
&&
2475 di_key
.objectid
< sctx
->send_progress
) {
2480 key
.offset
= found_key
.offset
+ 1;
2481 btrfs_release_path(path
);
2485 btrfs_free_path(path
);
2490 * Only creates the inode if it is:
2491 * 1. Not a directory
2492 * 2. Or a directory which was not created already due to out of order
2493 * directories. See did_create_dir and process_recorded_refs for details.
2495 static int send_create_inode_if_needed(struct send_ctx
*sctx
)
2499 if (S_ISDIR(sctx
->cur_inode_mode
)) {
2500 ret
= did_create_dir(sctx
, sctx
->cur_ino
);
2509 ret
= send_create_inode(sctx
, sctx
->cur_ino
);
2517 struct recorded_ref
{
2518 struct list_head list
;
2521 struct fs_path
*full_path
;
2529 * We need to process new refs before deleted refs, but compare_tree gives us
2530 * everything mixed. So we first record all refs and later process them.
2531 * This function is a helper to record one ref.
2533 static int record_ref(struct list_head
*head
, u64 dir
,
2534 u64 dir_gen
, struct fs_path
*path
)
2536 struct recorded_ref
*ref
;
2538 ref
= kmalloc(sizeof(*ref
), GFP_NOFS
);
2543 ref
->dir_gen
= dir_gen
;
2544 ref
->full_path
= path
;
2546 ref
->name
= (char *)kbasename(ref
->full_path
->start
);
2547 ref
->name_len
= ref
->full_path
->end
- ref
->name
;
2548 ref
->dir_path
= ref
->full_path
->start
;
2549 if (ref
->name
== ref
->full_path
->start
)
2550 ref
->dir_path_len
= 0;
2552 ref
->dir_path_len
= ref
->full_path
->end
-
2553 ref
->full_path
->start
- 1 - ref
->name_len
;
2555 list_add_tail(&ref
->list
, head
);
2559 static int dup_ref(struct recorded_ref
*ref
, struct list_head
*list
)
2561 struct recorded_ref
*new;
2563 new = kmalloc(sizeof(*ref
), GFP_NOFS
);
2567 new->dir
= ref
->dir
;
2568 new->dir_gen
= ref
->dir_gen
;
2569 new->full_path
= NULL
;
2570 INIT_LIST_HEAD(&new->list
);
2571 list_add_tail(&new->list
, list
);
2575 static void __free_recorded_refs(struct list_head
*head
)
2577 struct recorded_ref
*cur
;
2579 while (!list_empty(head
)) {
2580 cur
= list_entry(head
->next
, struct recorded_ref
, list
);
2581 fs_path_free(cur
->full_path
);
2582 list_del(&cur
->list
);
2587 static void free_recorded_refs(struct send_ctx
*sctx
)
2589 __free_recorded_refs(&sctx
->new_refs
);
2590 __free_recorded_refs(&sctx
->deleted_refs
);
2594 * Renames/moves a file/dir to its orphan name. Used when the first
2595 * ref of an unprocessed inode gets overwritten and for all non empty
2598 static int orphanize_inode(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2599 struct fs_path
*path
)
2602 struct fs_path
*orphan
;
2604 orphan
= fs_path_alloc();
2608 ret
= gen_unique_name(sctx
, ino
, gen
, orphan
);
2612 ret
= send_rename(sctx
, path
, orphan
);
2615 fs_path_free(orphan
);
2620 * Returns 1 if a directory can be removed at this point in time.
2621 * We check this by iterating all dir items and checking if the inode behind
2622 * the dir item was already processed.
2624 static int can_rmdir(struct send_ctx
*sctx
, u64 dir
, u64 send_progress
)
2627 struct btrfs_root
*root
= sctx
->parent_root
;
2628 struct btrfs_path
*path
;
2629 struct btrfs_key key
;
2630 struct btrfs_key found_key
;
2631 struct btrfs_key loc
;
2632 struct btrfs_dir_item
*di
;
2635 * Don't try to rmdir the top/root subvolume dir.
2637 if (dir
== BTRFS_FIRST_FREE_OBJECTID
)
2640 path
= alloc_path_for_send();
2645 key
.type
= BTRFS_DIR_INDEX_KEY
;
2649 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
2653 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2656 if (ret
|| found_key
.objectid
!= key
.objectid
||
2657 found_key
.type
!= key
.type
) {
2661 di
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2662 struct btrfs_dir_item
);
2663 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &loc
);
2665 if (loc
.objectid
> send_progress
) {
2670 btrfs_release_path(path
);
2671 key
.offset
= found_key
.offset
+ 1;
2677 btrfs_free_path(path
);
2682 * This does all the move/link/unlink/rmdir magic.
2684 static int process_recorded_refs(struct send_ctx
*sctx
)
2687 struct recorded_ref
*cur
;
2688 struct recorded_ref
*cur2
;
2689 struct list_head check_dirs
;
2690 struct fs_path
*valid_path
= NULL
;
2693 int did_overwrite
= 0;
2696 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx
->cur_ino
);
2699 * This should never happen as the root dir always has the same ref
2700 * which is always '..'
2702 BUG_ON(sctx
->cur_ino
<= BTRFS_FIRST_FREE_OBJECTID
);
2703 INIT_LIST_HEAD(&check_dirs
);
2705 valid_path
= fs_path_alloc();
2712 * First, check if the first ref of the current inode was overwritten
2713 * before. If yes, we know that the current inode was already orphanized
2714 * and thus use the orphan name. If not, we can use get_cur_path to
2715 * get the path of the first ref as it would like while receiving at
2716 * this point in time.
2717 * New inodes are always orphan at the beginning, so force to use the
2718 * orphan name in this case.
2719 * The first ref is stored in valid_path and will be updated if it
2720 * gets moved around.
2722 if (!sctx
->cur_inode_new
) {
2723 ret
= did_overwrite_first_ref(sctx
, sctx
->cur_ino
,
2724 sctx
->cur_inode_gen
);
2730 if (sctx
->cur_inode_new
|| did_overwrite
) {
2731 ret
= gen_unique_name(sctx
, sctx
->cur_ino
,
2732 sctx
->cur_inode_gen
, valid_path
);
2737 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
2743 list_for_each_entry(cur
, &sctx
->new_refs
, list
) {
2745 * We may have refs where the parent directory does not exist
2746 * yet. This happens if the parent directories inum is higher
2747 * the the current inum. To handle this case, we create the
2748 * parent directory out of order. But we need to check if this
2749 * did already happen before due to other refs in the same dir.
2751 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
2754 if (ret
== inode_state_will_create
) {
2757 * First check if any of the current inodes refs did
2758 * already create the dir.
2760 list_for_each_entry(cur2
, &sctx
->new_refs
, list
) {
2763 if (cur2
->dir
== cur
->dir
) {
2770 * If that did not happen, check if a previous inode
2771 * did already create the dir.
2774 ret
= did_create_dir(sctx
, cur
->dir
);
2778 ret
= send_create_inode(sctx
, cur
->dir
);
2785 * Check if this new ref would overwrite the first ref of
2786 * another unprocessed inode. If yes, orphanize the
2787 * overwritten inode. If we find an overwritten ref that is
2788 * not the first ref, simply unlink it.
2790 ret
= will_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
2791 cur
->name
, cur
->name_len
,
2792 &ow_inode
, &ow_gen
);
2796 ret
= is_first_ref(sctx
->parent_root
,
2797 ow_inode
, cur
->dir
, cur
->name
,
2802 ret
= orphanize_inode(sctx
, ow_inode
, ow_gen
,
2807 ret
= send_unlink(sctx
, cur
->full_path
);
2814 * link/move the ref to the new place. If we have an orphan
2815 * inode, move it and update valid_path. If not, link or move
2816 * it depending on the inode mode.
2819 ret
= send_rename(sctx
, valid_path
, cur
->full_path
);
2823 ret
= fs_path_copy(valid_path
, cur
->full_path
);
2827 if (S_ISDIR(sctx
->cur_inode_mode
)) {
2829 * Dirs can't be linked, so move it. For moved
2830 * dirs, we always have one new and one deleted
2831 * ref. The deleted ref is ignored later.
2833 ret
= send_rename(sctx
, valid_path
,
2837 ret
= fs_path_copy(valid_path
, cur
->full_path
);
2841 ret
= send_link(sctx
, cur
->full_path
,
2847 ret
= dup_ref(cur
, &check_dirs
);
2852 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->cur_inode_deleted
) {
2854 * Check if we can already rmdir the directory. If not,
2855 * orphanize it. For every dir item inside that gets deleted
2856 * later, we do this check again and rmdir it then if possible.
2857 * See the use of check_dirs for more details.
2859 ret
= can_rmdir(sctx
, sctx
->cur_ino
, sctx
->cur_ino
);
2863 ret
= send_rmdir(sctx
, valid_path
);
2866 } else if (!is_orphan
) {
2867 ret
= orphanize_inode(sctx
, sctx
->cur_ino
,
2868 sctx
->cur_inode_gen
, valid_path
);
2874 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
2875 ret
= dup_ref(cur
, &check_dirs
);
2879 } else if (S_ISDIR(sctx
->cur_inode_mode
) &&
2880 !list_empty(&sctx
->deleted_refs
)) {
2882 * We have a moved dir. Add the old parent to check_dirs
2884 cur
= list_entry(sctx
->deleted_refs
.next
, struct recorded_ref
,
2886 ret
= dup_ref(cur
, &check_dirs
);
2889 } else if (!S_ISDIR(sctx
->cur_inode_mode
)) {
2891 * We have a non dir inode. Go through all deleted refs and
2892 * unlink them if they were not already overwritten by other
2895 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
2896 ret
= did_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
2897 sctx
->cur_ino
, sctx
->cur_inode_gen
,
2898 cur
->name
, cur
->name_len
);
2902 ret
= send_unlink(sctx
, cur
->full_path
);
2906 ret
= dup_ref(cur
, &check_dirs
);
2911 * If the inode is still orphan, unlink the orphan. This may
2912 * happen when a previous inode did overwrite the first ref
2913 * of this inode and no new refs were added for the current
2914 * inode. Unlinking does not mean that the inode is deleted in
2915 * all cases. There may still be links to this inode in other
2919 ret
= send_unlink(sctx
, valid_path
);
2926 * We did collect all parent dirs where cur_inode was once located. We
2927 * now go through all these dirs and check if they are pending for
2928 * deletion and if it's finally possible to perform the rmdir now.
2929 * We also update the inode stats of the parent dirs here.
2931 list_for_each_entry(cur
, &check_dirs
, list
) {
2933 * In case we had refs into dirs that were not processed yet,
2934 * we don't need to do the utime and rmdir logic for these dirs.
2935 * The dir will be processed later.
2937 if (cur
->dir
> sctx
->cur_ino
)
2940 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
2944 if (ret
== inode_state_did_create
||
2945 ret
== inode_state_no_change
) {
2946 /* TODO delayed utimes */
2947 ret
= send_utimes(sctx
, cur
->dir
, cur
->dir_gen
);
2950 } else if (ret
== inode_state_did_delete
) {
2951 ret
= can_rmdir(sctx
, cur
->dir
, sctx
->cur_ino
);
2955 ret
= get_cur_path(sctx
, cur
->dir
,
2956 cur
->dir_gen
, valid_path
);
2959 ret
= send_rmdir(sctx
, valid_path
);
2969 __free_recorded_refs(&check_dirs
);
2970 free_recorded_refs(sctx
);
2971 fs_path_free(valid_path
);
2975 static int __record_new_ref(int num
, u64 dir
, int index
,
2976 struct fs_path
*name
,
2980 struct send_ctx
*sctx
= ctx
;
2984 p
= fs_path_alloc();
2988 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &gen
, NULL
, NULL
,
2993 ret
= get_cur_path(sctx
, dir
, gen
, p
);
2996 ret
= fs_path_add_path(p
, name
);
3000 ret
= record_ref(&sctx
->new_refs
, dir
, gen
, p
);
3008 static int __record_deleted_ref(int num
, u64 dir
, int index
,
3009 struct fs_path
*name
,
3013 struct send_ctx
*sctx
= ctx
;
3017 p
= fs_path_alloc();
3021 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &gen
, NULL
, NULL
,
3026 ret
= get_cur_path(sctx
, dir
, gen
, p
);
3029 ret
= fs_path_add_path(p
, name
);
3033 ret
= record_ref(&sctx
->deleted_refs
, dir
, gen
, p
);
3041 static int record_new_ref(struct send_ctx
*sctx
)
3045 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
3046 sctx
->cmp_key
, 0, __record_new_ref
, sctx
);
3055 static int record_deleted_ref(struct send_ctx
*sctx
)
3059 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
3060 sctx
->cmp_key
, 0, __record_deleted_ref
, sctx
);
3069 struct find_ref_ctx
{
3072 struct btrfs_root
*root
;
3073 struct fs_path
*name
;
3077 static int __find_iref(int num
, u64 dir
, int index
,
3078 struct fs_path
*name
,
3081 struct find_ref_ctx
*ctx
= ctx_
;
3085 if (dir
== ctx
->dir
&& fs_path_len(name
) == fs_path_len(ctx
->name
) &&
3086 strncmp(name
->start
, ctx
->name
->start
, fs_path_len(name
)) == 0) {
3088 * To avoid doing extra lookups we'll only do this if everything
3091 ret
= get_inode_info(ctx
->root
, dir
, NULL
, &dir_gen
, NULL
,
3095 if (dir_gen
!= ctx
->dir_gen
)
3097 ctx
->found_idx
= num
;
3103 static int find_iref(struct btrfs_root
*root
,
3104 struct btrfs_path
*path
,
3105 struct btrfs_key
*key
,
3106 u64 dir
, u64 dir_gen
, struct fs_path
*name
)
3109 struct find_ref_ctx ctx
;
3113 ctx
.dir_gen
= dir_gen
;
3117 ret
= iterate_inode_ref(root
, path
, key
, 0, __find_iref
, &ctx
);
3121 if (ctx
.found_idx
== -1)
3124 return ctx
.found_idx
;
3127 static int __record_changed_new_ref(int num
, u64 dir
, int index
,
3128 struct fs_path
*name
,
3133 struct send_ctx
*sctx
= ctx
;
3135 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &dir_gen
, NULL
,
3140 ret
= find_iref(sctx
->parent_root
, sctx
->right_path
,
3141 sctx
->cmp_key
, dir
, dir_gen
, name
);
3143 ret
= __record_new_ref(num
, dir
, index
, name
, sctx
);
3150 static int __record_changed_deleted_ref(int num
, u64 dir
, int index
,
3151 struct fs_path
*name
,
3156 struct send_ctx
*sctx
= ctx
;
3158 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &dir_gen
, NULL
,
3163 ret
= find_iref(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
3164 dir
, dir_gen
, name
);
3166 ret
= __record_deleted_ref(num
, dir
, index
, name
, sctx
);
3173 static int record_changed_ref(struct send_ctx
*sctx
)
3177 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
3178 sctx
->cmp_key
, 0, __record_changed_new_ref
, sctx
);
3181 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
3182 sctx
->cmp_key
, 0, __record_changed_deleted_ref
, sctx
);
3192 * Record and process all refs at once. Needed when an inode changes the
3193 * generation number, which means that it was deleted and recreated.
3195 static int process_all_refs(struct send_ctx
*sctx
,
3196 enum btrfs_compare_tree_result cmd
)
3199 struct btrfs_root
*root
;
3200 struct btrfs_path
*path
;
3201 struct btrfs_key key
;
3202 struct btrfs_key found_key
;
3203 struct extent_buffer
*eb
;
3205 iterate_inode_ref_t cb
;
3207 path
= alloc_path_for_send();
3211 if (cmd
== BTRFS_COMPARE_TREE_NEW
) {
3212 root
= sctx
->send_root
;
3213 cb
= __record_new_ref
;
3214 } else if (cmd
== BTRFS_COMPARE_TREE_DELETED
) {
3215 root
= sctx
->parent_root
;
3216 cb
= __record_deleted_ref
;
3221 key
.objectid
= sctx
->cmp_key
->objectid
;
3222 key
.type
= BTRFS_INODE_REF_KEY
;
3225 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
3231 eb
= path
->nodes
[0];
3232 slot
= path
->slots
[0];
3233 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
3235 if (found_key
.objectid
!= key
.objectid
||
3236 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
3237 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
))
3240 ret
= iterate_inode_ref(root
, path
, &found_key
, 0, cb
, sctx
);
3241 btrfs_release_path(path
);
3245 key
.offset
= found_key
.offset
+ 1;
3247 btrfs_release_path(path
);
3249 ret
= process_recorded_refs(sctx
);
3252 btrfs_free_path(path
);
3256 static int send_set_xattr(struct send_ctx
*sctx
,
3257 struct fs_path
*path
,
3258 const char *name
, int name_len
,
3259 const char *data
, int data_len
)
3263 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SET_XATTR
);
3267 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
3268 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
3269 TLV_PUT(sctx
, BTRFS_SEND_A_XATTR_DATA
, data
, data_len
);
3271 ret
= send_cmd(sctx
);
3278 static int send_remove_xattr(struct send_ctx
*sctx
,
3279 struct fs_path
*path
,
3280 const char *name
, int name_len
)
3284 ret
= begin_cmd(sctx
, BTRFS_SEND_C_REMOVE_XATTR
);
3288 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
3289 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
3291 ret
= send_cmd(sctx
);
3298 static int __process_new_xattr(int num
, struct btrfs_key
*di_key
,
3299 const char *name
, int name_len
,
3300 const char *data
, int data_len
,
3304 struct send_ctx
*sctx
= ctx
;
3306 posix_acl_xattr_header dummy_acl
;
3308 p
= fs_path_alloc();
3313 * This hack is needed because empty acl's are stored as zero byte
3314 * data in xattrs. Problem with that is, that receiving these zero byte
3315 * acl's will fail later. To fix this, we send a dummy acl list that
3316 * only contains the version number and no entries.
3318 if (!strncmp(name
, XATTR_NAME_POSIX_ACL_ACCESS
, name_len
) ||
3319 !strncmp(name
, XATTR_NAME_POSIX_ACL_DEFAULT
, name_len
)) {
3320 if (data_len
== 0) {
3321 dummy_acl
.a_version
=
3322 cpu_to_le32(POSIX_ACL_XATTR_VERSION
);
3323 data
= (char *)&dummy_acl
;
3324 data_len
= sizeof(dummy_acl
);
3328 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
3332 ret
= send_set_xattr(sctx
, p
, name
, name_len
, data
, data_len
);
3339 static int __process_deleted_xattr(int num
, struct btrfs_key
*di_key
,
3340 const char *name
, int name_len
,
3341 const char *data
, int data_len
,
3345 struct send_ctx
*sctx
= ctx
;
3348 p
= fs_path_alloc();
3352 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
3356 ret
= send_remove_xattr(sctx
, p
, name
, name_len
);
3363 static int process_new_xattr(struct send_ctx
*sctx
)
3367 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
3368 sctx
->cmp_key
, __process_new_xattr
, sctx
);
3373 static int process_deleted_xattr(struct send_ctx
*sctx
)
3377 ret
= iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
3378 sctx
->cmp_key
, __process_deleted_xattr
, sctx
);
3383 struct find_xattr_ctx
{
3391 static int __find_xattr(int num
, struct btrfs_key
*di_key
,
3392 const char *name
, int name_len
,
3393 const char *data
, int data_len
,
3394 u8 type
, void *vctx
)
3396 struct find_xattr_ctx
*ctx
= vctx
;
3398 if (name_len
== ctx
->name_len
&&
3399 strncmp(name
, ctx
->name
, name_len
) == 0) {
3400 ctx
->found_idx
= num
;
3401 ctx
->found_data_len
= data_len
;
3402 ctx
->found_data
= kmemdup(data
, data_len
, GFP_NOFS
);
3403 if (!ctx
->found_data
)
3410 static int find_xattr(struct btrfs_root
*root
,
3411 struct btrfs_path
*path
,
3412 struct btrfs_key
*key
,
3413 const char *name
, int name_len
,
3414 char **data
, int *data_len
)
3417 struct find_xattr_ctx ctx
;
3420 ctx
.name_len
= name_len
;
3422 ctx
.found_data
= NULL
;
3423 ctx
.found_data_len
= 0;
3425 ret
= iterate_dir_item(root
, path
, key
, __find_xattr
, &ctx
);
3429 if (ctx
.found_idx
== -1)
3432 *data
= ctx
.found_data
;
3433 *data_len
= ctx
.found_data_len
;
3435 kfree(ctx
.found_data
);
3437 return ctx
.found_idx
;
3441 static int __process_changed_new_xattr(int num
, struct btrfs_key
*di_key
,
3442 const char *name
, int name_len
,
3443 const char *data
, int data_len
,
3447 struct send_ctx
*sctx
= ctx
;
3448 char *found_data
= NULL
;
3449 int found_data_len
= 0;
3451 ret
= find_xattr(sctx
->parent_root
, sctx
->right_path
,
3452 sctx
->cmp_key
, name
, name_len
, &found_data
,
3454 if (ret
== -ENOENT
) {
3455 ret
= __process_new_xattr(num
, di_key
, name
, name_len
, data
,
3456 data_len
, type
, ctx
);
3457 } else if (ret
>= 0) {
3458 if (data_len
!= found_data_len
||
3459 memcmp(data
, found_data
, data_len
)) {
3460 ret
= __process_new_xattr(num
, di_key
, name
, name_len
,
3461 data
, data_len
, type
, ctx
);
3471 static int __process_changed_deleted_xattr(int num
, struct btrfs_key
*di_key
,
3472 const char *name
, int name_len
,
3473 const char *data
, int data_len
,
3477 struct send_ctx
*sctx
= ctx
;
3479 ret
= find_xattr(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
3480 name
, name_len
, NULL
, NULL
);
3482 ret
= __process_deleted_xattr(num
, di_key
, name
, name_len
, data
,
3483 data_len
, type
, ctx
);
3490 static int process_changed_xattr(struct send_ctx
*sctx
)
3494 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
3495 sctx
->cmp_key
, __process_changed_new_xattr
, sctx
);
3498 ret
= iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
3499 sctx
->cmp_key
, __process_changed_deleted_xattr
, sctx
);
3505 static int process_all_new_xattrs(struct send_ctx
*sctx
)
3508 struct btrfs_root
*root
;
3509 struct btrfs_path
*path
;
3510 struct btrfs_key key
;
3511 struct btrfs_key found_key
;
3512 struct extent_buffer
*eb
;
3515 path
= alloc_path_for_send();
3519 root
= sctx
->send_root
;
3521 key
.objectid
= sctx
->cmp_key
->objectid
;
3522 key
.type
= BTRFS_XATTR_ITEM_KEY
;
3525 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
3533 eb
= path
->nodes
[0];
3534 slot
= path
->slots
[0];
3535 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
3537 if (found_key
.objectid
!= key
.objectid
||
3538 found_key
.type
!= key
.type
) {
3543 ret
= iterate_dir_item(root
, path
, &found_key
,
3544 __process_new_xattr
, sctx
);
3548 btrfs_release_path(path
);
3549 key
.offset
= found_key
.offset
+ 1;
3553 btrfs_free_path(path
);
3557 static ssize_t
fill_read_buf(struct send_ctx
*sctx
, u64 offset
, u32 len
)
3559 struct btrfs_root
*root
= sctx
->send_root
;
3560 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3561 struct inode
*inode
;
3564 struct btrfs_key key
;
3565 pgoff_t index
= offset
>> PAGE_CACHE_SHIFT
;
3567 unsigned pg_offset
= offset
& ~PAGE_CACHE_MASK
;
3570 key
.objectid
= sctx
->cur_ino
;
3571 key
.type
= BTRFS_INODE_ITEM_KEY
;
3574 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
3576 return PTR_ERR(inode
);
3578 if (offset
+ len
> i_size_read(inode
)) {
3579 if (offset
> i_size_read(inode
))
3582 len
= offset
- i_size_read(inode
);
3587 last_index
= (offset
+ len
- 1) >> PAGE_CACHE_SHIFT
;
3588 while (index
<= last_index
) {
3589 unsigned cur_len
= min_t(unsigned, len
,
3590 PAGE_CACHE_SIZE
- pg_offset
);
3591 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
3597 if (!PageUptodate(page
)) {
3598 btrfs_readpage(NULL
, page
);
3600 if (!PageUptodate(page
)) {
3602 page_cache_release(page
);
3609 memcpy(sctx
->read_buf
+ ret
, addr
+ pg_offset
, cur_len
);
3612 page_cache_release(page
);
3624 * Read some bytes from the current inode/file and send a write command to
3627 static int send_write(struct send_ctx
*sctx
, u64 offset
, u32 len
)
3631 ssize_t num_read
= 0;
3633 p
= fs_path_alloc();
3637 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset
, len
);
3639 num_read
= fill_read_buf(sctx
, offset
, len
);
3640 if (num_read
<= 0) {
3646 ret
= begin_cmd(sctx
, BTRFS_SEND_C_WRITE
);
3650 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
3654 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
3655 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
3656 TLV_PUT(sctx
, BTRFS_SEND_A_DATA
, sctx
->read_buf
, num_read
);
3658 ret
= send_cmd(sctx
);
3669 * Send a clone command to user space.
3671 static int send_clone(struct send_ctx
*sctx
,
3672 u64 offset
, u32 len
,
3673 struct clone_root
*clone_root
)
3679 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
3680 "clone_inode=%llu, clone_offset=%llu\n", offset
, len
,
3681 clone_root
->root
->objectid
, clone_root
->ino
,
3682 clone_root
->offset
);
3684 p
= fs_path_alloc();
3688 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CLONE
);
3692 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
3696 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
3697 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_LEN
, len
);
3698 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
3700 if (clone_root
->root
== sctx
->send_root
) {
3701 ret
= get_inode_info(sctx
->send_root
, clone_root
->ino
, NULL
,
3702 &gen
, NULL
, NULL
, NULL
, NULL
);
3705 ret
= get_cur_path(sctx
, clone_root
->ino
, gen
, p
);
3707 ret
= get_inode_path(clone_root
->root
, clone_root
->ino
, p
);
3712 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
3713 clone_root
->root
->root_item
.uuid
);
3714 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
3715 clone_root
->root
->root_item
.ctransid
);
3716 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_CLONE_PATH
, p
);
3717 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_OFFSET
,
3718 clone_root
->offset
);
3720 ret
= send_cmd(sctx
);
3729 * Send an update extent command to user space.
3731 static int send_update_extent(struct send_ctx
*sctx
,
3732 u64 offset
, u32 len
)
3737 p
= fs_path_alloc();
3741 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UPDATE_EXTENT
);
3745 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
3749 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
3750 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
3751 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, len
);
3753 ret
= send_cmd(sctx
);
3761 static int send_write_or_clone(struct send_ctx
*sctx
,
3762 struct btrfs_path
*path
,
3763 struct btrfs_key
*key
,
3764 struct clone_root
*clone_root
)
3767 struct btrfs_file_extent_item
*ei
;
3768 u64 offset
= key
->offset
;
3774 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3775 struct btrfs_file_extent_item
);
3776 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
3777 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3778 len
= btrfs_file_extent_inline_len(path
->nodes
[0], ei
);
3780 * it is possible the inline item won't cover the whole page,
3781 * but there may be items after this page. Make
3782 * sure to send the whole thing
3784 len
= PAGE_CACHE_ALIGN(len
);
3786 len
= btrfs_file_extent_num_bytes(path
->nodes
[0], ei
);
3789 if (offset
+ len
> sctx
->cur_inode_size
)
3790 len
= sctx
->cur_inode_size
- offset
;
3797 ret
= send_clone(sctx
, offset
, len
, clone_root
);
3798 } else if (sctx
->flags
& BTRFS_SEND_FLAG_NO_FILE_DATA
) {
3799 ret
= send_update_extent(sctx
, offset
, len
);
3803 if (l
> BTRFS_SEND_READ_SIZE
)
3804 l
= BTRFS_SEND_READ_SIZE
;
3805 ret
= send_write(sctx
, pos
+ offset
, l
);
3818 static int is_extent_unchanged(struct send_ctx
*sctx
,
3819 struct btrfs_path
*left_path
,
3820 struct btrfs_key
*ekey
)
3823 struct btrfs_key key
;
3824 struct btrfs_path
*path
= NULL
;
3825 struct extent_buffer
*eb
;
3827 struct btrfs_key found_key
;
3828 struct btrfs_file_extent_item
*ei
;
3833 u64 left_offset_fixed
;
3841 path
= alloc_path_for_send();
3845 eb
= left_path
->nodes
[0];
3846 slot
= left_path
->slots
[0];
3847 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
3848 left_type
= btrfs_file_extent_type(eb
, ei
);
3850 if (left_type
!= BTRFS_FILE_EXTENT_REG
) {
3854 left_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
3855 left_len
= btrfs_file_extent_num_bytes(eb
, ei
);
3856 left_offset
= btrfs_file_extent_offset(eb
, ei
);
3857 left_gen
= btrfs_file_extent_generation(eb
, ei
);
3860 * Following comments will refer to these graphics. L is the left
3861 * extents which we are checking at the moment. 1-8 are the right
3862 * extents that we iterate.
3865 * |-1-|-2a-|-3-|-4-|-5-|-6-|
3868 * |--1--|-2b-|...(same as above)
3870 * Alternative situation. Happens on files where extents got split.
3872 * |-----------7-----------|-6-|
3874 * Alternative situation. Happens on files which got larger.
3877 * Nothing follows after 8.
3880 key
.objectid
= ekey
->objectid
;
3881 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3882 key
.offset
= ekey
->offset
;
3883 ret
= btrfs_search_slot_for_read(sctx
->parent_root
, &key
, path
, 0, 0);
3892 * Handle special case where the right side has no extents at all.
3894 eb
= path
->nodes
[0];
3895 slot
= path
->slots
[0];
3896 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
3897 if (found_key
.objectid
!= key
.objectid
||
3898 found_key
.type
!= key
.type
) {
3899 /* If we're a hole then just pretend nothing changed */
3900 ret
= (left_disknr
) ? 0 : 1;
3905 * We're now on 2a, 2b or 7.
3908 while (key
.offset
< ekey
->offset
+ left_len
) {
3909 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
3910 right_type
= btrfs_file_extent_type(eb
, ei
);
3911 right_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
3912 right_len
= btrfs_file_extent_num_bytes(eb
, ei
);
3913 right_offset
= btrfs_file_extent_offset(eb
, ei
);
3914 right_gen
= btrfs_file_extent_generation(eb
, ei
);
3916 if (right_type
!= BTRFS_FILE_EXTENT_REG
) {
3922 * Are we at extent 8? If yes, we know the extent is changed.
3923 * This may only happen on the first iteration.
3925 if (found_key
.offset
+ right_len
<= ekey
->offset
) {
3926 /* If we're a hole just pretend nothing changed */
3927 ret
= (left_disknr
) ? 0 : 1;
3931 left_offset_fixed
= left_offset
;
3932 if (key
.offset
< ekey
->offset
) {
3933 /* Fix the right offset for 2a and 7. */
3934 right_offset
+= ekey
->offset
- key
.offset
;
3936 /* Fix the left offset for all behind 2a and 2b */
3937 left_offset_fixed
+= key
.offset
- ekey
->offset
;
3941 * Check if we have the same extent.
3943 if (left_disknr
!= right_disknr
||
3944 left_offset_fixed
!= right_offset
||
3945 left_gen
!= right_gen
) {
3951 * Go to the next extent.
3953 ret
= btrfs_next_item(sctx
->parent_root
, path
);
3957 eb
= path
->nodes
[0];
3958 slot
= path
->slots
[0];
3959 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
3961 if (ret
|| found_key
.objectid
!= key
.objectid
||
3962 found_key
.type
!= key
.type
) {
3963 key
.offset
+= right_len
;
3966 if (found_key
.offset
!= key
.offset
+ right_len
) {
3974 * We're now behind the left extent (treat as unchanged) or at the end
3975 * of the right side (treat as changed).
3977 if (key
.offset
>= ekey
->offset
+ left_len
)
3984 btrfs_free_path(path
);
3988 static int process_extent(struct send_ctx
*sctx
,
3989 struct btrfs_path
*path
,
3990 struct btrfs_key
*key
)
3992 struct clone_root
*found_clone
= NULL
;
3995 if (S_ISLNK(sctx
->cur_inode_mode
))
3998 if (sctx
->parent_root
&& !sctx
->cur_inode_new
) {
3999 ret
= is_extent_unchanged(sctx
, path
, key
);
4007 struct btrfs_file_extent_item
*ei
;
4010 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4011 struct btrfs_file_extent_item
);
4012 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
4013 if (type
== BTRFS_FILE_EXTENT_PREALLOC
||
4014 type
== BTRFS_FILE_EXTENT_REG
) {
4016 * The send spec does not have a prealloc command yet,
4017 * so just leave a hole for prealloc'ed extents until
4018 * we have enough commands queued up to justify rev'ing
4021 if (type
== BTRFS_FILE_EXTENT_PREALLOC
) {
4026 /* Have a hole, just skip it. */
4027 if (btrfs_file_extent_disk_bytenr(path
->nodes
[0], ei
) == 0) {
4034 ret
= find_extent_clone(sctx
, path
, key
->objectid
, key
->offset
,
4035 sctx
->cur_inode_size
, &found_clone
);
4036 if (ret
!= -ENOENT
&& ret
< 0)
4039 ret
= send_write_or_clone(sctx
, path
, key
, found_clone
);
4045 static int process_all_extents(struct send_ctx
*sctx
)
4048 struct btrfs_root
*root
;
4049 struct btrfs_path
*path
;
4050 struct btrfs_key key
;
4051 struct btrfs_key found_key
;
4052 struct extent_buffer
*eb
;
4055 root
= sctx
->send_root
;
4056 path
= alloc_path_for_send();
4060 key
.objectid
= sctx
->cmp_key
->objectid
;
4061 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4064 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
4072 eb
= path
->nodes
[0];
4073 slot
= path
->slots
[0];
4074 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4076 if (found_key
.objectid
!= key
.objectid
||
4077 found_key
.type
!= key
.type
) {
4082 ret
= process_extent(sctx
, path
, &found_key
);
4086 btrfs_release_path(path
);
4087 key
.offset
= found_key
.offset
+ 1;
4091 btrfs_free_path(path
);
4095 static int process_recorded_refs_if_needed(struct send_ctx
*sctx
, int at_end
)
4099 if (sctx
->cur_ino
== 0)
4101 if (!at_end
&& sctx
->cur_ino
== sctx
->cmp_key
->objectid
&&
4102 sctx
->cmp_key
->type
<= BTRFS_INODE_EXTREF_KEY
)
4104 if (list_empty(&sctx
->new_refs
) && list_empty(&sctx
->deleted_refs
))
4107 ret
= process_recorded_refs(sctx
);
4112 * We have processed the refs and thus need to advance send_progress.
4113 * Now, calls to get_cur_xxx will take the updated refs of the current
4114 * inode into account.
4116 sctx
->send_progress
= sctx
->cur_ino
+ 1;
4122 static int finish_inode_if_needed(struct send_ctx
*sctx
, int at_end
)
4134 ret
= process_recorded_refs_if_needed(sctx
, at_end
);
4138 if (sctx
->cur_ino
== 0 || sctx
->cur_inode_deleted
)
4140 if (!at_end
&& sctx
->cmp_key
->objectid
== sctx
->cur_ino
)
4143 ret
= get_inode_info(sctx
->send_root
, sctx
->cur_ino
, NULL
, NULL
,
4144 &left_mode
, &left_uid
, &left_gid
, NULL
);
4148 if (!sctx
->parent_root
|| sctx
->cur_inode_new
) {
4150 if (!S_ISLNK(sctx
->cur_inode_mode
))
4153 ret
= get_inode_info(sctx
->parent_root
, sctx
->cur_ino
,
4154 NULL
, NULL
, &right_mode
, &right_uid
,
4159 if (left_uid
!= right_uid
|| left_gid
!= right_gid
)
4161 if (!S_ISLNK(sctx
->cur_inode_mode
) && left_mode
!= right_mode
)
4165 if (S_ISREG(sctx
->cur_inode_mode
)) {
4166 ret
= send_truncate(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
4167 sctx
->cur_inode_size
);
4173 ret
= send_chown(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
4174 left_uid
, left_gid
);
4179 ret
= send_chmod(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
4186 * Need to send that every time, no matter if it actually changed
4187 * between the two trees as we have done changes to the inode before.
4189 ret
= send_utimes(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
);
4197 static int changed_inode(struct send_ctx
*sctx
,
4198 enum btrfs_compare_tree_result result
)
4201 struct btrfs_key
*key
= sctx
->cmp_key
;
4202 struct btrfs_inode_item
*left_ii
= NULL
;
4203 struct btrfs_inode_item
*right_ii
= NULL
;
4207 sctx
->cur_ino
= key
->objectid
;
4208 sctx
->cur_inode_new_gen
= 0;
4211 * Set send_progress to current inode. This will tell all get_cur_xxx
4212 * functions that the current inode's refs are not updated yet. Later,
4213 * when process_recorded_refs is finished, it is set to cur_ino + 1.
4215 sctx
->send_progress
= sctx
->cur_ino
;
4217 if (result
== BTRFS_COMPARE_TREE_NEW
||
4218 result
== BTRFS_COMPARE_TREE_CHANGED
) {
4219 left_ii
= btrfs_item_ptr(sctx
->left_path
->nodes
[0],
4220 sctx
->left_path
->slots
[0],
4221 struct btrfs_inode_item
);
4222 left_gen
= btrfs_inode_generation(sctx
->left_path
->nodes
[0],
4225 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
4226 sctx
->right_path
->slots
[0],
4227 struct btrfs_inode_item
);
4228 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
4231 if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
4232 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
4233 sctx
->right_path
->slots
[0],
4234 struct btrfs_inode_item
);
4236 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
4240 * The cur_ino = root dir case is special here. We can't treat
4241 * the inode as deleted+reused because it would generate a
4242 * stream that tries to delete/mkdir the root dir.
4244 if (left_gen
!= right_gen
&&
4245 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
4246 sctx
->cur_inode_new_gen
= 1;
4249 if (result
== BTRFS_COMPARE_TREE_NEW
) {
4250 sctx
->cur_inode_gen
= left_gen
;
4251 sctx
->cur_inode_new
= 1;
4252 sctx
->cur_inode_deleted
= 0;
4253 sctx
->cur_inode_size
= btrfs_inode_size(
4254 sctx
->left_path
->nodes
[0], left_ii
);
4255 sctx
->cur_inode_mode
= btrfs_inode_mode(
4256 sctx
->left_path
->nodes
[0], left_ii
);
4257 if (sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
4258 ret
= send_create_inode_if_needed(sctx
);
4259 } else if (result
== BTRFS_COMPARE_TREE_DELETED
) {
4260 sctx
->cur_inode_gen
= right_gen
;
4261 sctx
->cur_inode_new
= 0;
4262 sctx
->cur_inode_deleted
= 1;
4263 sctx
->cur_inode_size
= btrfs_inode_size(
4264 sctx
->right_path
->nodes
[0], right_ii
);
4265 sctx
->cur_inode_mode
= btrfs_inode_mode(
4266 sctx
->right_path
->nodes
[0], right_ii
);
4267 } else if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
4269 * We need to do some special handling in case the inode was
4270 * reported as changed with a changed generation number. This
4271 * means that the original inode was deleted and new inode
4272 * reused the same inum. So we have to treat the old inode as
4273 * deleted and the new one as new.
4275 if (sctx
->cur_inode_new_gen
) {
4277 * First, process the inode as if it was deleted.
4279 sctx
->cur_inode_gen
= right_gen
;
4280 sctx
->cur_inode_new
= 0;
4281 sctx
->cur_inode_deleted
= 1;
4282 sctx
->cur_inode_size
= btrfs_inode_size(
4283 sctx
->right_path
->nodes
[0], right_ii
);
4284 sctx
->cur_inode_mode
= btrfs_inode_mode(
4285 sctx
->right_path
->nodes
[0], right_ii
);
4286 ret
= process_all_refs(sctx
,
4287 BTRFS_COMPARE_TREE_DELETED
);
4292 * Now process the inode as if it was new.
4294 sctx
->cur_inode_gen
= left_gen
;
4295 sctx
->cur_inode_new
= 1;
4296 sctx
->cur_inode_deleted
= 0;
4297 sctx
->cur_inode_size
= btrfs_inode_size(
4298 sctx
->left_path
->nodes
[0], left_ii
);
4299 sctx
->cur_inode_mode
= btrfs_inode_mode(
4300 sctx
->left_path
->nodes
[0], left_ii
);
4301 ret
= send_create_inode_if_needed(sctx
);
4305 ret
= process_all_refs(sctx
, BTRFS_COMPARE_TREE_NEW
);
4309 * Advance send_progress now as we did not get into
4310 * process_recorded_refs_if_needed in the new_gen case.
4312 sctx
->send_progress
= sctx
->cur_ino
+ 1;
4315 * Now process all extents and xattrs of the inode as if
4316 * they were all new.
4318 ret
= process_all_extents(sctx
);
4321 ret
= process_all_new_xattrs(sctx
);
4325 sctx
->cur_inode_gen
= left_gen
;
4326 sctx
->cur_inode_new
= 0;
4327 sctx
->cur_inode_new_gen
= 0;
4328 sctx
->cur_inode_deleted
= 0;
4329 sctx
->cur_inode_size
= btrfs_inode_size(
4330 sctx
->left_path
->nodes
[0], left_ii
);
4331 sctx
->cur_inode_mode
= btrfs_inode_mode(
4332 sctx
->left_path
->nodes
[0], left_ii
);
4341 * We have to process new refs before deleted refs, but compare_trees gives us
4342 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
4343 * first and later process them in process_recorded_refs.
4344 * For the cur_inode_new_gen case, we skip recording completely because
4345 * changed_inode did already initiate processing of refs. The reason for this is
4346 * that in this case, compare_tree actually compares the refs of 2 different
4347 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
4348 * refs of the right tree as deleted and all refs of the left tree as new.
4350 static int changed_ref(struct send_ctx
*sctx
,
4351 enum btrfs_compare_tree_result result
)
4355 BUG_ON(sctx
->cur_ino
!= sctx
->cmp_key
->objectid
);
4357 if (!sctx
->cur_inode_new_gen
&&
4358 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
4359 if (result
== BTRFS_COMPARE_TREE_NEW
)
4360 ret
= record_new_ref(sctx
);
4361 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
4362 ret
= record_deleted_ref(sctx
);
4363 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
4364 ret
= record_changed_ref(sctx
);
4371 * Process new/deleted/changed xattrs. We skip processing in the
4372 * cur_inode_new_gen case because changed_inode did already initiate processing
4373 * of xattrs. The reason is the same as in changed_ref
4375 static int changed_xattr(struct send_ctx
*sctx
,
4376 enum btrfs_compare_tree_result result
)
4380 BUG_ON(sctx
->cur_ino
!= sctx
->cmp_key
->objectid
);
4382 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
4383 if (result
== BTRFS_COMPARE_TREE_NEW
)
4384 ret
= process_new_xattr(sctx
);
4385 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
4386 ret
= process_deleted_xattr(sctx
);
4387 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
4388 ret
= process_changed_xattr(sctx
);
4395 * Process new/deleted/changed extents. We skip processing in the
4396 * cur_inode_new_gen case because changed_inode did already initiate processing
4397 * of extents. The reason is the same as in changed_ref
4399 static int changed_extent(struct send_ctx
*sctx
,
4400 enum btrfs_compare_tree_result result
)
4404 BUG_ON(sctx
->cur_ino
!= sctx
->cmp_key
->objectid
);
4406 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
4407 if (result
!= BTRFS_COMPARE_TREE_DELETED
)
4408 ret
= process_extent(sctx
, sctx
->left_path
,
4415 static int dir_changed(struct send_ctx
*sctx
, u64 dir
)
4417 u64 orig_gen
, new_gen
;
4420 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &new_gen
, NULL
, NULL
,
4425 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &orig_gen
, NULL
,
4430 return (orig_gen
!= new_gen
) ? 1 : 0;
4433 static int compare_refs(struct send_ctx
*sctx
, struct btrfs_path
*path
,
4434 struct btrfs_key
*key
)
4436 struct btrfs_inode_extref
*extref
;
4437 struct extent_buffer
*leaf
;
4438 u64 dirid
= 0, last_dirid
= 0;
4445 /* Easy case, just check this one dirid */
4446 if (key
->type
== BTRFS_INODE_REF_KEY
) {
4447 dirid
= key
->offset
;
4449 ret
= dir_changed(sctx
, dirid
);
4453 leaf
= path
->nodes
[0];
4454 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4455 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
4456 while (cur_offset
< item_size
) {
4457 extref
= (struct btrfs_inode_extref
*)(ptr
+
4459 dirid
= btrfs_inode_extref_parent(leaf
, extref
);
4460 ref_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
4461 cur_offset
+= ref_name_len
+ sizeof(*extref
);
4462 if (dirid
== last_dirid
)
4464 ret
= dir_changed(sctx
, dirid
);
4474 * Updates compare related fields in sctx and simply forwards to the actual
4475 * changed_xxx functions.
4477 static int changed_cb(struct btrfs_root
*left_root
,
4478 struct btrfs_root
*right_root
,
4479 struct btrfs_path
*left_path
,
4480 struct btrfs_path
*right_path
,
4481 struct btrfs_key
*key
,
4482 enum btrfs_compare_tree_result result
,
4486 struct send_ctx
*sctx
= ctx
;
4488 if (result
== BTRFS_COMPARE_TREE_SAME
) {
4489 if (key
->type
!= BTRFS_INODE_REF_KEY
&&
4490 key
->type
!= BTRFS_INODE_EXTREF_KEY
)
4492 ret
= compare_refs(sctx
, left_path
, key
);
4497 result
= BTRFS_COMPARE_TREE_CHANGED
;
4501 sctx
->left_path
= left_path
;
4502 sctx
->right_path
= right_path
;
4503 sctx
->cmp_key
= key
;
4505 ret
= finish_inode_if_needed(sctx
, 0);
4509 /* Ignore non-FS objects */
4510 if (key
->objectid
== BTRFS_FREE_INO_OBJECTID
||
4511 key
->objectid
== BTRFS_FREE_SPACE_OBJECTID
)
4514 if (key
->type
== BTRFS_INODE_ITEM_KEY
)
4515 ret
= changed_inode(sctx
, result
);
4516 else if (key
->type
== BTRFS_INODE_REF_KEY
||
4517 key
->type
== BTRFS_INODE_EXTREF_KEY
)
4518 ret
= changed_ref(sctx
, result
);
4519 else if (key
->type
== BTRFS_XATTR_ITEM_KEY
)
4520 ret
= changed_xattr(sctx
, result
);
4521 else if (key
->type
== BTRFS_EXTENT_DATA_KEY
)
4522 ret
= changed_extent(sctx
, result
);
4528 static int full_send_tree(struct send_ctx
*sctx
)
4531 struct btrfs_trans_handle
*trans
= NULL
;
4532 struct btrfs_root
*send_root
= sctx
->send_root
;
4533 struct btrfs_key key
;
4534 struct btrfs_key found_key
;
4535 struct btrfs_path
*path
;
4536 struct extent_buffer
*eb
;
4541 path
= alloc_path_for_send();
4545 spin_lock(&send_root
->root_item_lock
);
4546 start_ctransid
= btrfs_root_ctransid(&send_root
->root_item
);
4547 spin_unlock(&send_root
->root_item_lock
);
4549 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
4550 key
.type
= BTRFS_INODE_ITEM_KEY
;
4555 * We need to make sure the transaction does not get committed
4556 * while we do anything on commit roots. Join a transaction to prevent
4559 trans
= btrfs_join_transaction(send_root
);
4560 if (IS_ERR(trans
)) {
4561 ret
= PTR_ERR(trans
);
4567 * Make sure the tree has not changed after re-joining. We detect this
4568 * by comparing start_ctransid and ctransid. They should always match.
4570 spin_lock(&send_root
->root_item_lock
);
4571 ctransid
= btrfs_root_ctransid(&send_root
->root_item
);
4572 spin_unlock(&send_root
->root_item_lock
);
4574 if (ctransid
!= start_ctransid
) {
4575 WARN(1, KERN_WARNING
"btrfs: the root that you're trying to "
4576 "send was modified in between. This is "
4577 "probably a bug.\n");
4582 ret
= btrfs_search_slot_for_read(send_root
, &key
, path
, 1, 0);
4590 * When someone want to commit while we iterate, end the
4591 * joined transaction and rejoin.
4593 if (btrfs_should_end_transaction(trans
, send_root
)) {
4594 ret
= btrfs_end_transaction(trans
, send_root
);
4598 btrfs_release_path(path
);
4602 eb
= path
->nodes
[0];
4603 slot
= path
->slots
[0];
4604 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4606 ret
= changed_cb(send_root
, NULL
, path
, NULL
,
4607 &found_key
, BTRFS_COMPARE_TREE_NEW
, sctx
);
4611 key
.objectid
= found_key
.objectid
;
4612 key
.type
= found_key
.type
;
4613 key
.offset
= found_key
.offset
+ 1;
4615 ret
= btrfs_next_item(send_root
, path
);
4625 ret
= finish_inode_if_needed(sctx
, 1);
4628 btrfs_free_path(path
);
4631 ret
= btrfs_end_transaction(trans
, send_root
);
4633 btrfs_end_transaction(trans
, send_root
);
4638 static int send_subvol(struct send_ctx
*sctx
)
4642 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_STREAM_HEADER
)) {
4643 ret
= send_header(sctx
);
4648 ret
= send_subvol_begin(sctx
);
4652 if (sctx
->parent_root
) {
4653 ret
= btrfs_compare_trees(sctx
->send_root
, sctx
->parent_root
,
4657 ret
= finish_inode_if_needed(sctx
, 1);
4661 ret
= full_send_tree(sctx
);
4667 free_recorded_refs(sctx
);
4671 long btrfs_ioctl_send(struct file
*mnt_file
, void __user
*arg_
)
4674 struct btrfs_root
*send_root
;
4675 struct btrfs_root
*clone_root
;
4676 struct btrfs_fs_info
*fs_info
;
4677 struct btrfs_ioctl_send_args
*arg
= NULL
;
4678 struct btrfs_key key
;
4679 struct send_ctx
*sctx
= NULL
;
4681 u64
*clone_sources_tmp
= NULL
;
4683 if (!capable(CAP_SYS_ADMIN
))
4686 send_root
= BTRFS_I(file_inode(mnt_file
))->root
;
4687 fs_info
= send_root
->fs_info
;
4690 * This is done when we lookup the root, it should already be complete
4691 * by the time we get here.
4693 WARN_ON(send_root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
);
4696 * If we just created this root we need to make sure that the orphan
4697 * cleanup has been done and committed since we search the commit root,
4698 * so check its commit root transid with our otransid and if they match
4699 * commit the transaction to make sure everything is updated.
4701 down_read(&send_root
->fs_info
->extent_commit_sem
);
4702 if (btrfs_header_generation(send_root
->commit_root
) ==
4703 btrfs_root_otransid(&send_root
->root_item
)) {
4704 struct btrfs_trans_handle
*trans
;
4706 up_read(&send_root
->fs_info
->extent_commit_sem
);
4708 trans
= btrfs_attach_transaction_barrier(send_root
);
4709 if (IS_ERR(trans
)) {
4710 if (PTR_ERR(trans
) != -ENOENT
) {
4711 ret
= PTR_ERR(trans
);
4714 /* ENOENT means theres no transaction */
4716 ret
= btrfs_commit_transaction(trans
, send_root
);
4721 up_read(&send_root
->fs_info
->extent_commit_sem
);
4724 arg
= memdup_user(arg_
, sizeof(*arg
));
4731 if (!access_ok(VERIFY_READ
, arg
->clone_sources
,
4732 sizeof(*arg
->clone_sources
) *
4733 arg
->clone_sources_count
)) {
4738 if (arg
->flags
& ~BTRFS_SEND_FLAG_MASK
) {
4743 sctx
= kzalloc(sizeof(struct send_ctx
), GFP_NOFS
);
4749 INIT_LIST_HEAD(&sctx
->new_refs
);
4750 INIT_LIST_HEAD(&sctx
->deleted_refs
);
4751 INIT_RADIX_TREE(&sctx
->name_cache
, GFP_NOFS
);
4752 INIT_LIST_HEAD(&sctx
->name_cache_list
);
4754 sctx
->flags
= arg
->flags
;
4756 sctx
->send_filp
= fget(arg
->send_fd
);
4757 if (!sctx
->send_filp
) {
4762 sctx
->mnt
= mnt_file
->f_path
.mnt
;
4764 sctx
->send_root
= send_root
;
4765 sctx
->clone_roots_cnt
= arg
->clone_sources_count
;
4767 sctx
->send_max_size
= BTRFS_SEND_BUF_SIZE
;
4768 sctx
->send_buf
= vmalloc(sctx
->send_max_size
);
4769 if (!sctx
->send_buf
) {
4774 sctx
->read_buf
= vmalloc(BTRFS_SEND_READ_SIZE
);
4775 if (!sctx
->read_buf
) {
4780 sctx
->clone_roots
= vzalloc(sizeof(struct clone_root
) *
4781 (arg
->clone_sources_count
+ 1));
4782 if (!sctx
->clone_roots
) {
4787 if (arg
->clone_sources_count
) {
4788 clone_sources_tmp
= vmalloc(arg
->clone_sources_count
*
4789 sizeof(*arg
->clone_sources
));
4790 if (!clone_sources_tmp
) {
4795 ret
= copy_from_user(clone_sources_tmp
, arg
->clone_sources
,
4796 arg
->clone_sources_count
*
4797 sizeof(*arg
->clone_sources
));
4803 for (i
= 0; i
< arg
->clone_sources_count
; i
++) {
4804 key
.objectid
= clone_sources_tmp
[i
];
4805 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4806 key
.offset
= (u64
)-1;
4807 clone_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4808 if (IS_ERR(clone_root
)) {
4809 ret
= PTR_ERR(clone_root
);
4812 sctx
->clone_roots
[i
].root
= clone_root
;
4814 vfree(clone_sources_tmp
);
4815 clone_sources_tmp
= NULL
;
4818 if (arg
->parent_root
) {
4819 key
.objectid
= arg
->parent_root
;
4820 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4821 key
.offset
= (u64
)-1;
4822 sctx
->parent_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4823 if (IS_ERR(sctx
->parent_root
)) {
4824 ret
= PTR_ERR(sctx
->parent_root
);
4830 * Clones from send_root are allowed, but only if the clone source
4831 * is behind the current send position. This is checked while searching
4832 * for possible clone sources.
4834 sctx
->clone_roots
[sctx
->clone_roots_cnt
++].root
= sctx
->send_root
;
4836 /* We do a bsearch later */
4837 sort(sctx
->clone_roots
, sctx
->clone_roots_cnt
,
4838 sizeof(*sctx
->clone_roots
), __clone_root_cmp_sort
,
4841 ret
= send_subvol(sctx
);
4845 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_END_CMD
)) {
4846 ret
= begin_cmd(sctx
, BTRFS_SEND_C_END
);
4849 ret
= send_cmd(sctx
);
4856 vfree(clone_sources_tmp
);
4859 if (sctx
->send_filp
)
4860 fput(sctx
->send_filp
);
4862 vfree(sctx
->clone_roots
);
4863 vfree(sctx
->send_buf
);
4864 vfree(sctx
->read_buf
);
4866 name_cache_free(sctx
);