x86/xen: resume timer irqs early
[linux/fpc-iii.git] / fs / btrfs / transaction.c
blob977314e2d078a2c3fd4fa1e99b311e10a89447ec
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
35 #define BTRFS_ROOT_TRANS_TAG 0
37 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
38 [TRANS_STATE_RUNNING] = 0U,
39 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
40 __TRANS_START),
41 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
42 __TRANS_START |
43 __TRANS_ATTACH),
44 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
45 __TRANS_START |
46 __TRANS_ATTACH |
47 __TRANS_JOIN),
48 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
49 __TRANS_START |
50 __TRANS_ATTACH |
51 __TRANS_JOIN |
52 __TRANS_JOIN_NOLOCK),
53 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
54 __TRANS_START |
55 __TRANS_ATTACH |
56 __TRANS_JOIN |
57 __TRANS_JOIN_NOLOCK),
60 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 WARN_ON(atomic_read(&transaction->use_count) == 0);
63 if (atomic_dec_and_test(&transaction->use_count)) {
64 BUG_ON(!list_empty(&transaction->list));
65 WARN_ON(transaction->delayed_refs.root.rb_node);
66 while (!list_empty(&transaction->pending_chunks)) {
67 struct extent_map *em;
69 em = list_first_entry(&transaction->pending_chunks,
70 struct extent_map, list);
71 list_del_init(&em->list);
72 free_extent_map(em);
74 kmem_cache_free(btrfs_transaction_cachep, transaction);
78 static noinline void switch_commit_root(struct btrfs_root *root)
80 free_extent_buffer(root->commit_root);
81 root->commit_root = btrfs_root_node(root);
84 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
85 unsigned int type)
87 if (type & TRANS_EXTWRITERS)
88 atomic_inc(&trans->num_extwriters);
91 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
92 unsigned int type)
94 if (type & TRANS_EXTWRITERS)
95 atomic_dec(&trans->num_extwriters);
98 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
99 unsigned int type)
101 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
104 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
106 return atomic_read(&trans->num_extwriters);
110 * either allocate a new transaction or hop into the existing one
112 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
114 struct btrfs_transaction *cur_trans;
115 struct btrfs_fs_info *fs_info = root->fs_info;
117 spin_lock(&fs_info->trans_lock);
118 loop:
119 /* The file system has been taken offline. No new transactions. */
120 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
121 spin_unlock(&fs_info->trans_lock);
122 return -EROFS;
125 cur_trans = fs_info->running_transaction;
126 if (cur_trans) {
127 if (cur_trans->aborted) {
128 spin_unlock(&fs_info->trans_lock);
129 return cur_trans->aborted;
131 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
132 spin_unlock(&fs_info->trans_lock);
133 return -EBUSY;
135 atomic_inc(&cur_trans->use_count);
136 atomic_inc(&cur_trans->num_writers);
137 extwriter_counter_inc(cur_trans, type);
138 spin_unlock(&fs_info->trans_lock);
139 return 0;
141 spin_unlock(&fs_info->trans_lock);
144 * If we are ATTACH, we just want to catch the current transaction,
145 * and commit it. If there is no transaction, just return ENOENT.
147 if (type == TRANS_ATTACH)
148 return -ENOENT;
151 * JOIN_NOLOCK only happens during the transaction commit, so
152 * it is impossible that ->running_transaction is NULL
154 BUG_ON(type == TRANS_JOIN_NOLOCK);
156 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
157 if (!cur_trans)
158 return -ENOMEM;
160 spin_lock(&fs_info->trans_lock);
161 if (fs_info->running_transaction) {
163 * someone started a transaction after we unlocked. Make sure
164 * to redo the checks above
166 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
167 goto loop;
168 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
169 spin_unlock(&fs_info->trans_lock);
170 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
171 return -EROFS;
174 atomic_set(&cur_trans->num_writers, 1);
175 extwriter_counter_init(cur_trans, type);
176 init_waitqueue_head(&cur_trans->writer_wait);
177 init_waitqueue_head(&cur_trans->commit_wait);
178 cur_trans->state = TRANS_STATE_RUNNING;
180 * One for this trans handle, one so it will live on until we
181 * commit the transaction.
183 atomic_set(&cur_trans->use_count, 2);
184 cur_trans->start_time = get_seconds();
186 cur_trans->delayed_refs.root = RB_ROOT;
187 cur_trans->delayed_refs.num_entries = 0;
188 cur_trans->delayed_refs.num_heads_ready = 0;
189 cur_trans->delayed_refs.num_heads = 0;
190 cur_trans->delayed_refs.flushing = 0;
191 cur_trans->delayed_refs.run_delayed_start = 0;
194 * although the tree mod log is per file system and not per transaction,
195 * the log must never go across transaction boundaries.
197 smp_mb();
198 if (!list_empty(&fs_info->tree_mod_seq_list))
199 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
200 "creating a fresh transaction\n");
201 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
202 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
203 "creating a fresh transaction\n");
204 atomic64_set(&fs_info->tree_mod_seq, 0);
206 spin_lock_init(&cur_trans->delayed_refs.lock);
207 atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
208 atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
209 init_waitqueue_head(&cur_trans->delayed_refs.wait);
211 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
212 INIT_LIST_HEAD(&cur_trans->ordered_operations);
213 INIT_LIST_HEAD(&cur_trans->pending_chunks);
214 list_add_tail(&cur_trans->list, &fs_info->trans_list);
215 extent_io_tree_init(&cur_trans->dirty_pages,
216 fs_info->btree_inode->i_mapping);
217 fs_info->generation++;
218 cur_trans->transid = fs_info->generation;
219 fs_info->running_transaction = cur_trans;
220 cur_trans->aborted = 0;
221 spin_unlock(&fs_info->trans_lock);
223 return 0;
227 * this does all the record keeping required to make sure that a reference
228 * counted root is properly recorded in a given transaction. This is required
229 * to make sure the old root from before we joined the transaction is deleted
230 * when the transaction commits
232 static int record_root_in_trans(struct btrfs_trans_handle *trans,
233 struct btrfs_root *root)
235 if (root->ref_cows && root->last_trans < trans->transid) {
236 WARN_ON(root == root->fs_info->extent_root);
237 WARN_ON(root->commit_root != root->node);
240 * see below for in_trans_setup usage rules
241 * we have the reloc mutex held now, so there
242 * is only one writer in this function
244 root->in_trans_setup = 1;
246 /* make sure readers find in_trans_setup before
247 * they find our root->last_trans update
249 smp_wmb();
251 spin_lock(&root->fs_info->fs_roots_radix_lock);
252 if (root->last_trans == trans->transid) {
253 spin_unlock(&root->fs_info->fs_roots_radix_lock);
254 return 0;
256 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
257 (unsigned long)root->root_key.objectid,
258 BTRFS_ROOT_TRANS_TAG);
259 spin_unlock(&root->fs_info->fs_roots_radix_lock);
260 root->last_trans = trans->transid;
262 /* this is pretty tricky. We don't want to
263 * take the relocation lock in btrfs_record_root_in_trans
264 * unless we're really doing the first setup for this root in
265 * this transaction.
267 * Normally we'd use root->last_trans as a flag to decide
268 * if we want to take the expensive mutex.
270 * But, we have to set root->last_trans before we
271 * init the relocation root, otherwise, we trip over warnings
272 * in ctree.c. The solution used here is to flag ourselves
273 * with root->in_trans_setup. When this is 1, we're still
274 * fixing up the reloc trees and everyone must wait.
276 * When this is zero, they can trust root->last_trans and fly
277 * through btrfs_record_root_in_trans without having to take the
278 * lock. smp_wmb() makes sure that all the writes above are
279 * done before we pop in the zero below
281 btrfs_init_reloc_root(trans, root);
282 smp_wmb();
283 root->in_trans_setup = 0;
285 return 0;
289 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
290 struct btrfs_root *root)
292 if (!root->ref_cows)
293 return 0;
296 * see record_root_in_trans for comments about in_trans_setup usage
297 * and barriers
299 smp_rmb();
300 if (root->last_trans == trans->transid &&
301 !root->in_trans_setup)
302 return 0;
304 mutex_lock(&root->fs_info->reloc_mutex);
305 record_root_in_trans(trans, root);
306 mutex_unlock(&root->fs_info->reloc_mutex);
308 return 0;
311 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
313 return (trans->state >= TRANS_STATE_BLOCKED &&
314 trans->state < TRANS_STATE_UNBLOCKED &&
315 !trans->aborted);
318 /* wait for commit against the current transaction to become unblocked
319 * when this is done, it is safe to start a new transaction, but the current
320 * transaction might not be fully on disk.
322 static void wait_current_trans(struct btrfs_root *root)
324 struct btrfs_transaction *cur_trans;
326 spin_lock(&root->fs_info->trans_lock);
327 cur_trans = root->fs_info->running_transaction;
328 if (cur_trans && is_transaction_blocked(cur_trans)) {
329 atomic_inc(&cur_trans->use_count);
330 spin_unlock(&root->fs_info->trans_lock);
332 wait_event(root->fs_info->transaction_wait,
333 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
334 cur_trans->aborted);
335 btrfs_put_transaction(cur_trans);
336 } else {
337 spin_unlock(&root->fs_info->trans_lock);
341 static int may_wait_transaction(struct btrfs_root *root, int type)
343 if (root->fs_info->log_root_recovering)
344 return 0;
346 if (type == TRANS_USERSPACE)
347 return 1;
349 if (type == TRANS_START &&
350 !atomic_read(&root->fs_info->open_ioctl_trans))
351 return 1;
353 return 0;
356 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
358 if (!root->fs_info->reloc_ctl ||
359 !root->ref_cows ||
360 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
361 root->reloc_root)
362 return false;
364 return true;
367 static struct btrfs_trans_handle *
368 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
369 enum btrfs_reserve_flush_enum flush)
371 struct btrfs_trans_handle *h;
372 struct btrfs_transaction *cur_trans;
373 u64 num_bytes = 0;
374 u64 qgroup_reserved = 0;
375 bool reloc_reserved = false;
376 int ret;
378 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
379 return ERR_PTR(-EROFS);
381 if (current->journal_info) {
382 WARN_ON(type & TRANS_EXTWRITERS);
383 h = current->journal_info;
384 h->use_count++;
385 WARN_ON(h->use_count > 2);
386 h->orig_rsv = h->block_rsv;
387 h->block_rsv = NULL;
388 goto got_it;
392 * Do the reservation before we join the transaction so we can do all
393 * the appropriate flushing if need be.
395 if (num_items > 0 && root != root->fs_info->chunk_root) {
396 if (root->fs_info->quota_enabled &&
397 is_fstree(root->root_key.objectid)) {
398 qgroup_reserved = num_items * root->leafsize;
399 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
400 if (ret)
401 return ERR_PTR(ret);
404 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
406 * Do the reservation for the relocation root creation
408 if (unlikely(need_reserve_reloc_root(root))) {
409 num_bytes += root->nodesize;
410 reloc_reserved = true;
413 ret = btrfs_block_rsv_add(root,
414 &root->fs_info->trans_block_rsv,
415 num_bytes, flush);
416 if (ret)
417 goto reserve_fail;
419 again:
420 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
421 if (!h) {
422 ret = -ENOMEM;
423 goto alloc_fail;
427 * If we are JOIN_NOLOCK we're already committing a transaction and
428 * waiting on this guy, so we don't need to do the sb_start_intwrite
429 * because we're already holding a ref. We need this because we could
430 * have raced in and did an fsync() on a file which can kick a commit
431 * and then we deadlock with somebody doing a freeze.
433 * If we are ATTACH, it means we just want to catch the current
434 * transaction and commit it, so we needn't do sb_start_intwrite().
436 if (type & __TRANS_FREEZABLE)
437 sb_start_intwrite(root->fs_info->sb);
439 if (may_wait_transaction(root, type))
440 wait_current_trans(root);
442 do {
443 ret = join_transaction(root, type);
444 if (ret == -EBUSY) {
445 wait_current_trans(root);
446 if (unlikely(type == TRANS_ATTACH))
447 ret = -ENOENT;
449 } while (ret == -EBUSY);
451 if (ret < 0) {
452 /* We must get the transaction if we are JOIN_NOLOCK. */
453 BUG_ON(type == TRANS_JOIN_NOLOCK);
454 goto join_fail;
457 cur_trans = root->fs_info->running_transaction;
459 h->transid = cur_trans->transid;
460 h->transaction = cur_trans;
461 h->blocks_used = 0;
462 h->bytes_reserved = 0;
463 h->root = root;
464 h->delayed_ref_updates = 0;
465 h->use_count = 1;
466 h->adding_csums = 0;
467 h->block_rsv = NULL;
468 h->orig_rsv = NULL;
469 h->aborted = 0;
470 h->qgroup_reserved = 0;
471 h->delayed_ref_elem.seq = 0;
472 h->type = type;
473 h->allocating_chunk = false;
474 h->reloc_reserved = false;
475 INIT_LIST_HEAD(&h->qgroup_ref_list);
476 INIT_LIST_HEAD(&h->new_bgs);
478 smp_mb();
479 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
480 may_wait_transaction(root, type)) {
481 btrfs_commit_transaction(h, root);
482 goto again;
485 if (num_bytes) {
486 trace_btrfs_space_reservation(root->fs_info, "transaction",
487 h->transid, num_bytes, 1);
488 h->block_rsv = &root->fs_info->trans_block_rsv;
489 h->bytes_reserved = num_bytes;
490 h->reloc_reserved = reloc_reserved;
492 h->qgroup_reserved = qgroup_reserved;
494 got_it:
495 btrfs_record_root_in_trans(h, root);
497 if (!current->journal_info && type != TRANS_USERSPACE)
498 current->journal_info = h;
499 return h;
501 join_fail:
502 if (type & __TRANS_FREEZABLE)
503 sb_end_intwrite(root->fs_info->sb);
504 kmem_cache_free(btrfs_trans_handle_cachep, h);
505 alloc_fail:
506 if (num_bytes)
507 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
508 num_bytes);
509 reserve_fail:
510 if (qgroup_reserved)
511 btrfs_qgroup_free(root, qgroup_reserved);
512 return ERR_PTR(ret);
515 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
516 int num_items)
518 return start_transaction(root, num_items, TRANS_START,
519 BTRFS_RESERVE_FLUSH_ALL);
522 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
523 struct btrfs_root *root, int num_items)
525 return start_transaction(root, num_items, TRANS_START,
526 BTRFS_RESERVE_FLUSH_LIMIT);
529 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
531 return start_transaction(root, 0, TRANS_JOIN, 0);
534 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
536 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
539 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
541 return start_transaction(root, 0, TRANS_USERSPACE, 0);
545 * btrfs_attach_transaction() - catch the running transaction
547 * It is used when we want to commit the current the transaction, but
548 * don't want to start a new one.
550 * Note: If this function return -ENOENT, it just means there is no
551 * running transaction. But it is possible that the inactive transaction
552 * is still in the memory, not fully on disk. If you hope there is no
553 * inactive transaction in the fs when -ENOENT is returned, you should
554 * invoke
555 * btrfs_attach_transaction_barrier()
557 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
559 return start_transaction(root, 0, TRANS_ATTACH, 0);
563 * btrfs_attach_transaction_barrier() - catch the running transaction
565 * It is similar to the above function, the differentia is this one
566 * will wait for all the inactive transactions until they fully
567 * complete.
569 struct btrfs_trans_handle *
570 btrfs_attach_transaction_barrier(struct btrfs_root *root)
572 struct btrfs_trans_handle *trans;
574 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
575 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
576 btrfs_wait_for_commit(root, 0);
578 return trans;
581 /* wait for a transaction commit to be fully complete */
582 static noinline void wait_for_commit(struct btrfs_root *root,
583 struct btrfs_transaction *commit)
585 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
588 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
590 struct btrfs_transaction *cur_trans = NULL, *t;
591 int ret = 0;
593 if (transid) {
594 if (transid <= root->fs_info->last_trans_committed)
595 goto out;
597 ret = -EINVAL;
598 /* find specified transaction */
599 spin_lock(&root->fs_info->trans_lock);
600 list_for_each_entry(t, &root->fs_info->trans_list, list) {
601 if (t->transid == transid) {
602 cur_trans = t;
603 atomic_inc(&cur_trans->use_count);
604 ret = 0;
605 break;
607 if (t->transid > transid) {
608 ret = 0;
609 break;
612 spin_unlock(&root->fs_info->trans_lock);
613 /* The specified transaction doesn't exist */
614 if (!cur_trans)
615 goto out;
616 } else {
617 /* find newest transaction that is committing | committed */
618 spin_lock(&root->fs_info->trans_lock);
619 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
620 list) {
621 if (t->state >= TRANS_STATE_COMMIT_START) {
622 if (t->state == TRANS_STATE_COMPLETED)
623 break;
624 cur_trans = t;
625 atomic_inc(&cur_trans->use_count);
626 break;
629 spin_unlock(&root->fs_info->trans_lock);
630 if (!cur_trans)
631 goto out; /* nothing committing|committed */
634 wait_for_commit(root, cur_trans);
635 btrfs_put_transaction(cur_trans);
636 out:
637 return ret;
640 void btrfs_throttle(struct btrfs_root *root)
642 if (!atomic_read(&root->fs_info->open_ioctl_trans))
643 wait_current_trans(root);
646 static int should_end_transaction(struct btrfs_trans_handle *trans,
647 struct btrfs_root *root)
649 if (root->fs_info->global_block_rsv.space_info->full &&
650 btrfs_should_throttle_delayed_refs(trans, root))
651 return 1;
653 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
656 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root)
659 struct btrfs_transaction *cur_trans = trans->transaction;
660 int updates;
661 int err;
663 smp_mb();
664 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
665 cur_trans->delayed_refs.flushing)
666 return 1;
668 updates = trans->delayed_ref_updates;
669 trans->delayed_ref_updates = 0;
670 if (updates) {
671 err = btrfs_run_delayed_refs(trans, root, updates);
672 if (err) /* Error code will also eval true */
673 return err;
676 return should_end_transaction(trans, root);
679 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
680 struct btrfs_root *root, int throttle)
682 struct btrfs_transaction *cur_trans = trans->transaction;
683 struct btrfs_fs_info *info = root->fs_info;
684 unsigned long cur = trans->delayed_ref_updates;
685 int lock = (trans->type != TRANS_JOIN_NOLOCK);
686 int err = 0;
688 if (trans->use_count > 1) {
689 trans->use_count--;
690 trans->block_rsv = trans->orig_rsv;
691 return 0;
695 * do the qgroup accounting as early as possible
697 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
699 btrfs_trans_release_metadata(trans, root);
700 trans->block_rsv = NULL;
702 if (trans->qgroup_reserved) {
704 * the same root has to be passed here between start_transaction
705 * and end_transaction. Subvolume quota depends on this.
707 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
708 trans->qgroup_reserved = 0;
711 if (!list_empty(&trans->new_bgs))
712 btrfs_create_pending_block_groups(trans, root);
714 trans->delayed_ref_updates = 0;
715 if (btrfs_should_throttle_delayed_refs(trans, root)) {
716 cur = max_t(unsigned long, cur, 1);
717 trans->delayed_ref_updates = 0;
718 btrfs_run_delayed_refs(trans, root, cur);
721 btrfs_trans_release_metadata(trans, root);
722 trans->block_rsv = NULL;
724 if (!list_empty(&trans->new_bgs))
725 btrfs_create_pending_block_groups(trans, root);
727 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
728 should_end_transaction(trans, root) &&
729 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
730 spin_lock(&info->trans_lock);
731 if (cur_trans->state == TRANS_STATE_RUNNING)
732 cur_trans->state = TRANS_STATE_BLOCKED;
733 spin_unlock(&info->trans_lock);
736 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
737 if (throttle)
738 return btrfs_commit_transaction(trans, root);
739 else
740 wake_up_process(info->transaction_kthread);
743 if (trans->type & __TRANS_FREEZABLE)
744 sb_end_intwrite(root->fs_info->sb);
746 WARN_ON(cur_trans != info->running_transaction);
747 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
748 atomic_dec(&cur_trans->num_writers);
749 extwriter_counter_dec(cur_trans, trans->type);
751 smp_mb();
752 if (waitqueue_active(&cur_trans->writer_wait))
753 wake_up(&cur_trans->writer_wait);
754 btrfs_put_transaction(cur_trans);
756 if (current->journal_info == trans)
757 current->journal_info = NULL;
759 if (throttle)
760 btrfs_run_delayed_iputs(root);
762 if (trans->aborted ||
763 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
764 wake_up_process(info->transaction_kthread);
765 err = -EIO;
767 assert_qgroups_uptodate(trans);
769 kmem_cache_free(btrfs_trans_handle_cachep, trans);
770 return err;
773 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
774 struct btrfs_root *root)
776 return __btrfs_end_transaction(trans, root, 0);
779 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
780 struct btrfs_root *root)
782 return __btrfs_end_transaction(trans, root, 1);
785 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
786 struct btrfs_root *root)
788 return __btrfs_end_transaction(trans, root, 1);
792 * when btree blocks are allocated, they have some corresponding bits set for
793 * them in one of two extent_io trees. This is used to make sure all of
794 * those extents are sent to disk but does not wait on them
796 int btrfs_write_marked_extents(struct btrfs_root *root,
797 struct extent_io_tree *dirty_pages, int mark)
799 int err = 0;
800 int werr = 0;
801 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
802 struct extent_state *cached_state = NULL;
803 u64 start = 0;
804 u64 end;
806 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
807 mark, &cached_state)) {
808 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
809 mark, &cached_state, GFP_NOFS);
810 cached_state = NULL;
811 err = filemap_fdatawrite_range(mapping, start, end);
812 if (err)
813 werr = err;
814 cond_resched();
815 start = end + 1;
817 if (err)
818 werr = err;
819 return werr;
823 * when btree blocks are allocated, they have some corresponding bits set for
824 * them in one of two extent_io trees. This is used to make sure all of
825 * those extents are on disk for transaction or log commit. We wait
826 * on all the pages and clear them from the dirty pages state tree
828 int btrfs_wait_marked_extents(struct btrfs_root *root,
829 struct extent_io_tree *dirty_pages, int mark)
831 int err = 0;
832 int werr = 0;
833 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
834 struct extent_state *cached_state = NULL;
835 u64 start = 0;
836 u64 end;
838 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
839 EXTENT_NEED_WAIT, &cached_state)) {
840 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
841 0, 0, &cached_state, GFP_NOFS);
842 err = filemap_fdatawait_range(mapping, start, end);
843 if (err)
844 werr = err;
845 cond_resched();
846 start = end + 1;
848 if (err)
849 werr = err;
850 return werr;
854 * when btree blocks are allocated, they have some corresponding bits set for
855 * them in one of two extent_io trees. This is used to make sure all of
856 * those extents are on disk for transaction or log commit
858 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
859 struct extent_io_tree *dirty_pages, int mark)
861 int ret;
862 int ret2;
863 struct blk_plug plug;
865 blk_start_plug(&plug);
866 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
867 blk_finish_plug(&plug);
868 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
870 if (ret)
871 return ret;
872 if (ret2)
873 return ret2;
874 return 0;
877 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
878 struct btrfs_root *root)
880 if (!trans || !trans->transaction) {
881 struct inode *btree_inode;
882 btree_inode = root->fs_info->btree_inode;
883 return filemap_write_and_wait(btree_inode->i_mapping);
885 return btrfs_write_and_wait_marked_extents(root,
886 &trans->transaction->dirty_pages,
887 EXTENT_DIRTY);
891 * this is used to update the root pointer in the tree of tree roots.
893 * But, in the case of the extent allocation tree, updating the root
894 * pointer may allocate blocks which may change the root of the extent
895 * allocation tree.
897 * So, this loops and repeats and makes sure the cowonly root didn't
898 * change while the root pointer was being updated in the metadata.
900 static int update_cowonly_root(struct btrfs_trans_handle *trans,
901 struct btrfs_root *root)
903 int ret;
904 u64 old_root_bytenr;
905 u64 old_root_used;
906 struct btrfs_root *tree_root = root->fs_info->tree_root;
908 old_root_used = btrfs_root_used(&root->root_item);
909 btrfs_write_dirty_block_groups(trans, root);
911 while (1) {
912 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
913 if (old_root_bytenr == root->node->start &&
914 old_root_used == btrfs_root_used(&root->root_item))
915 break;
917 btrfs_set_root_node(&root->root_item, root->node);
918 ret = btrfs_update_root(trans, tree_root,
919 &root->root_key,
920 &root->root_item);
921 if (ret)
922 return ret;
924 old_root_used = btrfs_root_used(&root->root_item);
925 ret = btrfs_write_dirty_block_groups(trans, root);
926 if (ret)
927 return ret;
930 if (root != root->fs_info->extent_root)
931 switch_commit_root(root);
933 return 0;
937 * update all the cowonly tree roots on disk
939 * The error handling in this function may not be obvious. Any of the
940 * failures will cause the file system to go offline. We still need
941 * to clean up the delayed refs.
943 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
944 struct btrfs_root *root)
946 struct btrfs_fs_info *fs_info = root->fs_info;
947 struct list_head *next;
948 struct extent_buffer *eb;
949 int ret;
951 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
952 if (ret)
953 return ret;
955 eb = btrfs_lock_root_node(fs_info->tree_root);
956 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
957 0, &eb);
958 btrfs_tree_unlock(eb);
959 free_extent_buffer(eb);
961 if (ret)
962 return ret;
964 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
965 if (ret)
966 return ret;
968 ret = btrfs_run_dev_stats(trans, root->fs_info);
969 WARN_ON(ret);
970 ret = btrfs_run_dev_replace(trans, root->fs_info);
971 WARN_ON(ret);
973 ret = btrfs_run_qgroups(trans, root->fs_info);
974 BUG_ON(ret);
976 /* run_qgroups might have added some more refs */
977 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
978 BUG_ON(ret);
980 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
981 next = fs_info->dirty_cowonly_roots.next;
982 list_del_init(next);
983 root = list_entry(next, struct btrfs_root, dirty_list);
985 ret = update_cowonly_root(trans, root);
986 if (ret)
987 return ret;
990 down_write(&fs_info->extent_commit_sem);
991 switch_commit_root(fs_info->extent_root);
992 up_write(&fs_info->extent_commit_sem);
994 btrfs_after_dev_replace_commit(fs_info);
996 return 0;
1000 * dead roots are old snapshots that need to be deleted. This allocates
1001 * a dirty root struct and adds it into the list of dead roots that need to
1002 * be deleted
1004 void btrfs_add_dead_root(struct btrfs_root *root)
1006 spin_lock(&root->fs_info->trans_lock);
1007 if (list_empty(&root->root_list))
1008 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1009 spin_unlock(&root->fs_info->trans_lock);
1013 * update all the cowonly tree roots on disk
1015 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1016 struct btrfs_root *root)
1018 struct btrfs_root *gang[8];
1019 struct btrfs_fs_info *fs_info = root->fs_info;
1020 int i;
1021 int ret;
1022 int err = 0;
1024 spin_lock(&fs_info->fs_roots_radix_lock);
1025 while (1) {
1026 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1027 (void **)gang, 0,
1028 ARRAY_SIZE(gang),
1029 BTRFS_ROOT_TRANS_TAG);
1030 if (ret == 0)
1031 break;
1032 for (i = 0; i < ret; i++) {
1033 root = gang[i];
1034 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1035 (unsigned long)root->root_key.objectid,
1036 BTRFS_ROOT_TRANS_TAG);
1037 spin_unlock(&fs_info->fs_roots_radix_lock);
1039 btrfs_free_log(trans, root);
1040 btrfs_update_reloc_root(trans, root);
1041 btrfs_orphan_commit_root(trans, root);
1043 btrfs_save_ino_cache(root, trans);
1045 /* see comments in should_cow_block() */
1046 root->force_cow = 0;
1047 smp_wmb();
1049 if (root->commit_root != root->node) {
1050 mutex_lock(&root->fs_commit_mutex);
1051 switch_commit_root(root);
1052 btrfs_unpin_free_ino(root);
1053 mutex_unlock(&root->fs_commit_mutex);
1055 btrfs_set_root_node(&root->root_item,
1056 root->node);
1059 err = btrfs_update_root(trans, fs_info->tree_root,
1060 &root->root_key,
1061 &root->root_item);
1062 spin_lock(&fs_info->fs_roots_radix_lock);
1063 if (err)
1064 break;
1067 spin_unlock(&fs_info->fs_roots_radix_lock);
1068 return err;
1072 * defrag a given btree.
1073 * Every leaf in the btree is read and defragged.
1075 int btrfs_defrag_root(struct btrfs_root *root)
1077 struct btrfs_fs_info *info = root->fs_info;
1078 struct btrfs_trans_handle *trans;
1079 int ret;
1081 if (xchg(&root->defrag_running, 1))
1082 return 0;
1084 while (1) {
1085 trans = btrfs_start_transaction(root, 0);
1086 if (IS_ERR(trans))
1087 return PTR_ERR(trans);
1089 ret = btrfs_defrag_leaves(trans, root);
1091 btrfs_end_transaction(trans, root);
1092 btrfs_btree_balance_dirty(info->tree_root);
1093 cond_resched();
1095 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1096 break;
1098 if (btrfs_defrag_cancelled(root->fs_info)) {
1099 printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1100 ret = -EAGAIN;
1101 break;
1104 root->defrag_running = 0;
1105 return ret;
1109 * new snapshots need to be created at a very specific time in the
1110 * transaction commit. This does the actual creation.
1112 * Note:
1113 * If the error which may affect the commitment of the current transaction
1114 * happens, we should return the error number. If the error which just affect
1115 * the creation of the pending snapshots, just return 0.
1117 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1118 struct btrfs_fs_info *fs_info,
1119 struct btrfs_pending_snapshot *pending)
1121 struct btrfs_key key;
1122 struct btrfs_root_item *new_root_item;
1123 struct btrfs_root *tree_root = fs_info->tree_root;
1124 struct btrfs_root *root = pending->root;
1125 struct btrfs_root *parent_root;
1126 struct btrfs_block_rsv *rsv;
1127 struct inode *parent_inode;
1128 struct btrfs_path *path;
1129 struct btrfs_dir_item *dir_item;
1130 struct dentry *dentry;
1131 struct extent_buffer *tmp;
1132 struct extent_buffer *old;
1133 struct timespec cur_time = CURRENT_TIME;
1134 int ret = 0;
1135 u64 to_reserve = 0;
1136 u64 index = 0;
1137 u64 objectid;
1138 u64 root_flags;
1139 uuid_le new_uuid;
1141 path = btrfs_alloc_path();
1142 if (!path) {
1143 pending->error = -ENOMEM;
1144 return 0;
1147 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1148 if (!new_root_item) {
1149 pending->error = -ENOMEM;
1150 goto root_item_alloc_fail;
1153 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1154 if (pending->error)
1155 goto no_free_objectid;
1157 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1159 if (to_reserve > 0) {
1160 pending->error = btrfs_block_rsv_add(root,
1161 &pending->block_rsv,
1162 to_reserve,
1163 BTRFS_RESERVE_NO_FLUSH);
1164 if (pending->error)
1165 goto no_free_objectid;
1168 pending->error = btrfs_qgroup_inherit(trans, fs_info,
1169 root->root_key.objectid,
1170 objectid, pending->inherit);
1171 if (pending->error)
1172 goto no_free_objectid;
1174 key.objectid = objectid;
1175 key.offset = (u64)-1;
1176 key.type = BTRFS_ROOT_ITEM_KEY;
1178 rsv = trans->block_rsv;
1179 trans->block_rsv = &pending->block_rsv;
1180 trans->bytes_reserved = trans->block_rsv->reserved;
1182 dentry = pending->dentry;
1183 parent_inode = pending->dir;
1184 parent_root = BTRFS_I(parent_inode)->root;
1185 record_root_in_trans(trans, parent_root);
1188 * insert the directory item
1190 ret = btrfs_set_inode_index(parent_inode, &index);
1191 BUG_ON(ret); /* -ENOMEM */
1193 /* check if there is a file/dir which has the same name. */
1194 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1195 btrfs_ino(parent_inode),
1196 dentry->d_name.name,
1197 dentry->d_name.len, 0);
1198 if (dir_item != NULL && !IS_ERR(dir_item)) {
1199 pending->error = -EEXIST;
1200 goto dir_item_existed;
1201 } else if (IS_ERR(dir_item)) {
1202 ret = PTR_ERR(dir_item);
1203 btrfs_abort_transaction(trans, root, ret);
1204 goto fail;
1206 btrfs_release_path(path);
1209 * pull in the delayed directory update
1210 * and the delayed inode item
1211 * otherwise we corrupt the FS during
1212 * snapshot
1214 ret = btrfs_run_delayed_items(trans, root);
1215 if (ret) { /* Transaction aborted */
1216 btrfs_abort_transaction(trans, root, ret);
1217 goto fail;
1220 record_root_in_trans(trans, root);
1221 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1222 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1223 btrfs_check_and_init_root_item(new_root_item);
1225 root_flags = btrfs_root_flags(new_root_item);
1226 if (pending->readonly)
1227 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1228 else
1229 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1230 btrfs_set_root_flags(new_root_item, root_flags);
1232 btrfs_set_root_generation_v2(new_root_item,
1233 trans->transid);
1234 uuid_le_gen(&new_uuid);
1235 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1236 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1237 BTRFS_UUID_SIZE);
1238 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1239 memset(new_root_item->received_uuid, 0,
1240 sizeof(new_root_item->received_uuid));
1241 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1242 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1243 btrfs_set_root_stransid(new_root_item, 0);
1244 btrfs_set_root_rtransid(new_root_item, 0);
1246 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1247 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1248 btrfs_set_root_otransid(new_root_item, trans->transid);
1250 old = btrfs_lock_root_node(root);
1251 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1252 if (ret) {
1253 btrfs_tree_unlock(old);
1254 free_extent_buffer(old);
1255 btrfs_abort_transaction(trans, root, ret);
1256 goto fail;
1259 btrfs_set_lock_blocking(old);
1261 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1262 /* clean up in any case */
1263 btrfs_tree_unlock(old);
1264 free_extent_buffer(old);
1265 if (ret) {
1266 btrfs_abort_transaction(trans, root, ret);
1267 goto fail;
1270 /* see comments in should_cow_block() */
1271 root->force_cow = 1;
1272 smp_wmb();
1274 btrfs_set_root_node(new_root_item, tmp);
1275 /* record when the snapshot was created in key.offset */
1276 key.offset = trans->transid;
1277 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1278 btrfs_tree_unlock(tmp);
1279 free_extent_buffer(tmp);
1280 if (ret) {
1281 btrfs_abort_transaction(trans, root, ret);
1282 goto fail;
1286 * insert root back/forward references
1288 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1289 parent_root->root_key.objectid,
1290 btrfs_ino(parent_inode), index,
1291 dentry->d_name.name, dentry->d_name.len);
1292 if (ret) {
1293 btrfs_abort_transaction(trans, root, ret);
1294 goto fail;
1297 key.offset = (u64)-1;
1298 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1299 if (IS_ERR(pending->snap)) {
1300 ret = PTR_ERR(pending->snap);
1301 btrfs_abort_transaction(trans, root, ret);
1302 goto fail;
1305 ret = btrfs_reloc_post_snapshot(trans, pending);
1306 if (ret) {
1307 btrfs_abort_transaction(trans, root, ret);
1308 goto fail;
1311 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1312 if (ret) {
1313 btrfs_abort_transaction(trans, root, ret);
1314 goto fail;
1317 ret = btrfs_insert_dir_item(trans, parent_root,
1318 dentry->d_name.name, dentry->d_name.len,
1319 parent_inode, &key,
1320 BTRFS_FT_DIR, index);
1321 /* We have check then name at the beginning, so it is impossible. */
1322 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1323 if (ret) {
1324 btrfs_abort_transaction(trans, root, ret);
1325 goto fail;
1328 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1329 dentry->d_name.len * 2);
1330 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1331 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1332 if (ret) {
1333 btrfs_abort_transaction(trans, root, ret);
1334 goto fail;
1336 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1337 BTRFS_UUID_KEY_SUBVOL, objectid);
1338 if (ret) {
1339 btrfs_abort_transaction(trans, root, ret);
1340 goto fail;
1342 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1343 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1344 new_root_item->received_uuid,
1345 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1346 objectid);
1347 if (ret && ret != -EEXIST) {
1348 btrfs_abort_transaction(trans, root, ret);
1349 goto fail;
1352 fail:
1353 pending->error = ret;
1354 dir_item_existed:
1355 trans->block_rsv = rsv;
1356 trans->bytes_reserved = 0;
1357 no_free_objectid:
1358 kfree(new_root_item);
1359 root_item_alloc_fail:
1360 btrfs_free_path(path);
1361 return ret;
1365 * create all the snapshots we've scheduled for creation
1367 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1368 struct btrfs_fs_info *fs_info)
1370 struct btrfs_pending_snapshot *pending, *next;
1371 struct list_head *head = &trans->transaction->pending_snapshots;
1372 int ret = 0;
1374 list_for_each_entry_safe(pending, next, head, list) {
1375 list_del(&pending->list);
1376 ret = create_pending_snapshot(trans, fs_info, pending);
1377 if (ret)
1378 break;
1380 return ret;
1383 static void update_super_roots(struct btrfs_root *root)
1385 struct btrfs_root_item *root_item;
1386 struct btrfs_super_block *super;
1388 super = root->fs_info->super_copy;
1390 root_item = &root->fs_info->chunk_root->root_item;
1391 super->chunk_root = root_item->bytenr;
1392 super->chunk_root_generation = root_item->generation;
1393 super->chunk_root_level = root_item->level;
1395 root_item = &root->fs_info->tree_root->root_item;
1396 super->root = root_item->bytenr;
1397 super->generation = root_item->generation;
1398 super->root_level = root_item->level;
1399 if (btrfs_test_opt(root, SPACE_CACHE))
1400 super->cache_generation = root_item->generation;
1401 if (root->fs_info->update_uuid_tree_gen)
1402 super->uuid_tree_generation = root_item->generation;
1405 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1407 struct btrfs_transaction *trans;
1408 int ret = 0;
1410 spin_lock(&info->trans_lock);
1411 trans = info->running_transaction;
1412 if (trans)
1413 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1414 spin_unlock(&info->trans_lock);
1415 return ret;
1418 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1420 struct btrfs_transaction *trans;
1421 int ret = 0;
1423 spin_lock(&info->trans_lock);
1424 trans = info->running_transaction;
1425 if (trans)
1426 ret = is_transaction_blocked(trans);
1427 spin_unlock(&info->trans_lock);
1428 return ret;
1432 * wait for the current transaction commit to start and block subsequent
1433 * transaction joins
1435 static void wait_current_trans_commit_start(struct btrfs_root *root,
1436 struct btrfs_transaction *trans)
1438 wait_event(root->fs_info->transaction_blocked_wait,
1439 trans->state >= TRANS_STATE_COMMIT_START ||
1440 trans->aborted);
1444 * wait for the current transaction to start and then become unblocked.
1445 * caller holds ref.
1447 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1448 struct btrfs_transaction *trans)
1450 wait_event(root->fs_info->transaction_wait,
1451 trans->state >= TRANS_STATE_UNBLOCKED ||
1452 trans->aborted);
1456 * commit transactions asynchronously. once btrfs_commit_transaction_async
1457 * returns, any subsequent transaction will not be allowed to join.
1459 struct btrfs_async_commit {
1460 struct btrfs_trans_handle *newtrans;
1461 struct btrfs_root *root;
1462 struct work_struct work;
1465 static void do_async_commit(struct work_struct *work)
1467 struct btrfs_async_commit *ac =
1468 container_of(work, struct btrfs_async_commit, work);
1471 * We've got freeze protection passed with the transaction.
1472 * Tell lockdep about it.
1474 if (ac->newtrans->type & __TRANS_FREEZABLE)
1475 rwsem_acquire_read(
1476 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1477 0, 1, _THIS_IP_);
1479 current->journal_info = ac->newtrans;
1481 btrfs_commit_transaction(ac->newtrans, ac->root);
1482 kfree(ac);
1485 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1486 struct btrfs_root *root,
1487 int wait_for_unblock)
1489 struct btrfs_async_commit *ac;
1490 struct btrfs_transaction *cur_trans;
1492 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1493 if (!ac)
1494 return -ENOMEM;
1496 INIT_WORK(&ac->work, do_async_commit);
1497 ac->root = root;
1498 ac->newtrans = btrfs_join_transaction(root);
1499 if (IS_ERR(ac->newtrans)) {
1500 int err = PTR_ERR(ac->newtrans);
1501 kfree(ac);
1502 return err;
1505 /* take transaction reference */
1506 cur_trans = trans->transaction;
1507 atomic_inc(&cur_trans->use_count);
1509 btrfs_end_transaction(trans, root);
1512 * Tell lockdep we've released the freeze rwsem, since the
1513 * async commit thread will be the one to unlock it.
1515 if (ac->newtrans->type & __TRANS_FREEZABLE)
1516 rwsem_release(
1517 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1518 1, _THIS_IP_);
1520 schedule_work(&ac->work);
1522 /* wait for transaction to start and unblock */
1523 if (wait_for_unblock)
1524 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1525 else
1526 wait_current_trans_commit_start(root, cur_trans);
1528 if (current->journal_info == trans)
1529 current->journal_info = NULL;
1531 btrfs_put_transaction(cur_trans);
1532 return 0;
1536 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1537 struct btrfs_root *root, int err)
1539 struct btrfs_transaction *cur_trans = trans->transaction;
1540 DEFINE_WAIT(wait);
1542 WARN_ON(trans->use_count > 1);
1544 btrfs_abort_transaction(trans, root, err);
1546 spin_lock(&root->fs_info->trans_lock);
1549 * If the transaction is removed from the list, it means this
1550 * transaction has been committed successfully, so it is impossible
1551 * to call the cleanup function.
1553 BUG_ON(list_empty(&cur_trans->list));
1555 list_del_init(&cur_trans->list);
1556 if (cur_trans == root->fs_info->running_transaction) {
1557 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1558 spin_unlock(&root->fs_info->trans_lock);
1559 wait_event(cur_trans->writer_wait,
1560 atomic_read(&cur_trans->num_writers) == 1);
1562 spin_lock(&root->fs_info->trans_lock);
1564 spin_unlock(&root->fs_info->trans_lock);
1566 btrfs_cleanup_one_transaction(trans->transaction, root);
1568 spin_lock(&root->fs_info->trans_lock);
1569 if (cur_trans == root->fs_info->running_transaction)
1570 root->fs_info->running_transaction = NULL;
1571 spin_unlock(&root->fs_info->trans_lock);
1573 if (trans->type & __TRANS_FREEZABLE)
1574 sb_end_intwrite(root->fs_info->sb);
1575 btrfs_put_transaction(cur_trans);
1576 btrfs_put_transaction(cur_trans);
1578 trace_btrfs_transaction_commit(root);
1580 btrfs_scrub_continue(root);
1582 if (current->journal_info == trans)
1583 current->journal_info = NULL;
1585 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1588 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1589 struct btrfs_root *root)
1591 int ret;
1593 ret = btrfs_run_delayed_items(trans, root);
1594 if (ret)
1595 return ret;
1598 * running the delayed items may have added new refs. account
1599 * them now so that they hinder processing of more delayed refs
1600 * as little as possible.
1602 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1605 * rename don't use btrfs_join_transaction, so, once we
1606 * set the transaction to blocked above, we aren't going
1607 * to get any new ordered operations. We can safely run
1608 * it here and no for sure that nothing new will be added
1609 * to the list
1611 ret = btrfs_run_ordered_operations(trans, root, 1);
1613 return ret;
1616 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1618 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1619 return btrfs_start_all_delalloc_inodes(fs_info, 1);
1620 return 0;
1623 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1625 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1626 btrfs_wait_all_ordered_extents(fs_info);
1629 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1630 struct btrfs_root *root)
1632 struct btrfs_transaction *cur_trans = trans->transaction;
1633 struct btrfs_transaction *prev_trans = NULL;
1634 int ret;
1636 ret = btrfs_run_ordered_operations(trans, root, 0);
1637 if (ret) {
1638 btrfs_abort_transaction(trans, root, ret);
1639 btrfs_end_transaction(trans, root);
1640 return ret;
1643 /* Stop the commit early if ->aborted is set */
1644 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1645 ret = cur_trans->aborted;
1646 btrfs_end_transaction(trans, root);
1647 return ret;
1650 /* make a pass through all the delayed refs we have so far
1651 * any runnings procs may add more while we are here
1653 ret = btrfs_run_delayed_refs(trans, root, 0);
1654 if (ret) {
1655 btrfs_end_transaction(trans, root);
1656 return ret;
1659 btrfs_trans_release_metadata(trans, root);
1660 trans->block_rsv = NULL;
1661 if (trans->qgroup_reserved) {
1662 btrfs_qgroup_free(root, trans->qgroup_reserved);
1663 trans->qgroup_reserved = 0;
1666 cur_trans = trans->transaction;
1669 * set the flushing flag so procs in this transaction have to
1670 * start sending their work down.
1672 cur_trans->delayed_refs.flushing = 1;
1673 smp_wmb();
1675 if (!list_empty(&trans->new_bgs))
1676 btrfs_create_pending_block_groups(trans, root);
1678 ret = btrfs_run_delayed_refs(trans, root, 0);
1679 if (ret) {
1680 btrfs_end_transaction(trans, root);
1681 return ret;
1684 spin_lock(&root->fs_info->trans_lock);
1685 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1686 spin_unlock(&root->fs_info->trans_lock);
1687 atomic_inc(&cur_trans->use_count);
1688 ret = btrfs_end_transaction(trans, root);
1690 wait_for_commit(root, cur_trans);
1692 btrfs_put_transaction(cur_trans);
1694 return ret;
1697 cur_trans->state = TRANS_STATE_COMMIT_START;
1698 wake_up(&root->fs_info->transaction_blocked_wait);
1700 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1701 prev_trans = list_entry(cur_trans->list.prev,
1702 struct btrfs_transaction, list);
1703 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1704 atomic_inc(&prev_trans->use_count);
1705 spin_unlock(&root->fs_info->trans_lock);
1707 wait_for_commit(root, prev_trans);
1709 btrfs_put_transaction(prev_trans);
1710 } else {
1711 spin_unlock(&root->fs_info->trans_lock);
1713 } else {
1714 spin_unlock(&root->fs_info->trans_lock);
1717 extwriter_counter_dec(cur_trans, trans->type);
1719 ret = btrfs_start_delalloc_flush(root->fs_info);
1720 if (ret)
1721 goto cleanup_transaction;
1723 ret = btrfs_flush_all_pending_stuffs(trans, root);
1724 if (ret)
1725 goto cleanup_transaction;
1727 wait_event(cur_trans->writer_wait,
1728 extwriter_counter_read(cur_trans) == 0);
1730 /* some pending stuffs might be added after the previous flush. */
1731 ret = btrfs_flush_all_pending_stuffs(trans, root);
1732 if (ret)
1733 goto cleanup_transaction;
1735 btrfs_wait_delalloc_flush(root->fs_info);
1737 * Ok now we need to make sure to block out any other joins while we
1738 * commit the transaction. We could have started a join before setting
1739 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1741 spin_lock(&root->fs_info->trans_lock);
1742 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1743 spin_unlock(&root->fs_info->trans_lock);
1744 wait_event(cur_trans->writer_wait,
1745 atomic_read(&cur_trans->num_writers) == 1);
1747 /* ->aborted might be set after the previous check, so check it */
1748 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1749 ret = cur_trans->aborted;
1750 goto cleanup_transaction;
1753 * the reloc mutex makes sure that we stop
1754 * the balancing code from coming in and moving
1755 * extents around in the middle of the commit
1757 mutex_lock(&root->fs_info->reloc_mutex);
1760 * We needn't worry about the delayed items because we will
1761 * deal with them in create_pending_snapshot(), which is the
1762 * core function of the snapshot creation.
1764 ret = create_pending_snapshots(trans, root->fs_info);
1765 if (ret) {
1766 mutex_unlock(&root->fs_info->reloc_mutex);
1767 goto cleanup_transaction;
1771 * We insert the dir indexes of the snapshots and update the inode
1772 * of the snapshots' parents after the snapshot creation, so there
1773 * are some delayed items which are not dealt with. Now deal with
1774 * them.
1776 * We needn't worry that this operation will corrupt the snapshots,
1777 * because all the tree which are snapshoted will be forced to COW
1778 * the nodes and leaves.
1780 ret = btrfs_run_delayed_items(trans, root);
1781 if (ret) {
1782 mutex_unlock(&root->fs_info->reloc_mutex);
1783 goto cleanup_transaction;
1786 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1787 if (ret) {
1788 mutex_unlock(&root->fs_info->reloc_mutex);
1789 goto cleanup_transaction;
1793 * make sure none of the code above managed to slip in a
1794 * delayed item
1796 btrfs_assert_delayed_root_empty(root);
1798 WARN_ON(cur_trans != trans->transaction);
1800 btrfs_scrub_pause(root);
1801 /* btrfs_commit_tree_roots is responsible for getting the
1802 * various roots consistent with each other. Every pointer
1803 * in the tree of tree roots has to point to the most up to date
1804 * root for every subvolume and other tree. So, we have to keep
1805 * the tree logging code from jumping in and changing any
1806 * of the trees.
1808 * At this point in the commit, there can't be any tree-log
1809 * writers, but a little lower down we drop the trans mutex
1810 * and let new people in. By holding the tree_log_mutex
1811 * from now until after the super is written, we avoid races
1812 * with the tree-log code.
1814 mutex_lock(&root->fs_info->tree_log_mutex);
1816 ret = commit_fs_roots(trans, root);
1817 if (ret) {
1818 mutex_unlock(&root->fs_info->tree_log_mutex);
1819 mutex_unlock(&root->fs_info->reloc_mutex);
1820 goto cleanup_transaction;
1823 /* commit_fs_roots gets rid of all the tree log roots, it is now
1824 * safe to free the root of tree log roots
1826 btrfs_free_log_root_tree(trans, root->fs_info);
1828 ret = commit_cowonly_roots(trans, root);
1829 if (ret) {
1830 mutex_unlock(&root->fs_info->tree_log_mutex);
1831 mutex_unlock(&root->fs_info->reloc_mutex);
1832 goto cleanup_transaction;
1836 * The tasks which save the space cache and inode cache may also
1837 * update ->aborted, check it.
1839 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1840 ret = cur_trans->aborted;
1841 mutex_unlock(&root->fs_info->tree_log_mutex);
1842 mutex_unlock(&root->fs_info->reloc_mutex);
1843 goto cleanup_transaction;
1846 btrfs_prepare_extent_commit(trans, root);
1848 cur_trans = root->fs_info->running_transaction;
1850 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1851 root->fs_info->tree_root->node);
1852 switch_commit_root(root->fs_info->tree_root);
1854 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1855 root->fs_info->chunk_root->node);
1856 switch_commit_root(root->fs_info->chunk_root);
1858 assert_qgroups_uptodate(trans);
1859 update_super_roots(root);
1861 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1862 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1863 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1864 sizeof(*root->fs_info->super_copy));
1866 spin_lock(&root->fs_info->trans_lock);
1867 cur_trans->state = TRANS_STATE_UNBLOCKED;
1868 root->fs_info->running_transaction = NULL;
1869 spin_unlock(&root->fs_info->trans_lock);
1870 mutex_unlock(&root->fs_info->reloc_mutex);
1872 wake_up(&root->fs_info->transaction_wait);
1874 ret = btrfs_write_and_wait_transaction(trans, root);
1875 if (ret) {
1876 btrfs_error(root->fs_info, ret,
1877 "Error while writing out transaction");
1878 mutex_unlock(&root->fs_info->tree_log_mutex);
1879 goto cleanup_transaction;
1882 ret = write_ctree_super(trans, root, 0);
1883 if (ret) {
1884 mutex_unlock(&root->fs_info->tree_log_mutex);
1885 goto cleanup_transaction;
1889 * the super is written, we can safely allow the tree-loggers
1890 * to go about their business
1892 mutex_unlock(&root->fs_info->tree_log_mutex);
1894 btrfs_finish_extent_commit(trans, root);
1896 root->fs_info->last_trans_committed = cur_trans->transid;
1898 * We needn't acquire the lock here because there is no other task
1899 * which can change it.
1901 cur_trans->state = TRANS_STATE_COMPLETED;
1902 wake_up(&cur_trans->commit_wait);
1904 spin_lock(&root->fs_info->trans_lock);
1905 list_del_init(&cur_trans->list);
1906 spin_unlock(&root->fs_info->trans_lock);
1908 btrfs_put_transaction(cur_trans);
1909 btrfs_put_transaction(cur_trans);
1911 if (trans->type & __TRANS_FREEZABLE)
1912 sb_end_intwrite(root->fs_info->sb);
1914 trace_btrfs_transaction_commit(root);
1916 btrfs_scrub_continue(root);
1918 if (current->journal_info == trans)
1919 current->journal_info = NULL;
1921 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1923 if (current != root->fs_info->transaction_kthread)
1924 btrfs_run_delayed_iputs(root);
1926 return ret;
1928 cleanup_transaction:
1929 btrfs_trans_release_metadata(trans, root);
1930 trans->block_rsv = NULL;
1931 if (trans->qgroup_reserved) {
1932 btrfs_qgroup_free(root, trans->qgroup_reserved);
1933 trans->qgroup_reserved = 0;
1935 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1936 if (current->journal_info == trans)
1937 current->journal_info = NULL;
1938 cleanup_transaction(trans, root, ret);
1940 return ret;
1944 * return < 0 if error
1945 * 0 if there are no more dead_roots at the time of call
1946 * 1 there are more to be processed, call me again
1948 * The return value indicates there are certainly more snapshots to delete, but
1949 * if there comes a new one during processing, it may return 0. We don't mind,
1950 * because btrfs_commit_super will poke cleaner thread and it will process it a
1951 * few seconds later.
1953 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1955 int ret;
1956 struct btrfs_fs_info *fs_info = root->fs_info;
1958 spin_lock(&fs_info->trans_lock);
1959 if (list_empty(&fs_info->dead_roots)) {
1960 spin_unlock(&fs_info->trans_lock);
1961 return 0;
1963 root = list_first_entry(&fs_info->dead_roots,
1964 struct btrfs_root, root_list);
1965 list_del_init(&root->root_list);
1966 spin_unlock(&fs_info->trans_lock);
1968 pr_debug("btrfs: cleaner removing %llu\n", root->objectid);
1970 btrfs_kill_all_delayed_nodes(root);
1972 if (btrfs_header_backref_rev(root->node) <
1973 BTRFS_MIXED_BACKREF_REV)
1974 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1975 else
1976 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
1978 * If we encounter a transaction abort during snapshot cleaning, we
1979 * don't want to crash here
1981 return (ret < 0) ? 0 : 1;