x86/xen: resume timer irqs early
[linux/fpc-iii.git] / fs / libfs.c
blob193e0c29fb9457a1626641e2f0ab923d82d44f88
1 /*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
6 #include <linux/export.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/quotaops.h>
12 #include <linux/mutex.h>
13 #include <linux/exportfs.h>
14 #include <linux/writeback.h>
15 #include <linux/buffer_head.h> /* sync_mapping_buffers */
17 #include <asm/uaccess.h>
19 #include "internal.h"
21 static inline int simple_positive(struct dentry *dentry)
23 return dentry->d_inode && !d_unhashed(dentry);
26 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
27 struct kstat *stat)
29 struct inode *inode = dentry->d_inode;
30 generic_fillattr(inode, stat);
31 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
32 return 0;
35 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
37 buf->f_type = dentry->d_sb->s_magic;
38 buf->f_bsize = PAGE_CACHE_SIZE;
39 buf->f_namelen = NAME_MAX;
40 return 0;
44 * Retaining negative dentries for an in-memory filesystem just wastes
45 * memory and lookup time: arrange for them to be deleted immediately.
47 static int simple_delete_dentry(const struct dentry *dentry)
49 return 1;
53 * Lookup the data. This is trivial - if the dentry didn't already
54 * exist, we know it is negative. Set d_op to delete negative dentries.
56 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
58 static const struct dentry_operations simple_dentry_operations = {
59 .d_delete = simple_delete_dentry,
62 if (dentry->d_name.len > NAME_MAX)
63 return ERR_PTR(-ENAMETOOLONG);
64 if (!dentry->d_sb->s_d_op)
65 d_set_d_op(dentry, &simple_dentry_operations);
66 d_add(dentry, NULL);
67 return NULL;
70 int dcache_dir_open(struct inode *inode, struct file *file)
72 static struct qstr cursor_name = QSTR_INIT(".", 1);
74 file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
76 return file->private_data ? 0 : -ENOMEM;
79 int dcache_dir_close(struct inode *inode, struct file *file)
81 dput(file->private_data);
82 return 0;
85 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
87 struct dentry *dentry = file->f_path.dentry;
88 mutex_lock(&dentry->d_inode->i_mutex);
89 switch (whence) {
90 case 1:
91 offset += file->f_pos;
92 case 0:
93 if (offset >= 0)
94 break;
95 default:
96 mutex_unlock(&dentry->d_inode->i_mutex);
97 return -EINVAL;
99 if (offset != file->f_pos) {
100 file->f_pos = offset;
101 if (file->f_pos >= 2) {
102 struct list_head *p;
103 struct dentry *cursor = file->private_data;
104 loff_t n = file->f_pos - 2;
106 spin_lock(&dentry->d_lock);
107 /* d_lock not required for cursor */
108 list_del(&cursor->d_u.d_child);
109 p = dentry->d_subdirs.next;
110 while (n && p != &dentry->d_subdirs) {
111 struct dentry *next;
112 next = list_entry(p, struct dentry, d_u.d_child);
113 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
114 if (simple_positive(next))
115 n--;
116 spin_unlock(&next->d_lock);
117 p = p->next;
119 list_add_tail(&cursor->d_u.d_child, p);
120 spin_unlock(&dentry->d_lock);
123 mutex_unlock(&dentry->d_inode->i_mutex);
124 return offset;
127 /* Relationship between i_mode and the DT_xxx types */
128 static inline unsigned char dt_type(struct inode *inode)
130 return (inode->i_mode >> 12) & 15;
134 * Directory is locked and all positive dentries in it are safe, since
135 * for ramfs-type trees they can't go away without unlink() or rmdir(),
136 * both impossible due to the lock on directory.
139 int dcache_readdir(struct file *file, struct dir_context *ctx)
141 struct dentry *dentry = file->f_path.dentry;
142 struct dentry *cursor = file->private_data;
143 struct list_head *p, *q = &cursor->d_u.d_child;
145 if (!dir_emit_dots(file, ctx))
146 return 0;
147 spin_lock(&dentry->d_lock);
148 if (ctx->pos == 2)
149 list_move(q, &dentry->d_subdirs);
151 for (p = q->next; p != &dentry->d_subdirs; p = p->next) {
152 struct dentry *next = list_entry(p, struct dentry, d_u.d_child);
153 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
154 if (!simple_positive(next)) {
155 spin_unlock(&next->d_lock);
156 continue;
159 spin_unlock(&next->d_lock);
160 spin_unlock(&dentry->d_lock);
161 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
162 next->d_inode->i_ino, dt_type(next->d_inode)))
163 return 0;
164 spin_lock(&dentry->d_lock);
165 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
166 /* next is still alive */
167 list_move(q, p);
168 spin_unlock(&next->d_lock);
169 p = q;
170 ctx->pos++;
172 spin_unlock(&dentry->d_lock);
173 return 0;
176 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
178 return -EISDIR;
181 const struct file_operations simple_dir_operations = {
182 .open = dcache_dir_open,
183 .release = dcache_dir_close,
184 .llseek = dcache_dir_lseek,
185 .read = generic_read_dir,
186 .iterate = dcache_readdir,
187 .fsync = noop_fsync,
190 const struct inode_operations simple_dir_inode_operations = {
191 .lookup = simple_lookup,
194 static const struct super_operations simple_super_operations = {
195 .statfs = simple_statfs,
199 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
200 * will never be mountable)
202 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
203 const struct super_operations *ops,
204 const struct dentry_operations *dops, unsigned long magic)
206 struct super_block *s;
207 struct dentry *dentry;
208 struct inode *root;
209 struct qstr d_name = QSTR_INIT(name, strlen(name));
211 s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
212 if (IS_ERR(s))
213 return ERR_CAST(s);
215 s->s_maxbytes = MAX_LFS_FILESIZE;
216 s->s_blocksize = PAGE_SIZE;
217 s->s_blocksize_bits = PAGE_SHIFT;
218 s->s_magic = magic;
219 s->s_op = ops ? ops : &simple_super_operations;
220 s->s_time_gran = 1;
221 root = new_inode(s);
222 if (!root)
223 goto Enomem;
225 * since this is the first inode, make it number 1. New inodes created
226 * after this must take care not to collide with it (by passing
227 * max_reserved of 1 to iunique).
229 root->i_ino = 1;
230 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
231 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
232 dentry = __d_alloc(s, &d_name);
233 if (!dentry) {
234 iput(root);
235 goto Enomem;
237 d_instantiate(dentry, root);
238 s->s_root = dentry;
239 s->s_d_op = dops;
240 s->s_flags |= MS_ACTIVE;
241 return dget(s->s_root);
243 Enomem:
244 deactivate_locked_super(s);
245 return ERR_PTR(-ENOMEM);
248 int simple_open(struct inode *inode, struct file *file)
250 if (inode->i_private)
251 file->private_data = inode->i_private;
252 return 0;
255 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
257 struct inode *inode = old_dentry->d_inode;
259 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
260 inc_nlink(inode);
261 ihold(inode);
262 dget(dentry);
263 d_instantiate(dentry, inode);
264 return 0;
267 int simple_empty(struct dentry *dentry)
269 struct dentry *child;
270 int ret = 0;
272 spin_lock(&dentry->d_lock);
273 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
274 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
275 if (simple_positive(child)) {
276 spin_unlock(&child->d_lock);
277 goto out;
279 spin_unlock(&child->d_lock);
281 ret = 1;
282 out:
283 spin_unlock(&dentry->d_lock);
284 return ret;
287 int simple_unlink(struct inode *dir, struct dentry *dentry)
289 struct inode *inode = dentry->d_inode;
291 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
292 drop_nlink(inode);
293 dput(dentry);
294 return 0;
297 int simple_rmdir(struct inode *dir, struct dentry *dentry)
299 if (!simple_empty(dentry))
300 return -ENOTEMPTY;
302 drop_nlink(dentry->d_inode);
303 simple_unlink(dir, dentry);
304 drop_nlink(dir);
305 return 0;
308 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
309 struct inode *new_dir, struct dentry *new_dentry)
311 struct inode *inode = old_dentry->d_inode;
312 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
314 if (!simple_empty(new_dentry))
315 return -ENOTEMPTY;
317 if (new_dentry->d_inode) {
318 simple_unlink(new_dir, new_dentry);
319 if (they_are_dirs) {
320 drop_nlink(new_dentry->d_inode);
321 drop_nlink(old_dir);
323 } else if (they_are_dirs) {
324 drop_nlink(old_dir);
325 inc_nlink(new_dir);
328 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
329 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
331 return 0;
335 * simple_setattr - setattr for simple filesystem
336 * @dentry: dentry
337 * @iattr: iattr structure
339 * Returns 0 on success, -error on failure.
341 * simple_setattr is a simple ->setattr implementation without a proper
342 * implementation of size changes.
344 * It can either be used for in-memory filesystems or special files
345 * on simple regular filesystems. Anything that needs to change on-disk
346 * or wire state on size changes needs its own setattr method.
348 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
350 struct inode *inode = dentry->d_inode;
351 int error;
353 error = inode_change_ok(inode, iattr);
354 if (error)
355 return error;
357 if (iattr->ia_valid & ATTR_SIZE)
358 truncate_setsize(inode, iattr->ia_size);
359 setattr_copy(inode, iattr);
360 mark_inode_dirty(inode);
361 return 0;
363 EXPORT_SYMBOL(simple_setattr);
365 int simple_readpage(struct file *file, struct page *page)
367 clear_highpage(page);
368 flush_dcache_page(page);
369 SetPageUptodate(page);
370 unlock_page(page);
371 return 0;
374 int simple_write_begin(struct file *file, struct address_space *mapping,
375 loff_t pos, unsigned len, unsigned flags,
376 struct page **pagep, void **fsdata)
378 struct page *page;
379 pgoff_t index;
381 index = pos >> PAGE_CACHE_SHIFT;
383 page = grab_cache_page_write_begin(mapping, index, flags);
384 if (!page)
385 return -ENOMEM;
387 *pagep = page;
389 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
390 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
392 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
394 return 0;
398 * simple_write_end - .write_end helper for non-block-device FSes
399 * @available: See .write_end of address_space_operations
400 * @file: "
401 * @mapping: "
402 * @pos: "
403 * @len: "
404 * @copied: "
405 * @page: "
406 * @fsdata: "
408 * simple_write_end does the minimum needed for updating a page after writing is
409 * done. It has the same API signature as the .write_end of
410 * address_space_operations vector. So it can just be set onto .write_end for
411 * FSes that don't need any other processing. i_mutex is assumed to be held.
412 * Block based filesystems should use generic_write_end().
413 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
414 * is not called, so a filesystem that actually does store data in .write_inode
415 * should extend on what's done here with a call to mark_inode_dirty() in the
416 * case that i_size has changed.
418 int simple_write_end(struct file *file, struct address_space *mapping,
419 loff_t pos, unsigned len, unsigned copied,
420 struct page *page, void *fsdata)
422 struct inode *inode = page->mapping->host;
423 loff_t last_pos = pos + copied;
425 /* zero the stale part of the page if we did a short copy */
426 if (copied < len) {
427 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
429 zero_user(page, from + copied, len - copied);
432 if (!PageUptodate(page))
433 SetPageUptodate(page);
435 * No need to use i_size_read() here, the i_size
436 * cannot change under us because we hold the i_mutex.
438 if (last_pos > inode->i_size)
439 i_size_write(inode, last_pos);
441 set_page_dirty(page);
442 unlock_page(page);
443 page_cache_release(page);
445 return copied;
449 * the inodes created here are not hashed. If you use iunique to generate
450 * unique inode values later for this filesystem, then you must take care
451 * to pass it an appropriate max_reserved value to avoid collisions.
453 int simple_fill_super(struct super_block *s, unsigned long magic,
454 struct tree_descr *files)
456 struct inode *inode;
457 struct dentry *root;
458 struct dentry *dentry;
459 int i;
461 s->s_blocksize = PAGE_CACHE_SIZE;
462 s->s_blocksize_bits = PAGE_CACHE_SHIFT;
463 s->s_magic = magic;
464 s->s_op = &simple_super_operations;
465 s->s_time_gran = 1;
467 inode = new_inode(s);
468 if (!inode)
469 return -ENOMEM;
471 * because the root inode is 1, the files array must not contain an
472 * entry at index 1
474 inode->i_ino = 1;
475 inode->i_mode = S_IFDIR | 0755;
476 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
477 inode->i_op = &simple_dir_inode_operations;
478 inode->i_fop = &simple_dir_operations;
479 set_nlink(inode, 2);
480 root = d_make_root(inode);
481 if (!root)
482 return -ENOMEM;
483 for (i = 0; !files->name || files->name[0]; i++, files++) {
484 if (!files->name)
485 continue;
487 /* warn if it tries to conflict with the root inode */
488 if (unlikely(i == 1))
489 printk(KERN_WARNING "%s: %s passed in a files array"
490 "with an index of 1!\n", __func__,
491 s->s_type->name);
493 dentry = d_alloc_name(root, files->name);
494 if (!dentry)
495 goto out;
496 inode = new_inode(s);
497 if (!inode) {
498 dput(dentry);
499 goto out;
501 inode->i_mode = S_IFREG | files->mode;
502 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
503 inode->i_fop = files->ops;
504 inode->i_ino = i;
505 d_add(dentry, inode);
507 s->s_root = root;
508 return 0;
509 out:
510 d_genocide(root);
511 shrink_dcache_parent(root);
512 dput(root);
513 return -ENOMEM;
516 static DEFINE_SPINLOCK(pin_fs_lock);
518 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
520 struct vfsmount *mnt = NULL;
521 spin_lock(&pin_fs_lock);
522 if (unlikely(!*mount)) {
523 spin_unlock(&pin_fs_lock);
524 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
525 if (IS_ERR(mnt))
526 return PTR_ERR(mnt);
527 spin_lock(&pin_fs_lock);
528 if (!*mount)
529 *mount = mnt;
531 mntget(*mount);
532 ++*count;
533 spin_unlock(&pin_fs_lock);
534 mntput(mnt);
535 return 0;
538 void simple_release_fs(struct vfsmount **mount, int *count)
540 struct vfsmount *mnt;
541 spin_lock(&pin_fs_lock);
542 mnt = *mount;
543 if (!--*count)
544 *mount = NULL;
545 spin_unlock(&pin_fs_lock);
546 mntput(mnt);
550 * simple_read_from_buffer - copy data from the buffer to user space
551 * @to: the user space buffer to read to
552 * @count: the maximum number of bytes to read
553 * @ppos: the current position in the buffer
554 * @from: the buffer to read from
555 * @available: the size of the buffer
557 * The simple_read_from_buffer() function reads up to @count bytes from the
558 * buffer @from at offset @ppos into the user space address starting at @to.
560 * On success, the number of bytes read is returned and the offset @ppos is
561 * advanced by this number, or negative value is returned on error.
563 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
564 const void *from, size_t available)
566 loff_t pos = *ppos;
567 size_t ret;
569 if (pos < 0)
570 return -EINVAL;
571 if (pos >= available || !count)
572 return 0;
573 if (count > available - pos)
574 count = available - pos;
575 ret = copy_to_user(to, from + pos, count);
576 if (ret == count)
577 return -EFAULT;
578 count -= ret;
579 *ppos = pos + count;
580 return count;
584 * simple_write_to_buffer - copy data from user space to the buffer
585 * @to: the buffer to write to
586 * @available: the size of the buffer
587 * @ppos: the current position in the buffer
588 * @from: the user space buffer to read from
589 * @count: the maximum number of bytes to read
591 * The simple_write_to_buffer() function reads up to @count bytes from the user
592 * space address starting at @from into the buffer @to at offset @ppos.
594 * On success, the number of bytes written is returned and the offset @ppos is
595 * advanced by this number, or negative value is returned on error.
597 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
598 const void __user *from, size_t count)
600 loff_t pos = *ppos;
601 size_t res;
603 if (pos < 0)
604 return -EINVAL;
605 if (pos >= available || !count)
606 return 0;
607 if (count > available - pos)
608 count = available - pos;
609 res = copy_from_user(to + pos, from, count);
610 if (res == count)
611 return -EFAULT;
612 count -= res;
613 *ppos = pos + count;
614 return count;
618 * memory_read_from_buffer - copy data from the buffer
619 * @to: the kernel space buffer to read to
620 * @count: the maximum number of bytes to read
621 * @ppos: the current position in the buffer
622 * @from: the buffer to read from
623 * @available: the size of the buffer
625 * The memory_read_from_buffer() function reads up to @count bytes from the
626 * buffer @from at offset @ppos into the kernel space address starting at @to.
628 * On success, the number of bytes read is returned and the offset @ppos is
629 * advanced by this number, or negative value is returned on error.
631 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
632 const void *from, size_t available)
634 loff_t pos = *ppos;
636 if (pos < 0)
637 return -EINVAL;
638 if (pos >= available)
639 return 0;
640 if (count > available - pos)
641 count = available - pos;
642 memcpy(to, from + pos, count);
643 *ppos = pos + count;
645 return count;
649 * Transaction based IO.
650 * The file expects a single write which triggers the transaction, and then
651 * possibly a read which collects the result - which is stored in a
652 * file-local buffer.
655 void simple_transaction_set(struct file *file, size_t n)
657 struct simple_transaction_argresp *ar = file->private_data;
659 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
662 * The barrier ensures that ar->size will really remain zero until
663 * ar->data is ready for reading.
665 smp_mb();
666 ar->size = n;
669 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
671 struct simple_transaction_argresp *ar;
672 static DEFINE_SPINLOCK(simple_transaction_lock);
674 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
675 return ERR_PTR(-EFBIG);
677 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
678 if (!ar)
679 return ERR_PTR(-ENOMEM);
681 spin_lock(&simple_transaction_lock);
683 /* only one write allowed per open */
684 if (file->private_data) {
685 spin_unlock(&simple_transaction_lock);
686 free_page((unsigned long)ar);
687 return ERR_PTR(-EBUSY);
690 file->private_data = ar;
692 spin_unlock(&simple_transaction_lock);
694 if (copy_from_user(ar->data, buf, size))
695 return ERR_PTR(-EFAULT);
697 return ar->data;
700 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
702 struct simple_transaction_argresp *ar = file->private_data;
704 if (!ar)
705 return 0;
706 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
709 int simple_transaction_release(struct inode *inode, struct file *file)
711 free_page((unsigned long)file->private_data);
712 return 0;
715 /* Simple attribute files */
717 struct simple_attr {
718 int (*get)(void *, u64 *);
719 int (*set)(void *, u64);
720 char get_buf[24]; /* enough to store a u64 and "\n\0" */
721 char set_buf[24];
722 void *data;
723 const char *fmt; /* format for read operation */
724 struct mutex mutex; /* protects access to these buffers */
727 /* simple_attr_open is called by an actual attribute open file operation
728 * to set the attribute specific access operations. */
729 int simple_attr_open(struct inode *inode, struct file *file,
730 int (*get)(void *, u64 *), int (*set)(void *, u64),
731 const char *fmt)
733 struct simple_attr *attr;
735 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
736 if (!attr)
737 return -ENOMEM;
739 attr->get = get;
740 attr->set = set;
741 attr->data = inode->i_private;
742 attr->fmt = fmt;
743 mutex_init(&attr->mutex);
745 file->private_data = attr;
747 return nonseekable_open(inode, file);
750 int simple_attr_release(struct inode *inode, struct file *file)
752 kfree(file->private_data);
753 return 0;
756 /* read from the buffer that is filled with the get function */
757 ssize_t simple_attr_read(struct file *file, char __user *buf,
758 size_t len, loff_t *ppos)
760 struct simple_attr *attr;
761 size_t size;
762 ssize_t ret;
764 attr = file->private_data;
766 if (!attr->get)
767 return -EACCES;
769 ret = mutex_lock_interruptible(&attr->mutex);
770 if (ret)
771 return ret;
773 if (*ppos) { /* continued read */
774 size = strlen(attr->get_buf);
775 } else { /* first read */
776 u64 val;
777 ret = attr->get(attr->data, &val);
778 if (ret)
779 goto out;
781 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
782 attr->fmt, (unsigned long long)val);
785 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
786 out:
787 mutex_unlock(&attr->mutex);
788 return ret;
791 /* interpret the buffer as a number to call the set function with */
792 ssize_t simple_attr_write(struct file *file, const char __user *buf,
793 size_t len, loff_t *ppos)
795 struct simple_attr *attr;
796 u64 val;
797 size_t size;
798 ssize_t ret;
800 attr = file->private_data;
801 if (!attr->set)
802 return -EACCES;
804 ret = mutex_lock_interruptible(&attr->mutex);
805 if (ret)
806 return ret;
808 ret = -EFAULT;
809 size = min(sizeof(attr->set_buf) - 1, len);
810 if (copy_from_user(attr->set_buf, buf, size))
811 goto out;
813 attr->set_buf[size] = '\0';
814 val = simple_strtoll(attr->set_buf, NULL, 0);
815 ret = attr->set(attr->data, val);
816 if (ret == 0)
817 ret = len; /* on success, claim we got the whole input */
818 out:
819 mutex_unlock(&attr->mutex);
820 return ret;
824 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
825 * @sb: filesystem to do the file handle conversion on
826 * @fid: file handle to convert
827 * @fh_len: length of the file handle in bytes
828 * @fh_type: type of file handle
829 * @get_inode: filesystem callback to retrieve inode
831 * This function decodes @fid as long as it has one of the well-known
832 * Linux filehandle types and calls @get_inode on it to retrieve the
833 * inode for the object specified in the file handle.
835 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
836 int fh_len, int fh_type, struct inode *(*get_inode)
837 (struct super_block *sb, u64 ino, u32 gen))
839 struct inode *inode = NULL;
841 if (fh_len < 2)
842 return NULL;
844 switch (fh_type) {
845 case FILEID_INO32_GEN:
846 case FILEID_INO32_GEN_PARENT:
847 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
848 break;
851 return d_obtain_alias(inode);
853 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
856 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
857 * @sb: filesystem to do the file handle conversion on
858 * @fid: file handle to convert
859 * @fh_len: length of the file handle in bytes
860 * @fh_type: type of file handle
861 * @get_inode: filesystem callback to retrieve inode
863 * This function decodes @fid as long as it has one of the well-known
864 * Linux filehandle types and calls @get_inode on it to retrieve the
865 * inode for the _parent_ object specified in the file handle if it
866 * is specified in the file handle, or NULL otherwise.
868 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
869 int fh_len, int fh_type, struct inode *(*get_inode)
870 (struct super_block *sb, u64 ino, u32 gen))
872 struct inode *inode = NULL;
874 if (fh_len <= 2)
875 return NULL;
877 switch (fh_type) {
878 case FILEID_INO32_GEN_PARENT:
879 inode = get_inode(sb, fid->i32.parent_ino,
880 (fh_len > 3 ? fid->i32.parent_gen : 0));
881 break;
884 return d_obtain_alias(inode);
886 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
889 * generic_file_fsync - generic fsync implementation for simple filesystems
890 * @file: file to synchronize
891 * @datasync: only synchronize essential metadata if true
893 * This is a generic implementation of the fsync method for simple
894 * filesystems which track all non-inode metadata in the buffers list
895 * hanging off the address_space structure.
897 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
898 int datasync)
900 struct inode *inode = file->f_mapping->host;
901 int err;
902 int ret;
904 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
905 if (err)
906 return err;
908 mutex_lock(&inode->i_mutex);
909 ret = sync_mapping_buffers(inode->i_mapping);
910 if (!(inode->i_state & I_DIRTY))
911 goto out;
912 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
913 goto out;
915 err = sync_inode_metadata(inode, 1);
916 if (ret == 0)
917 ret = err;
918 out:
919 mutex_unlock(&inode->i_mutex);
920 return ret;
922 EXPORT_SYMBOL(generic_file_fsync);
925 * generic_check_addressable - Check addressability of file system
926 * @blocksize_bits: log of file system block size
927 * @num_blocks: number of blocks in file system
929 * Determine whether a file system with @num_blocks blocks (and a
930 * block size of 2**@blocksize_bits) is addressable by the sector_t
931 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
933 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
935 u64 last_fs_block = num_blocks - 1;
936 u64 last_fs_page =
937 last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
939 if (unlikely(num_blocks == 0))
940 return 0;
942 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
943 return -EINVAL;
945 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
946 (last_fs_page > (pgoff_t)(~0ULL))) {
947 return -EFBIG;
949 return 0;
951 EXPORT_SYMBOL(generic_check_addressable);
954 * No-op implementation of ->fsync for in-memory filesystems.
956 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
958 return 0;
961 EXPORT_SYMBOL(dcache_dir_close);
962 EXPORT_SYMBOL(dcache_dir_lseek);
963 EXPORT_SYMBOL(dcache_dir_open);
964 EXPORT_SYMBOL(dcache_readdir);
965 EXPORT_SYMBOL(generic_read_dir);
966 EXPORT_SYMBOL(mount_pseudo);
967 EXPORT_SYMBOL(simple_write_begin);
968 EXPORT_SYMBOL(simple_write_end);
969 EXPORT_SYMBOL(simple_dir_inode_operations);
970 EXPORT_SYMBOL(simple_dir_operations);
971 EXPORT_SYMBOL(simple_empty);
972 EXPORT_SYMBOL(simple_fill_super);
973 EXPORT_SYMBOL(simple_getattr);
974 EXPORT_SYMBOL(simple_open);
975 EXPORT_SYMBOL(simple_link);
976 EXPORT_SYMBOL(simple_lookup);
977 EXPORT_SYMBOL(simple_pin_fs);
978 EXPORT_SYMBOL(simple_readpage);
979 EXPORT_SYMBOL(simple_release_fs);
980 EXPORT_SYMBOL(simple_rename);
981 EXPORT_SYMBOL(simple_rmdir);
982 EXPORT_SYMBOL(simple_statfs);
983 EXPORT_SYMBOL(noop_fsync);
984 EXPORT_SYMBOL(simple_unlink);
985 EXPORT_SYMBOL(simple_read_from_buffer);
986 EXPORT_SYMBOL(simple_write_to_buffer);
987 EXPORT_SYMBOL(memory_read_from_buffer);
988 EXPORT_SYMBOL(simple_transaction_set);
989 EXPORT_SYMBOL(simple_transaction_get);
990 EXPORT_SYMBOL(simple_transaction_read);
991 EXPORT_SYMBOL(simple_transaction_release);
992 EXPORT_SYMBOL_GPL(simple_attr_open);
993 EXPORT_SYMBOL_GPL(simple_attr_release);
994 EXPORT_SYMBOL_GPL(simple_attr_read);
995 EXPORT_SYMBOL_GPL(simple_attr_write);
998 * nop .set_page_dirty method so that people can use .page_mkwrite on
999 * anon inodes.
1001 static int anon_set_page_dirty(struct page *page)
1003 return 0;
1007 * A single inode exists for all anon_inode files. Contrary to pipes,
1008 * anon_inode inodes have no associated per-instance data, so we need
1009 * only allocate one of them.
1011 struct inode *alloc_anon_inode(struct super_block *s)
1013 static const struct address_space_operations anon_aops = {
1014 .set_page_dirty = anon_set_page_dirty,
1016 struct inode *inode = new_inode_pseudo(s);
1018 if (!inode)
1019 return ERR_PTR(-ENOMEM);
1021 inode->i_ino = get_next_ino();
1022 inode->i_mapping->a_ops = &anon_aops;
1025 * Mark the inode dirty from the very beginning,
1026 * that way it will never be moved to the dirty
1027 * list because mark_inode_dirty() will think
1028 * that it already _is_ on the dirty list.
1030 inode->i_state = I_DIRTY;
1031 inode->i_mode = S_IRUSR | S_IWUSR;
1032 inode->i_uid = current_fsuid();
1033 inode->i_gid = current_fsgid();
1034 inode->i_flags |= S_PRIVATE;
1035 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1036 return inode;
1038 EXPORT_SYMBOL(alloc_anon_inode);