x86/xen: resume timer irqs early
[linux/fpc-iii.git] / fs / xfs / xfs_attr_leaf.c
blob86db20a9cc02b5df2dd7ecb3c44eca39d7498dd7
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * Copyright (c) 2013 Red Hat, Inc.
4 * All Rights Reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_types.h"
22 #include "xfs_bit.h"
23 #include "xfs_log.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_alloc.h"
34 #include "xfs_btree.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_attr_remote.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_bmap.h"
41 #include "xfs_attr.h"
42 #include "xfs_attr_leaf.h"
43 #include "xfs_error.h"
44 #include "xfs_trace.h"
45 #include "xfs_buf_item.h"
46 #include "xfs_cksum.h"
50 * xfs_attr_leaf.c
52 * Routines to implement leaf blocks of attributes as Btrees of hashed names.
55 /*========================================================================
56 * Function prototypes for the kernel.
57 *========================================================================*/
60 * Routines used for growing the Btree.
62 STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args,
63 xfs_dablk_t which_block, struct xfs_buf **bpp);
64 STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer,
65 struct xfs_attr3_icleaf_hdr *ichdr,
66 struct xfs_da_args *args, int freemap_index);
67 STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args,
68 struct xfs_attr3_icleaf_hdr *ichdr,
69 struct xfs_buf *leaf_buffer);
70 STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state,
71 xfs_da_state_blk_t *blk1,
72 xfs_da_state_blk_t *blk2);
73 STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state,
74 xfs_da_state_blk_t *leaf_blk_1,
75 struct xfs_attr3_icleaf_hdr *ichdr1,
76 xfs_da_state_blk_t *leaf_blk_2,
77 struct xfs_attr3_icleaf_hdr *ichdr2,
78 int *number_entries_in_blk1,
79 int *number_usedbytes_in_blk1);
82 * Utility routines.
84 STATIC void xfs_attr3_leaf_moveents(struct xfs_attr_leafblock *src_leaf,
85 struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start,
86 struct xfs_attr_leafblock *dst_leaf,
87 struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start,
88 int move_count, struct xfs_mount *mp);
89 STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);
91 void
92 xfs_attr3_leaf_hdr_from_disk(
93 struct xfs_attr3_icleaf_hdr *to,
94 struct xfs_attr_leafblock *from)
96 int i;
98 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
99 from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
101 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
102 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from;
104 to->forw = be32_to_cpu(hdr3->info.hdr.forw);
105 to->back = be32_to_cpu(hdr3->info.hdr.back);
106 to->magic = be16_to_cpu(hdr3->info.hdr.magic);
107 to->count = be16_to_cpu(hdr3->count);
108 to->usedbytes = be16_to_cpu(hdr3->usedbytes);
109 to->firstused = be16_to_cpu(hdr3->firstused);
110 to->holes = hdr3->holes;
112 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
113 to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base);
114 to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size);
116 return;
118 to->forw = be32_to_cpu(from->hdr.info.forw);
119 to->back = be32_to_cpu(from->hdr.info.back);
120 to->magic = be16_to_cpu(from->hdr.info.magic);
121 to->count = be16_to_cpu(from->hdr.count);
122 to->usedbytes = be16_to_cpu(from->hdr.usedbytes);
123 to->firstused = be16_to_cpu(from->hdr.firstused);
124 to->holes = from->hdr.holes;
126 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
127 to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base);
128 to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size);
132 void
133 xfs_attr3_leaf_hdr_to_disk(
134 struct xfs_attr_leafblock *to,
135 struct xfs_attr3_icleaf_hdr *from)
137 int i;
139 ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC ||
140 from->magic == XFS_ATTR3_LEAF_MAGIC);
142 if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
143 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to;
145 hdr3->info.hdr.forw = cpu_to_be32(from->forw);
146 hdr3->info.hdr.back = cpu_to_be32(from->back);
147 hdr3->info.hdr.magic = cpu_to_be16(from->magic);
148 hdr3->count = cpu_to_be16(from->count);
149 hdr3->usedbytes = cpu_to_be16(from->usedbytes);
150 hdr3->firstused = cpu_to_be16(from->firstused);
151 hdr3->holes = from->holes;
152 hdr3->pad1 = 0;
154 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
155 hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base);
156 hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size);
158 return;
160 to->hdr.info.forw = cpu_to_be32(from->forw);
161 to->hdr.info.back = cpu_to_be32(from->back);
162 to->hdr.info.magic = cpu_to_be16(from->magic);
163 to->hdr.count = cpu_to_be16(from->count);
164 to->hdr.usedbytes = cpu_to_be16(from->usedbytes);
165 to->hdr.firstused = cpu_to_be16(from->firstused);
166 to->hdr.holes = from->holes;
167 to->hdr.pad1 = 0;
169 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
170 to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base);
171 to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size);
175 static bool
176 xfs_attr3_leaf_verify(
177 struct xfs_buf *bp)
179 struct xfs_mount *mp = bp->b_target->bt_mount;
180 struct xfs_attr_leafblock *leaf = bp->b_addr;
181 struct xfs_attr3_icleaf_hdr ichdr;
183 xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
185 if (xfs_sb_version_hascrc(&mp->m_sb)) {
186 struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
188 if (ichdr.magic != XFS_ATTR3_LEAF_MAGIC)
189 return false;
191 if (!uuid_equal(&hdr3->info.uuid, &mp->m_sb.sb_uuid))
192 return false;
193 if (be64_to_cpu(hdr3->info.blkno) != bp->b_bn)
194 return false;
195 } else {
196 if (ichdr.magic != XFS_ATTR_LEAF_MAGIC)
197 return false;
199 if (ichdr.count == 0)
200 return false;
202 /* XXX: need to range check rest of attr header values */
203 /* XXX: hash order check? */
205 return true;
208 static void
209 xfs_attr3_leaf_write_verify(
210 struct xfs_buf *bp)
212 struct xfs_mount *mp = bp->b_target->bt_mount;
213 struct xfs_buf_log_item *bip = bp->b_fspriv;
214 struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr;
216 if (!xfs_attr3_leaf_verify(bp)) {
217 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
218 xfs_buf_ioerror(bp, EFSCORRUPTED);
219 return;
222 if (!xfs_sb_version_hascrc(&mp->m_sb))
223 return;
225 if (bip)
226 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
228 xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length), XFS_ATTR3_LEAF_CRC_OFF);
232 * leaf/node format detection on trees is sketchy, so a node read can be done on
233 * leaf level blocks when detection identifies the tree as a node format tree
234 * incorrectly. In this case, we need to swap the verifier to match the correct
235 * format of the block being read.
237 static void
238 xfs_attr3_leaf_read_verify(
239 struct xfs_buf *bp)
241 struct xfs_mount *mp = bp->b_target->bt_mount;
243 if ((xfs_sb_version_hascrc(&mp->m_sb) &&
244 !xfs_verify_cksum(bp->b_addr, BBTOB(bp->b_length),
245 XFS_ATTR3_LEAF_CRC_OFF)) ||
246 !xfs_attr3_leaf_verify(bp)) {
247 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
248 xfs_buf_ioerror(bp, EFSCORRUPTED);
252 const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = {
253 .verify_read = xfs_attr3_leaf_read_verify,
254 .verify_write = xfs_attr3_leaf_write_verify,
258 xfs_attr3_leaf_read(
259 struct xfs_trans *tp,
260 struct xfs_inode *dp,
261 xfs_dablk_t bno,
262 xfs_daddr_t mappedbno,
263 struct xfs_buf **bpp)
265 int err;
267 err = xfs_da_read_buf(tp, dp, bno, mappedbno, bpp,
268 XFS_ATTR_FORK, &xfs_attr3_leaf_buf_ops);
269 if (!err && tp)
270 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF);
271 return err;
274 /*========================================================================
275 * Namespace helper routines
276 *========================================================================*/
279 * If namespace bits don't match return 0.
280 * If all match then return 1.
282 STATIC int
283 xfs_attr_namesp_match(int arg_flags, int ondisk_flags)
285 return XFS_ATTR_NSP_ONDISK(ondisk_flags) == XFS_ATTR_NSP_ARGS_TO_ONDISK(arg_flags);
289 /*========================================================================
290 * External routines when attribute fork size < XFS_LITINO(mp).
291 *========================================================================*/
294 * Query whether the requested number of additional bytes of extended
295 * attribute space will be able to fit inline.
297 * Returns zero if not, else the di_forkoff fork offset to be used in the
298 * literal area for attribute data once the new bytes have been added.
300 * di_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
301 * special case for dev/uuid inodes, they have fixed size data forks.
304 xfs_attr_shortform_bytesfit(xfs_inode_t *dp, int bytes)
306 int offset;
307 int minforkoff; /* lower limit on valid forkoff locations */
308 int maxforkoff; /* upper limit on valid forkoff locations */
309 int dsize;
310 xfs_mount_t *mp = dp->i_mount;
312 /* rounded down */
313 offset = (XFS_LITINO(mp, dp->i_d.di_version) - bytes) >> 3;
315 switch (dp->i_d.di_format) {
316 case XFS_DINODE_FMT_DEV:
317 minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
318 return (offset >= minforkoff) ? minforkoff : 0;
319 case XFS_DINODE_FMT_UUID:
320 minforkoff = roundup(sizeof(uuid_t), 8) >> 3;
321 return (offset >= minforkoff) ? minforkoff : 0;
325 * If the requested numbers of bytes is smaller or equal to the
326 * current attribute fork size we can always proceed.
328 * Note that if_bytes in the data fork might actually be larger than
329 * the current data fork size is due to delalloc extents. In that
330 * case either the extent count will go down when they are converted
331 * to real extents, or the delalloc conversion will take care of the
332 * literal area rebalancing.
334 if (bytes <= XFS_IFORK_ASIZE(dp))
335 return dp->i_d.di_forkoff;
338 * For attr2 we can try to move the forkoff if there is space in the
339 * literal area, but for the old format we are done if there is no
340 * space in the fixed attribute fork.
342 if (!(mp->m_flags & XFS_MOUNT_ATTR2))
343 return 0;
345 dsize = dp->i_df.if_bytes;
347 switch (dp->i_d.di_format) {
348 case XFS_DINODE_FMT_EXTENTS:
350 * If there is no attr fork and the data fork is extents,
351 * determine if creating the default attr fork will result
352 * in the extents form migrating to btree. If so, the
353 * minimum offset only needs to be the space required for
354 * the btree root.
356 if (!dp->i_d.di_forkoff && dp->i_df.if_bytes >
357 xfs_default_attroffset(dp))
358 dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS);
359 break;
360 case XFS_DINODE_FMT_BTREE:
362 * If we have a data btree then keep forkoff if we have one,
363 * otherwise we are adding a new attr, so then we set
364 * minforkoff to where the btree root can finish so we have
365 * plenty of room for attrs
367 if (dp->i_d.di_forkoff) {
368 if (offset < dp->i_d.di_forkoff)
369 return 0;
370 return dp->i_d.di_forkoff;
372 dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot);
373 break;
377 * A data fork btree root must have space for at least
378 * MINDBTPTRS key/ptr pairs if the data fork is small or empty.
380 minforkoff = MAX(dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS));
381 minforkoff = roundup(minforkoff, 8) >> 3;
383 /* attr fork btree root can have at least this many key/ptr pairs */
384 maxforkoff = XFS_LITINO(mp, dp->i_d.di_version) -
385 XFS_BMDR_SPACE_CALC(MINABTPTRS);
386 maxforkoff = maxforkoff >> 3; /* rounded down */
388 if (offset >= maxforkoff)
389 return maxforkoff;
390 if (offset >= minforkoff)
391 return offset;
392 return 0;
396 * Switch on the ATTR2 superblock bit (implies also FEATURES2)
398 STATIC void
399 xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp)
401 if ((mp->m_flags & XFS_MOUNT_ATTR2) &&
402 !(xfs_sb_version_hasattr2(&mp->m_sb))) {
403 spin_lock(&mp->m_sb_lock);
404 if (!xfs_sb_version_hasattr2(&mp->m_sb)) {
405 xfs_sb_version_addattr2(&mp->m_sb);
406 spin_unlock(&mp->m_sb_lock);
407 xfs_mod_sb(tp, XFS_SB_VERSIONNUM | XFS_SB_FEATURES2);
408 } else
409 spin_unlock(&mp->m_sb_lock);
414 * Create the initial contents of a shortform attribute list.
416 void
417 xfs_attr_shortform_create(xfs_da_args_t *args)
419 xfs_attr_sf_hdr_t *hdr;
420 xfs_inode_t *dp;
421 xfs_ifork_t *ifp;
423 trace_xfs_attr_sf_create(args);
425 dp = args->dp;
426 ASSERT(dp != NULL);
427 ifp = dp->i_afp;
428 ASSERT(ifp != NULL);
429 ASSERT(ifp->if_bytes == 0);
430 if (dp->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS) {
431 ifp->if_flags &= ~XFS_IFEXTENTS; /* just in case */
432 dp->i_d.di_aformat = XFS_DINODE_FMT_LOCAL;
433 ifp->if_flags |= XFS_IFINLINE;
434 } else {
435 ASSERT(ifp->if_flags & XFS_IFINLINE);
437 xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
438 hdr = (xfs_attr_sf_hdr_t *)ifp->if_u1.if_data;
439 hdr->count = 0;
440 hdr->totsize = cpu_to_be16(sizeof(*hdr));
441 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
445 * Add a name/value pair to the shortform attribute list.
446 * Overflow from the inode has already been checked for.
448 void
449 xfs_attr_shortform_add(xfs_da_args_t *args, int forkoff)
451 xfs_attr_shortform_t *sf;
452 xfs_attr_sf_entry_t *sfe;
453 int i, offset, size;
454 xfs_mount_t *mp;
455 xfs_inode_t *dp;
456 xfs_ifork_t *ifp;
458 trace_xfs_attr_sf_add(args);
460 dp = args->dp;
461 mp = dp->i_mount;
462 dp->i_d.di_forkoff = forkoff;
464 ifp = dp->i_afp;
465 ASSERT(ifp->if_flags & XFS_IFINLINE);
466 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
467 sfe = &sf->list[0];
468 for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
469 #ifdef DEBUG
470 if (sfe->namelen != args->namelen)
471 continue;
472 if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
473 continue;
474 if (!xfs_attr_namesp_match(args->flags, sfe->flags))
475 continue;
476 ASSERT(0);
477 #endif
480 offset = (char *)sfe - (char *)sf;
481 size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen);
482 xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
483 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
484 sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset);
486 sfe->namelen = args->namelen;
487 sfe->valuelen = args->valuelen;
488 sfe->flags = XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
489 memcpy(sfe->nameval, args->name, args->namelen);
490 memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
491 sf->hdr.count++;
492 be16_add_cpu(&sf->hdr.totsize, size);
493 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
495 xfs_sbversion_add_attr2(mp, args->trans);
499 * After the last attribute is removed revert to original inode format,
500 * making all literal area available to the data fork once more.
502 STATIC void
503 xfs_attr_fork_reset(
504 struct xfs_inode *ip,
505 struct xfs_trans *tp)
507 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
508 ip->i_d.di_forkoff = 0;
509 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
511 ASSERT(ip->i_d.di_anextents == 0);
512 ASSERT(ip->i_afp == NULL);
514 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
518 * Remove an attribute from the shortform attribute list structure.
521 xfs_attr_shortform_remove(xfs_da_args_t *args)
523 xfs_attr_shortform_t *sf;
524 xfs_attr_sf_entry_t *sfe;
525 int base, size=0, end, totsize, i;
526 xfs_mount_t *mp;
527 xfs_inode_t *dp;
529 trace_xfs_attr_sf_remove(args);
531 dp = args->dp;
532 mp = dp->i_mount;
533 base = sizeof(xfs_attr_sf_hdr_t);
534 sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data;
535 sfe = &sf->list[0];
536 end = sf->hdr.count;
537 for (i = 0; i < end; sfe = XFS_ATTR_SF_NEXTENTRY(sfe),
538 base += size, i++) {
539 size = XFS_ATTR_SF_ENTSIZE(sfe);
540 if (sfe->namelen != args->namelen)
541 continue;
542 if (memcmp(sfe->nameval, args->name, args->namelen) != 0)
543 continue;
544 if (!xfs_attr_namesp_match(args->flags, sfe->flags))
545 continue;
546 break;
548 if (i == end)
549 return(XFS_ERROR(ENOATTR));
552 * Fix up the attribute fork data, covering the hole
554 end = base + size;
555 totsize = be16_to_cpu(sf->hdr.totsize);
556 if (end != totsize)
557 memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end);
558 sf->hdr.count--;
559 be16_add_cpu(&sf->hdr.totsize, -size);
562 * Fix up the start offset of the attribute fork
564 totsize -= size;
565 if (totsize == sizeof(xfs_attr_sf_hdr_t) &&
566 (mp->m_flags & XFS_MOUNT_ATTR2) &&
567 (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
568 !(args->op_flags & XFS_DA_OP_ADDNAME)) {
569 xfs_attr_fork_reset(dp, args->trans);
570 } else {
571 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
572 dp->i_d.di_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
573 ASSERT(dp->i_d.di_forkoff);
574 ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) ||
575 (args->op_flags & XFS_DA_OP_ADDNAME) ||
576 !(mp->m_flags & XFS_MOUNT_ATTR2) ||
577 dp->i_d.di_format == XFS_DINODE_FMT_BTREE);
578 xfs_trans_log_inode(args->trans, dp,
579 XFS_ILOG_CORE | XFS_ILOG_ADATA);
582 xfs_sbversion_add_attr2(mp, args->trans);
584 return(0);
588 * Look up a name in a shortform attribute list structure.
590 /*ARGSUSED*/
592 xfs_attr_shortform_lookup(xfs_da_args_t *args)
594 xfs_attr_shortform_t *sf;
595 xfs_attr_sf_entry_t *sfe;
596 int i;
597 xfs_ifork_t *ifp;
599 trace_xfs_attr_sf_lookup(args);
601 ifp = args->dp->i_afp;
602 ASSERT(ifp->if_flags & XFS_IFINLINE);
603 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
604 sfe = &sf->list[0];
605 for (i = 0; i < sf->hdr.count;
606 sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
607 if (sfe->namelen != args->namelen)
608 continue;
609 if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
610 continue;
611 if (!xfs_attr_namesp_match(args->flags, sfe->flags))
612 continue;
613 return(XFS_ERROR(EEXIST));
615 return(XFS_ERROR(ENOATTR));
619 * Look up a name in a shortform attribute list structure.
621 /*ARGSUSED*/
623 xfs_attr_shortform_getvalue(xfs_da_args_t *args)
625 xfs_attr_shortform_t *sf;
626 xfs_attr_sf_entry_t *sfe;
627 int i;
629 ASSERT(args->dp->i_afp->if_flags == XFS_IFINLINE);
630 sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data;
631 sfe = &sf->list[0];
632 for (i = 0; i < sf->hdr.count;
633 sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
634 if (sfe->namelen != args->namelen)
635 continue;
636 if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
637 continue;
638 if (!xfs_attr_namesp_match(args->flags, sfe->flags))
639 continue;
640 if (args->flags & ATTR_KERNOVAL) {
641 args->valuelen = sfe->valuelen;
642 return(XFS_ERROR(EEXIST));
644 if (args->valuelen < sfe->valuelen) {
645 args->valuelen = sfe->valuelen;
646 return(XFS_ERROR(ERANGE));
648 args->valuelen = sfe->valuelen;
649 memcpy(args->value, &sfe->nameval[args->namelen],
650 args->valuelen);
651 return(XFS_ERROR(EEXIST));
653 return(XFS_ERROR(ENOATTR));
657 * Convert from using the shortform to the leaf.
660 xfs_attr_shortform_to_leaf(xfs_da_args_t *args)
662 xfs_inode_t *dp;
663 xfs_attr_shortform_t *sf;
664 xfs_attr_sf_entry_t *sfe;
665 xfs_da_args_t nargs;
666 char *tmpbuffer;
667 int error, i, size;
668 xfs_dablk_t blkno;
669 struct xfs_buf *bp;
670 xfs_ifork_t *ifp;
672 trace_xfs_attr_sf_to_leaf(args);
674 dp = args->dp;
675 ifp = dp->i_afp;
676 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
677 size = be16_to_cpu(sf->hdr.totsize);
678 tmpbuffer = kmem_alloc(size, KM_SLEEP);
679 ASSERT(tmpbuffer != NULL);
680 memcpy(tmpbuffer, ifp->if_u1.if_data, size);
681 sf = (xfs_attr_shortform_t *)tmpbuffer;
683 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
684 xfs_bmap_local_to_extents_empty(dp, XFS_ATTR_FORK);
686 bp = NULL;
687 error = xfs_da_grow_inode(args, &blkno);
688 if (error) {
690 * If we hit an IO error middle of the transaction inside
691 * grow_inode(), we may have inconsistent data. Bail out.
693 if (error == EIO)
694 goto out;
695 xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */
696 memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */
697 goto out;
700 ASSERT(blkno == 0);
701 error = xfs_attr3_leaf_create(args, blkno, &bp);
702 if (error) {
703 error = xfs_da_shrink_inode(args, 0, bp);
704 bp = NULL;
705 if (error)
706 goto out;
707 xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */
708 memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */
709 goto out;
712 memset((char *)&nargs, 0, sizeof(nargs));
713 nargs.dp = dp;
714 nargs.firstblock = args->firstblock;
715 nargs.flist = args->flist;
716 nargs.total = args->total;
717 nargs.whichfork = XFS_ATTR_FORK;
718 nargs.trans = args->trans;
719 nargs.op_flags = XFS_DA_OP_OKNOENT;
721 sfe = &sf->list[0];
722 for (i = 0; i < sf->hdr.count; i++) {
723 nargs.name = sfe->nameval;
724 nargs.namelen = sfe->namelen;
725 nargs.value = &sfe->nameval[nargs.namelen];
726 nargs.valuelen = sfe->valuelen;
727 nargs.hashval = xfs_da_hashname(sfe->nameval,
728 sfe->namelen);
729 nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(sfe->flags);
730 error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */
731 ASSERT(error == ENOATTR);
732 error = xfs_attr3_leaf_add(bp, &nargs);
733 ASSERT(error != ENOSPC);
734 if (error)
735 goto out;
736 sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
738 error = 0;
740 out:
741 kmem_free(tmpbuffer);
742 return(error);
746 * Check a leaf attribute block to see if all the entries would fit into
747 * a shortform attribute list.
750 xfs_attr_shortform_allfit(
751 struct xfs_buf *bp,
752 struct xfs_inode *dp)
754 struct xfs_attr_leafblock *leaf;
755 struct xfs_attr_leaf_entry *entry;
756 xfs_attr_leaf_name_local_t *name_loc;
757 struct xfs_attr3_icleaf_hdr leafhdr;
758 int bytes;
759 int i;
761 leaf = bp->b_addr;
762 xfs_attr3_leaf_hdr_from_disk(&leafhdr, leaf);
763 entry = xfs_attr3_leaf_entryp(leaf);
765 bytes = sizeof(struct xfs_attr_sf_hdr);
766 for (i = 0; i < leafhdr.count; entry++, i++) {
767 if (entry->flags & XFS_ATTR_INCOMPLETE)
768 continue; /* don't copy partial entries */
769 if (!(entry->flags & XFS_ATTR_LOCAL))
770 return(0);
771 name_loc = xfs_attr3_leaf_name_local(leaf, i);
772 if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
773 return(0);
774 if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
775 return(0);
776 bytes += sizeof(struct xfs_attr_sf_entry) - 1
777 + name_loc->namelen
778 + be16_to_cpu(name_loc->valuelen);
780 if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) &&
781 (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
782 (bytes == sizeof(struct xfs_attr_sf_hdr)))
783 return -1;
784 return xfs_attr_shortform_bytesfit(dp, bytes);
788 * Convert a leaf attribute list to shortform attribute list
791 xfs_attr3_leaf_to_shortform(
792 struct xfs_buf *bp,
793 struct xfs_da_args *args,
794 int forkoff)
796 struct xfs_attr_leafblock *leaf;
797 struct xfs_attr3_icleaf_hdr ichdr;
798 struct xfs_attr_leaf_entry *entry;
799 struct xfs_attr_leaf_name_local *name_loc;
800 struct xfs_da_args nargs;
801 struct xfs_inode *dp = args->dp;
802 char *tmpbuffer;
803 int error;
804 int i;
806 trace_xfs_attr_leaf_to_sf(args);
808 tmpbuffer = kmem_alloc(XFS_LBSIZE(dp->i_mount), KM_SLEEP);
809 if (!tmpbuffer)
810 return ENOMEM;
812 memcpy(tmpbuffer, bp->b_addr, XFS_LBSIZE(dp->i_mount));
814 leaf = (xfs_attr_leafblock_t *)tmpbuffer;
815 xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
816 entry = xfs_attr3_leaf_entryp(leaf);
818 /* XXX (dgc): buffer is about to be marked stale - why zero it? */
819 memset(bp->b_addr, 0, XFS_LBSIZE(dp->i_mount));
822 * Clean out the prior contents of the attribute list.
824 error = xfs_da_shrink_inode(args, 0, bp);
825 if (error)
826 goto out;
828 if (forkoff == -1) {
829 ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2);
830 ASSERT(dp->i_d.di_format != XFS_DINODE_FMT_BTREE);
831 xfs_attr_fork_reset(dp, args->trans);
832 goto out;
835 xfs_attr_shortform_create(args);
838 * Copy the attributes
840 memset((char *)&nargs, 0, sizeof(nargs));
841 nargs.dp = dp;
842 nargs.firstblock = args->firstblock;
843 nargs.flist = args->flist;
844 nargs.total = args->total;
845 nargs.whichfork = XFS_ATTR_FORK;
846 nargs.trans = args->trans;
847 nargs.op_flags = XFS_DA_OP_OKNOENT;
849 for (i = 0; i < ichdr.count; entry++, i++) {
850 if (entry->flags & XFS_ATTR_INCOMPLETE)
851 continue; /* don't copy partial entries */
852 if (!entry->nameidx)
853 continue;
854 ASSERT(entry->flags & XFS_ATTR_LOCAL);
855 name_loc = xfs_attr3_leaf_name_local(leaf, i);
856 nargs.name = name_loc->nameval;
857 nargs.namelen = name_loc->namelen;
858 nargs.value = &name_loc->nameval[nargs.namelen];
859 nargs.valuelen = be16_to_cpu(name_loc->valuelen);
860 nargs.hashval = be32_to_cpu(entry->hashval);
861 nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(entry->flags);
862 xfs_attr_shortform_add(&nargs, forkoff);
864 error = 0;
866 out:
867 kmem_free(tmpbuffer);
868 return error;
872 * Convert from using a single leaf to a root node and a leaf.
875 xfs_attr3_leaf_to_node(
876 struct xfs_da_args *args)
878 struct xfs_attr_leafblock *leaf;
879 struct xfs_attr3_icleaf_hdr icleafhdr;
880 struct xfs_attr_leaf_entry *entries;
881 struct xfs_da_node_entry *btree;
882 struct xfs_da3_icnode_hdr icnodehdr;
883 struct xfs_da_intnode *node;
884 struct xfs_inode *dp = args->dp;
885 struct xfs_mount *mp = dp->i_mount;
886 struct xfs_buf *bp1 = NULL;
887 struct xfs_buf *bp2 = NULL;
888 xfs_dablk_t blkno;
889 int error;
891 trace_xfs_attr_leaf_to_node(args);
893 error = xfs_da_grow_inode(args, &blkno);
894 if (error)
895 goto out;
896 error = xfs_attr3_leaf_read(args->trans, dp, 0, -1, &bp1);
897 if (error)
898 goto out;
900 error = xfs_da_get_buf(args->trans, dp, blkno, -1, &bp2, XFS_ATTR_FORK);
901 if (error)
902 goto out;
904 /* copy leaf to new buffer, update identifiers */
905 xfs_trans_buf_set_type(args->trans, bp2, XFS_BLFT_ATTR_LEAF_BUF);
906 bp2->b_ops = bp1->b_ops;
907 memcpy(bp2->b_addr, bp1->b_addr, XFS_LBSIZE(mp));
908 if (xfs_sb_version_hascrc(&mp->m_sb)) {
909 struct xfs_da3_blkinfo *hdr3 = bp2->b_addr;
910 hdr3->blkno = cpu_to_be64(bp2->b_bn);
912 xfs_trans_log_buf(args->trans, bp2, 0, XFS_LBSIZE(mp) - 1);
915 * Set up the new root node.
917 error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
918 if (error)
919 goto out;
920 node = bp1->b_addr;
921 xfs_da3_node_hdr_from_disk(&icnodehdr, node);
922 btree = xfs_da3_node_tree_p(node);
924 leaf = bp2->b_addr;
925 xfs_attr3_leaf_hdr_from_disk(&icleafhdr, leaf);
926 entries = xfs_attr3_leaf_entryp(leaf);
928 /* both on-disk, don't endian-flip twice */
929 btree[0].hashval = entries[icleafhdr.count - 1].hashval;
930 btree[0].before = cpu_to_be32(blkno);
931 icnodehdr.count = 1;
932 xfs_da3_node_hdr_to_disk(node, &icnodehdr);
933 xfs_trans_log_buf(args->trans, bp1, 0, XFS_LBSIZE(mp) - 1);
934 error = 0;
935 out:
936 return error;
939 /*========================================================================
940 * Routines used for growing the Btree.
941 *========================================================================*/
944 * Create the initial contents of a leaf attribute list
945 * or a leaf in a node attribute list.
947 STATIC int
948 xfs_attr3_leaf_create(
949 struct xfs_da_args *args,
950 xfs_dablk_t blkno,
951 struct xfs_buf **bpp)
953 struct xfs_attr_leafblock *leaf;
954 struct xfs_attr3_icleaf_hdr ichdr;
955 struct xfs_inode *dp = args->dp;
956 struct xfs_mount *mp = dp->i_mount;
957 struct xfs_buf *bp;
958 int error;
960 trace_xfs_attr_leaf_create(args);
962 error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp,
963 XFS_ATTR_FORK);
964 if (error)
965 return error;
966 bp->b_ops = &xfs_attr3_leaf_buf_ops;
967 xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF);
968 leaf = bp->b_addr;
969 memset(leaf, 0, XFS_LBSIZE(mp));
971 memset(&ichdr, 0, sizeof(ichdr));
972 ichdr.firstused = XFS_LBSIZE(mp);
974 if (xfs_sb_version_hascrc(&mp->m_sb)) {
975 struct xfs_da3_blkinfo *hdr3 = bp->b_addr;
977 ichdr.magic = XFS_ATTR3_LEAF_MAGIC;
979 hdr3->blkno = cpu_to_be64(bp->b_bn);
980 hdr3->owner = cpu_to_be64(dp->i_ino);
981 uuid_copy(&hdr3->uuid, &mp->m_sb.sb_uuid);
983 ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr);
984 } else {
985 ichdr.magic = XFS_ATTR_LEAF_MAGIC;
986 ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr);
988 ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base;
990 xfs_attr3_leaf_hdr_to_disk(leaf, &ichdr);
991 xfs_trans_log_buf(args->trans, bp, 0, XFS_LBSIZE(mp) - 1);
993 *bpp = bp;
994 return 0;
998 * Split the leaf node, rebalance, then add the new entry.
1001 xfs_attr3_leaf_split(
1002 struct xfs_da_state *state,
1003 struct xfs_da_state_blk *oldblk,
1004 struct xfs_da_state_blk *newblk)
1006 xfs_dablk_t blkno;
1007 int error;
1009 trace_xfs_attr_leaf_split(state->args);
1012 * Allocate space for a new leaf node.
1014 ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
1015 error = xfs_da_grow_inode(state->args, &blkno);
1016 if (error)
1017 return(error);
1018 error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp);
1019 if (error)
1020 return(error);
1021 newblk->blkno = blkno;
1022 newblk->magic = XFS_ATTR_LEAF_MAGIC;
1025 * Rebalance the entries across the two leaves.
1026 * NOTE: rebalance() currently depends on the 2nd block being empty.
1028 xfs_attr3_leaf_rebalance(state, oldblk, newblk);
1029 error = xfs_da3_blk_link(state, oldblk, newblk);
1030 if (error)
1031 return(error);
1034 * Save info on "old" attribute for "atomic rename" ops, leaf_add()
1035 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
1036 * "new" attrs info. Will need the "old" info to remove it later.
1038 * Insert the "new" entry in the correct block.
1040 if (state->inleaf) {
1041 trace_xfs_attr_leaf_add_old(state->args);
1042 error = xfs_attr3_leaf_add(oldblk->bp, state->args);
1043 } else {
1044 trace_xfs_attr_leaf_add_new(state->args);
1045 error = xfs_attr3_leaf_add(newblk->bp, state->args);
1049 * Update last hashval in each block since we added the name.
1051 oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
1052 newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
1053 return(error);
1057 * Add a name to the leaf attribute list structure.
1060 xfs_attr3_leaf_add(
1061 struct xfs_buf *bp,
1062 struct xfs_da_args *args)
1064 struct xfs_attr_leafblock *leaf;
1065 struct xfs_attr3_icleaf_hdr ichdr;
1066 int tablesize;
1067 int entsize;
1068 int sum;
1069 int tmp;
1070 int i;
1072 trace_xfs_attr_leaf_add(args);
1074 leaf = bp->b_addr;
1075 xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
1076 ASSERT(args->index >= 0 && args->index <= ichdr.count);
1077 entsize = xfs_attr_leaf_newentsize(args->namelen, args->valuelen,
1078 args->trans->t_mountp->m_sb.sb_blocksize, NULL);
1081 * Search through freemap for first-fit on new name length.
1082 * (may need to figure in size of entry struct too)
1084 tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t)
1085 + xfs_attr3_leaf_hdr_size(leaf);
1086 for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) {
1087 if (tablesize > ichdr.firstused) {
1088 sum += ichdr.freemap[i].size;
1089 continue;
1091 if (!ichdr.freemap[i].size)
1092 continue; /* no space in this map */
1093 tmp = entsize;
1094 if (ichdr.freemap[i].base < ichdr.firstused)
1095 tmp += sizeof(xfs_attr_leaf_entry_t);
1096 if (ichdr.freemap[i].size >= tmp) {
1097 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i);
1098 goto out_log_hdr;
1100 sum += ichdr.freemap[i].size;
1104 * If there are no holes in the address space of the block,
1105 * and we don't have enough freespace, then compaction will do us
1106 * no good and we should just give up.
1108 if (!ichdr.holes && sum < entsize)
1109 return XFS_ERROR(ENOSPC);
1112 * Compact the entries to coalesce free space.
1113 * This may change the hdr->count via dropping INCOMPLETE entries.
1115 xfs_attr3_leaf_compact(args, &ichdr, bp);
1118 * After compaction, the block is guaranteed to have only one
1119 * free region, in freemap[0]. If it is not big enough, give up.
1121 if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) {
1122 tmp = ENOSPC;
1123 goto out_log_hdr;
1126 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0);
1128 out_log_hdr:
1129 xfs_attr3_leaf_hdr_to_disk(leaf, &ichdr);
1130 xfs_trans_log_buf(args->trans, bp,
1131 XFS_DA_LOGRANGE(leaf, &leaf->hdr,
1132 xfs_attr3_leaf_hdr_size(leaf)));
1133 return tmp;
1137 * Add a name to a leaf attribute list structure.
1139 STATIC int
1140 xfs_attr3_leaf_add_work(
1141 struct xfs_buf *bp,
1142 struct xfs_attr3_icleaf_hdr *ichdr,
1143 struct xfs_da_args *args,
1144 int mapindex)
1146 struct xfs_attr_leafblock *leaf;
1147 struct xfs_attr_leaf_entry *entry;
1148 struct xfs_attr_leaf_name_local *name_loc;
1149 struct xfs_attr_leaf_name_remote *name_rmt;
1150 struct xfs_mount *mp;
1151 int tmp;
1152 int i;
1154 trace_xfs_attr_leaf_add_work(args);
1156 leaf = bp->b_addr;
1157 ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE);
1158 ASSERT(args->index >= 0 && args->index <= ichdr->count);
1161 * Force open some space in the entry array and fill it in.
1163 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
1164 if (args->index < ichdr->count) {
1165 tmp = ichdr->count - args->index;
1166 tmp *= sizeof(xfs_attr_leaf_entry_t);
1167 memmove(entry + 1, entry, tmp);
1168 xfs_trans_log_buf(args->trans, bp,
1169 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
1171 ichdr->count++;
1174 * Allocate space for the new string (at the end of the run).
1176 mp = args->trans->t_mountp;
1177 ASSERT(ichdr->freemap[mapindex].base < XFS_LBSIZE(mp));
1178 ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0);
1179 ASSERT(ichdr->freemap[mapindex].size >=
1180 xfs_attr_leaf_newentsize(args->namelen, args->valuelen,
1181 mp->m_sb.sb_blocksize, NULL));
1182 ASSERT(ichdr->freemap[mapindex].size < XFS_LBSIZE(mp));
1183 ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0);
1185 ichdr->freemap[mapindex].size -=
1186 xfs_attr_leaf_newentsize(args->namelen, args->valuelen,
1187 mp->m_sb.sb_blocksize, &tmp);
1189 entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base +
1190 ichdr->freemap[mapindex].size);
1191 entry->hashval = cpu_to_be32(args->hashval);
1192 entry->flags = tmp ? XFS_ATTR_LOCAL : 0;
1193 entry->flags |= XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
1194 if (args->op_flags & XFS_DA_OP_RENAME) {
1195 entry->flags |= XFS_ATTR_INCOMPLETE;
1196 if ((args->blkno2 == args->blkno) &&
1197 (args->index2 <= args->index)) {
1198 args->index2++;
1201 xfs_trans_log_buf(args->trans, bp,
1202 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
1203 ASSERT((args->index == 0) ||
1204 (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
1205 ASSERT((args->index == ichdr->count - 1) ||
1206 (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));
1209 * For "remote" attribute values, simply note that we need to
1210 * allocate space for the "remote" value. We can't actually
1211 * allocate the extents in this transaction, and we can't decide
1212 * which blocks they should be as we might allocate more blocks
1213 * as part of this transaction (a split operation for example).
1215 if (entry->flags & XFS_ATTR_LOCAL) {
1216 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
1217 name_loc->namelen = args->namelen;
1218 name_loc->valuelen = cpu_to_be16(args->valuelen);
1219 memcpy((char *)name_loc->nameval, args->name, args->namelen);
1220 memcpy((char *)&name_loc->nameval[args->namelen], args->value,
1221 be16_to_cpu(name_loc->valuelen));
1222 } else {
1223 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
1224 name_rmt->namelen = args->namelen;
1225 memcpy((char *)name_rmt->name, args->name, args->namelen);
1226 entry->flags |= XFS_ATTR_INCOMPLETE;
1227 /* just in case */
1228 name_rmt->valuelen = 0;
1229 name_rmt->valueblk = 0;
1230 args->rmtblkno = 1;
1231 args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen);
1233 xfs_trans_log_buf(args->trans, bp,
1234 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
1235 xfs_attr_leaf_entsize(leaf, args->index)));
1238 * Update the control info for this leaf node
1240 if (be16_to_cpu(entry->nameidx) < ichdr->firstused)
1241 ichdr->firstused = be16_to_cpu(entry->nameidx);
1243 ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t)
1244 + xfs_attr3_leaf_hdr_size(leaf));
1245 tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t)
1246 + xfs_attr3_leaf_hdr_size(leaf);
1248 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
1249 if (ichdr->freemap[i].base == tmp) {
1250 ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t);
1251 ichdr->freemap[i].size -= sizeof(xfs_attr_leaf_entry_t);
1254 ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index);
1255 return 0;
1259 * Garbage collect a leaf attribute list block by copying it to a new buffer.
1261 STATIC void
1262 xfs_attr3_leaf_compact(
1263 struct xfs_da_args *args,
1264 struct xfs_attr3_icleaf_hdr *ichdr_dst,
1265 struct xfs_buf *bp)
1267 struct xfs_attr_leafblock *leaf_src;
1268 struct xfs_attr_leafblock *leaf_dst;
1269 struct xfs_attr3_icleaf_hdr ichdr_src;
1270 struct xfs_trans *trans = args->trans;
1271 struct xfs_mount *mp = trans->t_mountp;
1272 char *tmpbuffer;
1274 trace_xfs_attr_leaf_compact(args);
1276 tmpbuffer = kmem_alloc(XFS_LBSIZE(mp), KM_SLEEP);
1277 memcpy(tmpbuffer, bp->b_addr, XFS_LBSIZE(mp));
1278 memset(bp->b_addr, 0, XFS_LBSIZE(mp));
1279 leaf_src = (xfs_attr_leafblock_t *)tmpbuffer;
1280 leaf_dst = bp->b_addr;
1283 * Copy the on-disk header back into the destination buffer to ensure
1284 * all the information in the header that is not part of the incore
1285 * header structure is preserved.
1287 memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src));
1289 /* Initialise the incore headers */
1290 ichdr_src = *ichdr_dst; /* struct copy */
1291 ichdr_dst->firstused = XFS_LBSIZE(mp);
1292 ichdr_dst->usedbytes = 0;
1293 ichdr_dst->count = 0;
1294 ichdr_dst->holes = 0;
1295 ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src);
1296 ichdr_dst->freemap[0].size = ichdr_dst->firstused -
1297 ichdr_dst->freemap[0].base;
1299 /* write the header back to initialise the underlying buffer */
1300 xfs_attr3_leaf_hdr_to_disk(leaf_dst, ichdr_dst);
1303 * Copy all entry's in the same (sorted) order,
1304 * but allocate name/value pairs packed and in sequence.
1306 xfs_attr3_leaf_moveents(leaf_src, &ichdr_src, 0, leaf_dst, ichdr_dst, 0,
1307 ichdr_src.count, mp);
1309 * this logs the entire buffer, but the caller must write the header
1310 * back to the buffer when it is finished modifying it.
1312 xfs_trans_log_buf(trans, bp, 0, XFS_LBSIZE(mp) - 1);
1314 kmem_free(tmpbuffer);
1318 * Compare two leaf blocks "order".
1319 * Return 0 unless leaf2 should go before leaf1.
1321 static int
1322 xfs_attr3_leaf_order(
1323 struct xfs_buf *leaf1_bp,
1324 struct xfs_attr3_icleaf_hdr *leaf1hdr,
1325 struct xfs_buf *leaf2_bp,
1326 struct xfs_attr3_icleaf_hdr *leaf2hdr)
1328 struct xfs_attr_leaf_entry *entries1;
1329 struct xfs_attr_leaf_entry *entries2;
1331 entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr);
1332 entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr);
1333 if (leaf1hdr->count > 0 && leaf2hdr->count > 0 &&
1334 ((be32_to_cpu(entries2[0].hashval) <
1335 be32_to_cpu(entries1[0].hashval)) ||
1336 (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) <
1337 be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) {
1338 return 1;
1340 return 0;
1344 xfs_attr_leaf_order(
1345 struct xfs_buf *leaf1_bp,
1346 struct xfs_buf *leaf2_bp)
1348 struct xfs_attr3_icleaf_hdr ichdr1;
1349 struct xfs_attr3_icleaf_hdr ichdr2;
1351 xfs_attr3_leaf_hdr_from_disk(&ichdr1, leaf1_bp->b_addr);
1352 xfs_attr3_leaf_hdr_from_disk(&ichdr2, leaf2_bp->b_addr);
1353 return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2);
1357 * Redistribute the attribute list entries between two leaf nodes,
1358 * taking into account the size of the new entry.
1360 * NOTE: if new block is empty, then it will get the upper half of the
1361 * old block. At present, all (one) callers pass in an empty second block.
1363 * This code adjusts the args->index/blkno and args->index2/blkno2 fields
1364 * to match what it is doing in splitting the attribute leaf block. Those
1365 * values are used in "atomic rename" operations on attributes. Note that
1366 * the "new" and "old" values can end up in different blocks.
1368 STATIC void
1369 xfs_attr3_leaf_rebalance(
1370 struct xfs_da_state *state,
1371 struct xfs_da_state_blk *blk1,
1372 struct xfs_da_state_blk *blk2)
1374 struct xfs_da_args *args;
1375 struct xfs_attr_leafblock *leaf1;
1376 struct xfs_attr_leafblock *leaf2;
1377 struct xfs_attr3_icleaf_hdr ichdr1;
1378 struct xfs_attr3_icleaf_hdr ichdr2;
1379 struct xfs_attr_leaf_entry *entries1;
1380 struct xfs_attr_leaf_entry *entries2;
1381 int count;
1382 int totallen;
1383 int max;
1384 int space;
1385 int swap;
1388 * Set up environment.
1390 ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
1391 ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
1392 leaf1 = blk1->bp->b_addr;
1393 leaf2 = blk2->bp->b_addr;
1394 xfs_attr3_leaf_hdr_from_disk(&ichdr1, leaf1);
1395 xfs_attr3_leaf_hdr_from_disk(&ichdr2, leaf2);
1396 ASSERT(ichdr2.count == 0);
1397 args = state->args;
1399 trace_xfs_attr_leaf_rebalance(args);
1402 * Check ordering of blocks, reverse if it makes things simpler.
1404 * NOTE: Given that all (current) callers pass in an empty
1405 * second block, this code should never set "swap".
1407 swap = 0;
1408 if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) {
1409 struct xfs_da_state_blk *tmp_blk;
1410 struct xfs_attr3_icleaf_hdr tmp_ichdr;
1412 tmp_blk = blk1;
1413 blk1 = blk2;
1414 blk2 = tmp_blk;
1416 /* struct copies to swap them rather than reconverting */
1417 tmp_ichdr = ichdr1;
1418 ichdr1 = ichdr2;
1419 ichdr2 = tmp_ichdr;
1421 leaf1 = blk1->bp->b_addr;
1422 leaf2 = blk2->bp->b_addr;
1423 swap = 1;
1427 * Examine entries until we reduce the absolute difference in
1428 * byte usage between the two blocks to a minimum. Then get
1429 * the direction to copy and the number of elements to move.
1431 * "inleaf" is true if the new entry should be inserted into blk1.
1432 * If "swap" is also true, then reverse the sense of "inleaf".
1434 state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1,
1435 blk2, &ichdr2,
1436 &count, &totallen);
1437 if (swap)
1438 state->inleaf = !state->inleaf;
1441 * Move any entries required from leaf to leaf:
1443 if (count < ichdr1.count) {
1445 * Figure the total bytes to be added to the destination leaf.
1447 /* number entries being moved */
1448 count = ichdr1.count - count;
1449 space = ichdr1.usedbytes - totallen;
1450 space += count * sizeof(xfs_attr_leaf_entry_t);
1453 * leaf2 is the destination, compact it if it looks tight.
1455 max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1456 max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t);
1457 if (space > max)
1458 xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp);
1461 * Move high entries from leaf1 to low end of leaf2.
1463 xfs_attr3_leaf_moveents(leaf1, &ichdr1, ichdr1.count - count,
1464 leaf2, &ichdr2, 0, count, state->mp);
1466 } else if (count > ichdr1.count) {
1468 * I assert that since all callers pass in an empty
1469 * second buffer, this code should never execute.
1471 ASSERT(0);
1474 * Figure the total bytes to be added to the destination leaf.
1476 /* number entries being moved */
1477 count -= ichdr1.count;
1478 space = totallen - ichdr1.usedbytes;
1479 space += count * sizeof(xfs_attr_leaf_entry_t);
1482 * leaf1 is the destination, compact it if it looks tight.
1484 max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1485 max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t);
1486 if (space > max)
1487 xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp);
1490 * Move low entries from leaf2 to high end of leaf1.
1492 xfs_attr3_leaf_moveents(leaf2, &ichdr2, 0, leaf1, &ichdr1,
1493 ichdr1.count, count, state->mp);
1496 xfs_attr3_leaf_hdr_to_disk(leaf1, &ichdr1);
1497 xfs_attr3_leaf_hdr_to_disk(leaf2, &ichdr2);
1498 xfs_trans_log_buf(args->trans, blk1->bp, 0, state->blocksize-1);
1499 xfs_trans_log_buf(args->trans, blk2->bp, 0, state->blocksize-1);
1502 * Copy out last hashval in each block for B-tree code.
1504 entries1 = xfs_attr3_leaf_entryp(leaf1);
1505 entries2 = xfs_attr3_leaf_entryp(leaf2);
1506 blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval);
1507 blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval);
1510 * Adjust the expected index for insertion.
1511 * NOTE: this code depends on the (current) situation that the
1512 * second block was originally empty.
1514 * If the insertion point moved to the 2nd block, we must adjust
1515 * the index. We must also track the entry just following the
1516 * new entry for use in an "atomic rename" operation, that entry
1517 * is always the "old" entry and the "new" entry is what we are
1518 * inserting. The index/blkno fields refer to the "old" entry,
1519 * while the index2/blkno2 fields refer to the "new" entry.
1521 if (blk1->index > ichdr1.count) {
1522 ASSERT(state->inleaf == 0);
1523 blk2->index = blk1->index - ichdr1.count;
1524 args->index = args->index2 = blk2->index;
1525 args->blkno = args->blkno2 = blk2->blkno;
1526 } else if (blk1->index == ichdr1.count) {
1527 if (state->inleaf) {
1528 args->index = blk1->index;
1529 args->blkno = blk1->blkno;
1530 args->index2 = 0;
1531 args->blkno2 = blk2->blkno;
1532 } else {
1534 * On a double leaf split, the original attr location
1535 * is already stored in blkno2/index2, so don't
1536 * overwrite it overwise we corrupt the tree.
1538 blk2->index = blk1->index - ichdr1.count;
1539 args->index = blk2->index;
1540 args->blkno = blk2->blkno;
1541 if (!state->extravalid) {
1543 * set the new attr location to match the old
1544 * one and let the higher level split code
1545 * decide where in the leaf to place it.
1547 args->index2 = blk2->index;
1548 args->blkno2 = blk2->blkno;
1551 } else {
1552 ASSERT(state->inleaf == 1);
1553 args->index = args->index2 = blk1->index;
1554 args->blkno = args->blkno2 = blk1->blkno;
1559 * Examine entries until we reduce the absolute difference in
1560 * byte usage between the two blocks to a minimum.
1561 * GROT: Is this really necessary? With other than a 512 byte blocksize,
1562 * GROT: there will always be enough room in either block for a new entry.
1563 * GROT: Do a double-split for this case?
1565 STATIC int
1566 xfs_attr3_leaf_figure_balance(
1567 struct xfs_da_state *state,
1568 struct xfs_da_state_blk *blk1,
1569 struct xfs_attr3_icleaf_hdr *ichdr1,
1570 struct xfs_da_state_blk *blk2,
1571 struct xfs_attr3_icleaf_hdr *ichdr2,
1572 int *countarg,
1573 int *usedbytesarg)
1575 struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr;
1576 struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr;
1577 struct xfs_attr_leaf_entry *entry;
1578 int count;
1579 int max;
1580 int index;
1581 int totallen = 0;
1582 int half;
1583 int lastdelta;
1584 int foundit = 0;
1585 int tmp;
1588 * Examine entries until we reduce the absolute difference in
1589 * byte usage between the two blocks to a minimum.
1591 max = ichdr1->count + ichdr2->count;
1592 half = (max + 1) * sizeof(*entry);
1593 half += ichdr1->usedbytes + ichdr2->usedbytes +
1594 xfs_attr_leaf_newentsize(state->args->namelen,
1595 state->args->valuelen,
1596 state->blocksize, NULL);
1597 half /= 2;
1598 lastdelta = state->blocksize;
1599 entry = xfs_attr3_leaf_entryp(leaf1);
1600 for (count = index = 0; count < max; entry++, index++, count++) {
1602 #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A))
1604 * The new entry is in the first block, account for it.
1606 if (count == blk1->index) {
1607 tmp = totallen + sizeof(*entry) +
1608 xfs_attr_leaf_newentsize(
1609 state->args->namelen,
1610 state->args->valuelen,
1611 state->blocksize, NULL);
1612 if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1613 break;
1614 lastdelta = XFS_ATTR_ABS(half - tmp);
1615 totallen = tmp;
1616 foundit = 1;
1620 * Wrap around into the second block if necessary.
1622 if (count == ichdr1->count) {
1623 leaf1 = leaf2;
1624 entry = xfs_attr3_leaf_entryp(leaf1);
1625 index = 0;
1629 * Figure out if next leaf entry would be too much.
1631 tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
1632 index);
1633 if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1634 break;
1635 lastdelta = XFS_ATTR_ABS(half - tmp);
1636 totallen = tmp;
1637 #undef XFS_ATTR_ABS
1641 * Calculate the number of usedbytes that will end up in lower block.
1642 * If new entry not in lower block, fix up the count.
1644 totallen -= count * sizeof(*entry);
1645 if (foundit) {
1646 totallen -= sizeof(*entry) +
1647 xfs_attr_leaf_newentsize(
1648 state->args->namelen,
1649 state->args->valuelen,
1650 state->blocksize, NULL);
1653 *countarg = count;
1654 *usedbytesarg = totallen;
1655 return foundit;
1658 /*========================================================================
1659 * Routines used for shrinking the Btree.
1660 *========================================================================*/
1663 * Check a leaf block and its neighbors to see if the block should be
1664 * collapsed into one or the other neighbor. Always keep the block
1665 * with the smaller block number.
1666 * If the current block is over 50% full, don't try to join it, return 0.
1667 * If the block is empty, fill in the state structure and return 2.
1668 * If it can be collapsed, fill in the state structure and return 1.
1669 * If nothing can be done, return 0.
1671 * GROT: allow for INCOMPLETE entries in calculation.
1674 xfs_attr3_leaf_toosmall(
1675 struct xfs_da_state *state,
1676 int *action)
1678 struct xfs_attr_leafblock *leaf;
1679 struct xfs_da_state_blk *blk;
1680 struct xfs_attr3_icleaf_hdr ichdr;
1681 struct xfs_buf *bp;
1682 xfs_dablk_t blkno;
1683 int bytes;
1684 int forward;
1685 int error;
1686 int retval;
1687 int i;
1689 trace_xfs_attr_leaf_toosmall(state->args);
1692 * Check for the degenerate case of the block being over 50% full.
1693 * If so, it's not worth even looking to see if we might be able
1694 * to coalesce with a sibling.
1696 blk = &state->path.blk[ state->path.active-1 ];
1697 leaf = blk->bp->b_addr;
1698 xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
1699 bytes = xfs_attr3_leaf_hdr_size(leaf) +
1700 ichdr.count * sizeof(xfs_attr_leaf_entry_t) +
1701 ichdr.usedbytes;
1702 if (bytes > (state->blocksize >> 1)) {
1703 *action = 0; /* blk over 50%, don't try to join */
1704 return(0);
1708 * Check for the degenerate case of the block being empty.
1709 * If the block is empty, we'll simply delete it, no need to
1710 * coalesce it with a sibling block. We choose (arbitrarily)
1711 * to merge with the forward block unless it is NULL.
1713 if (ichdr.count == 0) {
1715 * Make altpath point to the block we want to keep and
1716 * path point to the block we want to drop (this one).
1718 forward = (ichdr.forw != 0);
1719 memcpy(&state->altpath, &state->path, sizeof(state->path));
1720 error = xfs_da3_path_shift(state, &state->altpath, forward,
1721 0, &retval);
1722 if (error)
1723 return(error);
1724 if (retval) {
1725 *action = 0;
1726 } else {
1727 *action = 2;
1729 return 0;
1733 * Examine each sibling block to see if we can coalesce with
1734 * at least 25% free space to spare. We need to figure out
1735 * whether to merge with the forward or the backward block.
1736 * We prefer coalescing with the lower numbered sibling so as
1737 * to shrink an attribute list over time.
1739 /* start with smaller blk num */
1740 forward = ichdr.forw < ichdr.back;
1741 for (i = 0; i < 2; forward = !forward, i++) {
1742 struct xfs_attr3_icleaf_hdr ichdr2;
1743 if (forward)
1744 blkno = ichdr.forw;
1745 else
1746 blkno = ichdr.back;
1747 if (blkno == 0)
1748 continue;
1749 error = xfs_attr3_leaf_read(state->args->trans, state->args->dp,
1750 blkno, -1, &bp);
1751 if (error)
1752 return(error);
1754 xfs_attr3_leaf_hdr_from_disk(&ichdr2, bp->b_addr);
1756 bytes = state->blocksize - (state->blocksize >> 2) -
1757 ichdr.usedbytes - ichdr2.usedbytes -
1758 ((ichdr.count + ichdr2.count) *
1759 sizeof(xfs_attr_leaf_entry_t)) -
1760 xfs_attr3_leaf_hdr_size(leaf);
1762 xfs_trans_brelse(state->args->trans, bp);
1763 if (bytes >= 0)
1764 break; /* fits with at least 25% to spare */
1766 if (i >= 2) {
1767 *action = 0;
1768 return(0);
1772 * Make altpath point to the block we want to keep (the lower
1773 * numbered block) and path point to the block we want to drop.
1775 memcpy(&state->altpath, &state->path, sizeof(state->path));
1776 if (blkno < blk->blkno) {
1777 error = xfs_da3_path_shift(state, &state->altpath, forward,
1778 0, &retval);
1779 } else {
1780 error = xfs_da3_path_shift(state, &state->path, forward,
1781 0, &retval);
1783 if (error)
1784 return(error);
1785 if (retval) {
1786 *action = 0;
1787 } else {
1788 *action = 1;
1790 return(0);
1794 * Remove a name from the leaf attribute list structure.
1796 * Return 1 if leaf is less than 37% full, 0 if >= 37% full.
1797 * If two leaves are 37% full, when combined they will leave 25% free.
1800 xfs_attr3_leaf_remove(
1801 struct xfs_buf *bp,
1802 struct xfs_da_args *args)
1804 struct xfs_attr_leafblock *leaf;
1805 struct xfs_attr3_icleaf_hdr ichdr;
1806 struct xfs_attr_leaf_entry *entry;
1807 struct xfs_mount *mp = args->trans->t_mountp;
1808 int before;
1809 int after;
1810 int smallest;
1811 int entsize;
1812 int tablesize;
1813 int tmp;
1814 int i;
1816 trace_xfs_attr_leaf_remove(args);
1818 leaf = bp->b_addr;
1819 xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
1821 ASSERT(ichdr.count > 0 && ichdr.count < XFS_LBSIZE(mp) / 8);
1822 ASSERT(args->index >= 0 && args->index < ichdr.count);
1823 ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) +
1824 xfs_attr3_leaf_hdr_size(leaf));
1826 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
1828 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
1829 ASSERT(be16_to_cpu(entry->nameidx) < XFS_LBSIZE(mp));
1832 * Scan through free region table:
1833 * check for adjacency of free'd entry with an existing one,
1834 * find smallest free region in case we need to replace it,
1835 * adjust any map that borders the entry table,
1837 tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t)
1838 + xfs_attr3_leaf_hdr_size(leaf);
1839 tmp = ichdr.freemap[0].size;
1840 before = after = -1;
1841 smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
1842 entsize = xfs_attr_leaf_entsize(leaf, args->index);
1843 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
1844 ASSERT(ichdr.freemap[i].base < XFS_LBSIZE(mp));
1845 ASSERT(ichdr.freemap[i].size < XFS_LBSIZE(mp));
1846 if (ichdr.freemap[i].base == tablesize) {
1847 ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t);
1848 ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t);
1851 if (ichdr.freemap[i].base + ichdr.freemap[i].size ==
1852 be16_to_cpu(entry->nameidx)) {
1853 before = i;
1854 } else if (ichdr.freemap[i].base ==
1855 (be16_to_cpu(entry->nameidx) + entsize)) {
1856 after = i;
1857 } else if (ichdr.freemap[i].size < tmp) {
1858 tmp = ichdr.freemap[i].size;
1859 smallest = i;
1864 * Coalesce adjacent freemap regions,
1865 * or replace the smallest region.
1867 if ((before >= 0) || (after >= 0)) {
1868 if ((before >= 0) && (after >= 0)) {
1869 ichdr.freemap[before].size += entsize;
1870 ichdr.freemap[before].size += ichdr.freemap[after].size;
1871 ichdr.freemap[after].base = 0;
1872 ichdr.freemap[after].size = 0;
1873 } else if (before >= 0) {
1874 ichdr.freemap[before].size += entsize;
1875 } else {
1876 ichdr.freemap[after].base = be16_to_cpu(entry->nameidx);
1877 ichdr.freemap[after].size += entsize;
1879 } else {
1881 * Replace smallest region (if it is smaller than free'd entry)
1883 if (ichdr.freemap[smallest].size < entsize) {
1884 ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx);
1885 ichdr.freemap[smallest].size = entsize;
1890 * Did we remove the first entry?
1892 if (be16_to_cpu(entry->nameidx) == ichdr.firstused)
1893 smallest = 1;
1894 else
1895 smallest = 0;
1898 * Compress the remaining entries and zero out the removed stuff.
1900 memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize);
1901 ichdr.usedbytes -= entsize;
1902 xfs_trans_log_buf(args->trans, bp,
1903 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
1904 entsize));
1906 tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t);
1907 memmove(entry, entry + 1, tmp);
1908 ichdr.count--;
1909 xfs_trans_log_buf(args->trans, bp,
1910 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t)));
1912 entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count];
1913 memset(entry, 0, sizeof(xfs_attr_leaf_entry_t));
1916 * If we removed the first entry, re-find the first used byte
1917 * in the name area. Note that if the entry was the "firstused",
1918 * then we don't have a "hole" in our block resulting from
1919 * removing the name.
1921 if (smallest) {
1922 tmp = XFS_LBSIZE(mp);
1923 entry = xfs_attr3_leaf_entryp(leaf);
1924 for (i = ichdr.count - 1; i >= 0; entry++, i--) {
1925 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
1926 ASSERT(be16_to_cpu(entry->nameidx) < XFS_LBSIZE(mp));
1928 if (be16_to_cpu(entry->nameidx) < tmp)
1929 tmp = be16_to_cpu(entry->nameidx);
1931 ichdr.firstused = tmp;
1932 if (!ichdr.firstused)
1933 ichdr.firstused = tmp - XFS_ATTR_LEAF_NAME_ALIGN;
1934 } else {
1935 ichdr.holes = 1; /* mark as needing compaction */
1937 xfs_attr3_leaf_hdr_to_disk(leaf, &ichdr);
1938 xfs_trans_log_buf(args->trans, bp,
1939 XFS_DA_LOGRANGE(leaf, &leaf->hdr,
1940 xfs_attr3_leaf_hdr_size(leaf)));
1943 * Check if leaf is less than 50% full, caller may want to
1944 * "join" the leaf with a sibling if so.
1946 tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) +
1947 ichdr.count * sizeof(xfs_attr_leaf_entry_t);
1949 return tmp < mp->m_attr_magicpct; /* leaf is < 37% full */
1953 * Move all the attribute list entries from drop_leaf into save_leaf.
1955 void
1956 xfs_attr3_leaf_unbalance(
1957 struct xfs_da_state *state,
1958 struct xfs_da_state_blk *drop_blk,
1959 struct xfs_da_state_blk *save_blk)
1961 struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr;
1962 struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr;
1963 struct xfs_attr3_icleaf_hdr drophdr;
1964 struct xfs_attr3_icleaf_hdr savehdr;
1965 struct xfs_attr_leaf_entry *entry;
1966 struct xfs_mount *mp = state->mp;
1968 trace_xfs_attr_leaf_unbalance(state->args);
1970 drop_leaf = drop_blk->bp->b_addr;
1971 save_leaf = save_blk->bp->b_addr;
1972 xfs_attr3_leaf_hdr_from_disk(&drophdr, drop_leaf);
1973 xfs_attr3_leaf_hdr_from_disk(&savehdr, save_leaf);
1974 entry = xfs_attr3_leaf_entryp(drop_leaf);
1977 * Save last hashval from dying block for later Btree fixup.
1979 drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval);
1982 * Check if we need a temp buffer, or can we do it in place.
1983 * Note that we don't check "leaf" for holes because we will
1984 * always be dropping it, toosmall() decided that for us already.
1986 if (savehdr.holes == 0) {
1988 * dest leaf has no holes, so we add there. May need
1989 * to make some room in the entry array.
1991 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
1992 drop_blk->bp, &drophdr)) {
1993 xfs_attr3_leaf_moveents(drop_leaf, &drophdr, 0,
1994 save_leaf, &savehdr, 0,
1995 drophdr.count, mp);
1996 } else {
1997 xfs_attr3_leaf_moveents(drop_leaf, &drophdr, 0,
1998 save_leaf, &savehdr,
1999 savehdr.count, drophdr.count, mp);
2001 } else {
2003 * Destination has holes, so we make a temporary copy
2004 * of the leaf and add them both to that.
2006 struct xfs_attr_leafblock *tmp_leaf;
2007 struct xfs_attr3_icleaf_hdr tmphdr;
2009 tmp_leaf = kmem_zalloc(state->blocksize, KM_SLEEP);
2012 * Copy the header into the temp leaf so that all the stuff
2013 * not in the incore header is present and gets copied back in
2014 * once we've moved all the entries.
2016 memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf));
2018 memset(&tmphdr, 0, sizeof(tmphdr));
2019 tmphdr.magic = savehdr.magic;
2020 tmphdr.forw = savehdr.forw;
2021 tmphdr.back = savehdr.back;
2022 tmphdr.firstused = state->blocksize;
2024 /* write the header to the temp buffer to initialise it */
2025 xfs_attr3_leaf_hdr_to_disk(tmp_leaf, &tmphdr);
2027 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2028 drop_blk->bp, &drophdr)) {
2029 xfs_attr3_leaf_moveents(drop_leaf, &drophdr, 0,
2030 tmp_leaf, &tmphdr, 0,
2031 drophdr.count, mp);
2032 xfs_attr3_leaf_moveents(save_leaf, &savehdr, 0,
2033 tmp_leaf, &tmphdr, tmphdr.count,
2034 savehdr.count, mp);
2035 } else {
2036 xfs_attr3_leaf_moveents(save_leaf, &savehdr, 0,
2037 tmp_leaf, &tmphdr, 0,
2038 savehdr.count, mp);
2039 xfs_attr3_leaf_moveents(drop_leaf, &drophdr, 0,
2040 tmp_leaf, &tmphdr, tmphdr.count,
2041 drophdr.count, mp);
2043 memcpy(save_leaf, tmp_leaf, state->blocksize);
2044 savehdr = tmphdr; /* struct copy */
2045 kmem_free(tmp_leaf);
2048 xfs_attr3_leaf_hdr_to_disk(save_leaf, &savehdr);
2049 xfs_trans_log_buf(state->args->trans, save_blk->bp, 0,
2050 state->blocksize - 1);
2053 * Copy out last hashval in each block for B-tree code.
2055 entry = xfs_attr3_leaf_entryp(save_leaf);
2056 save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval);
2059 /*========================================================================
2060 * Routines used for finding things in the Btree.
2061 *========================================================================*/
2064 * Look up a name in a leaf attribute list structure.
2065 * This is the internal routine, it uses the caller's buffer.
2067 * Note that duplicate keys are allowed, but only check within the
2068 * current leaf node. The Btree code must check in adjacent leaf nodes.
2070 * Return in args->index the index into the entry[] array of either
2071 * the found entry, or where the entry should have been (insert before
2072 * that entry).
2074 * Don't change the args->value unless we find the attribute.
2077 xfs_attr3_leaf_lookup_int(
2078 struct xfs_buf *bp,
2079 struct xfs_da_args *args)
2081 struct xfs_attr_leafblock *leaf;
2082 struct xfs_attr3_icleaf_hdr ichdr;
2083 struct xfs_attr_leaf_entry *entry;
2084 struct xfs_attr_leaf_entry *entries;
2085 struct xfs_attr_leaf_name_local *name_loc;
2086 struct xfs_attr_leaf_name_remote *name_rmt;
2087 xfs_dahash_t hashval;
2088 int probe;
2089 int span;
2091 trace_xfs_attr_leaf_lookup(args);
2093 leaf = bp->b_addr;
2094 xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
2095 entries = xfs_attr3_leaf_entryp(leaf);
2096 ASSERT(ichdr.count < XFS_LBSIZE(args->dp->i_mount) / 8);
2099 * Binary search. (note: small blocks will skip this loop)
2101 hashval = args->hashval;
2102 probe = span = ichdr.count / 2;
2103 for (entry = &entries[probe]; span > 4; entry = &entries[probe]) {
2104 span /= 2;
2105 if (be32_to_cpu(entry->hashval) < hashval)
2106 probe += span;
2107 else if (be32_to_cpu(entry->hashval) > hashval)
2108 probe -= span;
2109 else
2110 break;
2112 ASSERT(probe >= 0 && (!ichdr.count || probe < ichdr.count));
2113 ASSERT(span <= 4 || be32_to_cpu(entry->hashval) == hashval);
2116 * Since we may have duplicate hashval's, find the first matching
2117 * hashval in the leaf.
2119 while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) {
2120 entry--;
2121 probe--;
2123 while (probe < ichdr.count &&
2124 be32_to_cpu(entry->hashval) < hashval) {
2125 entry++;
2126 probe++;
2128 if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) {
2129 args->index = probe;
2130 return XFS_ERROR(ENOATTR);
2134 * Duplicate keys may be present, so search all of them for a match.
2136 for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval);
2137 entry++, probe++) {
2139 * GROT: Add code to remove incomplete entries.
2142 * If we are looking for INCOMPLETE entries, show only those.
2143 * If we are looking for complete entries, show only those.
2145 if ((args->flags & XFS_ATTR_INCOMPLETE) !=
2146 (entry->flags & XFS_ATTR_INCOMPLETE)) {
2147 continue;
2149 if (entry->flags & XFS_ATTR_LOCAL) {
2150 name_loc = xfs_attr3_leaf_name_local(leaf, probe);
2151 if (name_loc->namelen != args->namelen)
2152 continue;
2153 if (memcmp(args->name, name_loc->nameval,
2154 args->namelen) != 0)
2155 continue;
2156 if (!xfs_attr_namesp_match(args->flags, entry->flags))
2157 continue;
2158 args->index = probe;
2159 return XFS_ERROR(EEXIST);
2160 } else {
2161 name_rmt = xfs_attr3_leaf_name_remote(leaf, probe);
2162 if (name_rmt->namelen != args->namelen)
2163 continue;
2164 if (memcmp(args->name, name_rmt->name,
2165 args->namelen) != 0)
2166 continue;
2167 if (!xfs_attr_namesp_match(args->flags, entry->flags))
2168 continue;
2169 args->index = probe;
2170 args->valuelen = be32_to_cpu(name_rmt->valuelen);
2171 args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2172 args->rmtblkcnt = xfs_attr3_rmt_blocks(
2173 args->dp->i_mount,
2174 args->valuelen);
2175 return XFS_ERROR(EEXIST);
2178 args->index = probe;
2179 return XFS_ERROR(ENOATTR);
2183 * Get the value associated with an attribute name from a leaf attribute
2184 * list structure.
2187 xfs_attr3_leaf_getvalue(
2188 struct xfs_buf *bp,
2189 struct xfs_da_args *args)
2191 struct xfs_attr_leafblock *leaf;
2192 struct xfs_attr3_icleaf_hdr ichdr;
2193 struct xfs_attr_leaf_entry *entry;
2194 struct xfs_attr_leaf_name_local *name_loc;
2195 struct xfs_attr_leaf_name_remote *name_rmt;
2196 int valuelen;
2198 leaf = bp->b_addr;
2199 xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
2200 ASSERT(ichdr.count < XFS_LBSIZE(args->dp->i_mount) / 8);
2201 ASSERT(args->index < ichdr.count);
2203 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2204 if (entry->flags & XFS_ATTR_LOCAL) {
2205 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2206 ASSERT(name_loc->namelen == args->namelen);
2207 ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
2208 valuelen = be16_to_cpu(name_loc->valuelen);
2209 if (args->flags & ATTR_KERNOVAL) {
2210 args->valuelen = valuelen;
2211 return 0;
2213 if (args->valuelen < valuelen) {
2214 args->valuelen = valuelen;
2215 return XFS_ERROR(ERANGE);
2217 args->valuelen = valuelen;
2218 memcpy(args->value, &name_loc->nameval[args->namelen], valuelen);
2219 } else {
2220 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2221 ASSERT(name_rmt->namelen == args->namelen);
2222 ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
2223 valuelen = be32_to_cpu(name_rmt->valuelen);
2224 args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2225 args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount,
2226 valuelen);
2227 if (args->flags & ATTR_KERNOVAL) {
2228 args->valuelen = valuelen;
2229 return 0;
2231 if (args->valuelen < valuelen) {
2232 args->valuelen = valuelen;
2233 return XFS_ERROR(ERANGE);
2235 args->valuelen = valuelen;
2237 return 0;
2240 /*========================================================================
2241 * Utility routines.
2242 *========================================================================*/
2245 * Move the indicated entries from one leaf to another.
2246 * NOTE: this routine modifies both source and destination leaves.
2248 /*ARGSUSED*/
2249 STATIC void
2250 xfs_attr3_leaf_moveents(
2251 struct xfs_attr_leafblock *leaf_s,
2252 struct xfs_attr3_icleaf_hdr *ichdr_s,
2253 int start_s,
2254 struct xfs_attr_leafblock *leaf_d,
2255 struct xfs_attr3_icleaf_hdr *ichdr_d,
2256 int start_d,
2257 int count,
2258 struct xfs_mount *mp)
2260 struct xfs_attr_leaf_entry *entry_s;
2261 struct xfs_attr_leaf_entry *entry_d;
2262 int desti;
2263 int tmp;
2264 int i;
2267 * Check for nothing to do.
2269 if (count == 0)
2270 return;
2273 * Set up environment.
2275 ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC ||
2276 ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC);
2277 ASSERT(ichdr_s->magic == ichdr_d->magic);
2278 ASSERT(ichdr_s->count > 0 && ichdr_s->count < XFS_LBSIZE(mp) / 8);
2279 ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s))
2280 + xfs_attr3_leaf_hdr_size(leaf_s));
2281 ASSERT(ichdr_d->count < XFS_LBSIZE(mp) / 8);
2282 ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d))
2283 + xfs_attr3_leaf_hdr_size(leaf_d));
2285 ASSERT(start_s < ichdr_s->count);
2286 ASSERT(start_d <= ichdr_d->count);
2287 ASSERT(count <= ichdr_s->count);
2291 * Move the entries in the destination leaf up to make a hole?
2293 if (start_d < ichdr_d->count) {
2294 tmp = ichdr_d->count - start_d;
2295 tmp *= sizeof(xfs_attr_leaf_entry_t);
2296 entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2297 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count];
2298 memmove(entry_d, entry_s, tmp);
2302 * Copy all entry's in the same (sorted) order,
2303 * but allocate attribute info packed and in sequence.
2305 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2306 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2307 desti = start_d;
2308 for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
2309 ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused);
2310 tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
2311 #ifdef GROT
2313 * Code to drop INCOMPLETE entries. Difficult to use as we
2314 * may also need to change the insertion index. Code turned
2315 * off for 6.2, should be revisited later.
2317 if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
2318 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2319 ichdr_s->usedbytes -= tmp;
2320 ichdr_s->count -= 1;
2321 entry_d--; /* to compensate for ++ in loop hdr */
2322 desti--;
2323 if ((start_s + i) < offset)
2324 result++; /* insertion index adjustment */
2325 } else {
2326 #endif /* GROT */
2327 ichdr_d->firstused -= tmp;
2328 /* both on-disk, don't endian flip twice */
2329 entry_d->hashval = entry_s->hashval;
2330 entry_d->nameidx = cpu_to_be16(ichdr_d->firstused);
2331 entry_d->flags = entry_s->flags;
2332 ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
2333 <= XFS_LBSIZE(mp));
2334 memmove(xfs_attr3_leaf_name(leaf_d, desti),
2335 xfs_attr3_leaf_name(leaf_s, start_s + i), tmp);
2336 ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
2337 <= XFS_LBSIZE(mp));
2338 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2339 ichdr_s->usedbytes -= tmp;
2340 ichdr_d->usedbytes += tmp;
2341 ichdr_s->count -= 1;
2342 ichdr_d->count += 1;
2343 tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t)
2344 + xfs_attr3_leaf_hdr_size(leaf_d);
2345 ASSERT(ichdr_d->firstused >= tmp);
2346 #ifdef GROT
2348 #endif /* GROT */
2352 * Zero out the entries we just copied.
2354 if (start_s == ichdr_s->count) {
2355 tmp = count * sizeof(xfs_attr_leaf_entry_t);
2356 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2357 ASSERT(((char *)entry_s + tmp) <=
2358 ((char *)leaf_s + XFS_LBSIZE(mp)));
2359 memset(entry_s, 0, tmp);
2360 } else {
2362 * Move the remaining entries down to fill the hole,
2363 * then zero the entries at the top.
2365 tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t);
2366 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count];
2367 entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2368 memmove(entry_d, entry_s, tmp);
2370 tmp = count * sizeof(xfs_attr_leaf_entry_t);
2371 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count];
2372 ASSERT(((char *)entry_s + tmp) <=
2373 ((char *)leaf_s + XFS_LBSIZE(mp)));
2374 memset(entry_s, 0, tmp);
2378 * Fill in the freemap information
2380 ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d);
2381 ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t);
2382 ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base;
2383 ichdr_d->freemap[1].base = 0;
2384 ichdr_d->freemap[2].base = 0;
2385 ichdr_d->freemap[1].size = 0;
2386 ichdr_d->freemap[2].size = 0;
2387 ichdr_s->holes = 1; /* leaf may not be compact */
2391 * Pick up the last hashvalue from a leaf block.
2393 xfs_dahash_t
2394 xfs_attr_leaf_lasthash(
2395 struct xfs_buf *bp,
2396 int *count)
2398 struct xfs_attr3_icleaf_hdr ichdr;
2399 struct xfs_attr_leaf_entry *entries;
2401 xfs_attr3_leaf_hdr_from_disk(&ichdr, bp->b_addr);
2402 entries = xfs_attr3_leaf_entryp(bp->b_addr);
2403 if (count)
2404 *count = ichdr.count;
2405 if (!ichdr.count)
2406 return 0;
2407 return be32_to_cpu(entries[ichdr.count - 1].hashval);
2411 * Calculate the number of bytes used to store the indicated attribute
2412 * (whether local or remote only calculate bytes in this block).
2414 STATIC int
2415 xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
2417 struct xfs_attr_leaf_entry *entries;
2418 xfs_attr_leaf_name_local_t *name_loc;
2419 xfs_attr_leaf_name_remote_t *name_rmt;
2420 int size;
2422 entries = xfs_attr3_leaf_entryp(leaf);
2423 if (entries[index].flags & XFS_ATTR_LOCAL) {
2424 name_loc = xfs_attr3_leaf_name_local(leaf, index);
2425 size = xfs_attr_leaf_entsize_local(name_loc->namelen,
2426 be16_to_cpu(name_loc->valuelen));
2427 } else {
2428 name_rmt = xfs_attr3_leaf_name_remote(leaf, index);
2429 size = xfs_attr_leaf_entsize_remote(name_rmt->namelen);
2431 return size;
2435 * Calculate the number of bytes that would be required to store the new
2436 * attribute (whether local or remote only calculate bytes in this block).
2437 * This routine decides as a side effect whether the attribute will be
2438 * a "local" or a "remote" attribute.
2441 xfs_attr_leaf_newentsize(int namelen, int valuelen, int blocksize, int *local)
2443 int size;
2445 size = xfs_attr_leaf_entsize_local(namelen, valuelen);
2446 if (size < xfs_attr_leaf_entsize_local_max(blocksize)) {
2447 if (local) {
2448 *local = 1;
2450 } else {
2451 size = xfs_attr_leaf_entsize_remote(namelen);
2452 if (local) {
2453 *local = 0;
2456 return size;
2460 /*========================================================================
2461 * Manage the INCOMPLETE flag in a leaf entry
2462 *========================================================================*/
2465 * Clear the INCOMPLETE flag on an entry in a leaf block.
2468 xfs_attr3_leaf_clearflag(
2469 struct xfs_da_args *args)
2471 struct xfs_attr_leafblock *leaf;
2472 struct xfs_attr_leaf_entry *entry;
2473 struct xfs_attr_leaf_name_remote *name_rmt;
2474 struct xfs_buf *bp;
2475 int error;
2476 #ifdef DEBUG
2477 struct xfs_attr3_icleaf_hdr ichdr;
2478 xfs_attr_leaf_name_local_t *name_loc;
2479 int namelen;
2480 char *name;
2481 #endif /* DEBUG */
2483 trace_xfs_attr_leaf_clearflag(args);
2485 * Set up the operation.
2487 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp);
2488 if (error)
2489 return(error);
2491 leaf = bp->b_addr;
2492 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2493 ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);
2495 #ifdef DEBUG
2496 xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
2497 ASSERT(args->index < ichdr.count);
2498 ASSERT(args->index >= 0);
2500 if (entry->flags & XFS_ATTR_LOCAL) {
2501 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2502 namelen = name_loc->namelen;
2503 name = (char *)name_loc->nameval;
2504 } else {
2505 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2506 namelen = name_rmt->namelen;
2507 name = (char *)name_rmt->name;
2509 ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
2510 ASSERT(namelen == args->namelen);
2511 ASSERT(memcmp(name, args->name, namelen) == 0);
2512 #endif /* DEBUG */
2514 entry->flags &= ~XFS_ATTR_INCOMPLETE;
2515 xfs_trans_log_buf(args->trans, bp,
2516 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2518 if (args->rmtblkno) {
2519 ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
2520 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2521 name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2522 name_rmt->valuelen = cpu_to_be32(args->valuelen);
2523 xfs_trans_log_buf(args->trans, bp,
2524 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2528 * Commit the flag value change and start the next trans in series.
2530 return xfs_trans_roll(&args->trans, args->dp);
2534 * Set the INCOMPLETE flag on an entry in a leaf block.
2537 xfs_attr3_leaf_setflag(
2538 struct xfs_da_args *args)
2540 struct xfs_attr_leafblock *leaf;
2541 struct xfs_attr_leaf_entry *entry;
2542 struct xfs_attr_leaf_name_remote *name_rmt;
2543 struct xfs_buf *bp;
2544 int error;
2545 #ifdef DEBUG
2546 struct xfs_attr3_icleaf_hdr ichdr;
2547 #endif
2549 trace_xfs_attr_leaf_setflag(args);
2552 * Set up the operation.
2554 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp);
2555 if (error)
2556 return(error);
2558 leaf = bp->b_addr;
2559 #ifdef DEBUG
2560 xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf);
2561 ASSERT(args->index < ichdr.count);
2562 ASSERT(args->index >= 0);
2563 #endif
2564 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2566 ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
2567 entry->flags |= XFS_ATTR_INCOMPLETE;
2568 xfs_trans_log_buf(args->trans, bp,
2569 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2570 if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
2571 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2572 name_rmt->valueblk = 0;
2573 name_rmt->valuelen = 0;
2574 xfs_trans_log_buf(args->trans, bp,
2575 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2579 * Commit the flag value change and start the next trans in series.
2581 return xfs_trans_roll(&args->trans, args->dp);
2585 * In a single transaction, clear the INCOMPLETE flag on the leaf entry
2586 * given by args->blkno/index and set the INCOMPLETE flag on the leaf
2587 * entry given by args->blkno2/index2.
2589 * Note that they could be in different blocks, or in the same block.
2592 xfs_attr3_leaf_flipflags(
2593 struct xfs_da_args *args)
2595 struct xfs_attr_leafblock *leaf1;
2596 struct xfs_attr_leafblock *leaf2;
2597 struct xfs_attr_leaf_entry *entry1;
2598 struct xfs_attr_leaf_entry *entry2;
2599 struct xfs_attr_leaf_name_remote *name_rmt;
2600 struct xfs_buf *bp1;
2601 struct xfs_buf *bp2;
2602 int error;
2603 #ifdef DEBUG
2604 struct xfs_attr3_icleaf_hdr ichdr1;
2605 struct xfs_attr3_icleaf_hdr ichdr2;
2606 xfs_attr_leaf_name_local_t *name_loc;
2607 int namelen1, namelen2;
2608 char *name1, *name2;
2609 #endif /* DEBUG */
2611 trace_xfs_attr_leaf_flipflags(args);
2614 * Read the block containing the "old" attr
2616 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp1);
2617 if (error)
2618 return error;
2621 * Read the block containing the "new" attr, if it is different
2623 if (args->blkno2 != args->blkno) {
2624 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2,
2625 -1, &bp2);
2626 if (error)
2627 return error;
2628 } else {
2629 bp2 = bp1;
2632 leaf1 = bp1->b_addr;
2633 entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index];
2635 leaf2 = bp2->b_addr;
2636 entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2];
2638 #ifdef DEBUG
2639 xfs_attr3_leaf_hdr_from_disk(&ichdr1, leaf1);
2640 ASSERT(args->index < ichdr1.count);
2641 ASSERT(args->index >= 0);
2643 xfs_attr3_leaf_hdr_from_disk(&ichdr2, leaf2);
2644 ASSERT(args->index2 < ichdr2.count);
2645 ASSERT(args->index2 >= 0);
2647 if (entry1->flags & XFS_ATTR_LOCAL) {
2648 name_loc = xfs_attr3_leaf_name_local(leaf1, args->index);
2649 namelen1 = name_loc->namelen;
2650 name1 = (char *)name_loc->nameval;
2651 } else {
2652 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2653 namelen1 = name_rmt->namelen;
2654 name1 = (char *)name_rmt->name;
2656 if (entry2->flags & XFS_ATTR_LOCAL) {
2657 name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2);
2658 namelen2 = name_loc->namelen;
2659 name2 = (char *)name_loc->nameval;
2660 } else {
2661 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2662 namelen2 = name_rmt->namelen;
2663 name2 = (char *)name_rmt->name;
2665 ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
2666 ASSERT(namelen1 == namelen2);
2667 ASSERT(memcmp(name1, name2, namelen1) == 0);
2668 #endif /* DEBUG */
2670 ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
2671 ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
2673 entry1->flags &= ~XFS_ATTR_INCOMPLETE;
2674 xfs_trans_log_buf(args->trans, bp1,
2675 XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
2676 if (args->rmtblkno) {
2677 ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
2678 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2679 name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2680 name_rmt->valuelen = cpu_to_be32(args->valuelen);
2681 xfs_trans_log_buf(args->trans, bp1,
2682 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
2685 entry2->flags |= XFS_ATTR_INCOMPLETE;
2686 xfs_trans_log_buf(args->trans, bp2,
2687 XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
2688 if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
2689 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2690 name_rmt->valueblk = 0;
2691 name_rmt->valuelen = 0;
2692 xfs_trans_log_buf(args->trans, bp2,
2693 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
2697 * Commit the flag value change and start the next trans in series.
2699 error = xfs_trans_roll(&args->trans, args->dp);
2701 return error;