x86/xen: resume timer irqs early
[linux/fpc-iii.git] / fs / xfs / xfs_icache.c
blob474807a401c864e7681d3f8d0f111358c45536fc
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_types.h"
22 #include "xfs_log.h"
23 #include "xfs_log_priv.h"
24 #include "xfs_inum.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_inode.h"
32 #include "xfs_dinode.h"
33 #include "xfs_error.h"
34 #include "xfs_filestream.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_quota.h"
37 #include "xfs_trace.h"
38 #include "xfs_fsops.h"
39 #include "xfs_icache.h"
40 #include "xfs_bmap_util.h"
42 #include <linux/kthread.h>
43 #include <linux/freezer.h>
45 STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
46 struct xfs_perag *pag, struct xfs_inode *ip);
49 * Allocate and initialise an xfs_inode.
51 struct xfs_inode *
52 xfs_inode_alloc(
53 struct xfs_mount *mp,
54 xfs_ino_t ino)
56 struct xfs_inode *ip;
59 * if this didn't occur in transactions, we could use
60 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
61 * code up to do this anyway.
63 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
64 if (!ip)
65 return NULL;
66 if (inode_init_always(mp->m_super, VFS_I(ip))) {
67 kmem_zone_free(xfs_inode_zone, ip);
68 return NULL;
71 ASSERT(atomic_read(&ip->i_pincount) == 0);
72 ASSERT(!spin_is_locked(&ip->i_flags_lock));
73 ASSERT(!xfs_isiflocked(ip));
74 ASSERT(ip->i_ino == 0);
76 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
78 /* initialise the xfs inode */
79 ip->i_ino = ino;
80 ip->i_mount = mp;
81 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
82 ip->i_afp = NULL;
83 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
84 ip->i_flags = 0;
85 ip->i_delayed_blks = 0;
86 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
88 return ip;
91 STATIC void
92 xfs_inode_free_callback(
93 struct rcu_head *head)
95 struct inode *inode = container_of(head, struct inode, i_rcu);
96 struct xfs_inode *ip = XFS_I(inode);
98 kmem_zone_free(xfs_inode_zone, ip);
101 void
102 xfs_inode_free(
103 struct xfs_inode *ip)
105 switch (ip->i_d.di_mode & S_IFMT) {
106 case S_IFREG:
107 case S_IFDIR:
108 case S_IFLNK:
109 xfs_idestroy_fork(ip, XFS_DATA_FORK);
110 break;
113 if (ip->i_afp)
114 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
116 if (ip->i_itemp) {
117 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
118 xfs_inode_item_destroy(ip);
119 ip->i_itemp = NULL;
123 * Because we use RCU freeing we need to ensure the inode always
124 * appears to be reclaimed with an invalid inode number when in the
125 * free state. The ip->i_flags_lock provides the barrier against lookup
126 * races.
128 spin_lock(&ip->i_flags_lock);
129 ip->i_flags = XFS_IRECLAIM;
130 ip->i_ino = 0;
131 spin_unlock(&ip->i_flags_lock);
133 /* asserts to verify all state is correct here */
134 ASSERT(atomic_read(&ip->i_pincount) == 0);
135 ASSERT(!xfs_isiflocked(ip));
137 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
141 * Check the validity of the inode we just found it the cache
143 static int
144 xfs_iget_cache_hit(
145 struct xfs_perag *pag,
146 struct xfs_inode *ip,
147 xfs_ino_t ino,
148 int flags,
149 int lock_flags) __releases(RCU)
151 struct inode *inode = VFS_I(ip);
152 struct xfs_mount *mp = ip->i_mount;
153 int error;
156 * check for re-use of an inode within an RCU grace period due to the
157 * radix tree nodes not being updated yet. We monitor for this by
158 * setting the inode number to zero before freeing the inode structure.
159 * If the inode has been reallocated and set up, then the inode number
160 * will not match, so check for that, too.
162 spin_lock(&ip->i_flags_lock);
163 if (ip->i_ino != ino) {
164 trace_xfs_iget_skip(ip);
165 XFS_STATS_INC(xs_ig_frecycle);
166 error = EAGAIN;
167 goto out_error;
172 * If we are racing with another cache hit that is currently
173 * instantiating this inode or currently recycling it out of
174 * reclaimabe state, wait for the initialisation to complete
175 * before continuing.
177 * XXX(hch): eventually we should do something equivalent to
178 * wait_on_inode to wait for these flags to be cleared
179 * instead of polling for it.
181 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
182 trace_xfs_iget_skip(ip);
183 XFS_STATS_INC(xs_ig_frecycle);
184 error = EAGAIN;
185 goto out_error;
189 * If lookup is racing with unlink return an error immediately.
191 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
192 error = ENOENT;
193 goto out_error;
197 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
198 * Need to carefully get it back into useable state.
200 if (ip->i_flags & XFS_IRECLAIMABLE) {
201 trace_xfs_iget_reclaim(ip);
204 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
205 * from stomping over us while we recycle the inode. We can't
206 * clear the radix tree reclaimable tag yet as it requires
207 * pag_ici_lock to be held exclusive.
209 ip->i_flags |= XFS_IRECLAIM;
211 spin_unlock(&ip->i_flags_lock);
212 rcu_read_unlock();
214 error = -inode_init_always(mp->m_super, inode);
215 if (error) {
217 * Re-initializing the inode failed, and we are in deep
218 * trouble. Try to re-add it to the reclaim list.
220 rcu_read_lock();
221 spin_lock(&ip->i_flags_lock);
223 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
224 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
225 trace_xfs_iget_reclaim_fail(ip);
226 goto out_error;
229 spin_lock(&pag->pag_ici_lock);
230 spin_lock(&ip->i_flags_lock);
233 * Clear the per-lifetime state in the inode as we are now
234 * effectively a new inode and need to return to the initial
235 * state before reuse occurs.
237 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
238 ip->i_flags |= XFS_INEW;
239 __xfs_inode_clear_reclaim_tag(mp, pag, ip);
240 inode->i_state = I_NEW;
242 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
243 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
245 spin_unlock(&ip->i_flags_lock);
246 spin_unlock(&pag->pag_ici_lock);
247 } else {
248 /* If the VFS inode is being torn down, pause and try again. */
249 if (!igrab(inode)) {
250 trace_xfs_iget_skip(ip);
251 error = EAGAIN;
252 goto out_error;
255 /* We've got a live one. */
256 spin_unlock(&ip->i_flags_lock);
257 rcu_read_unlock();
258 trace_xfs_iget_hit(ip);
261 if (lock_flags != 0)
262 xfs_ilock(ip, lock_flags);
264 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
265 XFS_STATS_INC(xs_ig_found);
267 return 0;
269 out_error:
270 spin_unlock(&ip->i_flags_lock);
271 rcu_read_unlock();
272 return error;
276 static int
277 xfs_iget_cache_miss(
278 struct xfs_mount *mp,
279 struct xfs_perag *pag,
280 xfs_trans_t *tp,
281 xfs_ino_t ino,
282 struct xfs_inode **ipp,
283 int flags,
284 int lock_flags)
286 struct xfs_inode *ip;
287 int error;
288 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
289 int iflags;
291 ip = xfs_inode_alloc(mp, ino);
292 if (!ip)
293 return ENOMEM;
295 error = xfs_iread(mp, tp, ip, flags);
296 if (error)
297 goto out_destroy;
299 trace_xfs_iget_miss(ip);
301 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
302 error = ENOENT;
303 goto out_destroy;
307 * Preload the radix tree so we can insert safely under the
308 * write spinlock. Note that we cannot sleep inside the preload
309 * region. Since we can be called from transaction context, don't
310 * recurse into the file system.
312 if (radix_tree_preload(GFP_NOFS)) {
313 error = EAGAIN;
314 goto out_destroy;
318 * Because the inode hasn't been added to the radix-tree yet it can't
319 * be found by another thread, so we can do the non-sleeping lock here.
321 if (lock_flags) {
322 if (!xfs_ilock_nowait(ip, lock_flags))
323 BUG();
327 * These values must be set before inserting the inode into the radix
328 * tree as the moment it is inserted a concurrent lookup (allowed by the
329 * RCU locking mechanism) can find it and that lookup must see that this
330 * is an inode currently under construction (i.e. that XFS_INEW is set).
331 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
332 * memory barrier that ensures this detection works correctly at lookup
333 * time.
335 iflags = XFS_INEW;
336 if (flags & XFS_IGET_DONTCACHE)
337 iflags |= XFS_IDONTCACHE;
338 ip->i_udquot = NULL;
339 ip->i_gdquot = NULL;
340 ip->i_pdquot = NULL;
341 xfs_iflags_set(ip, iflags);
343 /* insert the new inode */
344 spin_lock(&pag->pag_ici_lock);
345 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
346 if (unlikely(error)) {
347 WARN_ON(error != -EEXIST);
348 XFS_STATS_INC(xs_ig_dup);
349 error = EAGAIN;
350 goto out_preload_end;
352 spin_unlock(&pag->pag_ici_lock);
353 radix_tree_preload_end();
355 *ipp = ip;
356 return 0;
358 out_preload_end:
359 spin_unlock(&pag->pag_ici_lock);
360 radix_tree_preload_end();
361 if (lock_flags)
362 xfs_iunlock(ip, lock_flags);
363 out_destroy:
364 __destroy_inode(VFS_I(ip));
365 xfs_inode_free(ip);
366 return error;
370 * Look up an inode by number in the given file system.
371 * The inode is looked up in the cache held in each AG.
372 * If the inode is found in the cache, initialise the vfs inode
373 * if necessary.
375 * If it is not in core, read it in from the file system's device,
376 * add it to the cache and initialise the vfs inode.
378 * The inode is locked according to the value of the lock_flags parameter.
379 * This flag parameter indicates how and if the inode's IO lock and inode lock
380 * should be taken.
382 * mp -- the mount point structure for the current file system. It points
383 * to the inode hash table.
384 * tp -- a pointer to the current transaction if there is one. This is
385 * simply passed through to the xfs_iread() call.
386 * ino -- the number of the inode desired. This is the unique identifier
387 * within the file system for the inode being requested.
388 * lock_flags -- flags indicating how to lock the inode. See the comment
389 * for xfs_ilock() for a list of valid values.
392 xfs_iget(
393 xfs_mount_t *mp,
394 xfs_trans_t *tp,
395 xfs_ino_t ino,
396 uint flags,
397 uint lock_flags,
398 xfs_inode_t **ipp)
400 xfs_inode_t *ip;
401 int error;
402 xfs_perag_t *pag;
403 xfs_agino_t agino;
406 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
407 * doesn't get freed while it's being referenced during a
408 * radix tree traversal here. It assumes this function
409 * aqcuires only the ILOCK (and therefore it has no need to
410 * involve the IOLOCK in this synchronization).
412 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
414 /* reject inode numbers outside existing AGs */
415 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
416 return EINVAL;
418 /* get the perag structure and ensure that it's inode capable */
419 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
420 agino = XFS_INO_TO_AGINO(mp, ino);
422 again:
423 error = 0;
424 rcu_read_lock();
425 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
427 if (ip) {
428 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
429 if (error)
430 goto out_error_or_again;
431 } else {
432 rcu_read_unlock();
433 XFS_STATS_INC(xs_ig_missed);
435 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
436 flags, lock_flags);
437 if (error)
438 goto out_error_or_again;
440 xfs_perag_put(pag);
442 *ipp = ip;
445 * If we have a real type for an on-disk inode, we can set ops(&unlock)
446 * now. If it's a new inode being created, xfs_ialloc will handle it.
448 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
449 xfs_setup_inode(ip);
450 return 0;
452 out_error_or_again:
453 if (error == EAGAIN) {
454 delay(1);
455 goto again;
457 xfs_perag_put(pag);
458 return error;
462 * The inode lookup is done in batches to keep the amount of lock traffic and
463 * radix tree lookups to a minimum. The batch size is a trade off between
464 * lookup reduction and stack usage. This is in the reclaim path, so we can't
465 * be too greedy.
467 #define XFS_LOOKUP_BATCH 32
469 STATIC int
470 xfs_inode_ag_walk_grab(
471 struct xfs_inode *ip)
473 struct inode *inode = VFS_I(ip);
475 ASSERT(rcu_read_lock_held());
478 * check for stale RCU freed inode
480 * If the inode has been reallocated, it doesn't matter if it's not in
481 * the AG we are walking - we are walking for writeback, so if it
482 * passes all the "valid inode" checks and is dirty, then we'll write
483 * it back anyway. If it has been reallocated and still being
484 * initialised, the XFS_INEW check below will catch it.
486 spin_lock(&ip->i_flags_lock);
487 if (!ip->i_ino)
488 goto out_unlock_noent;
490 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
491 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
492 goto out_unlock_noent;
493 spin_unlock(&ip->i_flags_lock);
495 /* nothing to sync during shutdown */
496 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
497 return EFSCORRUPTED;
499 /* If we can't grab the inode, it must on it's way to reclaim. */
500 if (!igrab(inode))
501 return ENOENT;
503 if (is_bad_inode(inode)) {
504 IRELE(ip);
505 return ENOENT;
508 /* inode is valid */
509 return 0;
511 out_unlock_noent:
512 spin_unlock(&ip->i_flags_lock);
513 return ENOENT;
516 STATIC int
517 xfs_inode_ag_walk(
518 struct xfs_mount *mp,
519 struct xfs_perag *pag,
520 int (*execute)(struct xfs_inode *ip,
521 struct xfs_perag *pag, int flags,
522 void *args),
523 int flags,
524 void *args,
525 int tag)
527 uint32_t first_index;
528 int last_error = 0;
529 int skipped;
530 int done;
531 int nr_found;
533 restart:
534 done = 0;
535 skipped = 0;
536 first_index = 0;
537 nr_found = 0;
538 do {
539 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
540 int error = 0;
541 int i;
543 rcu_read_lock();
545 if (tag == -1)
546 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
547 (void **)batch, first_index,
548 XFS_LOOKUP_BATCH);
549 else
550 nr_found = radix_tree_gang_lookup_tag(
551 &pag->pag_ici_root,
552 (void **) batch, first_index,
553 XFS_LOOKUP_BATCH, tag);
555 if (!nr_found) {
556 rcu_read_unlock();
557 break;
561 * Grab the inodes before we drop the lock. if we found
562 * nothing, nr == 0 and the loop will be skipped.
564 for (i = 0; i < nr_found; i++) {
565 struct xfs_inode *ip = batch[i];
567 if (done || xfs_inode_ag_walk_grab(ip))
568 batch[i] = NULL;
571 * Update the index for the next lookup. Catch
572 * overflows into the next AG range which can occur if
573 * we have inodes in the last block of the AG and we
574 * are currently pointing to the last inode.
576 * Because we may see inodes that are from the wrong AG
577 * due to RCU freeing and reallocation, only update the
578 * index if it lies in this AG. It was a race that lead
579 * us to see this inode, so another lookup from the
580 * same index will not find it again.
582 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
583 continue;
584 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
585 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
586 done = 1;
589 /* unlock now we've grabbed the inodes. */
590 rcu_read_unlock();
592 for (i = 0; i < nr_found; i++) {
593 if (!batch[i])
594 continue;
595 error = execute(batch[i], pag, flags, args);
596 IRELE(batch[i]);
597 if (error == EAGAIN) {
598 skipped++;
599 continue;
601 if (error && last_error != EFSCORRUPTED)
602 last_error = error;
605 /* bail out if the filesystem is corrupted. */
606 if (error == EFSCORRUPTED)
607 break;
609 cond_resched();
611 } while (nr_found && !done);
613 if (skipped) {
614 delay(1);
615 goto restart;
617 return last_error;
621 * Background scanning to trim post-EOF preallocated space. This is queued
622 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
624 STATIC void
625 xfs_queue_eofblocks(
626 struct xfs_mount *mp)
628 rcu_read_lock();
629 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
630 queue_delayed_work(mp->m_eofblocks_workqueue,
631 &mp->m_eofblocks_work,
632 msecs_to_jiffies(xfs_eofb_secs * 1000));
633 rcu_read_unlock();
636 void
637 xfs_eofblocks_worker(
638 struct work_struct *work)
640 struct xfs_mount *mp = container_of(to_delayed_work(work),
641 struct xfs_mount, m_eofblocks_work);
642 xfs_icache_free_eofblocks(mp, NULL);
643 xfs_queue_eofblocks(mp);
647 xfs_inode_ag_iterator(
648 struct xfs_mount *mp,
649 int (*execute)(struct xfs_inode *ip,
650 struct xfs_perag *pag, int flags,
651 void *args),
652 int flags,
653 void *args)
655 struct xfs_perag *pag;
656 int error = 0;
657 int last_error = 0;
658 xfs_agnumber_t ag;
660 ag = 0;
661 while ((pag = xfs_perag_get(mp, ag))) {
662 ag = pag->pag_agno + 1;
663 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
664 xfs_perag_put(pag);
665 if (error) {
666 last_error = error;
667 if (error == EFSCORRUPTED)
668 break;
671 return XFS_ERROR(last_error);
675 xfs_inode_ag_iterator_tag(
676 struct xfs_mount *mp,
677 int (*execute)(struct xfs_inode *ip,
678 struct xfs_perag *pag, int flags,
679 void *args),
680 int flags,
681 void *args,
682 int tag)
684 struct xfs_perag *pag;
685 int error = 0;
686 int last_error = 0;
687 xfs_agnumber_t ag;
689 ag = 0;
690 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
691 ag = pag->pag_agno + 1;
692 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
693 xfs_perag_put(pag);
694 if (error) {
695 last_error = error;
696 if (error == EFSCORRUPTED)
697 break;
700 return XFS_ERROR(last_error);
704 * Queue a new inode reclaim pass if there are reclaimable inodes and there
705 * isn't a reclaim pass already in progress. By default it runs every 5s based
706 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
707 * tunable, but that can be done if this method proves to be ineffective or too
708 * aggressive.
710 static void
711 xfs_reclaim_work_queue(
712 struct xfs_mount *mp)
715 rcu_read_lock();
716 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
717 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
718 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
720 rcu_read_unlock();
724 * This is a fast pass over the inode cache to try to get reclaim moving on as
725 * many inodes as possible in a short period of time. It kicks itself every few
726 * seconds, as well as being kicked by the inode cache shrinker when memory
727 * goes low. It scans as quickly as possible avoiding locked inodes or those
728 * already being flushed, and once done schedules a future pass.
730 void
731 xfs_reclaim_worker(
732 struct work_struct *work)
734 struct xfs_mount *mp = container_of(to_delayed_work(work),
735 struct xfs_mount, m_reclaim_work);
737 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
738 xfs_reclaim_work_queue(mp);
741 static void
742 __xfs_inode_set_reclaim_tag(
743 struct xfs_perag *pag,
744 struct xfs_inode *ip)
746 radix_tree_tag_set(&pag->pag_ici_root,
747 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
748 XFS_ICI_RECLAIM_TAG);
750 if (!pag->pag_ici_reclaimable) {
751 /* propagate the reclaim tag up into the perag radix tree */
752 spin_lock(&ip->i_mount->m_perag_lock);
753 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
754 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
755 XFS_ICI_RECLAIM_TAG);
756 spin_unlock(&ip->i_mount->m_perag_lock);
758 /* schedule periodic background inode reclaim */
759 xfs_reclaim_work_queue(ip->i_mount);
761 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
762 -1, _RET_IP_);
764 pag->pag_ici_reclaimable++;
768 * We set the inode flag atomically with the radix tree tag.
769 * Once we get tag lookups on the radix tree, this inode flag
770 * can go away.
772 void
773 xfs_inode_set_reclaim_tag(
774 xfs_inode_t *ip)
776 struct xfs_mount *mp = ip->i_mount;
777 struct xfs_perag *pag;
779 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
780 spin_lock(&pag->pag_ici_lock);
781 spin_lock(&ip->i_flags_lock);
782 __xfs_inode_set_reclaim_tag(pag, ip);
783 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
784 spin_unlock(&ip->i_flags_lock);
785 spin_unlock(&pag->pag_ici_lock);
786 xfs_perag_put(pag);
789 STATIC void
790 __xfs_inode_clear_reclaim(
791 xfs_perag_t *pag,
792 xfs_inode_t *ip)
794 pag->pag_ici_reclaimable--;
795 if (!pag->pag_ici_reclaimable) {
796 /* clear the reclaim tag from the perag radix tree */
797 spin_lock(&ip->i_mount->m_perag_lock);
798 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
799 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
800 XFS_ICI_RECLAIM_TAG);
801 spin_unlock(&ip->i_mount->m_perag_lock);
802 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
803 -1, _RET_IP_);
807 STATIC void
808 __xfs_inode_clear_reclaim_tag(
809 xfs_mount_t *mp,
810 xfs_perag_t *pag,
811 xfs_inode_t *ip)
813 radix_tree_tag_clear(&pag->pag_ici_root,
814 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
815 __xfs_inode_clear_reclaim(pag, ip);
819 * Grab the inode for reclaim exclusively.
820 * Return 0 if we grabbed it, non-zero otherwise.
822 STATIC int
823 xfs_reclaim_inode_grab(
824 struct xfs_inode *ip,
825 int flags)
827 ASSERT(rcu_read_lock_held());
829 /* quick check for stale RCU freed inode */
830 if (!ip->i_ino)
831 return 1;
834 * If we are asked for non-blocking operation, do unlocked checks to
835 * see if the inode already is being flushed or in reclaim to avoid
836 * lock traffic.
838 if ((flags & SYNC_TRYLOCK) &&
839 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
840 return 1;
843 * The radix tree lock here protects a thread in xfs_iget from racing
844 * with us starting reclaim on the inode. Once we have the
845 * XFS_IRECLAIM flag set it will not touch us.
847 * Due to RCU lookup, we may find inodes that have been freed and only
848 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
849 * aren't candidates for reclaim at all, so we must check the
850 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
852 spin_lock(&ip->i_flags_lock);
853 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
854 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
855 /* not a reclaim candidate. */
856 spin_unlock(&ip->i_flags_lock);
857 return 1;
859 __xfs_iflags_set(ip, XFS_IRECLAIM);
860 spin_unlock(&ip->i_flags_lock);
861 return 0;
865 * Inodes in different states need to be treated differently. The following
866 * table lists the inode states and the reclaim actions necessary:
868 * inode state iflush ret required action
869 * --------------- ---------- ---------------
870 * bad - reclaim
871 * shutdown EIO unpin and reclaim
872 * clean, unpinned 0 reclaim
873 * stale, unpinned 0 reclaim
874 * clean, pinned(*) 0 requeue
875 * stale, pinned EAGAIN requeue
876 * dirty, async - requeue
877 * dirty, sync 0 reclaim
879 * (*) dgc: I don't think the clean, pinned state is possible but it gets
880 * handled anyway given the order of checks implemented.
882 * Also, because we get the flush lock first, we know that any inode that has
883 * been flushed delwri has had the flush completed by the time we check that
884 * the inode is clean.
886 * Note that because the inode is flushed delayed write by AIL pushing, the
887 * flush lock may already be held here and waiting on it can result in very
888 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
889 * the caller should push the AIL first before trying to reclaim inodes to
890 * minimise the amount of time spent waiting. For background relaim, we only
891 * bother to reclaim clean inodes anyway.
893 * Hence the order of actions after gaining the locks should be:
894 * bad => reclaim
895 * shutdown => unpin and reclaim
896 * pinned, async => requeue
897 * pinned, sync => unpin
898 * stale => reclaim
899 * clean => reclaim
900 * dirty, async => requeue
901 * dirty, sync => flush, wait and reclaim
903 STATIC int
904 xfs_reclaim_inode(
905 struct xfs_inode *ip,
906 struct xfs_perag *pag,
907 int sync_mode)
909 struct xfs_buf *bp = NULL;
910 int error;
912 restart:
913 error = 0;
914 xfs_ilock(ip, XFS_ILOCK_EXCL);
915 if (!xfs_iflock_nowait(ip)) {
916 if (!(sync_mode & SYNC_WAIT))
917 goto out;
918 xfs_iflock(ip);
921 if (is_bad_inode(VFS_I(ip)))
922 goto reclaim;
923 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
924 xfs_iunpin_wait(ip);
925 xfs_iflush_abort(ip, false);
926 goto reclaim;
928 if (xfs_ipincount(ip)) {
929 if (!(sync_mode & SYNC_WAIT))
930 goto out_ifunlock;
931 xfs_iunpin_wait(ip);
933 if (xfs_iflags_test(ip, XFS_ISTALE))
934 goto reclaim;
935 if (xfs_inode_clean(ip))
936 goto reclaim;
939 * Never flush out dirty data during non-blocking reclaim, as it would
940 * just contend with AIL pushing trying to do the same job.
942 if (!(sync_mode & SYNC_WAIT))
943 goto out_ifunlock;
946 * Now we have an inode that needs flushing.
948 * Note that xfs_iflush will never block on the inode buffer lock, as
949 * xfs_ifree_cluster() can lock the inode buffer before it locks the
950 * ip->i_lock, and we are doing the exact opposite here. As a result,
951 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
952 * result in an ABBA deadlock with xfs_ifree_cluster().
954 * As xfs_ifree_cluser() must gather all inodes that are active in the
955 * cache to mark them stale, if we hit this case we don't actually want
956 * to do IO here - we want the inode marked stale so we can simply
957 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
958 * inode, back off and try again. Hopefully the next pass through will
959 * see the stale flag set on the inode.
961 error = xfs_iflush(ip, &bp);
962 if (error == EAGAIN) {
963 xfs_iunlock(ip, XFS_ILOCK_EXCL);
964 /* backoff longer than in xfs_ifree_cluster */
965 delay(2);
966 goto restart;
969 if (!error) {
970 error = xfs_bwrite(bp);
971 xfs_buf_relse(bp);
974 xfs_iflock(ip);
975 reclaim:
976 xfs_ifunlock(ip);
977 xfs_iunlock(ip, XFS_ILOCK_EXCL);
979 XFS_STATS_INC(xs_ig_reclaims);
981 * Remove the inode from the per-AG radix tree.
983 * Because radix_tree_delete won't complain even if the item was never
984 * added to the tree assert that it's been there before to catch
985 * problems with the inode life time early on.
987 spin_lock(&pag->pag_ici_lock);
988 if (!radix_tree_delete(&pag->pag_ici_root,
989 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
990 ASSERT(0);
991 __xfs_inode_clear_reclaim(pag, ip);
992 spin_unlock(&pag->pag_ici_lock);
995 * Here we do an (almost) spurious inode lock in order to coordinate
996 * with inode cache radix tree lookups. This is because the lookup
997 * can reference the inodes in the cache without taking references.
999 * We make that OK here by ensuring that we wait until the inode is
1000 * unlocked after the lookup before we go ahead and free it.
1002 xfs_ilock(ip, XFS_ILOCK_EXCL);
1003 xfs_qm_dqdetach(ip);
1004 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1006 xfs_inode_free(ip);
1007 return error;
1009 out_ifunlock:
1010 xfs_ifunlock(ip);
1011 out:
1012 xfs_iflags_clear(ip, XFS_IRECLAIM);
1013 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1015 * We could return EAGAIN here to make reclaim rescan the inode tree in
1016 * a short while. However, this just burns CPU time scanning the tree
1017 * waiting for IO to complete and the reclaim work never goes back to
1018 * the idle state. Instead, return 0 to let the next scheduled
1019 * background reclaim attempt to reclaim the inode again.
1021 return 0;
1025 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1026 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1027 * then a shut down during filesystem unmount reclaim walk leak all the
1028 * unreclaimed inodes.
1030 STATIC int
1031 xfs_reclaim_inodes_ag(
1032 struct xfs_mount *mp,
1033 int flags,
1034 int *nr_to_scan)
1036 struct xfs_perag *pag;
1037 int error = 0;
1038 int last_error = 0;
1039 xfs_agnumber_t ag;
1040 int trylock = flags & SYNC_TRYLOCK;
1041 int skipped;
1043 restart:
1044 ag = 0;
1045 skipped = 0;
1046 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1047 unsigned long first_index = 0;
1048 int done = 0;
1049 int nr_found = 0;
1051 ag = pag->pag_agno + 1;
1053 if (trylock) {
1054 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1055 skipped++;
1056 xfs_perag_put(pag);
1057 continue;
1059 first_index = pag->pag_ici_reclaim_cursor;
1060 } else
1061 mutex_lock(&pag->pag_ici_reclaim_lock);
1063 do {
1064 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1065 int i;
1067 rcu_read_lock();
1068 nr_found = radix_tree_gang_lookup_tag(
1069 &pag->pag_ici_root,
1070 (void **)batch, first_index,
1071 XFS_LOOKUP_BATCH,
1072 XFS_ICI_RECLAIM_TAG);
1073 if (!nr_found) {
1074 done = 1;
1075 rcu_read_unlock();
1076 break;
1080 * Grab the inodes before we drop the lock. if we found
1081 * nothing, nr == 0 and the loop will be skipped.
1083 for (i = 0; i < nr_found; i++) {
1084 struct xfs_inode *ip = batch[i];
1086 if (done || xfs_reclaim_inode_grab(ip, flags))
1087 batch[i] = NULL;
1090 * Update the index for the next lookup. Catch
1091 * overflows into the next AG range which can
1092 * occur if we have inodes in the last block of
1093 * the AG and we are currently pointing to the
1094 * last inode.
1096 * Because we may see inodes that are from the
1097 * wrong AG due to RCU freeing and
1098 * reallocation, only update the index if it
1099 * lies in this AG. It was a race that lead us
1100 * to see this inode, so another lookup from
1101 * the same index will not find it again.
1103 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1104 pag->pag_agno)
1105 continue;
1106 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1107 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1108 done = 1;
1111 /* unlock now we've grabbed the inodes. */
1112 rcu_read_unlock();
1114 for (i = 0; i < nr_found; i++) {
1115 if (!batch[i])
1116 continue;
1117 error = xfs_reclaim_inode(batch[i], pag, flags);
1118 if (error && last_error != EFSCORRUPTED)
1119 last_error = error;
1122 *nr_to_scan -= XFS_LOOKUP_BATCH;
1124 cond_resched();
1126 } while (nr_found && !done && *nr_to_scan > 0);
1128 if (trylock && !done)
1129 pag->pag_ici_reclaim_cursor = first_index;
1130 else
1131 pag->pag_ici_reclaim_cursor = 0;
1132 mutex_unlock(&pag->pag_ici_reclaim_lock);
1133 xfs_perag_put(pag);
1137 * if we skipped any AG, and we still have scan count remaining, do
1138 * another pass this time using blocking reclaim semantics (i.e
1139 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1140 * ensure that when we get more reclaimers than AGs we block rather
1141 * than spin trying to execute reclaim.
1143 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1144 trylock = 0;
1145 goto restart;
1147 return XFS_ERROR(last_error);
1151 xfs_reclaim_inodes(
1152 xfs_mount_t *mp,
1153 int mode)
1155 int nr_to_scan = INT_MAX;
1157 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1161 * Scan a certain number of inodes for reclaim.
1163 * When called we make sure that there is a background (fast) inode reclaim in
1164 * progress, while we will throttle the speed of reclaim via doing synchronous
1165 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1166 * them to be cleaned, which we hope will not be very long due to the
1167 * background walker having already kicked the IO off on those dirty inodes.
1169 long
1170 xfs_reclaim_inodes_nr(
1171 struct xfs_mount *mp,
1172 int nr_to_scan)
1174 /* kick background reclaimer and push the AIL */
1175 xfs_reclaim_work_queue(mp);
1176 xfs_ail_push_all(mp->m_ail);
1178 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1182 * Return the number of reclaimable inodes in the filesystem for
1183 * the shrinker to determine how much to reclaim.
1186 xfs_reclaim_inodes_count(
1187 struct xfs_mount *mp)
1189 struct xfs_perag *pag;
1190 xfs_agnumber_t ag = 0;
1191 int reclaimable = 0;
1193 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1194 ag = pag->pag_agno + 1;
1195 reclaimable += pag->pag_ici_reclaimable;
1196 xfs_perag_put(pag);
1198 return reclaimable;
1201 STATIC int
1202 xfs_inode_match_id(
1203 struct xfs_inode *ip,
1204 struct xfs_eofblocks *eofb)
1206 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1207 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1208 return 0;
1210 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1211 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1212 return 0;
1214 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1215 xfs_get_projid(ip) != eofb->eof_prid)
1216 return 0;
1218 return 1;
1221 STATIC int
1222 xfs_inode_free_eofblocks(
1223 struct xfs_inode *ip,
1224 struct xfs_perag *pag,
1225 int flags,
1226 void *args)
1228 int ret;
1229 struct xfs_eofblocks *eofb = args;
1231 if (!xfs_can_free_eofblocks(ip, false)) {
1232 /* inode could be preallocated or append-only */
1233 trace_xfs_inode_free_eofblocks_invalid(ip);
1234 xfs_inode_clear_eofblocks_tag(ip);
1235 return 0;
1239 * If the mapping is dirty the operation can block and wait for some
1240 * time. Unless we are waiting, skip it.
1242 if (!(flags & SYNC_WAIT) &&
1243 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1244 return 0;
1246 if (eofb) {
1247 if (!xfs_inode_match_id(ip, eofb))
1248 return 0;
1250 /* skip the inode if the file size is too small */
1251 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1252 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1253 return 0;
1256 ret = xfs_free_eofblocks(ip->i_mount, ip, true);
1258 /* don't revisit the inode if we're not waiting */
1259 if (ret == EAGAIN && !(flags & SYNC_WAIT))
1260 ret = 0;
1262 return ret;
1266 xfs_icache_free_eofblocks(
1267 struct xfs_mount *mp,
1268 struct xfs_eofblocks *eofb)
1270 int flags = SYNC_TRYLOCK;
1272 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1273 flags = SYNC_WAIT;
1275 return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1276 eofb, XFS_ICI_EOFBLOCKS_TAG);
1279 void
1280 xfs_inode_set_eofblocks_tag(
1281 xfs_inode_t *ip)
1283 struct xfs_mount *mp = ip->i_mount;
1284 struct xfs_perag *pag;
1285 int tagged;
1287 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1288 spin_lock(&pag->pag_ici_lock);
1289 trace_xfs_inode_set_eofblocks_tag(ip);
1291 tagged = radix_tree_tagged(&pag->pag_ici_root,
1292 XFS_ICI_EOFBLOCKS_TAG);
1293 radix_tree_tag_set(&pag->pag_ici_root,
1294 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1295 XFS_ICI_EOFBLOCKS_TAG);
1296 if (!tagged) {
1297 /* propagate the eofblocks tag up into the perag radix tree */
1298 spin_lock(&ip->i_mount->m_perag_lock);
1299 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1300 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1301 XFS_ICI_EOFBLOCKS_TAG);
1302 spin_unlock(&ip->i_mount->m_perag_lock);
1304 /* kick off background trimming */
1305 xfs_queue_eofblocks(ip->i_mount);
1307 trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1308 -1, _RET_IP_);
1311 spin_unlock(&pag->pag_ici_lock);
1312 xfs_perag_put(pag);
1315 void
1316 xfs_inode_clear_eofblocks_tag(
1317 xfs_inode_t *ip)
1319 struct xfs_mount *mp = ip->i_mount;
1320 struct xfs_perag *pag;
1322 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1323 spin_lock(&pag->pag_ici_lock);
1324 trace_xfs_inode_clear_eofblocks_tag(ip);
1326 radix_tree_tag_clear(&pag->pag_ici_root,
1327 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1328 XFS_ICI_EOFBLOCKS_TAG);
1329 if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1330 /* clear the eofblocks tag from the perag radix tree */
1331 spin_lock(&ip->i_mount->m_perag_lock);
1332 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1333 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1334 XFS_ICI_EOFBLOCKS_TAG);
1335 spin_unlock(&ip->i_mount->m_perag_lock);
1336 trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1337 -1, _RET_IP_);
1340 spin_unlock(&pag->pag_ici_lock);
1341 xfs_perag_put(pag);