x86/xen: resume timer irqs early
[linux/fpc-iii.git] / fs / xfs / xfs_inode.c
blob7a460d8ad06e5a47c47217e8a0f1ec65366b3d28
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_format.h"
23 #include "xfs_log.h"
24 #include "xfs_inum.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_space.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_mount.h"
31 #include "xfs_da_btree.h"
32 #include "xfs_dir2_format.h"
33 #include "xfs_dir2.h"
34 #include "xfs_bmap_btree.h"
35 #include "xfs_alloc_btree.h"
36 #include "xfs_ialloc_btree.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_attr.h"
39 #include "xfs_dinode.h"
40 #include "xfs_inode.h"
41 #include "xfs_buf_item.h"
42 #include "xfs_inode_item.h"
43 #include "xfs_btree.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_bmap_util.h"
48 #include "xfs_error.h"
49 #include "xfs_quota.h"
50 #include "xfs_filestream.h"
51 #include "xfs_cksum.h"
52 #include "xfs_trace.h"
53 #include "xfs_icache.h"
54 #include "xfs_symlink.h"
56 kmem_zone_t *xfs_inode_zone;
59 * Used in xfs_itruncate_extents(). This is the maximum number of extents
60 * freed from a file in a single transaction.
62 #define XFS_ITRUNC_MAX_EXTENTS 2
64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
67 * helper function to extract extent size hint from inode
69 xfs_extlen_t
70 xfs_get_extsz_hint(
71 struct xfs_inode *ip)
73 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
74 return ip->i_d.di_extsize;
75 if (XFS_IS_REALTIME_INODE(ip))
76 return ip->i_mount->m_sb.sb_rextsize;
77 return 0;
81 * This is a wrapper routine around the xfs_ilock() routine used to centralize
82 * some grungy code. It is used in places that wish to lock the inode solely
83 * for reading the extents. The reason these places can't just call
84 * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the
85 * extents from disk for a file in b-tree format. If the inode is in b-tree
86 * format, then we need to lock the inode exclusively until the extents are read
87 * in. Locking it exclusively all the time would limit our parallelism
88 * unnecessarily, though. What we do instead is check to see if the extents
89 * have been read in yet, and only lock the inode exclusively if they have not.
91 * The function returns a value which should be given to the corresponding
92 * xfs_iunlock_map_shared(). This value is the mode in which the lock was
93 * actually taken.
95 uint
96 xfs_ilock_map_shared(
97 xfs_inode_t *ip)
99 uint lock_mode;
101 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
102 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
103 lock_mode = XFS_ILOCK_EXCL;
104 } else {
105 lock_mode = XFS_ILOCK_SHARED;
108 xfs_ilock(ip, lock_mode);
110 return lock_mode;
114 * This is simply the unlock routine to go with xfs_ilock_map_shared().
115 * All it does is call xfs_iunlock() with the given lock_mode.
117 void
118 xfs_iunlock_map_shared(
119 xfs_inode_t *ip,
120 unsigned int lock_mode)
122 xfs_iunlock(ip, lock_mode);
126 * The xfs inode contains 2 locks: a multi-reader lock called the
127 * i_iolock and a multi-reader lock called the i_lock. This routine
128 * allows either or both of the locks to be obtained.
130 * The 2 locks should always be ordered so that the IO lock is
131 * obtained first in order to prevent deadlock.
133 * ip -- the inode being locked
134 * lock_flags -- this parameter indicates the inode's locks
135 * to be locked. It can be:
136 * XFS_IOLOCK_SHARED,
137 * XFS_IOLOCK_EXCL,
138 * XFS_ILOCK_SHARED,
139 * XFS_ILOCK_EXCL,
140 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
141 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
142 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
143 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
145 void
146 xfs_ilock(
147 xfs_inode_t *ip,
148 uint lock_flags)
150 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
153 * You can't set both SHARED and EXCL for the same lock,
154 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
155 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
157 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
158 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
159 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
160 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
161 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
163 if (lock_flags & XFS_IOLOCK_EXCL)
164 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
165 else if (lock_flags & XFS_IOLOCK_SHARED)
166 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
168 if (lock_flags & XFS_ILOCK_EXCL)
169 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
170 else if (lock_flags & XFS_ILOCK_SHARED)
171 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
175 * This is just like xfs_ilock(), except that the caller
176 * is guaranteed not to sleep. It returns 1 if it gets
177 * the requested locks and 0 otherwise. If the IO lock is
178 * obtained but the inode lock cannot be, then the IO lock
179 * is dropped before returning.
181 * ip -- the inode being locked
182 * lock_flags -- this parameter indicates the inode's locks to be
183 * to be locked. See the comment for xfs_ilock() for a list
184 * of valid values.
187 xfs_ilock_nowait(
188 xfs_inode_t *ip,
189 uint lock_flags)
191 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
194 * You can't set both SHARED and EXCL for the same lock,
195 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
196 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
198 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
199 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
200 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
201 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
202 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
204 if (lock_flags & XFS_IOLOCK_EXCL) {
205 if (!mrtryupdate(&ip->i_iolock))
206 goto out;
207 } else if (lock_flags & XFS_IOLOCK_SHARED) {
208 if (!mrtryaccess(&ip->i_iolock))
209 goto out;
211 if (lock_flags & XFS_ILOCK_EXCL) {
212 if (!mrtryupdate(&ip->i_lock))
213 goto out_undo_iolock;
214 } else if (lock_flags & XFS_ILOCK_SHARED) {
215 if (!mrtryaccess(&ip->i_lock))
216 goto out_undo_iolock;
218 return 1;
220 out_undo_iolock:
221 if (lock_flags & XFS_IOLOCK_EXCL)
222 mrunlock_excl(&ip->i_iolock);
223 else if (lock_flags & XFS_IOLOCK_SHARED)
224 mrunlock_shared(&ip->i_iolock);
225 out:
226 return 0;
230 * xfs_iunlock() is used to drop the inode locks acquired with
231 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
232 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
233 * that we know which locks to drop.
235 * ip -- the inode being unlocked
236 * lock_flags -- this parameter indicates the inode's locks to be
237 * to be unlocked. See the comment for xfs_ilock() for a list
238 * of valid values for this parameter.
241 void
242 xfs_iunlock(
243 xfs_inode_t *ip,
244 uint lock_flags)
247 * You can't set both SHARED and EXCL for the same lock,
248 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
249 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
251 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
252 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
253 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
254 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
255 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
256 ASSERT(lock_flags != 0);
258 if (lock_flags & XFS_IOLOCK_EXCL)
259 mrunlock_excl(&ip->i_iolock);
260 else if (lock_flags & XFS_IOLOCK_SHARED)
261 mrunlock_shared(&ip->i_iolock);
263 if (lock_flags & XFS_ILOCK_EXCL)
264 mrunlock_excl(&ip->i_lock);
265 else if (lock_flags & XFS_ILOCK_SHARED)
266 mrunlock_shared(&ip->i_lock);
268 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
272 * give up write locks. the i/o lock cannot be held nested
273 * if it is being demoted.
275 void
276 xfs_ilock_demote(
277 xfs_inode_t *ip,
278 uint lock_flags)
280 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
281 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
283 if (lock_flags & XFS_ILOCK_EXCL)
284 mrdemote(&ip->i_lock);
285 if (lock_flags & XFS_IOLOCK_EXCL)
286 mrdemote(&ip->i_iolock);
288 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
291 #if defined(DEBUG) || defined(XFS_WARN)
293 xfs_isilocked(
294 xfs_inode_t *ip,
295 uint lock_flags)
297 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
298 if (!(lock_flags & XFS_ILOCK_SHARED))
299 return !!ip->i_lock.mr_writer;
300 return rwsem_is_locked(&ip->i_lock.mr_lock);
303 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
304 if (!(lock_flags & XFS_IOLOCK_SHARED))
305 return !!ip->i_iolock.mr_writer;
306 return rwsem_is_locked(&ip->i_iolock.mr_lock);
309 ASSERT(0);
310 return 0;
312 #endif
314 #ifdef DEBUG
315 int xfs_locked_n;
316 int xfs_small_retries;
317 int xfs_middle_retries;
318 int xfs_lots_retries;
319 int xfs_lock_delays;
320 #endif
323 * Bump the subclass so xfs_lock_inodes() acquires each lock with
324 * a different value
326 static inline int
327 xfs_lock_inumorder(int lock_mode, int subclass)
329 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
330 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
331 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
332 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
334 return lock_mode;
338 * The following routine will lock n inodes in exclusive mode.
339 * We assume the caller calls us with the inodes in i_ino order.
341 * We need to detect deadlock where an inode that we lock
342 * is in the AIL and we start waiting for another inode that is locked
343 * by a thread in a long running transaction (such as truncate). This can
344 * result in deadlock since the long running trans might need to wait
345 * for the inode we just locked in order to push the tail and free space
346 * in the log.
348 void
349 xfs_lock_inodes(
350 xfs_inode_t **ips,
351 int inodes,
352 uint lock_mode)
354 int attempts = 0, i, j, try_lock;
355 xfs_log_item_t *lp;
357 ASSERT(ips && (inodes >= 2)); /* we need at least two */
359 try_lock = 0;
360 i = 0;
362 again:
363 for (; i < inodes; i++) {
364 ASSERT(ips[i]);
366 if (i && (ips[i] == ips[i-1])) /* Already locked */
367 continue;
370 * If try_lock is not set yet, make sure all locked inodes
371 * are not in the AIL.
372 * If any are, set try_lock to be used later.
375 if (!try_lock) {
376 for (j = (i - 1); j >= 0 && !try_lock; j--) {
377 lp = (xfs_log_item_t *)ips[j]->i_itemp;
378 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
379 try_lock++;
385 * If any of the previous locks we have locked is in the AIL,
386 * we must TRY to get the second and subsequent locks. If
387 * we can't get any, we must release all we have
388 * and try again.
391 if (try_lock) {
392 /* try_lock must be 0 if i is 0. */
394 * try_lock means we have an inode locked
395 * that is in the AIL.
397 ASSERT(i != 0);
398 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
399 attempts++;
402 * Unlock all previous guys and try again.
403 * xfs_iunlock will try to push the tail
404 * if the inode is in the AIL.
407 for(j = i - 1; j >= 0; j--) {
410 * Check to see if we've already
411 * unlocked this one.
412 * Not the first one going back,
413 * and the inode ptr is the same.
415 if ((j != (i - 1)) && ips[j] ==
416 ips[j+1])
417 continue;
419 xfs_iunlock(ips[j], lock_mode);
422 if ((attempts % 5) == 0) {
423 delay(1); /* Don't just spin the CPU */
424 #ifdef DEBUG
425 xfs_lock_delays++;
426 #endif
428 i = 0;
429 try_lock = 0;
430 goto again;
432 } else {
433 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
437 #ifdef DEBUG
438 if (attempts) {
439 if (attempts < 5) xfs_small_retries++;
440 else if (attempts < 100) xfs_middle_retries++;
441 else xfs_lots_retries++;
442 } else {
443 xfs_locked_n++;
445 #endif
449 * xfs_lock_two_inodes() can only be used to lock one type of lock
450 * at a time - the iolock or the ilock, but not both at once. If
451 * we lock both at once, lockdep will report false positives saying
452 * we have violated locking orders.
454 void
455 xfs_lock_two_inodes(
456 xfs_inode_t *ip0,
457 xfs_inode_t *ip1,
458 uint lock_mode)
460 xfs_inode_t *temp;
461 int attempts = 0;
462 xfs_log_item_t *lp;
464 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
465 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
466 ASSERT(ip0->i_ino != ip1->i_ino);
468 if (ip0->i_ino > ip1->i_ino) {
469 temp = ip0;
470 ip0 = ip1;
471 ip1 = temp;
474 again:
475 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
478 * If the first lock we have locked is in the AIL, we must TRY to get
479 * the second lock. If we can't get it, we must release the first one
480 * and try again.
482 lp = (xfs_log_item_t *)ip0->i_itemp;
483 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
484 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
485 xfs_iunlock(ip0, lock_mode);
486 if ((++attempts % 5) == 0)
487 delay(1); /* Don't just spin the CPU */
488 goto again;
490 } else {
491 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
496 void
497 __xfs_iflock(
498 struct xfs_inode *ip)
500 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
501 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
503 do {
504 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
505 if (xfs_isiflocked(ip))
506 io_schedule();
507 } while (!xfs_iflock_nowait(ip));
509 finish_wait(wq, &wait.wait);
512 STATIC uint
513 _xfs_dic2xflags(
514 __uint16_t di_flags)
516 uint flags = 0;
518 if (di_flags & XFS_DIFLAG_ANY) {
519 if (di_flags & XFS_DIFLAG_REALTIME)
520 flags |= XFS_XFLAG_REALTIME;
521 if (di_flags & XFS_DIFLAG_PREALLOC)
522 flags |= XFS_XFLAG_PREALLOC;
523 if (di_flags & XFS_DIFLAG_IMMUTABLE)
524 flags |= XFS_XFLAG_IMMUTABLE;
525 if (di_flags & XFS_DIFLAG_APPEND)
526 flags |= XFS_XFLAG_APPEND;
527 if (di_flags & XFS_DIFLAG_SYNC)
528 flags |= XFS_XFLAG_SYNC;
529 if (di_flags & XFS_DIFLAG_NOATIME)
530 flags |= XFS_XFLAG_NOATIME;
531 if (di_flags & XFS_DIFLAG_NODUMP)
532 flags |= XFS_XFLAG_NODUMP;
533 if (di_flags & XFS_DIFLAG_RTINHERIT)
534 flags |= XFS_XFLAG_RTINHERIT;
535 if (di_flags & XFS_DIFLAG_PROJINHERIT)
536 flags |= XFS_XFLAG_PROJINHERIT;
537 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
538 flags |= XFS_XFLAG_NOSYMLINKS;
539 if (di_flags & XFS_DIFLAG_EXTSIZE)
540 flags |= XFS_XFLAG_EXTSIZE;
541 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
542 flags |= XFS_XFLAG_EXTSZINHERIT;
543 if (di_flags & XFS_DIFLAG_NODEFRAG)
544 flags |= XFS_XFLAG_NODEFRAG;
545 if (di_flags & XFS_DIFLAG_FILESTREAM)
546 flags |= XFS_XFLAG_FILESTREAM;
549 return flags;
552 uint
553 xfs_ip2xflags(
554 xfs_inode_t *ip)
556 xfs_icdinode_t *dic = &ip->i_d;
558 return _xfs_dic2xflags(dic->di_flags) |
559 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
562 uint
563 xfs_dic2xflags(
564 xfs_dinode_t *dip)
566 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
567 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
571 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
572 * is allowed, otherwise it has to be an exact match. If a CI match is found,
573 * ci_name->name will point to a the actual name (caller must free) or
574 * will be set to NULL if an exact match is found.
577 xfs_lookup(
578 xfs_inode_t *dp,
579 struct xfs_name *name,
580 xfs_inode_t **ipp,
581 struct xfs_name *ci_name)
583 xfs_ino_t inum;
584 int error;
585 uint lock_mode;
587 trace_xfs_lookup(dp, name);
589 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
590 return XFS_ERROR(EIO);
592 lock_mode = xfs_ilock_map_shared(dp);
593 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
594 xfs_iunlock_map_shared(dp, lock_mode);
596 if (error)
597 goto out;
599 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
600 if (error)
601 goto out_free_name;
603 return 0;
605 out_free_name:
606 if (ci_name)
607 kmem_free(ci_name->name);
608 out:
609 *ipp = NULL;
610 return error;
614 * Allocate an inode on disk and return a copy of its in-core version.
615 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
616 * appropriately within the inode. The uid and gid for the inode are
617 * set according to the contents of the given cred structure.
619 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
620 * has a free inode available, call xfs_iget() to obtain the in-core
621 * version of the allocated inode. Finally, fill in the inode and
622 * log its initial contents. In this case, ialloc_context would be
623 * set to NULL.
625 * If xfs_dialloc() does not have an available inode, it will replenish
626 * its supply by doing an allocation. Since we can only do one
627 * allocation within a transaction without deadlocks, we must commit
628 * the current transaction before returning the inode itself.
629 * In this case, therefore, we will set ialloc_context and return.
630 * The caller should then commit the current transaction, start a new
631 * transaction, and call xfs_ialloc() again to actually get the inode.
633 * To ensure that some other process does not grab the inode that
634 * was allocated during the first call to xfs_ialloc(), this routine
635 * also returns the [locked] bp pointing to the head of the freelist
636 * as ialloc_context. The caller should hold this buffer across
637 * the commit and pass it back into this routine on the second call.
639 * If we are allocating quota inodes, we do not have a parent inode
640 * to attach to or associate with (i.e. pip == NULL) because they
641 * are not linked into the directory structure - they are attached
642 * directly to the superblock - and so have no parent.
645 xfs_ialloc(
646 xfs_trans_t *tp,
647 xfs_inode_t *pip,
648 umode_t mode,
649 xfs_nlink_t nlink,
650 xfs_dev_t rdev,
651 prid_t prid,
652 int okalloc,
653 xfs_buf_t **ialloc_context,
654 xfs_inode_t **ipp)
656 struct xfs_mount *mp = tp->t_mountp;
657 xfs_ino_t ino;
658 xfs_inode_t *ip;
659 uint flags;
660 int error;
661 timespec_t tv;
662 int filestreams = 0;
665 * Call the space management code to pick
666 * the on-disk inode to be allocated.
668 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
669 ialloc_context, &ino);
670 if (error)
671 return error;
672 if (*ialloc_context || ino == NULLFSINO) {
673 *ipp = NULL;
674 return 0;
676 ASSERT(*ialloc_context == NULL);
679 * Get the in-core inode with the lock held exclusively.
680 * This is because we're setting fields here we need
681 * to prevent others from looking at until we're done.
683 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
684 XFS_ILOCK_EXCL, &ip);
685 if (error)
686 return error;
687 ASSERT(ip != NULL);
689 ip->i_d.di_mode = mode;
690 ip->i_d.di_onlink = 0;
691 ip->i_d.di_nlink = nlink;
692 ASSERT(ip->i_d.di_nlink == nlink);
693 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
694 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
695 xfs_set_projid(ip, prid);
696 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
699 * If the superblock version is up to where we support new format
700 * inodes and this is currently an old format inode, then change
701 * the inode version number now. This way we only do the conversion
702 * here rather than here and in the flush/logging code.
704 if (xfs_sb_version_hasnlink(&mp->m_sb) &&
705 ip->i_d.di_version == 1) {
706 ip->i_d.di_version = 2;
708 * We've already zeroed the old link count, the projid field,
709 * and the pad field.
714 * Project ids won't be stored on disk if we are using a version 1 inode.
716 if ((prid != 0) && (ip->i_d.di_version == 1))
717 xfs_bump_ino_vers2(tp, ip);
719 if (pip && XFS_INHERIT_GID(pip)) {
720 ip->i_d.di_gid = pip->i_d.di_gid;
721 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
722 ip->i_d.di_mode |= S_ISGID;
727 * If the group ID of the new file does not match the effective group
728 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
729 * (and only if the irix_sgid_inherit compatibility variable is set).
731 if ((irix_sgid_inherit) &&
732 (ip->i_d.di_mode & S_ISGID) &&
733 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
734 ip->i_d.di_mode &= ~S_ISGID;
737 ip->i_d.di_size = 0;
738 ip->i_d.di_nextents = 0;
739 ASSERT(ip->i_d.di_nblocks == 0);
741 nanotime(&tv);
742 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
743 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
744 ip->i_d.di_atime = ip->i_d.di_mtime;
745 ip->i_d.di_ctime = ip->i_d.di_mtime;
748 * di_gen will have been taken care of in xfs_iread.
750 ip->i_d.di_extsize = 0;
751 ip->i_d.di_dmevmask = 0;
752 ip->i_d.di_dmstate = 0;
753 ip->i_d.di_flags = 0;
755 if (ip->i_d.di_version == 3) {
756 ASSERT(ip->i_d.di_ino == ino);
757 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
758 ip->i_d.di_crc = 0;
759 ip->i_d.di_changecount = 1;
760 ip->i_d.di_lsn = 0;
761 ip->i_d.di_flags2 = 0;
762 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
763 ip->i_d.di_crtime = ip->i_d.di_mtime;
767 flags = XFS_ILOG_CORE;
768 switch (mode & S_IFMT) {
769 case S_IFIFO:
770 case S_IFCHR:
771 case S_IFBLK:
772 case S_IFSOCK:
773 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
774 ip->i_df.if_u2.if_rdev = rdev;
775 ip->i_df.if_flags = 0;
776 flags |= XFS_ILOG_DEV;
777 break;
778 case S_IFREG:
780 * we can't set up filestreams until after the VFS inode
781 * is set up properly.
783 if (pip && xfs_inode_is_filestream(pip))
784 filestreams = 1;
785 /* fall through */
786 case S_IFDIR:
787 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
788 uint di_flags = 0;
790 if (S_ISDIR(mode)) {
791 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
792 di_flags |= XFS_DIFLAG_RTINHERIT;
793 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
794 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
795 ip->i_d.di_extsize = pip->i_d.di_extsize;
797 } else if (S_ISREG(mode)) {
798 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
799 di_flags |= XFS_DIFLAG_REALTIME;
800 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
801 di_flags |= XFS_DIFLAG_EXTSIZE;
802 ip->i_d.di_extsize = pip->i_d.di_extsize;
805 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
806 xfs_inherit_noatime)
807 di_flags |= XFS_DIFLAG_NOATIME;
808 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
809 xfs_inherit_nodump)
810 di_flags |= XFS_DIFLAG_NODUMP;
811 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
812 xfs_inherit_sync)
813 di_flags |= XFS_DIFLAG_SYNC;
814 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
815 xfs_inherit_nosymlinks)
816 di_flags |= XFS_DIFLAG_NOSYMLINKS;
817 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
818 di_flags |= XFS_DIFLAG_PROJINHERIT;
819 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
820 xfs_inherit_nodefrag)
821 di_flags |= XFS_DIFLAG_NODEFRAG;
822 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
823 di_flags |= XFS_DIFLAG_FILESTREAM;
824 ip->i_d.di_flags |= di_flags;
826 /* FALLTHROUGH */
827 case S_IFLNK:
828 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
829 ip->i_df.if_flags = XFS_IFEXTENTS;
830 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
831 ip->i_df.if_u1.if_extents = NULL;
832 break;
833 default:
834 ASSERT(0);
837 * Attribute fork settings for new inode.
839 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
840 ip->i_d.di_anextents = 0;
843 * Log the new values stuffed into the inode.
845 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
846 xfs_trans_log_inode(tp, ip, flags);
848 /* now that we have an i_mode we can setup inode ops and unlock */
849 xfs_setup_inode(ip);
851 /* now we have set up the vfs inode we can associate the filestream */
852 if (filestreams) {
853 error = xfs_filestream_associate(pip, ip);
854 if (error < 0)
855 return -error;
856 if (!error)
857 xfs_iflags_set(ip, XFS_IFILESTREAM);
860 *ipp = ip;
861 return 0;
865 * Allocates a new inode from disk and return a pointer to the
866 * incore copy. This routine will internally commit the current
867 * transaction and allocate a new one if the Space Manager needed
868 * to do an allocation to replenish the inode free-list.
870 * This routine is designed to be called from xfs_create and
871 * xfs_create_dir.
875 xfs_dir_ialloc(
876 xfs_trans_t **tpp, /* input: current transaction;
877 output: may be a new transaction. */
878 xfs_inode_t *dp, /* directory within whose allocate
879 the inode. */
880 umode_t mode,
881 xfs_nlink_t nlink,
882 xfs_dev_t rdev,
883 prid_t prid, /* project id */
884 int okalloc, /* ok to allocate new space */
885 xfs_inode_t **ipp, /* pointer to inode; it will be
886 locked. */
887 int *committed)
890 xfs_trans_t *tp;
891 xfs_trans_t *ntp;
892 xfs_inode_t *ip;
893 xfs_buf_t *ialloc_context = NULL;
894 int code;
895 void *dqinfo;
896 uint tflags;
898 tp = *tpp;
899 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
902 * xfs_ialloc will return a pointer to an incore inode if
903 * the Space Manager has an available inode on the free
904 * list. Otherwise, it will do an allocation and replenish
905 * the freelist. Since we can only do one allocation per
906 * transaction without deadlocks, we will need to commit the
907 * current transaction and start a new one. We will then
908 * need to call xfs_ialloc again to get the inode.
910 * If xfs_ialloc did an allocation to replenish the freelist,
911 * it returns the bp containing the head of the freelist as
912 * ialloc_context. We will hold a lock on it across the
913 * transaction commit so that no other process can steal
914 * the inode(s) that we've just allocated.
916 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
917 &ialloc_context, &ip);
920 * Return an error if we were unable to allocate a new inode.
921 * This should only happen if we run out of space on disk or
922 * encounter a disk error.
924 if (code) {
925 *ipp = NULL;
926 return code;
928 if (!ialloc_context && !ip) {
929 *ipp = NULL;
930 return XFS_ERROR(ENOSPC);
934 * If the AGI buffer is non-NULL, then we were unable to get an
935 * inode in one operation. We need to commit the current
936 * transaction and call xfs_ialloc() again. It is guaranteed
937 * to succeed the second time.
939 if (ialloc_context) {
940 struct xfs_trans_res tres;
943 * Normally, xfs_trans_commit releases all the locks.
944 * We call bhold to hang on to the ialloc_context across
945 * the commit. Holding this buffer prevents any other
946 * processes from doing any allocations in this
947 * allocation group.
949 xfs_trans_bhold(tp, ialloc_context);
951 * Save the log reservation so we can use
952 * them in the next transaction.
954 tres.tr_logres = xfs_trans_get_log_res(tp);
955 tres.tr_logcount = xfs_trans_get_log_count(tp);
958 * We want the quota changes to be associated with the next
959 * transaction, NOT this one. So, detach the dqinfo from this
960 * and attach it to the next transaction.
962 dqinfo = NULL;
963 tflags = 0;
964 if (tp->t_dqinfo) {
965 dqinfo = (void *)tp->t_dqinfo;
966 tp->t_dqinfo = NULL;
967 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
968 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
971 ntp = xfs_trans_dup(tp);
972 code = xfs_trans_commit(tp, 0);
973 tp = ntp;
974 if (committed != NULL) {
975 *committed = 1;
978 * If we get an error during the commit processing,
979 * release the buffer that is still held and return
980 * to the caller.
982 if (code) {
983 xfs_buf_relse(ialloc_context);
984 if (dqinfo) {
985 tp->t_dqinfo = dqinfo;
986 xfs_trans_free_dqinfo(tp);
988 *tpp = ntp;
989 *ipp = NULL;
990 return code;
994 * transaction commit worked ok so we can drop the extra ticket
995 * reference that we gained in xfs_trans_dup()
997 xfs_log_ticket_put(tp->t_ticket);
998 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
999 code = xfs_trans_reserve(tp, &tres, 0, 0);
1002 * Re-attach the quota info that we detached from prev trx.
1004 if (dqinfo) {
1005 tp->t_dqinfo = dqinfo;
1006 tp->t_flags |= tflags;
1009 if (code) {
1010 xfs_buf_relse(ialloc_context);
1011 *tpp = ntp;
1012 *ipp = NULL;
1013 return code;
1015 xfs_trans_bjoin(tp, ialloc_context);
1018 * Call ialloc again. Since we've locked out all
1019 * other allocations in this allocation group,
1020 * this call should always succeed.
1022 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1023 okalloc, &ialloc_context, &ip);
1026 * If we get an error at this point, return to the caller
1027 * so that the current transaction can be aborted.
1029 if (code) {
1030 *tpp = tp;
1031 *ipp = NULL;
1032 return code;
1034 ASSERT(!ialloc_context && ip);
1036 } else {
1037 if (committed != NULL)
1038 *committed = 0;
1041 *ipp = ip;
1042 *tpp = tp;
1044 return 0;
1048 * Decrement the link count on an inode & log the change.
1049 * If this causes the link count to go to zero, initiate the
1050 * logging activity required to truncate a file.
1052 int /* error */
1053 xfs_droplink(
1054 xfs_trans_t *tp,
1055 xfs_inode_t *ip)
1057 int error;
1059 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1061 ASSERT (ip->i_d.di_nlink > 0);
1062 ip->i_d.di_nlink--;
1063 drop_nlink(VFS_I(ip));
1064 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1066 error = 0;
1067 if (ip->i_d.di_nlink == 0) {
1069 * We're dropping the last link to this file.
1070 * Move the on-disk inode to the AGI unlinked list.
1071 * From xfs_inactive() we will pull the inode from
1072 * the list and free it.
1074 error = xfs_iunlink(tp, ip);
1076 return error;
1080 * This gets called when the inode's version needs to be changed from 1 to 2.
1081 * Currently this happens when the nlink field overflows the old 16-bit value
1082 * or when chproj is called to change the project for the first time.
1083 * As a side effect the superblock version will also get rev'd
1084 * to contain the NLINK bit.
1086 void
1087 xfs_bump_ino_vers2(
1088 xfs_trans_t *tp,
1089 xfs_inode_t *ip)
1091 xfs_mount_t *mp;
1093 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1094 ASSERT(ip->i_d.di_version == 1);
1096 ip->i_d.di_version = 2;
1097 ip->i_d.di_onlink = 0;
1098 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1099 mp = tp->t_mountp;
1100 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1101 spin_lock(&mp->m_sb_lock);
1102 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1103 xfs_sb_version_addnlink(&mp->m_sb);
1104 spin_unlock(&mp->m_sb_lock);
1105 xfs_mod_sb(tp, XFS_SB_VERSIONNUM);
1106 } else {
1107 spin_unlock(&mp->m_sb_lock);
1110 /* Caller must log the inode */
1114 * Increment the link count on an inode & log the change.
1117 xfs_bumplink(
1118 xfs_trans_t *tp,
1119 xfs_inode_t *ip)
1121 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1123 ASSERT(ip->i_d.di_nlink > 0);
1124 ip->i_d.di_nlink++;
1125 inc_nlink(VFS_I(ip));
1126 if ((ip->i_d.di_version == 1) &&
1127 (ip->i_d.di_nlink > XFS_MAXLINK_1)) {
1129 * The inode has increased its number of links beyond
1130 * what can fit in an old format inode. It now needs
1131 * to be converted to a version 2 inode with a 32 bit
1132 * link count. If this is the first inode in the file
1133 * system to do this, then we need to bump the superblock
1134 * version number as well.
1136 xfs_bump_ino_vers2(tp, ip);
1139 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1140 return 0;
1144 xfs_create(
1145 xfs_inode_t *dp,
1146 struct xfs_name *name,
1147 umode_t mode,
1148 xfs_dev_t rdev,
1149 xfs_inode_t **ipp)
1151 int is_dir = S_ISDIR(mode);
1152 struct xfs_mount *mp = dp->i_mount;
1153 struct xfs_inode *ip = NULL;
1154 struct xfs_trans *tp = NULL;
1155 int error;
1156 xfs_bmap_free_t free_list;
1157 xfs_fsblock_t first_block;
1158 bool unlock_dp_on_error = false;
1159 uint cancel_flags;
1160 int committed;
1161 prid_t prid;
1162 struct xfs_dquot *udqp = NULL;
1163 struct xfs_dquot *gdqp = NULL;
1164 struct xfs_dquot *pdqp = NULL;
1165 struct xfs_trans_res tres;
1166 uint resblks;
1168 trace_xfs_create(dp, name);
1170 if (XFS_FORCED_SHUTDOWN(mp))
1171 return XFS_ERROR(EIO);
1173 if (dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1174 prid = xfs_get_projid(dp);
1175 else
1176 prid = XFS_PROJID_DEFAULT;
1179 * Make sure that we have allocated dquot(s) on disk.
1181 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1182 xfs_kgid_to_gid(current_fsgid()), prid,
1183 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1184 &udqp, &gdqp, &pdqp);
1185 if (error)
1186 return error;
1188 if (is_dir) {
1189 rdev = 0;
1190 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1191 tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres;
1192 tres.tr_logcount = XFS_MKDIR_LOG_COUNT;
1193 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1194 } else {
1195 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1196 tres.tr_logres = M_RES(mp)->tr_create.tr_logres;
1197 tres.tr_logcount = XFS_CREATE_LOG_COUNT;
1198 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1201 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1204 * Initially assume that the file does not exist and
1205 * reserve the resources for that case. If that is not
1206 * the case we'll drop the one we have and get a more
1207 * appropriate transaction later.
1209 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1210 error = xfs_trans_reserve(tp, &tres, resblks, 0);
1211 if (error == ENOSPC) {
1212 /* flush outstanding delalloc blocks and retry */
1213 xfs_flush_inodes(mp);
1214 error = xfs_trans_reserve(tp, &tres, resblks, 0);
1216 if (error == ENOSPC) {
1217 /* No space at all so try a "no-allocation" reservation */
1218 resblks = 0;
1219 error = xfs_trans_reserve(tp, &tres, 0, 0);
1221 if (error) {
1222 cancel_flags = 0;
1223 goto out_trans_cancel;
1226 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1227 unlock_dp_on_error = true;
1229 xfs_bmap_init(&free_list, &first_block);
1232 * Reserve disk quota and the inode.
1234 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1235 pdqp, resblks, 1, 0);
1236 if (error)
1237 goto out_trans_cancel;
1239 error = xfs_dir_canenter(tp, dp, name, resblks);
1240 if (error)
1241 goto out_trans_cancel;
1244 * A newly created regular or special file just has one directory
1245 * entry pointing to them, but a directory also the "." entry
1246 * pointing to itself.
1248 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1249 prid, resblks > 0, &ip, &committed);
1250 if (error) {
1251 if (error == ENOSPC)
1252 goto out_trans_cancel;
1253 goto out_trans_abort;
1257 * Now we join the directory inode to the transaction. We do not do it
1258 * earlier because xfs_dir_ialloc might commit the previous transaction
1259 * (and release all the locks). An error from here on will result in
1260 * the transaction cancel unlocking dp so don't do it explicitly in the
1261 * error path.
1263 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1264 unlock_dp_on_error = false;
1266 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1267 &first_block, &free_list, resblks ?
1268 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1269 if (error) {
1270 ASSERT(error != ENOSPC);
1271 goto out_trans_abort;
1273 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1274 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1276 if (is_dir) {
1277 error = xfs_dir_init(tp, ip, dp);
1278 if (error)
1279 goto out_bmap_cancel;
1281 error = xfs_bumplink(tp, dp);
1282 if (error)
1283 goto out_bmap_cancel;
1287 * If this is a synchronous mount, make sure that the
1288 * create transaction goes to disk before returning to
1289 * the user.
1291 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1292 xfs_trans_set_sync(tp);
1295 * Attach the dquot(s) to the inodes and modify them incore.
1296 * These ids of the inode couldn't have changed since the new
1297 * inode has been locked ever since it was created.
1299 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1301 error = xfs_bmap_finish(&tp, &free_list, &committed);
1302 if (error)
1303 goto out_bmap_cancel;
1305 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1306 if (error)
1307 goto out_release_inode;
1309 xfs_qm_dqrele(udqp);
1310 xfs_qm_dqrele(gdqp);
1311 xfs_qm_dqrele(pdqp);
1313 *ipp = ip;
1314 return 0;
1316 out_bmap_cancel:
1317 xfs_bmap_cancel(&free_list);
1318 out_trans_abort:
1319 cancel_flags |= XFS_TRANS_ABORT;
1320 out_trans_cancel:
1321 xfs_trans_cancel(tp, cancel_flags);
1322 out_release_inode:
1324 * Wait until after the current transaction is aborted to
1325 * release the inode. This prevents recursive transactions
1326 * and deadlocks from xfs_inactive.
1328 if (ip)
1329 IRELE(ip);
1331 xfs_qm_dqrele(udqp);
1332 xfs_qm_dqrele(gdqp);
1333 xfs_qm_dqrele(pdqp);
1335 if (unlock_dp_on_error)
1336 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1337 return error;
1341 xfs_link(
1342 xfs_inode_t *tdp,
1343 xfs_inode_t *sip,
1344 struct xfs_name *target_name)
1346 xfs_mount_t *mp = tdp->i_mount;
1347 xfs_trans_t *tp;
1348 int error;
1349 xfs_bmap_free_t free_list;
1350 xfs_fsblock_t first_block;
1351 int cancel_flags;
1352 int committed;
1353 int resblks;
1355 trace_xfs_link(tdp, target_name);
1357 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1359 if (XFS_FORCED_SHUTDOWN(mp))
1360 return XFS_ERROR(EIO);
1362 error = xfs_qm_dqattach(sip, 0);
1363 if (error)
1364 goto std_return;
1366 error = xfs_qm_dqattach(tdp, 0);
1367 if (error)
1368 goto std_return;
1370 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1371 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1372 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1373 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1374 if (error == ENOSPC) {
1375 resblks = 0;
1376 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1378 if (error) {
1379 cancel_flags = 0;
1380 goto error_return;
1383 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1385 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1386 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1389 * If we are using project inheritance, we only allow hard link
1390 * creation in our tree when the project IDs are the same; else
1391 * the tree quota mechanism could be circumvented.
1393 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1394 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1395 error = XFS_ERROR(EXDEV);
1396 goto error_return;
1399 error = xfs_dir_canenter(tp, tdp, target_name, resblks);
1400 if (error)
1401 goto error_return;
1403 xfs_bmap_init(&free_list, &first_block);
1405 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1406 &first_block, &free_list, resblks);
1407 if (error)
1408 goto abort_return;
1409 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1410 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1412 error = xfs_bumplink(tp, sip);
1413 if (error)
1414 goto abort_return;
1417 * If this is a synchronous mount, make sure that the
1418 * link transaction goes to disk before returning to
1419 * the user.
1421 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1422 xfs_trans_set_sync(tp);
1425 error = xfs_bmap_finish (&tp, &free_list, &committed);
1426 if (error) {
1427 xfs_bmap_cancel(&free_list);
1428 goto abort_return;
1431 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1433 abort_return:
1434 cancel_flags |= XFS_TRANS_ABORT;
1435 error_return:
1436 xfs_trans_cancel(tp, cancel_flags);
1437 std_return:
1438 return error;
1442 * Free up the underlying blocks past new_size. The new size must be smaller
1443 * than the current size. This routine can be used both for the attribute and
1444 * data fork, and does not modify the inode size, which is left to the caller.
1446 * The transaction passed to this routine must have made a permanent log
1447 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1448 * given transaction and start new ones, so make sure everything involved in
1449 * the transaction is tidy before calling here. Some transaction will be
1450 * returned to the caller to be committed. The incoming transaction must
1451 * already include the inode, and both inode locks must be held exclusively.
1452 * The inode must also be "held" within the transaction. On return the inode
1453 * will be "held" within the returned transaction. This routine does NOT
1454 * require any disk space to be reserved for it within the transaction.
1456 * If we get an error, we must return with the inode locked and linked into the
1457 * current transaction. This keeps things simple for the higher level code,
1458 * because it always knows that the inode is locked and held in the transaction
1459 * that returns to it whether errors occur or not. We don't mark the inode
1460 * dirty on error so that transactions can be easily aborted if possible.
1463 xfs_itruncate_extents(
1464 struct xfs_trans **tpp,
1465 struct xfs_inode *ip,
1466 int whichfork,
1467 xfs_fsize_t new_size)
1469 struct xfs_mount *mp = ip->i_mount;
1470 struct xfs_trans *tp = *tpp;
1471 struct xfs_trans *ntp;
1472 xfs_bmap_free_t free_list;
1473 xfs_fsblock_t first_block;
1474 xfs_fileoff_t first_unmap_block;
1475 xfs_fileoff_t last_block;
1476 xfs_filblks_t unmap_len;
1477 int committed;
1478 int error = 0;
1479 int done = 0;
1481 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1482 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1483 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1484 ASSERT(new_size <= XFS_ISIZE(ip));
1485 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1486 ASSERT(ip->i_itemp != NULL);
1487 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1488 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1490 trace_xfs_itruncate_extents_start(ip, new_size);
1493 * Since it is possible for space to become allocated beyond
1494 * the end of the file (in a crash where the space is allocated
1495 * but the inode size is not yet updated), simply remove any
1496 * blocks which show up between the new EOF and the maximum
1497 * possible file size. If the first block to be removed is
1498 * beyond the maximum file size (ie it is the same as last_block),
1499 * then there is nothing to do.
1501 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1502 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1503 if (first_unmap_block == last_block)
1504 return 0;
1506 ASSERT(first_unmap_block < last_block);
1507 unmap_len = last_block - first_unmap_block + 1;
1508 while (!done) {
1509 xfs_bmap_init(&free_list, &first_block);
1510 error = xfs_bunmapi(tp, ip,
1511 first_unmap_block, unmap_len,
1512 xfs_bmapi_aflag(whichfork),
1513 XFS_ITRUNC_MAX_EXTENTS,
1514 &first_block, &free_list,
1515 &done);
1516 if (error)
1517 goto out_bmap_cancel;
1520 * Duplicate the transaction that has the permanent
1521 * reservation and commit the old transaction.
1523 error = xfs_bmap_finish(&tp, &free_list, &committed);
1524 if (committed)
1525 xfs_trans_ijoin(tp, ip, 0);
1526 if (error)
1527 goto out_bmap_cancel;
1529 if (committed) {
1531 * Mark the inode dirty so it will be logged and
1532 * moved forward in the log as part of every commit.
1534 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1537 ntp = xfs_trans_dup(tp);
1538 error = xfs_trans_commit(tp, 0);
1539 tp = ntp;
1541 xfs_trans_ijoin(tp, ip, 0);
1543 if (error)
1544 goto out;
1547 * Transaction commit worked ok so we can drop the extra ticket
1548 * reference that we gained in xfs_trans_dup()
1550 xfs_log_ticket_put(tp->t_ticket);
1551 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1552 if (error)
1553 goto out;
1557 * Always re-log the inode so that our permanent transaction can keep
1558 * on rolling it forward in the log.
1560 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1562 trace_xfs_itruncate_extents_end(ip, new_size);
1564 out:
1565 *tpp = tp;
1566 return error;
1567 out_bmap_cancel:
1569 * If the bunmapi call encounters an error, return to the caller where
1570 * the transaction can be properly aborted. We just need to make sure
1571 * we're not holding any resources that we were not when we came in.
1573 xfs_bmap_cancel(&free_list);
1574 goto out;
1578 xfs_release(
1579 xfs_inode_t *ip)
1581 xfs_mount_t *mp = ip->i_mount;
1582 int error;
1584 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1585 return 0;
1587 /* If this is a read-only mount, don't do this (would generate I/O) */
1588 if (mp->m_flags & XFS_MOUNT_RDONLY)
1589 return 0;
1591 if (!XFS_FORCED_SHUTDOWN(mp)) {
1592 int truncated;
1595 * If we are using filestreams, and we have an unlinked
1596 * file that we are processing the last close on, then nothing
1597 * will be able to reopen and write to this file. Purge this
1598 * inode from the filestreams cache so that it doesn't delay
1599 * teardown of the inode.
1601 if ((ip->i_d.di_nlink == 0) && xfs_inode_is_filestream(ip))
1602 xfs_filestream_deassociate(ip);
1605 * If we previously truncated this file and removed old data
1606 * in the process, we want to initiate "early" writeout on
1607 * the last close. This is an attempt to combat the notorious
1608 * NULL files problem which is particularly noticeable from a
1609 * truncate down, buffered (re-)write (delalloc), followed by
1610 * a crash. What we are effectively doing here is
1611 * significantly reducing the time window where we'd otherwise
1612 * be exposed to that problem.
1614 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1615 if (truncated) {
1616 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1617 if (VN_DIRTY(VFS_I(ip)) && ip->i_delayed_blks > 0) {
1618 error = -filemap_flush(VFS_I(ip)->i_mapping);
1619 if (error)
1620 return error;
1625 if (ip->i_d.di_nlink == 0)
1626 return 0;
1628 if (xfs_can_free_eofblocks(ip, false)) {
1631 * If we can't get the iolock just skip truncating the blocks
1632 * past EOF because we could deadlock with the mmap_sem
1633 * otherwise. We'll get another chance to drop them once the
1634 * last reference to the inode is dropped, so we'll never leak
1635 * blocks permanently.
1637 * Further, check if the inode is being opened, written and
1638 * closed frequently and we have delayed allocation blocks
1639 * outstanding (e.g. streaming writes from the NFS server),
1640 * truncating the blocks past EOF will cause fragmentation to
1641 * occur.
1643 * In this case don't do the truncation, either, but we have to
1644 * be careful how we detect this case. Blocks beyond EOF show
1645 * up as i_delayed_blks even when the inode is clean, so we
1646 * need to truncate them away first before checking for a dirty
1647 * release. Hence on the first dirty close we will still remove
1648 * the speculative allocation, but after that we will leave it
1649 * in place.
1651 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1652 return 0;
1654 error = xfs_free_eofblocks(mp, ip, true);
1655 if (error && error != EAGAIN)
1656 return error;
1658 /* delalloc blocks after truncation means it really is dirty */
1659 if (ip->i_delayed_blks)
1660 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1662 return 0;
1666 * xfs_inactive
1668 * This is called when the vnode reference count for the vnode
1669 * goes to zero. If the file has been unlinked, then it must
1670 * now be truncated. Also, we clear all of the read-ahead state
1671 * kept for the inode here since the file is now closed.
1674 xfs_inactive(
1675 xfs_inode_t *ip)
1677 xfs_bmap_free_t free_list;
1678 xfs_fsblock_t first_block;
1679 int committed;
1680 struct xfs_trans *tp;
1681 struct xfs_mount *mp;
1682 struct xfs_trans_res *resp;
1683 int error;
1684 int truncate = 0;
1687 * If the inode is already free, then there can be nothing
1688 * to clean up here.
1690 if (ip->i_d.di_mode == 0 || is_bad_inode(VFS_I(ip))) {
1691 ASSERT(ip->i_df.if_real_bytes == 0);
1692 ASSERT(ip->i_df.if_broot_bytes == 0);
1693 return VN_INACTIVE_CACHE;
1696 mp = ip->i_mount;
1698 error = 0;
1700 /* If this is a read-only mount, don't do this (would generate I/O) */
1701 if (mp->m_flags & XFS_MOUNT_RDONLY)
1702 goto out;
1704 if (ip->i_d.di_nlink != 0) {
1706 * force is true because we are evicting an inode from the
1707 * cache. Post-eof blocks must be freed, lest we end up with
1708 * broken free space accounting.
1710 if (xfs_can_free_eofblocks(ip, true)) {
1711 error = xfs_free_eofblocks(mp, ip, false);
1712 if (error)
1713 return VN_INACTIVE_CACHE;
1715 goto out;
1718 if (S_ISREG(ip->i_d.di_mode) &&
1719 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1720 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1721 truncate = 1;
1723 error = xfs_qm_dqattach(ip, 0);
1724 if (error)
1725 return VN_INACTIVE_CACHE;
1727 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1728 resp = (truncate || S_ISLNK(ip->i_d.di_mode)) ?
1729 &M_RES(mp)->tr_itruncate : &M_RES(mp)->tr_ifree;
1731 error = xfs_trans_reserve(tp, resp, 0, 0);
1732 if (error) {
1733 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1734 xfs_trans_cancel(tp, 0);
1735 return VN_INACTIVE_CACHE;
1738 xfs_ilock(ip, XFS_ILOCK_EXCL);
1739 xfs_trans_ijoin(tp, ip, 0);
1741 if (S_ISLNK(ip->i_d.di_mode)) {
1742 error = xfs_inactive_symlink(ip, &tp);
1743 if (error)
1744 goto out_cancel;
1745 } else if (truncate) {
1746 ip->i_d.di_size = 0;
1747 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1749 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1750 if (error)
1751 goto out_cancel;
1753 ASSERT(ip->i_d.di_nextents == 0);
1757 * If there are attributes associated with the file then blow them away
1758 * now. The code calls a routine that recursively deconstructs the
1759 * attribute fork. We need to just commit the current transaction
1760 * because we can't use it for xfs_attr_inactive().
1762 if (ip->i_d.di_anextents > 0) {
1763 ASSERT(ip->i_d.di_forkoff != 0);
1765 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1766 if (error)
1767 goto out_unlock;
1769 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1771 error = xfs_attr_inactive(ip);
1772 if (error)
1773 goto out;
1775 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1776 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 0, 0);
1777 if (error) {
1778 xfs_trans_cancel(tp, 0);
1779 goto out;
1782 xfs_ilock(ip, XFS_ILOCK_EXCL);
1783 xfs_trans_ijoin(tp, ip, 0);
1786 if (ip->i_afp)
1787 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1789 ASSERT(ip->i_d.di_anextents == 0);
1792 * Free the inode.
1794 xfs_bmap_init(&free_list, &first_block);
1795 error = xfs_ifree(tp, ip, &free_list);
1796 if (error) {
1798 * If we fail to free the inode, shut down. The cancel
1799 * might do that, we need to make sure. Otherwise the
1800 * inode might be lost for a long time or forever.
1802 if (!XFS_FORCED_SHUTDOWN(mp)) {
1803 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1804 __func__, error);
1805 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1807 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1808 } else {
1810 * Credit the quota account(s). The inode is gone.
1812 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1815 * Just ignore errors at this point. There is nothing we can
1816 * do except to try to keep going. Make sure it's not a silent
1817 * error.
1819 error = xfs_bmap_finish(&tp, &free_list, &committed);
1820 if (error)
1821 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1822 __func__, error);
1823 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1824 if (error)
1825 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1826 __func__, error);
1830 * Release the dquots held by inode, if any.
1832 xfs_qm_dqdetach(ip);
1833 out_unlock:
1834 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1835 out:
1836 return VN_INACTIVE_CACHE;
1837 out_cancel:
1838 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1839 goto out_unlock;
1843 * This is called when the inode's link count goes to 0.
1844 * We place the on-disk inode on a list in the AGI. It
1845 * will be pulled from this list when the inode is freed.
1848 xfs_iunlink(
1849 xfs_trans_t *tp,
1850 xfs_inode_t *ip)
1852 xfs_mount_t *mp;
1853 xfs_agi_t *agi;
1854 xfs_dinode_t *dip;
1855 xfs_buf_t *agibp;
1856 xfs_buf_t *ibp;
1857 xfs_agino_t agino;
1858 short bucket_index;
1859 int offset;
1860 int error;
1862 ASSERT(ip->i_d.di_nlink == 0);
1863 ASSERT(ip->i_d.di_mode != 0);
1865 mp = tp->t_mountp;
1868 * Get the agi buffer first. It ensures lock ordering
1869 * on the list.
1871 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1872 if (error)
1873 return error;
1874 agi = XFS_BUF_TO_AGI(agibp);
1877 * Get the index into the agi hash table for the
1878 * list this inode will go on.
1880 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1881 ASSERT(agino != 0);
1882 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1883 ASSERT(agi->agi_unlinked[bucket_index]);
1884 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1886 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1888 * There is already another inode in the bucket we need
1889 * to add ourselves to. Add us at the front of the list.
1890 * Here we put the head pointer into our next pointer,
1891 * and then we fall through to point the head at us.
1893 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1894 0, 0);
1895 if (error)
1896 return error;
1898 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1899 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1900 offset = ip->i_imap.im_boffset +
1901 offsetof(xfs_dinode_t, di_next_unlinked);
1903 /* need to recalc the inode CRC if appropriate */
1904 xfs_dinode_calc_crc(mp, dip);
1906 xfs_trans_inode_buf(tp, ibp);
1907 xfs_trans_log_buf(tp, ibp, offset,
1908 (offset + sizeof(xfs_agino_t) - 1));
1909 xfs_inobp_check(mp, ibp);
1913 * Point the bucket head pointer at the inode being inserted.
1915 ASSERT(agino != 0);
1916 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1917 offset = offsetof(xfs_agi_t, agi_unlinked) +
1918 (sizeof(xfs_agino_t) * bucket_index);
1919 xfs_trans_log_buf(tp, agibp, offset,
1920 (offset + sizeof(xfs_agino_t) - 1));
1921 return 0;
1925 * Pull the on-disk inode from the AGI unlinked list.
1927 STATIC int
1928 xfs_iunlink_remove(
1929 xfs_trans_t *tp,
1930 xfs_inode_t *ip)
1932 xfs_ino_t next_ino;
1933 xfs_mount_t *mp;
1934 xfs_agi_t *agi;
1935 xfs_dinode_t *dip;
1936 xfs_buf_t *agibp;
1937 xfs_buf_t *ibp;
1938 xfs_agnumber_t agno;
1939 xfs_agino_t agino;
1940 xfs_agino_t next_agino;
1941 xfs_buf_t *last_ibp;
1942 xfs_dinode_t *last_dip = NULL;
1943 short bucket_index;
1944 int offset, last_offset = 0;
1945 int error;
1947 mp = tp->t_mountp;
1948 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1951 * Get the agi buffer first. It ensures lock ordering
1952 * on the list.
1954 error = xfs_read_agi(mp, tp, agno, &agibp);
1955 if (error)
1956 return error;
1958 agi = XFS_BUF_TO_AGI(agibp);
1961 * Get the index into the agi hash table for the
1962 * list this inode will go on.
1964 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1965 ASSERT(agino != 0);
1966 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1967 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1968 ASSERT(agi->agi_unlinked[bucket_index]);
1970 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1972 * We're at the head of the list. Get the inode's on-disk
1973 * buffer to see if there is anyone after us on the list.
1974 * Only modify our next pointer if it is not already NULLAGINO.
1975 * This saves us the overhead of dealing with the buffer when
1976 * there is no need to change it.
1978 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1979 0, 0);
1980 if (error) {
1981 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
1982 __func__, error);
1983 return error;
1985 next_agino = be32_to_cpu(dip->di_next_unlinked);
1986 ASSERT(next_agino != 0);
1987 if (next_agino != NULLAGINO) {
1988 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1989 offset = ip->i_imap.im_boffset +
1990 offsetof(xfs_dinode_t, di_next_unlinked);
1992 /* need to recalc the inode CRC if appropriate */
1993 xfs_dinode_calc_crc(mp, dip);
1995 xfs_trans_inode_buf(tp, ibp);
1996 xfs_trans_log_buf(tp, ibp, offset,
1997 (offset + sizeof(xfs_agino_t) - 1));
1998 xfs_inobp_check(mp, ibp);
1999 } else {
2000 xfs_trans_brelse(tp, ibp);
2003 * Point the bucket head pointer at the next inode.
2005 ASSERT(next_agino != 0);
2006 ASSERT(next_agino != agino);
2007 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2008 offset = offsetof(xfs_agi_t, agi_unlinked) +
2009 (sizeof(xfs_agino_t) * bucket_index);
2010 xfs_trans_log_buf(tp, agibp, offset,
2011 (offset + sizeof(xfs_agino_t) - 1));
2012 } else {
2014 * We need to search the list for the inode being freed.
2016 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2017 last_ibp = NULL;
2018 while (next_agino != agino) {
2019 struct xfs_imap imap;
2021 if (last_ibp)
2022 xfs_trans_brelse(tp, last_ibp);
2024 imap.im_blkno = 0;
2025 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2027 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2028 if (error) {
2029 xfs_warn(mp,
2030 "%s: xfs_imap returned error %d.",
2031 __func__, error);
2032 return error;
2035 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2036 &last_ibp, 0, 0);
2037 if (error) {
2038 xfs_warn(mp,
2039 "%s: xfs_imap_to_bp returned error %d.",
2040 __func__, error);
2041 return error;
2044 last_offset = imap.im_boffset;
2045 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2046 ASSERT(next_agino != NULLAGINO);
2047 ASSERT(next_agino != 0);
2051 * Now last_ibp points to the buffer previous to us on the
2052 * unlinked list. Pull us from the list.
2054 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2055 0, 0);
2056 if (error) {
2057 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2058 __func__, error);
2059 return error;
2061 next_agino = be32_to_cpu(dip->di_next_unlinked);
2062 ASSERT(next_agino != 0);
2063 ASSERT(next_agino != agino);
2064 if (next_agino != NULLAGINO) {
2065 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2066 offset = ip->i_imap.im_boffset +
2067 offsetof(xfs_dinode_t, di_next_unlinked);
2069 /* need to recalc the inode CRC if appropriate */
2070 xfs_dinode_calc_crc(mp, dip);
2072 xfs_trans_inode_buf(tp, ibp);
2073 xfs_trans_log_buf(tp, ibp, offset,
2074 (offset + sizeof(xfs_agino_t) - 1));
2075 xfs_inobp_check(mp, ibp);
2076 } else {
2077 xfs_trans_brelse(tp, ibp);
2080 * Point the previous inode on the list to the next inode.
2082 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2083 ASSERT(next_agino != 0);
2084 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2086 /* need to recalc the inode CRC if appropriate */
2087 xfs_dinode_calc_crc(mp, last_dip);
2089 xfs_trans_inode_buf(tp, last_ibp);
2090 xfs_trans_log_buf(tp, last_ibp, offset,
2091 (offset + sizeof(xfs_agino_t) - 1));
2092 xfs_inobp_check(mp, last_ibp);
2094 return 0;
2098 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2099 * inodes that are in memory - they all must be marked stale and attached to
2100 * the cluster buffer.
2102 STATIC int
2103 xfs_ifree_cluster(
2104 xfs_inode_t *free_ip,
2105 xfs_trans_t *tp,
2106 xfs_ino_t inum)
2108 xfs_mount_t *mp = free_ip->i_mount;
2109 int blks_per_cluster;
2110 int nbufs;
2111 int ninodes;
2112 int i, j;
2113 xfs_daddr_t blkno;
2114 xfs_buf_t *bp;
2115 xfs_inode_t *ip;
2116 xfs_inode_log_item_t *iip;
2117 xfs_log_item_t *lip;
2118 struct xfs_perag *pag;
2120 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2121 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2122 blks_per_cluster = 1;
2123 ninodes = mp->m_sb.sb_inopblock;
2124 nbufs = XFS_IALLOC_BLOCKS(mp);
2125 } else {
2126 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2127 mp->m_sb.sb_blocksize;
2128 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2129 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2132 for (j = 0; j < nbufs; j++, inum += ninodes) {
2133 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2134 XFS_INO_TO_AGBNO(mp, inum));
2137 * We obtain and lock the backing buffer first in the process
2138 * here, as we have to ensure that any dirty inode that we
2139 * can't get the flush lock on is attached to the buffer.
2140 * If we scan the in-memory inodes first, then buffer IO can
2141 * complete before we get a lock on it, and hence we may fail
2142 * to mark all the active inodes on the buffer stale.
2144 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2145 mp->m_bsize * blks_per_cluster,
2146 XBF_UNMAPPED);
2148 if (!bp)
2149 return ENOMEM;
2152 * This buffer may not have been correctly initialised as we
2153 * didn't read it from disk. That's not important because we are
2154 * only using to mark the buffer as stale in the log, and to
2155 * attach stale cached inodes on it. That means it will never be
2156 * dispatched for IO. If it is, we want to know about it, and we
2157 * want it to fail. We can acheive this by adding a write
2158 * verifier to the buffer.
2160 bp->b_ops = &xfs_inode_buf_ops;
2163 * Walk the inodes already attached to the buffer and mark them
2164 * stale. These will all have the flush locks held, so an
2165 * in-memory inode walk can't lock them. By marking them all
2166 * stale first, we will not attempt to lock them in the loop
2167 * below as the XFS_ISTALE flag will be set.
2169 lip = bp->b_fspriv;
2170 while (lip) {
2171 if (lip->li_type == XFS_LI_INODE) {
2172 iip = (xfs_inode_log_item_t *)lip;
2173 ASSERT(iip->ili_logged == 1);
2174 lip->li_cb = xfs_istale_done;
2175 xfs_trans_ail_copy_lsn(mp->m_ail,
2176 &iip->ili_flush_lsn,
2177 &iip->ili_item.li_lsn);
2178 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2180 lip = lip->li_bio_list;
2185 * For each inode in memory attempt to add it to the inode
2186 * buffer and set it up for being staled on buffer IO
2187 * completion. This is safe as we've locked out tail pushing
2188 * and flushing by locking the buffer.
2190 * We have already marked every inode that was part of a
2191 * transaction stale above, which means there is no point in
2192 * even trying to lock them.
2194 for (i = 0; i < ninodes; i++) {
2195 retry:
2196 rcu_read_lock();
2197 ip = radix_tree_lookup(&pag->pag_ici_root,
2198 XFS_INO_TO_AGINO(mp, (inum + i)));
2200 /* Inode not in memory, nothing to do */
2201 if (!ip) {
2202 rcu_read_unlock();
2203 continue;
2207 * because this is an RCU protected lookup, we could
2208 * find a recently freed or even reallocated inode
2209 * during the lookup. We need to check under the
2210 * i_flags_lock for a valid inode here. Skip it if it
2211 * is not valid, the wrong inode or stale.
2213 spin_lock(&ip->i_flags_lock);
2214 if (ip->i_ino != inum + i ||
2215 __xfs_iflags_test(ip, XFS_ISTALE)) {
2216 spin_unlock(&ip->i_flags_lock);
2217 rcu_read_unlock();
2218 continue;
2220 spin_unlock(&ip->i_flags_lock);
2223 * Don't try to lock/unlock the current inode, but we
2224 * _cannot_ skip the other inodes that we did not find
2225 * in the list attached to the buffer and are not
2226 * already marked stale. If we can't lock it, back off
2227 * and retry.
2229 if (ip != free_ip &&
2230 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2231 rcu_read_unlock();
2232 delay(1);
2233 goto retry;
2235 rcu_read_unlock();
2237 xfs_iflock(ip);
2238 xfs_iflags_set(ip, XFS_ISTALE);
2241 * we don't need to attach clean inodes or those only
2242 * with unlogged changes (which we throw away, anyway).
2244 iip = ip->i_itemp;
2245 if (!iip || xfs_inode_clean(ip)) {
2246 ASSERT(ip != free_ip);
2247 xfs_ifunlock(ip);
2248 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2249 continue;
2252 iip->ili_last_fields = iip->ili_fields;
2253 iip->ili_fields = 0;
2254 iip->ili_logged = 1;
2255 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2256 &iip->ili_item.li_lsn);
2258 xfs_buf_attach_iodone(bp, xfs_istale_done,
2259 &iip->ili_item);
2261 if (ip != free_ip)
2262 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2265 xfs_trans_stale_inode_buf(tp, bp);
2266 xfs_trans_binval(tp, bp);
2269 xfs_perag_put(pag);
2270 return 0;
2274 * This is called to return an inode to the inode free list.
2275 * The inode should already be truncated to 0 length and have
2276 * no pages associated with it. This routine also assumes that
2277 * the inode is already a part of the transaction.
2279 * The on-disk copy of the inode will have been added to the list
2280 * of unlinked inodes in the AGI. We need to remove the inode from
2281 * that list atomically with respect to freeing it here.
2284 xfs_ifree(
2285 xfs_trans_t *tp,
2286 xfs_inode_t *ip,
2287 xfs_bmap_free_t *flist)
2289 int error;
2290 int delete;
2291 xfs_ino_t first_ino;
2293 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2294 ASSERT(ip->i_d.di_nlink == 0);
2295 ASSERT(ip->i_d.di_nextents == 0);
2296 ASSERT(ip->i_d.di_anextents == 0);
2297 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2298 ASSERT(ip->i_d.di_nblocks == 0);
2301 * Pull the on-disk inode from the AGI unlinked list.
2303 error = xfs_iunlink_remove(tp, ip);
2304 if (error)
2305 return error;
2307 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2308 if (error)
2309 return error;
2311 ip->i_d.di_mode = 0; /* mark incore inode as free */
2312 ip->i_d.di_flags = 0;
2313 ip->i_d.di_dmevmask = 0;
2314 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2315 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2316 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2318 * Bump the generation count so no one will be confused
2319 * by reincarnations of this inode.
2321 ip->i_d.di_gen++;
2322 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2324 if (delete)
2325 error = xfs_ifree_cluster(ip, tp, first_ino);
2327 return error;
2331 * This is called to unpin an inode. The caller must have the inode locked
2332 * in at least shared mode so that the buffer cannot be subsequently pinned
2333 * once someone is waiting for it to be unpinned.
2335 static void
2336 xfs_iunpin(
2337 struct xfs_inode *ip)
2339 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2341 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2343 /* Give the log a push to start the unpinning I/O */
2344 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2348 static void
2349 __xfs_iunpin_wait(
2350 struct xfs_inode *ip)
2352 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2353 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2355 xfs_iunpin(ip);
2357 do {
2358 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2359 if (xfs_ipincount(ip))
2360 io_schedule();
2361 } while (xfs_ipincount(ip));
2362 finish_wait(wq, &wait.wait);
2365 void
2366 xfs_iunpin_wait(
2367 struct xfs_inode *ip)
2369 if (xfs_ipincount(ip))
2370 __xfs_iunpin_wait(ip);
2374 * Removing an inode from the namespace involves removing the directory entry
2375 * and dropping the link count on the inode. Removing the directory entry can
2376 * result in locking an AGF (directory blocks were freed) and removing a link
2377 * count can result in placing the inode on an unlinked list which results in
2378 * locking an AGI.
2380 * The big problem here is that we have an ordering constraint on AGF and AGI
2381 * locking - inode allocation locks the AGI, then can allocate a new extent for
2382 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2383 * removes the inode from the unlinked list, requiring that we lock the AGI
2384 * first, and then freeing the inode can result in an inode chunk being freed
2385 * and hence freeing disk space requiring that we lock an AGF.
2387 * Hence the ordering that is imposed by other parts of the code is AGI before
2388 * AGF. This means we cannot remove the directory entry before we drop the inode
2389 * reference count and put it on the unlinked list as this results in a lock
2390 * order of AGF then AGI, and this can deadlock against inode allocation and
2391 * freeing. Therefore we must drop the link counts before we remove the
2392 * directory entry.
2394 * This is still safe from a transactional point of view - it is not until we
2395 * get to xfs_bmap_finish() that we have the possibility of multiple
2396 * transactions in this operation. Hence as long as we remove the directory
2397 * entry and drop the link count in the first transaction of the remove
2398 * operation, there are no transactional constraints on the ordering here.
2401 xfs_remove(
2402 xfs_inode_t *dp,
2403 struct xfs_name *name,
2404 xfs_inode_t *ip)
2406 xfs_mount_t *mp = dp->i_mount;
2407 xfs_trans_t *tp = NULL;
2408 int is_dir = S_ISDIR(ip->i_d.di_mode);
2409 int error = 0;
2410 xfs_bmap_free_t free_list;
2411 xfs_fsblock_t first_block;
2412 int cancel_flags;
2413 int committed;
2414 int link_zero;
2415 uint resblks;
2416 uint log_count;
2418 trace_xfs_remove(dp, name);
2420 if (XFS_FORCED_SHUTDOWN(mp))
2421 return XFS_ERROR(EIO);
2423 error = xfs_qm_dqattach(dp, 0);
2424 if (error)
2425 goto std_return;
2427 error = xfs_qm_dqattach(ip, 0);
2428 if (error)
2429 goto std_return;
2431 if (is_dir) {
2432 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2433 log_count = XFS_DEFAULT_LOG_COUNT;
2434 } else {
2435 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2436 log_count = XFS_REMOVE_LOG_COUNT;
2438 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2441 * We try to get the real space reservation first,
2442 * allowing for directory btree deletion(s) implying
2443 * possible bmap insert(s). If we can't get the space
2444 * reservation then we use 0 instead, and avoid the bmap
2445 * btree insert(s) in the directory code by, if the bmap
2446 * insert tries to happen, instead trimming the LAST
2447 * block from the directory.
2449 resblks = XFS_REMOVE_SPACE_RES(mp);
2450 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2451 if (error == ENOSPC) {
2452 resblks = 0;
2453 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2455 if (error) {
2456 ASSERT(error != ENOSPC);
2457 cancel_flags = 0;
2458 goto out_trans_cancel;
2461 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2463 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2464 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2467 * If we're removing a directory perform some additional validation.
2469 cancel_flags |= XFS_TRANS_ABORT;
2470 if (is_dir) {
2471 ASSERT(ip->i_d.di_nlink >= 2);
2472 if (ip->i_d.di_nlink != 2) {
2473 error = XFS_ERROR(ENOTEMPTY);
2474 goto out_trans_cancel;
2476 if (!xfs_dir_isempty(ip)) {
2477 error = XFS_ERROR(ENOTEMPTY);
2478 goto out_trans_cancel;
2481 /* Drop the link from ip's "..". */
2482 error = xfs_droplink(tp, dp);
2483 if (error)
2484 goto out_trans_cancel;
2486 /* Drop the "." link from ip to self. */
2487 error = xfs_droplink(tp, ip);
2488 if (error)
2489 goto out_trans_cancel;
2490 } else {
2492 * When removing a non-directory we need to log the parent
2493 * inode here. For a directory this is done implicitly
2494 * by the xfs_droplink call for the ".." entry.
2496 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2498 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2500 /* Drop the link from dp to ip. */
2501 error = xfs_droplink(tp, ip);
2502 if (error)
2503 goto out_trans_cancel;
2505 /* Determine if this is the last link while the inode is locked */
2506 link_zero = (ip->i_d.di_nlink == 0);
2508 xfs_bmap_init(&free_list, &first_block);
2509 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2510 &first_block, &free_list, resblks);
2511 if (error) {
2512 ASSERT(error != ENOENT);
2513 goto out_bmap_cancel;
2517 * If this is a synchronous mount, make sure that the
2518 * remove transaction goes to disk before returning to
2519 * the user.
2521 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2522 xfs_trans_set_sync(tp);
2524 error = xfs_bmap_finish(&tp, &free_list, &committed);
2525 if (error)
2526 goto out_bmap_cancel;
2528 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2529 if (error)
2530 goto std_return;
2533 * If we are using filestreams, kill the stream association.
2534 * If the file is still open it may get a new one but that
2535 * will get killed on last close in xfs_close() so we don't
2536 * have to worry about that.
2538 if (!is_dir && link_zero && xfs_inode_is_filestream(ip))
2539 xfs_filestream_deassociate(ip);
2541 return 0;
2543 out_bmap_cancel:
2544 xfs_bmap_cancel(&free_list);
2545 out_trans_cancel:
2546 xfs_trans_cancel(tp, cancel_flags);
2547 std_return:
2548 return error;
2552 * Enter all inodes for a rename transaction into a sorted array.
2554 STATIC void
2555 xfs_sort_for_rename(
2556 xfs_inode_t *dp1, /* in: old (source) directory inode */
2557 xfs_inode_t *dp2, /* in: new (target) directory inode */
2558 xfs_inode_t *ip1, /* in: inode of old entry */
2559 xfs_inode_t *ip2, /* in: inode of new entry, if it
2560 already exists, NULL otherwise. */
2561 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */
2562 int *num_inodes) /* out: number of inodes in array */
2564 xfs_inode_t *temp;
2565 int i, j;
2568 * i_tab contains a list of pointers to inodes. We initialize
2569 * the table here & we'll sort it. We will then use it to
2570 * order the acquisition of the inode locks.
2572 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2574 i_tab[0] = dp1;
2575 i_tab[1] = dp2;
2576 i_tab[2] = ip1;
2577 if (ip2) {
2578 *num_inodes = 4;
2579 i_tab[3] = ip2;
2580 } else {
2581 *num_inodes = 3;
2582 i_tab[3] = NULL;
2586 * Sort the elements via bubble sort. (Remember, there are at
2587 * most 4 elements to sort, so this is adequate.)
2589 for (i = 0; i < *num_inodes; i++) {
2590 for (j = 1; j < *num_inodes; j++) {
2591 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2592 temp = i_tab[j];
2593 i_tab[j] = i_tab[j-1];
2594 i_tab[j-1] = temp;
2601 * xfs_rename
2604 xfs_rename(
2605 xfs_inode_t *src_dp,
2606 struct xfs_name *src_name,
2607 xfs_inode_t *src_ip,
2608 xfs_inode_t *target_dp,
2609 struct xfs_name *target_name,
2610 xfs_inode_t *target_ip)
2612 xfs_trans_t *tp = NULL;
2613 xfs_mount_t *mp = src_dp->i_mount;
2614 int new_parent; /* moving to a new dir */
2615 int src_is_directory; /* src_name is a directory */
2616 int error;
2617 xfs_bmap_free_t free_list;
2618 xfs_fsblock_t first_block;
2619 int cancel_flags;
2620 int committed;
2621 xfs_inode_t *inodes[4];
2622 int spaceres;
2623 int num_inodes;
2625 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2627 new_parent = (src_dp != target_dp);
2628 src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2630 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2631 inodes, &num_inodes);
2633 xfs_bmap_init(&free_list, &first_block);
2634 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2635 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2636 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2637 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2638 if (error == ENOSPC) {
2639 spaceres = 0;
2640 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2642 if (error) {
2643 xfs_trans_cancel(tp, 0);
2644 goto std_return;
2648 * Attach the dquots to the inodes
2650 error = xfs_qm_vop_rename_dqattach(inodes);
2651 if (error) {
2652 xfs_trans_cancel(tp, cancel_flags);
2653 goto std_return;
2657 * Lock all the participating inodes. Depending upon whether
2658 * the target_name exists in the target directory, and
2659 * whether the target directory is the same as the source
2660 * directory, we can lock from 2 to 4 inodes.
2662 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2665 * Join all the inodes to the transaction. From this point on,
2666 * we can rely on either trans_commit or trans_cancel to unlock
2667 * them.
2669 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2670 if (new_parent)
2671 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2672 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2673 if (target_ip)
2674 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2677 * If we are using project inheritance, we only allow renames
2678 * into our tree when the project IDs are the same; else the
2679 * tree quota mechanism would be circumvented.
2681 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2682 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2683 error = XFS_ERROR(EXDEV);
2684 goto error_return;
2688 * Set up the target.
2690 if (target_ip == NULL) {
2692 * If there's no space reservation, check the entry will
2693 * fit before actually inserting it.
2695 error = xfs_dir_canenter(tp, target_dp, target_name, spaceres);
2696 if (error)
2697 goto error_return;
2699 * If target does not exist and the rename crosses
2700 * directories, adjust the target directory link count
2701 * to account for the ".." reference from the new entry.
2703 error = xfs_dir_createname(tp, target_dp, target_name,
2704 src_ip->i_ino, &first_block,
2705 &free_list, spaceres);
2706 if (error == ENOSPC)
2707 goto error_return;
2708 if (error)
2709 goto abort_return;
2711 xfs_trans_ichgtime(tp, target_dp,
2712 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2714 if (new_parent && src_is_directory) {
2715 error = xfs_bumplink(tp, target_dp);
2716 if (error)
2717 goto abort_return;
2719 } else { /* target_ip != NULL */
2721 * If target exists and it's a directory, check that both
2722 * target and source are directories and that target can be
2723 * destroyed, or that neither is a directory.
2725 if (S_ISDIR(target_ip->i_d.di_mode)) {
2727 * Make sure target dir is empty.
2729 if (!(xfs_dir_isempty(target_ip)) ||
2730 (target_ip->i_d.di_nlink > 2)) {
2731 error = XFS_ERROR(EEXIST);
2732 goto error_return;
2737 * Link the source inode under the target name.
2738 * If the source inode is a directory and we are moving
2739 * it across directories, its ".." entry will be
2740 * inconsistent until we replace that down below.
2742 * In case there is already an entry with the same
2743 * name at the destination directory, remove it first.
2745 error = xfs_dir_replace(tp, target_dp, target_name,
2746 src_ip->i_ino,
2747 &first_block, &free_list, spaceres);
2748 if (error)
2749 goto abort_return;
2751 xfs_trans_ichgtime(tp, target_dp,
2752 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2755 * Decrement the link count on the target since the target
2756 * dir no longer points to it.
2758 error = xfs_droplink(tp, target_ip);
2759 if (error)
2760 goto abort_return;
2762 if (src_is_directory) {
2764 * Drop the link from the old "." entry.
2766 error = xfs_droplink(tp, target_ip);
2767 if (error)
2768 goto abort_return;
2770 } /* target_ip != NULL */
2773 * Remove the source.
2775 if (new_parent && src_is_directory) {
2777 * Rewrite the ".." entry to point to the new
2778 * directory.
2780 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2781 target_dp->i_ino,
2782 &first_block, &free_list, spaceres);
2783 ASSERT(error != EEXIST);
2784 if (error)
2785 goto abort_return;
2789 * We always want to hit the ctime on the source inode.
2791 * This isn't strictly required by the standards since the source
2792 * inode isn't really being changed, but old unix file systems did
2793 * it and some incremental backup programs won't work without it.
2795 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2796 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2799 * Adjust the link count on src_dp. This is necessary when
2800 * renaming a directory, either within one parent when
2801 * the target existed, or across two parent directories.
2803 if (src_is_directory && (new_parent || target_ip != NULL)) {
2806 * Decrement link count on src_directory since the
2807 * entry that's moved no longer points to it.
2809 error = xfs_droplink(tp, src_dp);
2810 if (error)
2811 goto abort_return;
2814 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2815 &first_block, &free_list, spaceres);
2816 if (error)
2817 goto abort_return;
2819 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2820 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
2821 if (new_parent)
2822 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
2825 * If this is a synchronous mount, make sure that the
2826 * rename transaction goes to disk before returning to
2827 * the user.
2829 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
2830 xfs_trans_set_sync(tp);
2833 error = xfs_bmap_finish(&tp, &free_list, &committed);
2834 if (error) {
2835 xfs_bmap_cancel(&free_list);
2836 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
2837 XFS_TRANS_ABORT));
2838 goto std_return;
2842 * trans_commit will unlock src_ip, target_ip & decrement
2843 * the vnode references.
2845 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2847 abort_return:
2848 cancel_flags |= XFS_TRANS_ABORT;
2849 error_return:
2850 xfs_bmap_cancel(&free_list);
2851 xfs_trans_cancel(tp, cancel_flags);
2852 std_return:
2853 return error;
2856 STATIC int
2857 xfs_iflush_cluster(
2858 xfs_inode_t *ip,
2859 xfs_buf_t *bp)
2861 xfs_mount_t *mp = ip->i_mount;
2862 struct xfs_perag *pag;
2863 unsigned long first_index, mask;
2864 unsigned long inodes_per_cluster;
2865 int ilist_size;
2866 xfs_inode_t **ilist;
2867 xfs_inode_t *iq;
2868 int nr_found;
2869 int clcount = 0;
2870 int bufwasdelwri;
2871 int i;
2873 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2875 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2876 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2877 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2878 if (!ilist)
2879 goto out_put;
2881 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2882 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2883 rcu_read_lock();
2884 /* really need a gang lookup range call here */
2885 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2886 first_index, inodes_per_cluster);
2887 if (nr_found == 0)
2888 goto out_free;
2890 for (i = 0; i < nr_found; i++) {
2891 iq = ilist[i];
2892 if (iq == ip)
2893 continue;
2896 * because this is an RCU protected lookup, we could find a
2897 * recently freed or even reallocated inode during the lookup.
2898 * We need to check under the i_flags_lock for a valid inode
2899 * here. Skip it if it is not valid or the wrong inode.
2901 spin_lock(&ip->i_flags_lock);
2902 if (!ip->i_ino ||
2903 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2904 spin_unlock(&ip->i_flags_lock);
2905 continue;
2907 spin_unlock(&ip->i_flags_lock);
2910 * Do an un-protected check to see if the inode is dirty and
2911 * is a candidate for flushing. These checks will be repeated
2912 * later after the appropriate locks are acquired.
2914 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2915 continue;
2918 * Try to get locks. If any are unavailable or it is pinned,
2919 * then this inode cannot be flushed and is skipped.
2922 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2923 continue;
2924 if (!xfs_iflock_nowait(iq)) {
2925 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2926 continue;
2928 if (xfs_ipincount(iq)) {
2929 xfs_ifunlock(iq);
2930 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2931 continue;
2935 * arriving here means that this inode can be flushed. First
2936 * re-check that it's dirty before flushing.
2938 if (!xfs_inode_clean(iq)) {
2939 int error;
2940 error = xfs_iflush_int(iq, bp);
2941 if (error) {
2942 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2943 goto cluster_corrupt_out;
2945 clcount++;
2946 } else {
2947 xfs_ifunlock(iq);
2949 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2952 if (clcount) {
2953 XFS_STATS_INC(xs_icluster_flushcnt);
2954 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2957 out_free:
2958 rcu_read_unlock();
2959 kmem_free(ilist);
2960 out_put:
2961 xfs_perag_put(pag);
2962 return 0;
2965 cluster_corrupt_out:
2967 * Corruption detected in the clustering loop. Invalidate the
2968 * inode buffer and shut down the filesystem.
2970 rcu_read_unlock();
2972 * Clean up the buffer. If it was delwri, just release it --
2973 * brelse can handle it with no problems. If not, shut down the
2974 * filesystem before releasing the buffer.
2976 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
2977 if (bufwasdelwri)
2978 xfs_buf_relse(bp);
2980 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2982 if (!bufwasdelwri) {
2984 * Just like incore_relse: if we have b_iodone functions,
2985 * mark the buffer as an error and call them. Otherwise
2986 * mark it as stale and brelse.
2988 if (bp->b_iodone) {
2989 XFS_BUF_UNDONE(bp);
2990 xfs_buf_stale(bp);
2991 xfs_buf_ioerror(bp, EIO);
2992 xfs_buf_ioend(bp, 0);
2993 } else {
2994 xfs_buf_stale(bp);
2995 xfs_buf_relse(bp);
3000 * Unlocks the flush lock
3002 xfs_iflush_abort(iq, false);
3003 kmem_free(ilist);
3004 xfs_perag_put(pag);
3005 return XFS_ERROR(EFSCORRUPTED);
3009 * Flush dirty inode metadata into the backing buffer.
3011 * The caller must have the inode lock and the inode flush lock held. The
3012 * inode lock will still be held upon return to the caller, and the inode
3013 * flush lock will be released after the inode has reached the disk.
3015 * The caller must write out the buffer returned in *bpp and release it.
3018 xfs_iflush(
3019 struct xfs_inode *ip,
3020 struct xfs_buf **bpp)
3022 struct xfs_mount *mp = ip->i_mount;
3023 struct xfs_buf *bp;
3024 struct xfs_dinode *dip;
3025 int error;
3027 XFS_STATS_INC(xs_iflush_count);
3029 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3030 ASSERT(xfs_isiflocked(ip));
3031 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3032 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3034 *bpp = NULL;
3036 xfs_iunpin_wait(ip);
3039 * For stale inodes we cannot rely on the backing buffer remaining
3040 * stale in cache for the remaining life of the stale inode and so
3041 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3042 * inodes below. We have to check this after ensuring the inode is
3043 * unpinned so that it is safe to reclaim the stale inode after the
3044 * flush call.
3046 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3047 xfs_ifunlock(ip);
3048 return 0;
3052 * This may have been unpinned because the filesystem is shutting
3053 * down forcibly. If that's the case we must not write this inode
3054 * to disk, because the log record didn't make it to disk.
3056 * We also have to remove the log item from the AIL in this case,
3057 * as we wait for an empty AIL as part of the unmount process.
3059 if (XFS_FORCED_SHUTDOWN(mp)) {
3060 error = XFS_ERROR(EIO);
3061 goto abort_out;
3065 * Get the buffer containing the on-disk inode.
3067 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3069 if (error || !bp) {
3070 xfs_ifunlock(ip);
3071 return error;
3075 * First flush out the inode that xfs_iflush was called with.
3077 error = xfs_iflush_int(ip, bp);
3078 if (error)
3079 goto corrupt_out;
3082 * If the buffer is pinned then push on the log now so we won't
3083 * get stuck waiting in the write for too long.
3085 if (xfs_buf_ispinned(bp))
3086 xfs_log_force(mp, 0);
3089 * inode clustering:
3090 * see if other inodes can be gathered into this write
3092 error = xfs_iflush_cluster(ip, bp);
3093 if (error)
3094 goto cluster_corrupt_out;
3096 *bpp = bp;
3097 return 0;
3099 corrupt_out:
3100 xfs_buf_relse(bp);
3101 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3102 cluster_corrupt_out:
3103 error = XFS_ERROR(EFSCORRUPTED);
3104 abort_out:
3106 * Unlocks the flush lock
3108 xfs_iflush_abort(ip, false);
3109 return error;
3112 STATIC int
3113 xfs_iflush_int(
3114 struct xfs_inode *ip,
3115 struct xfs_buf *bp)
3117 struct xfs_inode_log_item *iip = ip->i_itemp;
3118 struct xfs_dinode *dip;
3119 struct xfs_mount *mp = ip->i_mount;
3121 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3122 ASSERT(xfs_isiflocked(ip));
3123 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3124 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3125 ASSERT(iip != NULL && iip->ili_fields != 0);
3127 /* set *dip = inode's place in the buffer */
3128 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3130 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3131 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3132 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3133 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3134 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3135 goto corrupt_out;
3137 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3138 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3139 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3140 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3141 __func__, ip->i_ino, ip, ip->i_d.di_magic);
3142 goto corrupt_out;
3144 if (S_ISREG(ip->i_d.di_mode)) {
3145 if (XFS_TEST_ERROR(
3146 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3147 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3148 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3149 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3150 "%s: Bad regular inode %Lu, ptr 0x%p",
3151 __func__, ip->i_ino, ip);
3152 goto corrupt_out;
3154 } else if (S_ISDIR(ip->i_d.di_mode)) {
3155 if (XFS_TEST_ERROR(
3156 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3157 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3158 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3159 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3160 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3161 "%s: Bad directory inode %Lu, ptr 0x%p",
3162 __func__, ip->i_ino, ip);
3163 goto corrupt_out;
3166 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3167 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3168 XFS_RANDOM_IFLUSH_5)) {
3169 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3170 "%s: detected corrupt incore inode %Lu, "
3171 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3172 __func__, ip->i_ino,
3173 ip->i_d.di_nextents + ip->i_d.di_anextents,
3174 ip->i_d.di_nblocks, ip);
3175 goto corrupt_out;
3177 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3178 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3179 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3180 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3181 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3182 goto corrupt_out;
3186 * Inode item log recovery for v1/v2 inodes are dependent on the
3187 * di_flushiter count for correct sequencing. We bump the flush
3188 * iteration count so we can detect flushes which postdate a log record
3189 * during recovery. This is redundant as we now log every change and
3190 * hence this can't happen but we need to still do it to ensure
3191 * backwards compatibility with old kernels that predate logging all
3192 * inode changes.
3194 if (ip->i_d.di_version < 3)
3195 ip->i_d.di_flushiter++;
3198 * Copy the dirty parts of the inode into the on-disk
3199 * inode. We always copy out the core of the inode,
3200 * because if the inode is dirty at all the core must
3201 * be.
3203 xfs_dinode_to_disk(dip, &ip->i_d);
3205 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3206 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3207 ip->i_d.di_flushiter = 0;
3210 * If this is really an old format inode and the superblock version
3211 * has not been updated to support only new format inodes, then
3212 * convert back to the old inode format. If the superblock version
3213 * has been updated, then make the conversion permanent.
3215 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3216 if (ip->i_d.di_version == 1) {
3217 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3219 * Convert it back.
3221 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3222 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3223 } else {
3225 * The superblock version has already been bumped,
3226 * so just make the conversion to the new inode
3227 * format permanent.
3229 ip->i_d.di_version = 2;
3230 dip->di_version = 2;
3231 ip->i_d.di_onlink = 0;
3232 dip->di_onlink = 0;
3233 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3234 memset(&(dip->di_pad[0]), 0,
3235 sizeof(dip->di_pad));
3236 ASSERT(xfs_get_projid(ip) == 0);
3240 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3241 if (XFS_IFORK_Q(ip))
3242 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3243 xfs_inobp_check(mp, bp);
3246 * We've recorded everything logged in the inode, so we'd like to clear
3247 * the ili_fields bits so we don't log and flush things unnecessarily.
3248 * However, we can't stop logging all this information until the data
3249 * we've copied into the disk buffer is written to disk. If we did we
3250 * might overwrite the copy of the inode in the log with all the data
3251 * after re-logging only part of it, and in the face of a crash we
3252 * wouldn't have all the data we need to recover.
3254 * What we do is move the bits to the ili_last_fields field. When
3255 * logging the inode, these bits are moved back to the ili_fields field.
3256 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3257 * know that the information those bits represent is permanently on
3258 * disk. As long as the flush completes before the inode is logged
3259 * again, then both ili_fields and ili_last_fields will be cleared.
3261 * We can play with the ili_fields bits here, because the inode lock
3262 * must be held exclusively in order to set bits there and the flush
3263 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3264 * done routine can tell whether or not to look in the AIL. Also, store
3265 * the current LSN of the inode so that we can tell whether the item has
3266 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3267 * need the AIL lock, because it is a 64 bit value that cannot be read
3268 * atomically.
3270 iip->ili_last_fields = iip->ili_fields;
3271 iip->ili_fields = 0;
3272 iip->ili_logged = 1;
3274 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3275 &iip->ili_item.li_lsn);
3278 * Attach the function xfs_iflush_done to the inode's
3279 * buffer. This will remove the inode from the AIL
3280 * and unlock the inode's flush lock when the inode is
3281 * completely written to disk.
3283 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3285 /* update the lsn in the on disk inode if required */
3286 if (ip->i_d.di_version == 3)
3287 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3289 /* generate the checksum. */
3290 xfs_dinode_calc_crc(mp, dip);
3292 ASSERT(bp->b_fspriv != NULL);
3293 ASSERT(bp->b_iodone != NULL);
3294 return 0;
3296 corrupt_out:
3297 return XFS_ERROR(EFSCORRUPTED);