2 * User-space Probes (UProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2008-2012
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h> /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h> /* try_to_free_swap */
34 #include <linux/ptrace.h> /* user_enable_single_step */
35 #include <linux/kdebug.h> /* notifier mechanism */
36 #include "../../mm/internal.h" /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
39 #include <linux/uprobes.h>
41 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
42 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
44 static struct rb_root uprobes_tree
= RB_ROOT
;
46 * allows us to skip the uprobe_mmap if there are no uprobe events active
47 * at this time. Probably a fine grained per inode count is better?
49 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
51 static DEFINE_SPINLOCK(uprobes_treelock
); /* serialize rbtree access */
53 #define UPROBES_HASH_SZ 13
54 /* serialize uprobe->pending_list */
55 static struct mutex uprobes_mmap_mutex
[UPROBES_HASH_SZ
];
56 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
58 static struct percpu_rw_semaphore dup_mmap_sem
;
60 /* Have a copy of original instruction */
61 #define UPROBE_COPY_INSN 0
62 /* Can skip singlestep */
63 #define UPROBE_SKIP_SSTEP 1
66 struct rb_node rb_node
; /* node in the rb tree */
68 struct rw_semaphore register_rwsem
;
69 struct rw_semaphore consumer_rwsem
;
70 struct list_head pending_list
;
71 struct uprobe_consumer
*consumers
;
72 struct inode
*inode
; /* Also hold a ref to inode */
75 struct arch_uprobe arch
;
78 struct return_instance
{
79 struct uprobe
*uprobe
;
81 unsigned long orig_ret_vaddr
; /* original return address */
82 bool chained
; /* true, if instance is nested */
84 struct return_instance
*next
; /* keep as stack */
88 * valid_vma: Verify if the specified vma is an executable vma
89 * Relax restrictions while unregistering: vm_flags might have
90 * changed after breakpoint was inserted.
91 * - is_register: indicates if we are in register context.
92 * - Return 1 if the specified virtual address is in an
95 static bool valid_vma(struct vm_area_struct
*vma
, bool is_register
)
97 vm_flags_t flags
= VM_HUGETLB
| VM_MAYEXEC
| VM_SHARED
;
102 return vma
->vm_file
&& (vma
->vm_flags
& flags
) == VM_MAYEXEC
;
105 static unsigned long offset_to_vaddr(struct vm_area_struct
*vma
, loff_t offset
)
107 return vma
->vm_start
+ offset
- ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
110 static loff_t
vaddr_to_offset(struct vm_area_struct
*vma
, unsigned long vaddr
)
112 return ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
) + (vaddr
- vma
->vm_start
);
116 * __replace_page - replace page in vma by new page.
117 * based on replace_page in mm/ksm.c
119 * @vma: vma that holds the pte pointing to page
120 * @addr: address the old @page is mapped at
121 * @page: the cowed page we are replacing by kpage
122 * @kpage: the modified page we replace page by
124 * Returns 0 on success, -EFAULT on failure.
126 static int __replace_page(struct vm_area_struct
*vma
, unsigned long addr
,
127 struct page
*page
, struct page
*kpage
)
129 struct mm_struct
*mm
= vma
->vm_mm
;
133 /* For mmu_notifiers */
134 const unsigned long mmun_start
= addr
;
135 const unsigned long mmun_end
= addr
+ PAGE_SIZE
;
137 /* For try_to_free_swap() and munlock_vma_page() below */
140 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
142 ptep
= page_check_address(page
, mm
, addr
, &ptl
, 0);
147 page_add_new_anon_rmap(kpage
, vma
, addr
);
149 if (!PageAnon(page
)) {
150 dec_mm_counter(mm
, MM_FILEPAGES
);
151 inc_mm_counter(mm
, MM_ANONPAGES
);
154 flush_cache_page(vma
, addr
, pte_pfn(*ptep
));
155 ptep_clear_flush(vma
, addr
, ptep
);
156 set_pte_at_notify(mm
, addr
, ptep
, mk_pte(kpage
, vma
->vm_page_prot
));
158 page_remove_rmap(page
);
159 if (!page_mapped(page
))
160 try_to_free_swap(page
);
161 pte_unmap_unlock(ptep
, ptl
);
163 if (vma
->vm_flags
& VM_LOCKED
)
164 munlock_vma_page(page
);
169 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
175 * is_swbp_insn - check if instruction is breakpoint instruction.
176 * @insn: instruction to be checked.
177 * Default implementation of is_swbp_insn
178 * Returns true if @insn is a breakpoint instruction.
180 bool __weak
is_swbp_insn(uprobe_opcode_t
*insn
)
182 return *insn
== UPROBE_SWBP_INSN
;
186 * is_trap_insn - check if instruction is breakpoint instruction.
187 * @insn: instruction to be checked.
188 * Default implementation of is_trap_insn
189 * Returns true if @insn is a breakpoint instruction.
191 * This function is needed for the case where an architecture has multiple
192 * trap instructions (like powerpc).
194 bool __weak
is_trap_insn(uprobe_opcode_t
*insn
)
196 return is_swbp_insn(insn
);
199 static void copy_from_page(struct page
*page
, unsigned long vaddr
, void *dst
, int len
)
201 void *kaddr
= kmap_atomic(page
);
202 memcpy(dst
, kaddr
+ (vaddr
& ~PAGE_MASK
), len
);
203 kunmap_atomic(kaddr
);
206 static void copy_to_page(struct page
*page
, unsigned long vaddr
, const void *src
, int len
)
208 void *kaddr
= kmap_atomic(page
);
209 memcpy(kaddr
+ (vaddr
& ~PAGE_MASK
), src
, len
);
210 kunmap_atomic(kaddr
);
213 static int verify_opcode(struct page
*page
, unsigned long vaddr
, uprobe_opcode_t
*new_opcode
)
215 uprobe_opcode_t old_opcode
;
219 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
220 * We do not check if it is any other 'trap variant' which could
221 * be conditional trap instruction such as the one powerpc supports.
223 * The logic is that we do not care if the underlying instruction
224 * is a trap variant; uprobes always wins over any other (gdb)
227 copy_from_page(page
, vaddr
, &old_opcode
, UPROBE_SWBP_INSN_SIZE
);
228 is_swbp
= is_swbp_insn(&old_opcode
);
230 if (is_swbp_insn(new_opcode
)) {
231 if (is_swbp
) /* register: already installed? */
234 if (!is_swbp
) /* unregister: was it changed by us? */
243 * Expect the breakpoint instruction to be the smallest size instruction for
244 * the architecture. If an arch has variable length instruction and the
245 * breakpoint instruction is not of the smallest length instruction
246 * supported by that architecture then we need to modify is_trap_at_addr and
247 * write_opcode accordingly. This would never be a problem for archs that
248 * have fixed length instructions.
252 * write_opcode - write the opcode at a given virtual address.
253 * @mm: the probed process address space.
254 * @vaddr: the virtual address to store the opcode.
255 * @opcode: opcode to be written at @vaddr.
257 * Called with mm->mmap_sem held (for read and with a reference to
260 * For mm @mm, write the opcode at @vaddr.
261 * Return 0 (success) or a negative errno.
263 static int write_opcode(struct mm_struct
*mm
, unsigned long vaddr
,
264 uprobe_opcode_t opcode
)
266 struct page
*old_page
, *new_page
;
267 struct vm_area_struct
*vma
;
271 /* Read the page with vaddr into memory */
272 ret
= get_user_pages(NULL
, mm
, vaddr
, 1, 0, 1, &old_page
, &vma
);
276 ret
= verify_opcode(old_page
, vaddr
, &opcode
);
281 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vaddr
);
285 __SetPageUptodate(new_page
);
287 copy_highpage(new_page
, old_page
);
288 copy_to_page(new_page
, vaddr
, &opcode
, UPROBE_SWBP_INSN_SIZE
);
290 ret
= anon_vma_prepare(vma
);
294 ret
= __replace_page(vma
, vaddr
, old_page
, new_page
);
297 page_cache_release(new_page
);
301 if (unlikely(ret
== -EAGAIN
))
307 * set_swbp - store breakpoint at a given address.
308 * @auprobe: arch specific probepoint information.
309 * @mm: the probed process address space.
310 * @vaddr: the virtual address to insert the opcode.
312 * For mm @mm, store the breakpoint instruction at @vaddr.
313 * Return 0 (success) or a negative errno.
315 int __weak
set_swbp(struct arch_uprobe
*auprobe
, struct mm_struct
*mm
, unsigned long vaddr
)
317 return write_opcode(mm
, vaddr
, UPROBE_SWBP_INSN
);
321 * set_orig_insn - Restore the original instruction.
322 * @mm: the probed process address space.
323 * @auprobe: arch specific probepoint information.
324 * @vaddr: the virtual address to insert the opcode.
326 * For mm @mm, restore the original opcode (opcode) at @vaddr.
327 * Return 0 (success) or a negative errno.
330 set_orig_insn(struct arch_uprobe
*auprobe
, struct mm_struct
*mm
, unsigned long vaddr
)
332 return write_opcode(mm
, vaddr
, *(uprobe_opcode_t
*)auprobe
->insn
);
335 static int match_uprobe(struct uprobe
*l
, struct uprobe
*r
)
337 if (l
->inode
< r
->inode
)
340 if (l
->inode
> r
->inode
)
343 if (l
->offset
< r
->offset
)
346 if (l
->offset
> r
->offset
)
352 static struct uprobe
*__find_uprobe(struct inode
*inode
, loff_t offset
)
354 struct uprobe u
= { .inode
= inode
, .offset
= offset
};
355 struct rb_node
*n
= uprobes_tree
.rb_node
;
356 struct uprobe
*uprobe
;
360 uprobe
= rb_entry(n
, struct uprobe
, rb_node
);
361 match
= match_uprobe(&u
, uprobe
);
363 atomic_inc(&uprobe
->ref
);
376 * Find a uprobe corresponding to a given inode:offset
377 * Acquires uprobes_treelock
379 static struct uprobe
*find_uprobe(struct inode
*inode
, loff_t offset
)
381 struct uprobe
*uprobe
;
383 spin_lock(&uprobes_treelock
);
384 uprobe
= __find_uprobe(inode
, offset
);
385 spin_unlock(&uprobes_treelock
);
390 static struct uprobe
*__insert_uprobe(struct uprobe
*uprobe
)
392 struct rb_node
**p
= &uprobes_tree
.rb_node
;
393 struct rb_node
*parent
= NULL
;
399 u
= rb_entry(parent
, struct uprobe
, rb_node
);
400 match
= match_uprobe(uprobe
, u
);
407 p
= &parent
->rb_left
;
409 p
= &parent
->rb_right
;
414 rb_link_node(&uprobe
->rb_node
, parent
, p
);
415 rb_insert_color(&uprobe
->rb_node
, &uprobes_tree
);
416 /* get access + creation ref */
417 atomic_set(&uprobe
->ref
, 2);
423 * Acquire uprobes_treelock.
424 * Matching uprobe already exists in rbtree;
425 * increment (access refcount) and return the matching uprobe.
427 * No matching uprobe; insert the uprobe in rb_tree;
428 * get a double refcount (access + creation) and return NULL.
430 static struct uprobe
*insert_uprobe(struct uprobe
*uprobe
)
434 spin_lock(&uprobes_treelock
);
435 u
= __insert_uprobe(uprobe
);
436 spin_unlock(&uprobes_treelock
);
441 static void put_uprobe(struct uprobe
*uprobe
)
443 if (atomic_dec_and_test(&uprobe
->ref
))
447 static struct uprobe
*alloc_uprobe(struct inode
*inode
, loff_t offset
)
449 struct uprobe
*uprobe
, *cur_uprobe
;
451 uprobe
= kzalloc(sizeof(struct uprobe
), GFP_KERNEL
);
455 uprobe
->inode
= igrab(inode
);
456 uprobe
->offset
= offset
;
457 init_rwsem(&uprobe
->register_rwsem
);
458 init_rwsem(&uprobe
->consumer_rwsem
);
459 /* For now assume that the instruction need not be single-stepped */
460 __set_bit(UPROBE_SKIP_SSTEP
, &uprobe
->flags
);
462 /* add to uprobes_tree, sorted on inode:offset */
463 cur_uprobe
= insert_uprobe(uprobe
);
465 /* a uprobe exists for this inode:offset combination */
475 static void consumer_add(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
477 down_write(&uprobe
->consumer_rwsem
);
478 uc
->next
= uprobe
->consumers
;
479 uprobe
->consumers
= uc
;
480 up_write(&uprobe
->consumer_rwsem
);
484 * For uprobe @uprobe, delete the consumer @uc.
485 * Return true if the @uc is deleted successfully
488 static bool consumer_del(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
490 struct uprobe_consumer
**con
;
493 down_write(&uprobe
->consumer_rwsem
);
494 for (con
= &uprobe
->consumers
; *con
; con
= &(*con
)->next
) {
501 up_write(&uprobe
->consumer_rwsem
);
507 __copy_insn(struct address_space
*mapping
, struct file
*filp
, char *insn
,
508 unsigned long nbytes
, loff_t offset
)
512 if (!mapping
->a_ops
->readpage
)
515 * Ensure that the page that has the original instruction is
516 * populated and in page-cache.
518 page
= read_mapping_page(mapping
, offset
>> PAGE_CACHE_SHIFT
, filp
);
520 return PTR_ERR(page
);
522 copy_from_page(page
, offset
, insn
, nbytes
);
523 page_cache_release(page
);
528 static int copy_insn(struct uprobe
*uprobe
, struct file
*filp
)
530 struct address_space
*mapping
;
531 unsigned long nbytes
;
534 nbytes
= PAGE_SIZE
- (uprobe
->offset
& ~PAGE_MASK
);
535 mapping
= uprobe
->inode
->i_mapping
;
537 /* Instruction at end of binary; copy only available bytes */
538 if (uprobe
->offset
+ MAX_UINSN_BYTES
> uprobe
->inode
->i_size
)
539 bytes
= uprobe
->inode
->i_size
- uprobe
->offset
;
541 bytes
= MAX_UINSN_BYTES
;
543 /* Instruction at the page-boundary; copy bytes in second page */
544 if (nbytes
< bytes
) {
545 int err
= __copy_insn(mapping
, filp
, uprobe
->arch
.insn
+ nbytes
,
546 bytes
- nbytes
, uprobe
->offset
+ nbytes
);
551 return __copy_insn(mapping
, filp
, uprobe
->arch
.insn
, bytes
, uprobe
->offset
);
554 static int prepare_uprobe(struct uprobe
*uprobe
, struct file
*file
,
555 struct mm_struct
*mm
, unsigned long vaddr
)
559 if (test_bit(UPROBE_COPY_INSN
, &uprobe
->flags
))
562 /* TODO: move this into _register, until then we abuse this sem. */
563 down_write(&uprobe
->consumer_rwsem
);
564 if (test_bit(UPROBE_COPY_INSN
, &uprobe
->flags
))
567 ret
= copy_insn(uprobe
, file
);
572 if (is_trap_insn((uprobe_opcode_t
*)uprobe
->arch
.insn
))
575 ret
= arch_uprobe_analyze_insn(&uprobe
->arch
, mm
, vaddr
);
579 /* write_opcode() assumes we don't cross page boundary */
580 BUG_ON((uprobe
->offset
& ~PAGE_MASK
) +
581 UPROBE_SWBP_INSN_SIZE
> PAGE_SIZE
);
583 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
584 set_bit(UPROBE_COPY_INSN
, &uprobe
->flags
);
587 up_write(&uprobe
->consumer_rwsem
);
592 static inline bool consumer_filter(struct uprobe_consumer
*uc
,
593 enum uprobe_filter_ctx ctx
, struct mm_struct
*mm
)
595 return !uc
->filter
|| uc
->filter(uc
, ctx
, mm
);
598 static bool filter_chain(struct uprobe
*uprobe
,
599 enum uprobe_filter_ctx ctx
, struct mm_struct
*mm
)
601 struct uprobe_consumer
*uc
;
604 down_read(&uprobe
->consumer_rwsem
);
605 for (uc
= uprobe
->consumers
; uc
; uc
= uc
->next
) {
606 ret
= consumer_filter(uc
, ctx
, mm
);
610 up_read(&uprobe
->consumer_rwsem
);
616 install_breakpoint(struct uprobe
*uprobe
, struct mm_struct
*mm
,
617 struct vm_area_struct
*vma
, unsigned long vaddr
)
622 ret
= prepare_uprobe(uprobe
, vma
->vm_file
, mm
, vaddr
);
627 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
628 * the task can hit this breakpoint right after __replace_page().
630 first_uprobe
= !test_bit(MMF_HAS_UPROBES
, &mm
->flags
);
632 set_bit(MMF_HAS_UPROBES
, &mm
->flags
);
634 ret
= set_swbp(&uprobe
->arch
, mm
, vaddr
);
636 clear_bit(MMF_RECALC_UPROBES
, &mm
->flags
);
637 else if (first_uprobe
)
638 clear_bit(MMF_HAS_UPROBES
, &mm
->flags
);
644 remove_breakpoint(struct uprobe
*uprobe
, struct mm_struct
*mm
, unsigned long vaddr
)
646 set_bit(MMF_RECALC_UPROBES
, &mm
->flags
);
647 return set_orig_insn(&uprobe
->arch
, mm
, vaddr
);
650 static inline bool uprobe_is_active(struct uprobe
*uprobe
)
652 return !RB_EMPTY_NODE(&uprobe
->rb_node
);
655 * There could be threads that have already hit the breakpoint. They
656 * will recheck the current insn and restart if find_uprobe() fails.
657 * See find_active_uprobe().
659 static void delete_uprobe(struct uprobe
*uprobe
)
661 if (WARN_ON(!uprobe_is_active(uprobe
)))
664 spin_lock(&uprobes_treelock
);
665 rb_erase(&uprobe
->rb_node
, &uprobes_tree
);
666 spin_unlock(&uprobes_treelock
);
667 RB_CLEAR_NODE(&uprobe
->rb_node
); /* for uprobe_is_active() */
673 struct map_info
*next
;
674 struct mm_struct
*mm
;
678 static inline struct map_info
*free_map_info(struct map_info
*info
)
680 struct map_info
*next
= info
->next
;
685 static struct map_info
*
686 build_map_info(struct address_space
*mapping
, loff_t offset
, bool is_register
)
688 unsigned long pgoff
= offset
>> PAGE_SHIFT
;
689 struct vm_area_struct
*vma
;
690 struct map_info
*curr
= NULL
;
691 struct map_info
*prev
= NULL
;
692 struct map_info
*info
;
696 mutex_lock(&mapping
->i_mmap_mutex
);
697 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
698 if (!valid_vma(vma
, is_register
))
701 if (!prev
&& !more
) {
703 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
704 * reclaim. This is optimistic, no harm done if it fails.
706 prev
= kmalloc(sizeof(struct map_info
),
707 GFP_NOWAIT
| __GFP_NOMEMALLOC
| __GFP_NOWARN
);
716 if (!atomic_inc_not_zero(&vma
->vm_mm
->mm_users
))
724 info
->mm
= vma
->vm_mm
;
725 info
->vaddr
= offset_to_vaddr(vma
, offset
);
727 mutex_unlock(&mapping
->i_mmap_mutex
);
739 info
= kmalloc(sizeof(struct map_info
), GFP_KERNEL
);
741 curr
= ERR_PTR(-ENOMEM
);
751 prev
= free_map_info(prev
);
756 register_for_each_vma(struct uprobe
*uprobe
, struct uprobe_consumer
*new)
758 bool is_register
= !!new;
759 struct map_info
*info
;
762 percpu_down_write(&dup_mmap_sem
);
763 info
= build_map_info(uprobe
->inode
->i_mapping
,
764 uprobe
->offset
, is_register
);
771 struct mm_struct
*mm
= info
->mm
;
772 struct vm_area_struct
*vma
;
774 if (err
&& is_register
)
777 down_write(&mm
->mmap_sem
);
778 vma
= find_vma(mm
, info
->vaddr
);
779 if (!vma
|| !valid_vma(vma
, is_register
) ||
780 file_inode(vma
->vm_file
) != uprobe
->inode
)
783 if (vma
->vm_start
> info
->vaddr
||
784 vaddr_to_offset(vma
, info
->vaddr
) != uprobe
->offset
)
788 /* consult only the "caller", new consumer. */
789 if (consumer_filter(new,
790 UPROBE_FILTER_REGISTER
, mm
))
791 err
= install_breakpoint(uprobe
, mm
, vma
, info
->vaddr
);
792 } else if (test_bit(MMF_HAS_UPROBES
, &mm
->flags
)) {
793 if (!filter_chain(uprobe
,
794 UPROBE_FILTER_UNREGISTER
, mm
))
795 err
|= remove_breakpoint(uprobe
, mm
, info
->vaddr
);
799 up_write(&mm
->mmap_sem
);
802 info
= free_map_info(info
);
805 percpu_up_write(&dup_mmap_sem
);
809 static int __uprobe_register(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
811 consumer_add(uprobe
, uc
);
812 return register_for_each_vma(uprobe
, uc
);
815 static void __uprobe_unregister(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
819 if (!consumer_del(uprobe
, uc
)) /* WARN? */
822 err
= register_for_each_vma(uprobe
, NULL
);
823 /* TODO : cant unregister? schedule a worker thread */
824 if (!uprobe
->consumers
&& !err
)
825 delete_uprobe(uprobe
);
829 * uprobe_register - register a probe
830 * @inode: the file in which the probe has to be placed.
831 * @offset: offset from the start of the file.
832 * @uc: information on howto handle the probe..
834 * Apart from the access refcount, uprobe_register() takes a creation
835 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
836 * inserted into the rbtree (i.e first consumer for a @inode:@offset
837 * tuple). Creation refcount stops uprobe_unregister from freeing the
838 * @uprobe even before the register operation is complete. Creation
839 * refcount is released when the last @uc for the @uprobe
842 * Return errno if it cannot successully install probes
843 * else return 0 (success)
845 int uprobe_register(struct inode
*inode
, loff_t offset
, struct uprobe_consumer
*uc
)
847 struct uprobe
*uprobe
;
850 /* Uprobe must have at least one set consumer */
851 if (!uc
->handler
&& !uc
->ret_handler
)
854 /* Racy, just to catch the obvious mistakes */
855 if (offset
> i_size_read(inode
))
859 uprobe
= alloc_uprobe(inode
, offset
);
863 * We can race with uprobe_unregister()->delete_uprobe().
864 * Check uprobe_is_active() and retry if it is false.
866 down_write(&uprobe
->register_rwsem
);
868 if (likely(uprobe_is_active(uprobe
))) {
869 ret
= __uprobe_register(uprobe
, uc
);
871 __uprobe_unregister(uprobe
, uc
);
873 up_write(&uprobe
->register_rwsem
);
876 if (unlikely(ret
== -EAGAIN
))
880 EXPORT_SYMBOL_GPL(uprobe_register
);
883 * uprobe_apply - unregister a already registered probe.
884 * @inode: the file in which the probe has to be removed.
885 * @offset: offset from the start of the file.
886 * @uc: consumer which wants to add more or remove some breakpoints
887 * @add: add or remove the breakpoints
889 int uprobe_apply(struct inode
*inode
, loff_t offset
,
890 struct uprobe_consumer
*uc
, bool add
)
892 struct uprobe
*uprobe
;
893 struct uprobe_consumer
*con
;
896 uprobe
= find_uprobe(inode
, offset
);
900 down_write(&uprobe
->register_rwsem
);
901 for (con
= uprobe
->consumers
; con
&& con
!= uc
; con
= con
->next
)
904 ret
= register_for_each_vma(uprobe
, add
? uc
: NULL
);
905 up_write(&uprobe
->register_rwsem
);
912 * uprobe_unregister - unregister a already registered probe.
913 * @inode: the file in which the probe has to be removed.
914 * @offset: offset from the start of the file.
915 * @uc: identify which probe if multiple probes are colocated.
917 void uprobe_unregister(struct inode
*inode
, loff_t offset
, struct uprobe_consumer
*uc
)
919 struct uprobe
*uprobe
;
921 uprobe
= find_uprobe(inode
, offset
);
925 down_write(&uprobe
->register_rwsem
);
926 __uprobe_unregister(uprobe
, uc
);
927 up_write(&uprobe
->register_rwsem
);
930 EXPORT_SYMBOL_GPL(uprobe_unregister
);
932 static int unapply_uprobe(struct uprobe
*uprobe
, struct mm_struct
*mm
)
934 struct vm_area_struct
*vma
;
937 down_read(&mm
->mmap_sem
);
938 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
942 if (!valid_vma(vma
, false) ||
943 file_inode(vma
->vm_file
) != uprobe
->inode
)
946 offset
= (loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
;
947 if (uprobe
->offset
< offset
||
948 uprobe
->offset
>= offset
+ vma
->vm_end
- vma
->vm_start
)
951 vaddr
= offset_to_vaddr(vma
, uprobe
->offset
);
952 err
|= remove_breakpoint(uprobe
, mm
, vaddr
);
954 up_read(&mm
->mmap_sem
);
959 static struct rb_node
*
960 find_node_in_range(struct inode
*inode
, loff_t min
, loff_t max
)
962 struct rb_node
*n
= uprobes_tree
.rb_node
;
965 struct uprobe
*u
= rb_entry(n
, struct uprobe
, rb_node
);
967 if (inode
< u
->inode
) {
969 } else if (inode
> u
->inode
) {
974 else if (min
> u
->offset
)
985 * For a given range in vma, build a list of probes that need to be inserted.
987 static void build_probe_list(struct inode
*inode
,
988 struct vm_area_struct
*vma
,
989 unsigned long start
, unsigned long end
,
990 struct list_head
*head
)
993 struct rb_node
*n
, *t
;
996 INIT_LIST_HEAD(head
);
997 min
= vaddr_to_offset(vma
, start
);
998 max
= min
+ (end
- start
) - 1;
1000 spin_lock(&uprobes_treelock
);
1001 n
= find_node_in_range(inode
, min
, max
);
1003 for (t
= n
; t
; t
= rb_prev(t
)) {
1004 u
= rb_entry(t
, struct uprobe
, rb_node
);
1005 if (u
->inode
!= inode
|| u
->offset
< min
)
1007 list_add(&u
->pending_list
, head
);
1008 atomic_inc(&u
->ref
);
1010 for (t
= n
; (t
= rb_next(t
)); ) {
1011 u
= rb_entry(t
, struct uprobe
, rb_node
);
1012 if (u
->inode
!= inode
|| u
->offset
> max
)
1014 list_add(&u
->pending_list
, head
);
1015 atomic_inc(&u
->ref
);
1018 spin_unlock(&uprobes_treelock
);
1022 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1024 * Currently we ignore all errors and always return 0, the callers
1025 * can't handle the failure anyway.
1027 int uprobe_mmap(struct vm_area_struct
*vma
)
1029 struct list_head tmp_list
;
1030 struct uprobe
*uprobe
, *u
;
1031 struct inode
*inode
;
1033 if (no_uprobe_events() || !valid_vma(vma
, true))
1036 inode
= file_inode(vma
->vm_file
);
1040 mutex_lock(uprobes_mmap_hash(inode
));
1041 build_probe_list(inode
, vma
, vma
->vm_start
, vma
->vm_end
, &tmp_list
);
1043 * We can race with uprobe_unregister(), this uprobe can be already
1044 * removed. But in this case filter_chain() must return false, all
1045 * consumers have gone away.
1047 list_for_each_entry_safe(uprobe
, u
, &tmp_list
, pending_list
) {
1048 if (!fatal_signal_pending(current
) &&
1049 filter_chain(uprobe
, UPROBE_FILTER_MMAP
, vma
->vm_mm
)) {
1050 unsigned long vaddr
= offset_to_vaddr(vma
, uprobe
->offset
);
1051 install_breakpoint(uprobe
, vma
->vm_mm
, vma
, vaddr
);
1055 mutex_unlock(uprobes_mmap_hash(inode
));
1061 vma_has_uprobes(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1064 struct inode
*inode
;
1067 inode
= file_inode(vma
->vm_file
);
1069 min
= vaddr_to_offset(vma
, start
);
1070 max
= min
+ (end
- start
) - 1;
1072 spin_lock(&uprobes_treelock
);
1073 n
= find_node_in_range(inode
, min
, max
);
1074 spin_unlock(&uprobes_treelock
);
1080 * Called in context of a munmap of a vma.
1082 void uprobe_munmap(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1084 if (no_uprobe_events() || !valid_vma(vma
, false))
1087 if (!atomic_read(&vma
->vm_mm
->mm_users
)) /* called by mmput() ? */
1090 if (!test_bit(MMF_HAS_UPROBES
, &vma
->vm_mm
->flags
) ||
1091 test_bit(MMF_RECALC_UPROBES
, &vma
->vm_mm
->flags
))
1094 if (vma_has_uprobes(vma
, start
, end
))
1095 set_bit(MMF_RECALC_UPROBES
, &vma
->vm_mm
->flags
);
1098 /* Slot allocation for XOL */
1099 static int xol_add_vma(struct xol_area
*area
)
1101 struct mm_struct
*mm
= current
->mm
;
1102 int ret
= -EALREADY
;
1104 down_write(&mm
->mmap_sem
);
1105 if (mm
->uprobes_state
.xol_area
)
1109 /* Try to map as high as possible, this is only a hint. */
1110 area
->vaddr
= get_unmapped_area(NULL
, TASK_SIZE
- PAGE_SIZE
, PAGE_SIZE
, 0, 0);
1111 if (area
->vaddr
& ~PAGE_MASK
) {
1116 ret
= install_special_mapping(mm
, area
->vaddr
, PAGE_SIZE
,
1117 VM_EXEC
|VM_MAYEXEC
|VM_DONTCOPY
|VM_IO
, &area
->page
);
1121 smp_wmb(); /* pairs with get_xol_area() */
1122 mm
->uprobes_state
.xol_area
= area
;
1125 up_write(&mm
->mmap_sem
);
1131 * get_xol_area - Allocate process's xol_area if necessary.
1132 * This area will be used for storing instructions for execution out of line.
1134 * Returns the allocated area or NULL.
1136 static struct xol_area
*get_xol_area(void)
1138 struct mm_struct
*mm
= current
->mm
;
1139 struct xol_area
*area
;
1140 uprobe_opcode_t insn
= UPROBE_SWBP_INSN
;
1142 area
= mm
->uprobes_state
.xol_area
;
1146 area
= kzalloc(sizeof(*area
), GFP_KERNEL
);
1147 if (unlikely(!area
))
1150 area
->bitmap
= kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE
) * sizeof(long), GFP_KERNEL
);
1154 area
->page
= alloc_page(GFP_HIGHUSER
);
1158 /* allocate first slot of task's xol_area for the return probes */
1159 set_bit(0, area
->bitmap
);
1160 copy_to_page(area
->page
, 0, &insn
, UPROBE_SWBP_INSN_SIZE
);
1161 atomic_set(&area
->slot_count
, 1);
1162 init_waitqueue_head(&area
->wq
);
1164 if (!xol_add_vma(area
))
1167 __free_page(area
->page
);
1169 kfree(area
->bitmap
);
1173 area
= mm
->uprobes_state
.xol_area
;
1175 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1180 * uprobe_clear_state - Free the area allocated for slots.
1182 void uprobe_clear_state(struct mm_struct
*mm
)
1184 struct xol_area
*area
= mm
->uprobes_state
.xol_area
;
1189 put_page(area
->page
);
1190 kfree(area
->bitmap
);
1194 void uprobe_start_dup_mmap(void)
1196 percpu_down_read(&dup_mmap_sem
);
1199 void uprobe_end_dup_mmap(void)
1201 percpu_up_read(&dup_mmap_sem
);
1204 void uprobe_dup_mmap(struct mm_struct
*oldmm
, struct mm_struct
*newmm
)
1206 newmm
->uprobes_state
.xol_area
= NULL
;
1208 if (test_bit(MMF_HAS_UPROBES
, &oldmm
->flags
)) {
1209 set_bit(MMF_HAS_UPROBES
, &newmm
->flags
);
1210 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1211 set_bit(MMF_RECALC_UPROBES
, &newmm
->flags
);
1216 * - search for a free slot.
1218 static unsigned long xol_take_insn_slot(struct xol_area
*area
)
1220 unsigned long slot_addr
;
1224 slot_nr
= find_first_zero_bit(area
->bitmap
, UINSNS_PER_PAGE
);
1225 if (slot_nr
< UINSNS_PER_PAGE
) {
1226 if (!test_and_set_bit(slot_nr
, area
->bitmap
))
1229 slot_nr
= UINSNS_PER_PAGE
;
1232 wait_event(area
->wq
, (atomic_read(&area
->slot_count
) < UINSNS_PER_PAGE
));
1233 } while (slot_nr
>= UINSNS_PER_PAGE
);
1235 slot_addr
= area
->vaddr
+ (slot_nr
* UPROBE_XOL_SLOT_BYTES
);
1236 atomic_inc(&area
->slot_count
);
1242 * xol_get_insn_slot - allocate a slot for xol.
1243 * Returns the allocated slot address or 0.
1245 static unsigned long xol_get_insn_slot(struct uprobe
*uprobe
)
1247 struct xol_area
*area
;
1248 unsigned long xol_vaddr
;
1250 area
= get_xol_area();
1254 xol_vaddr
= xol_take_insn_slot(area
);
1255 if (unlikely(!xol_vaddr
))
1258 /* Initialize the slot */
1259 copy_to_page(area
->page
, xol_vaddr
, uprobe
->arch
.insn
, MAX_UINSN_BYTES
);
1261 * We probably need flush_icache_user_range() but it needs vma.
1262 * This should work on supported architectures too.
1264 flush_dcache_page(area
->page
);
1270 * xol_free_insn_slot - If slot was earlier allocated by
1271 * @xol_get_insn_slot(), make the slot available for
1272 * subsequent requests.
1274 static void xol_free_insn_slot(struct task_struct
*tsk
)
1276 struct xol_area
*area
;
1277 unsigned long vma_end
;
1278 unsigned long slot_addr
;
1280 if (!tsk
->mm
|| !tsk
->mm
->uprobes_state
.xol_area
|| !tsk
->utask
)
1283 slot_addr
= tsk
->utask
->xol_vaddr
;
1284 if (unlikely(!slot_addr
))
1287 area
= tsk
->mm
->uprobes_state
.xol_area
;
1288 vma_end
= area
->vaddr
+ PAGE_SIZE
;
1289 if (area
->vaddr
<= slot_addr
&& slot_addr
< vma_end
) {
1290 unsigned long offset
;
1293 offset
= slot_addr
- area
->vaddr
;
1294 slot_nr
= offset
/ UPROBE_XOL_SLOT_BYTES
;
1295 if (slot_nr
>= UINSNS_PER_PAGE
)
1298 clear_bit(slot_nr
, area
->bitmap
);
1299 atomic_dec(&area
->slot_count
);
1300 if (waitqueue_active(&area
->wq
))
1303 tsk
->utask
->xol_vaddr
= 0;
1308 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1309 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1311 * Return the address of the breakpoint instruction.
1313 unsigned long __weak
uprobe_get_swbp_addr(struct pt_regs
*regs
)
1315 return instruction_pointer(regs
) - UPROBE_SWBP_INSN_SIZE
;
1319 * Called with no locks held.
1320 * Called in context of a exiting or a exec-ing thread.
1322 void uprobe_free_utask(struct task_struct
*t
)
1324 struct uprobe_task
*utask
= t
->utask
;
1325 struct return_instance
*ri
, *tmp
;
1330 if (utask
->active_uprobe
)
1331 put_uprobe(utask
->active_uprobe
);
1333 ri
= utask
->return_instances
;
1338 put_uprobe(tmp
->uprobe
);
1342 xol_free_insn_slot(t
);
1348 * Called in context of a new clone/fork from copy_process.
1350 void uprobe_copy_process(struct task_struct
*t
)
1356 * Allocate a uprobe_task object for the task if if necessary.
1357 * Called when the thread hits a breakpoint.
1360 * - pointer to new uprobe_task on success
1363 static struct uprobe_task
*get_utask(void)
1365 if (!current
->utask
)
1366 current
->utask
= kzalloc(sizeof(struct uprobe_task
), GFP_KERNEL
);
1367 return current
->utask
;
1371 * Current area->vaddr notion assume the trampoline address is always
1372 * equal area->vaddr.
1374 * Returns -1 in case the xol_area is not allocated.
1376 static unsigned long get_trampoline_vaddr(void)
1378 struct xol_area
*area
;
1379 unsigned long trampoline_vaddr
= -1;
1381 area
= current
->mm
->uprobes_state
.xol_area
;
1382 smp_read_barrier_depends();
1384 trampoline_vaddr
= area
->vaddr
;
1386 return trampoline_vaddr
;
1389 static void prepare_uretprobe(struct uprobe
*uprobe
, struct pt_regs
*regs
)
1391 struct return_instance
*ri
;
1392 struct uprobe_task
*utask
;
1393 unsigned long orig_ret_vaddr
, trampoline_vaddr
;
1394 bool chained
= false;
1396 if (!get_xol_area())
1399 utask
= get_utask();
1403 if (utask
->depth
>= MAX_URETPROBE_DEPTH
) {
1404 printk_ratelimited(KERN_INFO
"uprobe: omit uretprobe due to"
1405 " nestedness limit pid/tgid=%d/%d\n",
1406 current
->pid
, current
->tgid
);
1410 ri
= kzalloc(sizeof(struct return_instance
), GFP_KERNEL
);
1414 trampoline_vaddr
= get_trampoline_vaddr();
1415 orig_ret_vaddr
= arch_uretprobe_hijack_return_addr(trampoline_vaddr
, regs
);
1416 if (orig_ret_vaddr
== -1)
1420 * We don't want to keep trampoline address in stack, rather keep the
1421 * original return address of first caller thru all the consequent
1422 * instances. This also makes breakpoint unwrapping easier.
1424 if (orig_ret_vaddr
== trampoline_vaddr
) {
1425 if (!utask
->return_instances
) {
1427 * This situation is not possible. Likely we have an
1428 * attack from user-space.
1430 pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1431 current
->pid
, current
->tgid
);
1436 orig_ret_vaddr
= utask
->return_instances
->orig_ret_vaddr
;
1439 atomic_inc(&uprobe
->ref
);
1440 ri
->uprobe
= uprobe
;
1441 ri
->func
= instruction_pointer(regs
);
1442 ri
->orig_ret_vaddr
= orig_ret_vaddr
;
1443 ri
->chained
= chained
;
1447 /* add instance to the stack */
1448 ri
->next
= utask
->return_instances
;
1449 utask
->return_instances
= ri
;
1457 /* Prepare to single-step probed instruction out of line. */
1459 pre_ssout(struct uprobe
*uprobe
, struct pt_regs
*regs
, unsigned long bp_vaddr
)
1461 struct uprobe_task
*utask
;
1462 unsigned long xol_vaddr
;
1465 utask
= get_utask();
1469 xol_vaddr
= xol_get_insn_slot(uprobe
);
1473 utask
->xol_vaddr
= xol_vaddr
;
1474 utask
->vaddr
= bp_vaddr
;
1476 err
= arch_uprobe_pre_xol(&uprobe
->arch
, regs
);
1477 if (unlikely(err
)) {
1478 xol_free_insn_slot(current
);
1482 utask
->active_uprobe
= uprobe
;
1483 utask
->state
= UTASK_SSTEP
;
1488 * If we are singlestepping, then ensure this thread is not connected to
1489 * non-fatal signals until completion of singlestep. When xol insn itself
1490 * triggers the signal, restart the original insn even if the task is
1491 * already SIGKILL'ed (since coredump should report the correct ip). This
1492 * is even more important if the task has a handler for SIGSEGV/etc, The
1493 * _same_ instruction should be repeated again after return from the signal
1494 * handler, and SSTEP can never finish in this case.
1496 bool uprobe_deny_signal(void)
1498 struct task_struct
*t
= current
;
1499 struct uprobe_task
*utask
= t
->utask
;
1501 if (likely(!utask
|| !utask
->active_uprobe
))
1504 WARN_ON_ONCE(utask
->state
!= UTASK_SSTEP
);
1506 if (signal_pending(t
)) {
1507 spin_lock_irq(&t
->sighand
->siglock
);
1508 clear_tsk_thread_flag(t
, TIF_SIGPENDING
);
1509 spin_unlock_irq(&t
->sighand
->siglock
);
1511 if (__fatal_signal_pending(t
) || arch_uprobe_xol_was_trapped(t
)) {
1512 utask
->state
= UTASK_SSTEP_TRAPPED
;
1513 set_tsk_thread_flag(t
, TIF_UPROBE
);
1514 set_tsk_thread_flag(t
, TIF_NOTIFY_RESUME
);
1522 * Avoid singlestepping the original instruction if the original instruction
1523 * is a NOP or can be emulated.
1525 static bool can_skip_sstep(struct uprobe
*uprobe
, struct pt_regs
*regs
)
1527 if (test_bit(UPROBE_SKIP_SSTEP
, &uprobe
->flags
)) {
1528 if (arch_uprobe_skip_sstep(&uprobe
->arch
, regs
))
1530 clear_bit(UPROBE_SKIP_SSTEP
, &uprobe
->flags
);
1535 static void mmf_recalc_uprobes(struct mm_struct
*mm
)
1537 struct vm_area_struct
*vma
;
1539 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1540 if (!valid_vma(vma
, false))
1543 * This is not strictly accurate, we can race with
1544 * uprobe_unregister() and see the already removed
1545 * uprobe if delete_uprobe() was not yet called.
1546 * Or this uprobe can be filtered out.
1548 if (vma_has_uprobes(vma
, vma
->vm_start
, vma
->vm_end
))
1552 clear_bit(MMF_HAS_UPROBES
, &mm
->flags
);
1555 static int is_trap_at_addr(struct mm_struct
*mm
, unsigned long vaddr
)
1558 uprobe_opcode_t opcode
;
1561 pagefault_disable();
1562 result
= __copy_from_user_inatomic(&opcode
, (void __user
*)vaddr
,
1566 if (likely(result
== 0))
1569 result
= get_user_pages(NULL
, mm
, vaddr
, 1, 0, 1, &page
, NULL
);
1573 copy_from_page(page
, vaddr
, &opcode
, UPROBE_SWBP_INSN_SIZE
);
1576 /* This needs to return true for any variant of the trap insn */
1577 return is_trap_insn(&opcode
);
1580 static struct uprobe
*find_active_uprobe(unsigned long bp_vaddr
, int *is_swbp
)
1582 struct mm_struct
*mm
= current
->mm
;
1583 struct uprobe
*uprobe
= NULL
;
1584 struct vm_area_struct
*vma
;
1586 down_read(&mm
->mmap_sem
);
1587 vma
= find_vma(mm
, bp_vaddr
);
1588 if (vma
&& vma
->vm_start
<= bp_vaddr
) {
1589 if (valid_vma(vma
, false)) {
1590 struct inode
*inode
= file_inode(vma
->vm_file
);
1591 loff_t offset
= vaddr_to_offset(vma
, bp_vaddr
);
1593 uprobe
= find_uprobe(inode
, offset
);
1597 *is_swbp
= is_trap_at_addr(mm
, bp_vaddr
);
1602 if (!uprobe
&& test_and_clear_bit(MMF_RECALC_UPROBES
, &mm
->flags
))
1603 mmf_recalc_uprobes(mm
);
1604 up_read(&mm
->mmap_sem
);
1609 static void handler_chain(struct uprobe
*uprobe
, struct pt_regs
*regs
)
1611 struct uprobe_consumer
*uc
;
1612 int remove
= UPROBE_HANDLER_REMOVE
;
1613 bool need_prep
= false; /* prepare return uprobe, when needed */
1615 down_read(&uprobe
->register_rwsem
);
1616 for (uc
= uprobe
->consumers
; uc
; uc
= uc
->next
) {
1620 rc
= uc
->handler(uc
, regs
);
1621 WARN(rc
& ~UPROBE_HANDLER_MASK
,
1622 "bad rc=0x%x from %pf()\n", rc
, uc
->handler
);
1625 if (uc
->ret_handler
)
1631 if (need_prep
&& !remove
)
1632 prepare_uretprobe(uprobe
, regs
); /* put bp at return */
1634 if (remove
&& uprobe
->consumers
) {
1635 WARN_ON(!uprobe_is_active(uprobe
));
1636 unapply_uprobe(uprobe
, current
->mm
);
1638 up_read(&uprobe
->register_rwsem
);
1642 handle_uretprobe_chain(struct return_instance
*ri
, struct pt_regs
*regs
)
1644 struct uprobe
*uprobe
= ri
->uprobe
;
1645 struct uprobe_consumer
*uc
;
1647 down_read(&uprobe
->register_rwsem
);
1648 for (uc
= uprobe
->consumers
; uc
; uc
= uc
->next
) {
1649 if (uc
->ret_handler
)
1650 uc
->ret_handler(uc
, ri
->func
, regs
);
1652 up_read(&uprobe
->register_rwsem
);
1655 static bool handle_trampoline(struct pt_regs
*regs
)
1657 struct uprobe_task
*utask
;
1658 struct return_instance
*ri
, *tmp
;
1661 utask
= current
->utask
;
1665 ri
= utask
->return_instances
;
1670 * TODO: we should throw out return_instance's invalidated by
1671 * longjmp(), currently we assume that the probed function always
1674 instruction_pointer_set(regs
, ri
->orig_ret_vaddr
);
1677 handle_uretprobe_chain(ri
, regs
);
1679 chained
= ri
->chained
;
1680 put_uprobe(ri
->uprobe
);
1692 utask
->return_instances
= ri
;
1698 * Run handler and ask thread to singlestep.
1699 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1701 static void handle_swbp(struct pt_regs
*regs
)
1703 struct uprobe
*uprobe
;
1704 unsigned long bp_vaddr
;
1705 int uninitialized_var(is_swbp
);
1707 bp_vaddr
= uprobe_get_swbp_addr(regs
);
1708 if (bp_vaddr
== get_trampoline_vaddr()) {
1709 if (handle_trampoline(regs
))
1712 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1713 current
->pid
, current
->tgid
);
1716 uprobe
= find_active_uprobe(bp_vaddr
, &is_swbp
);
1719 /* No matching uprobe; signal SIGTRAP. */
1720 send_sig(SIGTRAP
, current
, 0);
1723 * Either we raced with uprobe_unregister() or we can't
1724 * access this memory. The latter is only possible if
1725 * another thread plays with our ->mm. In both cases
1726 * we can simply restart. If this vma was unmapped we
1727 * can pretend this insn was not executed yet and get
1728 * the (correct) SIGSEGV after restart.
1730 instruction_pointer_set(regs
, bp_vaddr
);
1735 /* change it in advance for ->handler() and restart */
1736 instruction_pointer_set(regs
, bp_vaddr
);
1739 * TODO: move copy_insn/etc into _register and remove this hack.
1740 * After we hit the bp, _unregister + _register can install the
1741 * new and not-yet-analyzed uprobe at the same address, restart.
1743 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1744 if (unlikely(!test_bit(UPROBE_COPY_INSN
, &uprobe
->flags
)))
1747 handler_chain(uprobe
, regs
);
1748 if (can_skip_sstep(uprobe
, regs
))
1751 if (!pre_ssout(uprobe
, regs
, bp_vaddr
))
1754 /* can_skip_sstep() succeeded, or restart if can't singlestep */
1760 * Perform required fix-ups and disable singlestep.
1761 * Allow pending signals to take effect.
1763 static void handle_singlestep(struct uprobe_task
*utask
, struct pt_regs
*regs
)
1765 struct uprobe
*uprobe
;
1767 uprobe
= utask
->active_uprobe
;
1768 if (utask
->state
== UTASK_SSTEP_ACK
)
1769 arch_uprobe_post_xol(&uprobe
->arch
, regs
);
1770 else if (utask
->state
== UTASK_SSTEP_TRAPPED
)
1771 arch_uprobe_abort_xol(&uprobe
->arch
, regs
);
1776 utask
->active_uprobe
= NULL
;
1777 utask
->state
= UTASK_RUNNING
;
1778 xol_free_insn_slot(current
);
1780 spin_lock_irq(¤t
->sighand
->siglock
);
1781 recalc_sigpending(); /* see uprobe_deny_signal() */
1782 spin_unlock_irq(¤t
->sighand
->siglock
);
1786 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1787 * allows the thread to return from interrupt. After that handle_swbp()
1788 * sets utask->active_uprobe.
1790 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1791 * and allows the thread to return from interrupt.
1793 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1794 * uprobe_notify_resume().
1796 void uprobe_notify_resume(struct pt_regs
*regs
)
1798 struct uprobe_task
*utask
;
1800 clear_thread_flag(TIF_UPROBE
);
1802 utask
= current
->utask
;
1803 if (utask
&& utask
->active_uprobe
)
1804 handle_singlestep(utask
, regs
);
1810 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1811 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1813 int uprobe_pre_sstep_notifier(struct pt_regs
*regs
)
1818 if (!test_bit(MMF_HAS_UPROBES
, ¤t
->mm
->flags
) &&
1819 (!current
->utask
|| !current
->utask
->return_instances
))
1822 set_thread_flag(TIF_UPROBE
);
1827 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1828 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1830 int uprobe_post_sstep_notifier(struct pt_regs
*regs
)
1832 struct uprobe_task
*utask
= current
->utask
;
1834 if (!current
->mm
|| !utask
|| !utask
->active_uprobe
)
1835 /* task is currently not uprobed */
1838 utask
->state
= UTASK_SSTEP_ACK
;
1839 set_thread_flag(TIF_UPROBE
);
1843 static struct notifier_block uprobe_exception_nb
= {
1844 .notifier_call
= arch_uprobe_exception_notify
,
1845 .priority
= INT_MAX
-1, /* notified after kprobes, kgdb */
1848 static int __init
init_uprobes(void)
1852 for (i
= 0; i
< UPROBES_HASH_SZ
; i
++)
1853 mutex_init(&uprobes_mmap_mutex
[i
]);
1855 if (percpu_init_rwsem(&dup_mmap_sem
))
1858 return register_die_notifier(&uprobe_exception_nb
);
1860 module_init(init_uprobes
);
1862 static void __exit
exit_uprobes(void)
1865 module_exit(exit_uprobes
);