x86/xen: resume timer irqs early
[linux/fpc-iii.git] / kernel / fork.c
blob143962949bedb873cbffdfcd56e96c8429fe8952
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
82 #include <trace/events/sched.h>
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
88 * Protected counters by write_lock_irq(&tasklist_lock)
90 unsigned long total_forks; /* Handle normal Linux uptimes. */
91 int nr_threads; /* The idle threads do not count.. */
93 int max_threads; /* tunable limit on nr_threads */
95 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
99 #ifdef CONFIG_PROVE_RCU
100 int lockdep_tasklist_lock_is_held(void)
102 return lockdep_is_held(&tasklist_lock);
104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
105 #endif /* #ifdef CONFIG_PROVE_RCU */
107 int nr_processes(void)
109 int cpu;
110 int total = 0;
112 for_each_possible_cpu(cpu)
113 total += per_cpu(process_counts, cpu);
115 return total;
118 void __weak arch_release_task_struct(struct task_struct *tsk)
122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
123 static struct kmem_cache *task_struct_cachep;
125 static inline struct task_struct *alloc_task_struct_node(int node)
127 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
130 static inline void free_task_struct(struct task_struct *tsk)
132 kmem_cache_free(task_struct_cachep, tsk);
134 #endif
136 void __weak arch_release_thread_info(struct thread_info *ti)
140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
143 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
144 * kmemcache based allocator.
146 # if THREAD_SIZE >= PAGE_SIZE
147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
148 int node)
150 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
151 THREAD_SIZE_ORDER);
153 return page ? page_address(page) : NULL;
156 static inline void free_thread_info(struct thread_info *ti)
158 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
160 # else
161 static struct kmem_cache *thread_info_cache;
163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
164 int node)
166 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
169 static void free_thread_info(struct thread_info *ti)
171 kmem_cache_free(thread_info_cache, ti);
174 void thread_info_cache_init(void)
176 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
177 THREAD_SIZE, 0, NULL);
178 BUG_ON(thread_info_cache == NULL);
180 # endif
181 #endif
183 /* SLAB cache for signal_struct structures (tsk->signal) */
184 static struct kmem_cache *signal_cachep;
186 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 struct kmem_cache *sighand_cachep;
189 /* SLAB cache for files_struct structures (tsk->files) */
190 struct kmem_cache *files_cachep;
192 /* SLAB cache for fs_struct structures (tsk->fs) */
193 struct kmem_cache *fs_cachep;
195 /* SLAB cache for vm_area_struct structures */
196 struct kmem_cache *vm_area_cachep;
198 /* SLAB cache for mm_struct structures (tsk->mm) */
199 static struct kmem_cache *mm_cachep;
201 static void account_kernel_stack(struct thread_info *ti, int account)
203 struct zone *zone = page_zone(virt_to_page(ti));
205 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
208 void free_task(struct task_struct *tsk)
210 account_kernel_stack(tsk->stack, -1);
211 arch_release_thread_info(tsk->stack);
212 free_thread_info(tsk->stack);
213 rt_mutex_debug_task_free(tsk);
214 ftrace_graph_exit_task(tsk);
215 put_seccomp_filter(tsk);
216 arch_release_task_struct(tsk);
217 free_task_struct(tsk);
219 EXPORT_SYMBOL(free_task);
221 static inline void free_signal_struct(struct signal_struct *sig)
223 taskstats_tgid_free(sig);
224 sched_autogroup_exit(sig);
225 kmem_cache_free(signal_cachep, sig);
228 static inline void put_signal_struct(struct signal_struct *sig)
230 if (atomic_dec_and_test(&sig->sigcnt))
231 free_signal_struct(sig);
234 void __put_task_struct(struct task_struct *tsk)
236 WARN_ON(!tsk->exit_state);
237 WARN_ON(atomic_read(&tsk->usage));
238 WARN_ON(tsk == current);
240 security_task_free(tsk);
241 exit_creds(tsk);
242 delayacct_tsk_free(tsk);
243 put_signal_struct(tsk->signal);
245 if (!profile_handoff_task(tsk))
246 free_task(tsk);
248 EXPORT_SYMBOL_GPL(__put_task_struct);
250 void __init __weak arch_task_cache_init(void) { }
252 void __init fork_init(unsigned long mempages)
254 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
255 #ifndef ARCH_MIN_TASKALIGN
256 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
257 #endif
258 /* create a slab on which task_structs can be allocated */
259 task_struct_cachep =
260 kmem_cache_create("task_struct", sizeof(struct task_struct),
261 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
262 #endif
264 /* do the arch specific task caches init */
265 arch_task_cache_init();
268 * The default maximum number of threads is set to a safe
269 * value: the thread structures can take up at most half
270 * of memory.
272 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
275 * we need to allow at least 20 threads to boot a system
277 if (max_threads < 20)
278 max_threads = 20;
280 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
281 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
282 init_task.signal->rlim[RLIMIT_SIGPENDING] =
283 init_task.signal->rlim[RLIMIT_NPROC];
286 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
287 struct task_struct *src)
289 *dst = *src;
290 return 0;
293 static struct task_struct *dup_task_struct(struct task_struct *orig)
295 struct task_struct *tsk;
296 struct thread_info *ti;
297 unsigned long *stackend;
298 int node = tsk_fork_get_node(orig);
299 int err;
301 tsk = alloc_task_struct_node(node);
302 if (!tsk)
303 return NULL;
305 ti = alloc_thread_info_node(tsk, node);
306 if (!ti)
307 goto free_tsk;
309 err = arch_dup_task_struct(tsk, orig);
310 if (err)
311 goto free_ti;
313 tsk->stack = ti;
315 setup_thread_stack(tsk, orig);
316 clear_user_return_notifier(tsk);
317 clear_tsk_need_resched(tsk);
318 stackend = end_of_stack(tsk);
319 *stackend = STACK_END_MAGIC; /* for overflow detection */
321 #ifdef CONFIG_CC_STACKPROTECTOR
322 tsk->stack_canary = get_random_int();
323 #endif
326 * One for us, one for whoever does the "release_task()" (usually
327 * parent)
329 atomic_set(&tsk->usage, 2);
330 #ifdef CONFIG_BLK_DEV_IO_TRACE
331 tsk->btrace_seq = 0;
332 #endif
333 tsk->splice_pipe = NULL;
334 tsk->task_frag.page = NULL;
336 account_kernel_stack(ti, 1);
338 return tsk;
340 free_ti:
341 free_thread_info(ti);
342 free_tsk:
343 free_task_struct(tsk);
344 return NULL;
347 #ifdef CONFIG_MMU
348 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
350 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
351 struct rb_node **rb_link, *rb_parent;
352 int retval;
353 unsigned long charge;
355 uprobe_start_dup_mmap();
356 down_write(&oldmm->mmap_sem);
357 flush_cache_dup_mm(oldmm);
358 uprobe_dup_mmap(oldmm, mm);
360 * Not linked in yet - no deadlock potential:
362 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
364 mm->locked_vm = 0;
365 mm->mmap = NULL;
366 mm->mmap_cache = NULL;
367 mm->map_count = 0;
368 cpumask_clear(mm_cpumask(mm));
369 mm->mm_rb = RB_ROOT;
370 rb_link = &mm->mm_rb.rb_node;
371 rb_parent = NULL;
372 pprev = &mm->mmap;
373 retval = ksm_fork(mm, oldmm);
374 if (retval)
375 goto out;
376 retval = khugepaged_fork(mm, oldmm);
377 if (retval)
378 goto out;
380 prev = NULL;
381 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
382 struct file *file;
384 if (mpnt->vm_flags & VM_DONTCOPY) {
385 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
386 -vma_pages(mpnt));
387 continue;
389 charge = 0;
390 if (mpnt->vm_flags & VM_ACCOUNT) {
391 unsigned long len = vma_pages(mpnt);
393 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
394 goto fail_nomem;
395 charge = len;
397 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
398 if (!tmp)
399 goto fail_nomem;
400 *tmp = *mpnt;
401 INIT_LIST_HEAD(&tmp->anon_vma_chain);
402 retval = vma_dup_policy(mpnt, tmp);
403 if (retval)
404 goto fail_nomem_policy;
405 tmp->vm_mm = mm;
406 if (anon_vma_fork(tmp, mpnt))
407 goto fail_nomem_anon_vma_fork;
408 tmp->vm_flags &= ~VM_LOCKED;
409 tmp->vm_next = tmp->vm_prev = NULL;
410 file = tmp->vm_file;
411 if (file) {
412 struct inode *inode = file_inode(file);
413 struct address_space *mapping = file->f_mapping;
415 get_file(file);
416 if (tmp->vm_flags & VM_DENYWRITE)
417 atomic_dec(&inode->i_writecount);
418 mutex_lock(&mapping->i_mmap_mutex);
419 if (tmp->vm_flags & VM_SHARED)
420 mapping->i_mmap_writable++;
421 flush_dcache_mmap_lock(mapping);
422 /* insert tmp into the share list, just after mpnt */
423 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
424 vma_nonlinear_insert(tmp,
425 &mapping->i_mmap_nonlinear);
426 else
427 vma_interval_tree_insert_after(tmp, mpnt,
428 &mapping->i_mmap);
429 flush_dcache_mmap_unlock(mapping);
430 mutex_unlock(&mapping->i_mmap_mutex);
434 * Clear hugetlb-related page reserves for children. This only
435 * affects MAP_PRIVATE mappings. Faults generated by the child
436 * are not guaranteed to succeed, even if read-only
438 if (is_vm_hugetlb_page(tmp))
439 reset_vma_resv_huge_pages(tmp);
442 * Link in the new vma and copy the page table entries.
444 *pprev = tmp;
445 pprev = &tmp->vm_next;
446 tmp->vm_prev = prev;
447 prev = tmp;
449 __vma_link_rb(mm, tmp, rb_link, rb_parent);
450 rb_link = &tmp->vm_rb.rb_right;
451 rb_parent = &tmp->vm_rb;
453 mm->map_count++;
454 retval = copy_page_range(mm, oldmm, mpnt);
456 if (tmp->vm_ops && tmp->vm_ops->open)
457 tmp->vm_ops->open(tmp);
459 if (retval)
460 goto out;
462 /* a new mm has just been created */
463 arch_dup_mmap(oldmm, mm);
464 retval = 0;
465 out:
466 up_write(&mm->mmap_sem);
467 flush_tlb_mm(oldmm);
468 up_write(&oldmm->mmap_sem);
469 uprobe_end_dup_mmap();
470 return retval;
471 fail_nomem_anon_vma_fork:
472 mpol_put(vma_policy(tmp));
473 fail_nomem_policy:
474 kmem_cache_free(vm_area_cachep, tmp);
475 fail_nomem:
476 retval = -ENOMEM;
477 vm_unacct_memory(charge);
478 goto out;
481 static inline int mm_alloc_pgd(struct mm_struct *mm)
483 mm->pgd = pgd_alloc(mm);
484 if (unlikely(!mm->pgd))
485 return -ENOMEM;
486 return 0;
489 static inline void mm_free_pgd(struct mm_struct *mm)
491 pgd_free(mm, mm->pgd);
493 #else
494 #define dup_mmap(mm, oldmm) (0)
495 #define mm_alloc_pgd(mm) (0)
496 #define mm_free_pgd(mm)
497 #endif /* CONFIG_MMU */
499 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
501 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
502 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
504 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
506 static int __init coredump_filter_setup(char *s)
508 default_dump_filter =
509 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
510 MMF_DUMP_FILTER_MASK;
511 return 1;
514 __setup("coredump_filter=", coredump_filter_setup);
516 #include <linux/init_task.h>
518 static void mm_init_aio(struct mm_struct *mm)
520 #ifdef CONFIG_AIO
521 spin_lock_init(&mm->ioctx_lock);
522 mm->ioctx_table = NULL;
523 #endif
526 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
528 atomic_set(&mm->mm_users, 1);
529 atomic_set(&mm->mm_count, 1);
530 init_rwsem(&mm->mmap_sem);
531 INIT_LIST_HEAD(&mm->mmlist);
532 mm->flags = (current->mm) ?
533 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
534 mm->core_state = NULL;
535 mm->nr_ptes = 0;
536 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
537 spin_lock_init(&mm->page_table_lock);
538 mm_init_aio(mm);
539 mm_init_owner(mm, p);
540 clear_tlb_flush_pending(mm);
542 if (likely(!mm_alloc_pgd(mm))) {
543 mm->def_flags = 0;
544 mmu_notifier_mm_init(mm);
545 return mm;
548 free_mm(mm);
549 return NULL;
552 static void check_mm(struct mm_struct *mm)
554 int i;
556 for (i = 0; i < NR_MM_COUNTERS; i++) {
557 long x = atomic_long_read(&mm->rss_stat.count[i]);
559 if (unlikely(x))
560 printk(KERN_ALERT "BUG: Bad rss-counter state "
561 "mm:%p idx:%d val:%ld\n", mm, i, x);
564 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
565 VM_BUG_ON(mm->pmd_huge_pte);
566 #endif
570 * Allocate and initialize an mm_struct.
572 struct mm_struct *mm_alloc(void)
574 struct mm_struct *mm;
576 mm = allocate_mm();
577 if (!mm)
578 return NULL;
580 memset(mm, 0, sizeof(*mm));
581 mm_init_cpumask(mm);
582 return mm_init(mm, current);
586 * Called when the last reference to the mm
587 * is dropped: either by a lazy thread or by
588 * mmput. Free the page directory and the mm.
590 void __mmdrop(struct mm_struct *mm)
592 BUG_ON(mm == &init_mm);
593 mm_free_pgd(mm);
594 destroy_context(mm);
595 mmu_notifier_mm_destroy(mm);
596 check_mm(mm);
597 free_mm(mm);
599 EXPORT_SYMBOL_GPL(__mmdrop);
602 * Decrement the use count and release all resources for an mm.
604 void mmput(struct mm_struct *mm)
606 might_sleep();
608 if (atomic_dec_and_test(&mm->mm_users)) {
609 uprobe_clear_state(mm);
610 exit_aio(mm);
611 ksm_exit(mm);
612 khugepaged_exit(mm); /* must run before exit_mmap */
613 exit_mmap(mm);
614 set_mm_exe_file(mm, NULL);
615 if (!list_empty(&mm->mmlist)) {
616 spin_lock(&mmlist_lock);
617 list_del(&mm->mmlist);
618 spin_unlock(&mmlist_lock);
620 if (mm->binfmt)
621 module_put(mm->binfmt->module);
622 mmdrop(mm);
625 EXPORT_SYMBOL_GPL(mmput);
627 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
629 if (new_exe_file)
630 get_file(new_exe_file);
631 if (mm->exe_file)
632 fput(mm->exe_file);
633 mm->exe_file = new_exe_file;
636 struct file *get_mm_exe_file(struct mm_struct *mm)
638 struct file *exe_file;
640 /* We need mmap_sem to protect against races with removal of exe_file */
641 down_read(&mm->mmap_sem);
642 exe_file = mm->exe_file;
643 if (exe_file)
644 get_file(exe_file);
645 up_read(&mm->mmap_sem);
646 return exe_file;
649 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
651 /* It's safe to write the exe_file pointer without exe_file_lock because
652 * this is called during fork when the task is not yet in /proc */
653 newmm->exe_file = get_mm_exe_file(oldmm);
657 * get_task_mm - acquire a reference to the task's mm
659 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
660 * this kernel workthread has transiently adopted a user mm with use_mm,
661 * to do its AIO) is not set and if so returns a reference to it, after
662 * bumping up the use count. User must release the mm via mmput()
663 * after use. Typically used by /proc and ptrace.
665 struct mm_struct *get_task_mm(struct task_struct *task)
667 struct mm_struct *mm;
669 task_lock(task);
670 mm = task->mm;
671 if (mm) {
672 if (task->flags & PF_KTHREAD)
673 mm = NULL;
674 else
675 atomic_inc(&mm->mm_users);
677 task_unlock(task);
678 return mm;
680 EXPORT_SYMBOL_GPL(get_task_mm);
682 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
684 struct mm_struct *mm;
685 int err;
687 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
688 if (err)
689 return ERR_PTR(err);
691 mm = get_task_mm(task);
692 if (mm && mm != current->mm &&
693 !ptrace_may_access(task, mode)) {
694 mmput(mm);
695 mm = ERR_PTR(-EACCES);
697 mutex_unlock(&task->signal->cred_guard_mutex);
699 return mm;
702 static void complete_vfork_done(struct task_struct *tsk)
704 struct completion *vfork;
706 task_lock(tsk);
707 vfork = tsk->vfork_done;
708 if (likely(vfork)) {
709 tsk->vfork_done = NULL;
710 complete(vfork);
712 task_unlock(tsk);
715 static int wait_for_vfork_done(struct task_struct *child,
716 struct completion *vfork)
718 int killed;
720 freezer_do_not_count();
721 killed = wait_for_completion_killable(vfork);
722 freezer_count();
724 if (killed) {
725 task_lock(child);
726 child->vfork_done = NULL;
727 task_unlock(child);
730 put_task_struct(child);
731 return killed;
734 /* Please note the differences between mmput and mm_release.
735 * mmput is called whenever we stop holding onto a mm_struct,
736 * error success whatever.
738 * mm_release is called after a mm_struct has been removed
739 * from the current process.
741 * This difference is important for error handling, when we
742 * only half set up a mm_struct for a new process and need to restore
743 * the old one. Because we mmput the new mm_struct before
744 * restoring the old one. . .
745 * Eric Biederman 10 January 1998
747 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
749 /* Get rid of any futexes when releasing the mm */
750 #ifdef CONFIG_FUTEX
751 if (unlikely(tsk->robust_list)) {
752 exit_robust_list(tsk);
753 tsk->robust_list = NULL;
755 #ifdef CONFIG_COMPAT
756 if (unlikely(tsk->compat_robust_list)) {
757 compat_exit_robust_list(tsk);
758 tsk->compat_robust_list = NULL;
760 #endif
761 if (unlikely(!list_empty(&tsk->pi_state_list)))
762 exit_pi_state_list(tsk);
763 #endif
765 uprobe_free_utask(tsk);
767 /* Get rid of any cached register state */
768 deactivate_mm(tsk, mm);
771 * If we're exiting normally, clear a user-space tid field if
772 * requested. We leave this alone when dying by signal, to leave
773 * the value intact in a core dump, and to save the unnecessary
774 * trouble, say, a killed vfork parent shouldn't touch this mm.
775 * Userland only wants this done for a sys_exit.
777 if (tsk->clear_child_tid) {
778 if (!(tsk->flags & PF_SIGNALED) &&
779 atomic_read(&mm->mm_users) > 1) {
781 * We don't check the error code - if userspace has
782 * not set up a proper pointer then tough luck.
784 put_user(0, tsk->clear_child_tid);
785 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
786 1, NULL, NULL, 0);
788 tsk->clear_child_tid = NULL;
792 * All done, finally we can wake up parent and return this mm to him.
793 * Also kthread_stop() uses this completion for synchronization.
795 if (tsk->vfork_done)
796 complete_vfork_done(tsk);
800 * Allocate a new mm structure and copy contents from the
801 * mm structure of the passed in task structure.
803 struct mm_struct *dup_mm(struct task_struct *tsk)
805 struct mm_struct *mm, *oldmm = current->mm;
806 int err;
808 if (!oldmm)
809 return NULL;
811 mm = allocate_mm();
812 if (!mm)
813 goto fail_nomem;
815 memcpy(mm, oldmm, sizeof(*mm));
816 mm_init_cpumask(mm);
818 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
819 mm->pmd_huge_pte = NULL;
820 #endif
821 #ifdef CONFIG_NUMA_BALANCING
822 mm->first_nid = NUMA_PTE_SCAN_INIT;
823 #endif
824 if (!mm_init(mm, tsk))
825 goto fail_nomem;
827 if (init_new_context(tsk, mm))
828 goto fail_nocontext;
830 dup_mm_exe_file(oldmm, mm);
832 err = dup_mmap(mm, oldmm);
833 if (err)
834 goto free_pt;
836 mm->hiwater_rss = get_mm_rss(mm);
837 mm->hiwater_vm = mm->total_vm;
839 if (mm->binfmt && !try_module_get(mm->binfmt->module))
840 goto free_pt;
842 return mm;
844 free_pt:
845 /* don't put binfmt in mmput, we haven't got module yet */
846 mm->binfmt = NULL;
847 mmput(mm);
849 fail_nomem:
850 return NULL;
852 fail_nocontext:
854 * If init_new_context() failed, we cannot use mmput() to free the mm
855 * because it calls destroy_context()
857 mm_free_pgd(mm);
858 free_mm(mm);
859 return NULL;
862 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
864 struct mm_struct *mm, *oldmm;
865 int retval;
867 tsk->min_flt = tsk->maj_flt = 0;
868 tsk->nvcsw = tsk->nivcsw = 0;
869 #ifdef CONFIG_DETECT_HUNG_TASK
870 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
871 #endif
873 tsk->mm = NULL;
874 tsk->active_mm = NULL;
877 * Are we cloning a kernel thread?
879 * We need to steal a active VM for that..
881 oldmm = current->mm;
882 if (!oldmm)
883 return 0;
885 if (clone_flags & CLONE_VM) {
886 atomic_inc(&oldmm->mm_users);
887 mm = oldmm;
888 goto good_mm;
891 retval = -ENOMEM;
892 mm = dup_mm(tsk);
893 if (!mm)
894 goto fail_nomem;
896 good_mm:
897 tsk->mm = mm;
898 tsk->active_mm = mm;
899 return 0;
901 fail_nomem:
902 return retval;
905 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
907 struct fs_struct *fs = current->fs;
908 if (clone_flags & CLONE_FS) {
909 /* tsk->fs is already what we want */
910 spin_lock(&fs->lock);
911 if (fs->in_exec) {
912 spin_unlock(&fs->lock);
913 return -EAGAIN;
915 fs->users++;
916 spin_unlock(&fs->lock);
917 return 0;
919 tsk->fs = copy_fs_struct(fs);
920 if (!tsk->fs)
921 return -ENOMEM;
922 return 0;
925 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
927 struct files_struct *oldf, *newf;
928 int error = 0;
931 * A background process may not have any files ...
933 oldf = current->files;
934 if (!oldf)
935 goto out;
937 if (clone_flags & CLONE_FILES) {
938 atomic_inc(&oldf->count);
939 goto out;
942 newf = dup_fd(oldf, &error);
943 if (!newf)
944 goto out;
946 tsk->files = newf;
947 error = 0;
948 out:
949 return error;
952 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
954 #ifdef CONFIG_BLOCK
955 struct io_context *ioc = current->io_context;
956 struct io_context *new_ioc;
958 if (!ioc)
959 return 0;
961 * Share io context with parent, if CLONE_IO is set
963 if (clone_flags & CLONE_IO) {
964 ioc_task_link(ioc);
965 tsk->io_context = ioc;
966 } else if (ioprio_valid(ioc->ioprio)) {
967 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
968 if (unlikely(!new_ioc))
969 return -ENOMEM;
971 new_ioc->ioprio = ioc->ioprio;
972 put_io_context(new_ioc);
974 #endif
975 return 0;
978 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
980 struct sighand_struct *sig;
982 if (clone_flags & CLONE_SIGHAND) {
983 atomic_inc(&current->sighand->count);
984 return 0;
986 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
987 rcu_assign_pointer(tsk->sighand, sig);
988 if (!sig)
989 return -ENOMEM;
990 atomic_set(&sig->count, 1);
991 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
992 return 0;
995 void __cleanup_sighand(struct sighand_struct *sighand)
997 if (atomic_dec_and_test(&sighand->count)) {
998 signalfd_cleanup(sighand);
999 kmem_cache_free(sighand_cachep, sighand);
1005 * Initialize POSIX timer handling for a thread group.
1007 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1009 unsigned long cpu_limit;
1011 /* Thread group counters. */
1012 thread_group_cputime_init(sig);
1014 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1015 if (cpu_limit != RLIM_INFINITY) {
1016 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1017 sig->cputimer.running = 1;
1020 /* The timer lists. */
1021 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1022 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1023 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1026 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1028 struct signal_struct *sig;
1030 if (clone_flags & CLONE_THREAD)
1031 return 0;
1033 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1034 tsk->signal = sig;
1035 if (!sig)
1036 return -ENOMEM;
1038 sig->nr_threads = 1;
1039 atomic_set(&sig->live, 1);
1040 atomic_set(&sig->sigcnt, 1);
1042 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1043 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1044 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1046 init_waitqueue_head(&sig->wait_chldexit);
1047 sig->curr_target = tsk;
1048 init_sigpending(&sig->shared_pending);
1049 INIT_LIST_HEAD(&sig->posix_timers);
1051 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1052 sig->real_timer.function = it_real_fn;
1054 task_lock(current->group_leader);
1055 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1056 task_unlock(current->group_leader);
1058 posix_cpu_timers_init_group(sig);
1060 tty_audit_fork(sig);
1061 sched_autogroup_fork(sig);
1063 #ifdef CONFIG_CGROUPS
1064 init_rwsem(&sig->group_rwsem);
1065 #endif
1067 sig->oom_score_adj = current->signal->oom_score_adj;
1068 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1070 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1071 current->signal->is_child_subreaper;
1073 mutex_init(&sig->cred_guard_mutex);
1075 return 0;
1078 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1080 unsigned long new_flags = p->flags;
1082 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1083 new_flags |= PF_FORKNOEXEC;
1084 p->flags = new_flags;
1087 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1089 current->clear_child_tid = tidptr;
1091 return task_pid_vnr(current);
1094 static void rt_mutex_init_task(struct task_struct *p)
1096 raw_spin_lock_init(&p->pi_lock);
1097 #ifdef CONFIG_RT_MUTEXES
1098 plist_head_init(&p->pi_waiters);
1099 p->pi_blocked_on = NULL;
1100 #endif
1103 #ifdef CONFIG_MM_OWNER
1104 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1106 mm->owner = p;
1108 #endif /* CONFIG_MM_OWNER */
1111 * Initialize POSIX timer handling for a single task.
1113 static void posix_cpu_timers_init(struct task_struct *tsk)
1115 tsk->cputime_expires.prof_exp = 0;
1116 tsk->cputime_expires.virt_exp = 0;
1117 tsk->cputime_expires.sched_exp = 0;
1118 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1119 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1120 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1123 static inline void
1124 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1126 task->pids[type].pid = pid;
1130 * This creates a new process as a copy of the old one,
1131 * but does not actually start it yet.
1133 * It copies the registers, and all the appropriate
1134 * parts of the process environment (as per the clone
1135 * flags). The actual kick-off is left to the caller.
1137 static struct task_struct *copy_process(unsigned long clone_flags,
1138 unsigned long stack_start,
1139 unsigned long stack_size,
1140 int __user *child_tidptr,
1141 struct pid *pid,
1142 int trace)
1144 int retval;
1145 struct task_struct *p;
1147 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1148 return ERR_PTR(-EINVAL);
1150 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1151 return ERR_PTR(-EINVAL);
1154 * Thread groups must share signals as well, and detached threads
1155 * can only be started up within the thread group.
1157 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1158 return ERR_PTR(-EINVAL);
1161 * Shared signal handlers imply shared VM. By way of the above,
1162 * thread groups also imply shared VM. Blocking this case allows
1163 * for various simplifications in other code.
1165 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1166 return ERR_PTR(-EINVAL);
1169 * Siblings of global init remain as zombies on exit since they are
1170 * not reaped by their parent (swapper). To solve this and to avoid
1171 * multi-rooted process trees, prevent global and container-inits
1172 * from creating siblings.
1174 if ((clone_flags & CLONE_PARENT) &&
1175 current->signal->flags & SIGNAL_UNKILLABLE)
1176 return ERR_PTR(-EINVAL);
1179 * If the new process will be in a different pid or user namespace
1180 * do not allow it to share a thread group or signal handlers or
1181 * parent with the forking task.
1183 if (clone_flags & CLONE_SIGHAND) {
1184 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1185 (task_active_pid_ns(current) !=
1186 current->nsproxy->pid_ns_for_children))
1187 return ERR_PTR(-EINVAL);
1190 retval = security_task_create(clone_flags);
1191 if (retval)
1192 goto fork_out;
1194 retval = -ENOMEM;
1195 p = dup_task_struct(current);
1196 if (!p)
1197 goto fork_out;
1199 ftrace_graph_init_task(p);
1200 get_seccomp_filter(p);
1202 rt_mutex_init_task(p);
1204 #ifdef CONFIG_PROVE_LOCKING
1205 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1206 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1207 #endif
1208 retval = -EAGAIN;
1209 if (atomic_read(&p->real_cred->user->processes) >=
1210 task_rlimit(p, RLIMIT_NPROC)) {
1211 if (p->real_cred->user != INIT_USER &&
1212 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1213 goto bad_fork_free;
1215 current->flags &= ~PF_NPROC_EXCEEDED;
1217 retval = copy_creds(p, clone_flags);
1218 if (retval < 0)
1219 goto bad_fork_free;
1222 * If multiple threads are within copy_process(), then this check
1223 * triggers too late. This doesn't hurt, the check is only there
1224 * to stop root fork bombs.
1226 retval = -EAGAIN;
1227 if (nr_threads >= max_threads)
1228 goto bad_fork_cleanup_count;
1230 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1231 goto bad_fork_cleanup_count;
1233 p->did_exec = 0;
1234 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1235 copy_flags(clone_flags, p);
1236 INIT_LIST_HEAD(&p->children);
1237 INIT_LIST_HEAD(&p->sibling);
1238 rcu_copy_process(p);
1239 p->vfork_done = NULL;
1240 spin_lock_init(&p->alloc_lock);
1242 init_sigpending(&p->pending);
1244 p->utime = p->stime = p->gtime = 0;
1245 p->utimescaled = p->stimescaled = 0;
1246 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1247 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1248 #endif
1249 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1250 seqlock_init(&p->vtime_seqlock);
1251 p->vtime_snap = 0;
1252 p->vtime_snap_whence = VTIME_SLEEPING;
1253 #endif
1255 #if defined(SPLIT_RSS_COUNTING)
1256 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1257 #endif
1259 p->default_timer_slack_ns = current->timer_slack_ns;
1261 task_io_accounting_init(&p->ioac);
1262 acct_clear_integrals(p);
1264 posix_cpu_timers_init(p);
1266 do_posix_clock_monotonic_gettime(&p->start_time);
1267 p->real_start_time = p->start_time;
1268 monotonic_to_bootbased(&p->real_start_time);
1269 p->io_context = NULL;
1270 p->audit_context = NULL;
1271 if (clone_flags & CLONE_THREAD)
1272 threadgroup_change_begin(current);
1273 cgroup_fork(p);
1274 #ifdef CONFIG_NUMA
1275 p->mempolicy = mpol_dup(p->mempolicy);
1276 if (IS_ERR(p->mempolicy)) {
1277 retval = PTR_ERR(p->mempolicy);
1278 p->mempolicy = NULL;
1279 goto bad_fork_cleanup_cgroup;
1281 mpol_fix_fork_child_flag(p);
1282 #endif
1283 #ifdef CONFIG_CPUSETS
1284 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1285 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1286 seqcount_init(&p->mems_allowed_seq);
1287 #endif
1288 #ifdef CONFIG_TRACE_IRQFLAGS
1289 p->irq_events = 0;
1290 p->hardirqs_enabled = 0;
1291 p->hardirq_enable_ip = 0;
1292 p->hardirq_enable_event = 0;
1293 p->hardirq_disable_ip = _THIS_IP_;
1294 p->hardirq_disable_event = 0;
1295 p->softirqs_enabled = 1;
1296 p->softirq_enable_ip = _THIS_IP_;
1297 p->softirq_enable_event = 0;
1298 p->softirq_disable_ip = 0;
1299 p->softirq_disable_event = 0;
1300 p->hardirq_context = 0;
1301 p->softirq_context = 0;
1302 #endif
1303 #ifdef CONFIG_LOCKDEP
1304 p->lockdep_depth = 0; /* no locks held yet */
1305 p->curr_chain_key = 0;
1306 p->lockdep_recursion = 0;
1307 #endif
1309 #ifdef CONFIG_DEBUG_MUTEXES
1310 p->blocked_on = NULL; /* not blocked yet */
1311 #endif
1312 #ifdef CONFIG_MEMCG
1313 p->memcg_batch.do_batch = 0;
1314 p->memcg_batch.memcg = NULL;
1315 #endif
1316 #ifdef CONFIG_BCACHE
1317 p->sequential_io = 0;
1318 p->sequential_io_avg = 0;
1319 #endif
1321 /* Perform scheduler related setup. Assign this task to a CPU. */
1322 sched_fork(p);
1324 retval = perf_event_init_task(p);
1325 if (retval)
1326 goto bad_fork_cleanup_policy;
1327 retval = audit_alloc(p);
1328 if (retval)
1329 goto bad_fork_cleanup_policy;
1330 /* copy all the process information */
1331 retval = copy_semundo(clone_flags, p);
1332 if (retval)
1333 goto bad_fork_cleanup_audit;
1334 retval = copy_files(clone_flags, p);
1335 if (retval)
1336 goto bad_fork_cleanup_semundo;
1337 retval = copy_fs(clone_flags, p);
1338 if (retval)
1339 goto bad_fork_cleanup_files;
1340 retval = copy_sighand(clone_flags, p);
1341 if (retval)
1342 goto bad_fork_cleanup_fs;
1343 retval = copy_signal(clone_flags, p);
1344 if (retval)
1345 goto bad_fork_cleanup_sighand;
1346 retval = copy_mm(clone_flags, p);
1347 if (retval)
1348 goto bad_fork_cleanup_signal;
1349 retval = copy_namespaces(clone_flags, p);
1350 if (retval)
1351 goto bad_fork_cleanup_mm;
1352 retval = copy_io(clone_flags, p);
1353 if (retval)
1354 goto bad_fork_cleanup_namespaces;
1355 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1356 if (retval)
1357 goto bad_fork_cleanup_io;
1359 if (pid != &init_struct_pid) {
1360 retval = -ENOMEM;
1361 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1362 if (!pid)
1363 goto bad_fork_cleanup_io;
1366 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1368 * Clear TID on mm_release()?
1370 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1371 #ifdef CONFIG_BLOCK
1372 p->plug = NULL;
1373 #endif
1374 #ifdef CONFIG_FUTEX
1375 p->robust_list = NULL;
1376 #ifdef CONFIG_COMPAT
1377 p->compat_robust_list = NULL;
1378 #endif
1379 INIT_LIST_HEAD(&p->pi_state_list);
1380 p->pi_state_cache = NULL;
1381 #endif
1382 uprobe_copy_process(p);
1384 * sigaltstack should be cleared when sharing the same VM
1386 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1387 p->sas_ss_sp = p->sas_ss_size = 0;
1390 * Syscall tracing and stepping should be turned off in the
1391 * child regardless of CLONE_PTRACE.
1393 user_disable_single_step(p);
1394 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1395 #ifdef TIF_SYSCALL_EMU
1396 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1397 #endif
1398 clear_all_latency_tracing(p);
1400 /* ok, now we should be set up.. */
1401 p->pid = pid_nr(pid);
1402 if (clone_flags & CLONE_THREAD) {
1403 p->exit_signal = -1;
1404 p->group_leader = current->group_leader;
1405 p->tgid = current->tgid;
1406 } else {
1407 if (clone_flags & CLONE_PARENT)
1408 p->exit_signal = current->group_leader->exit_signal;
1409 else
1410 p->exit_signal = (clone_flags & CSIGNAL);
1411 p->group_leader = p;
1412 p->tgid = p->pid;
1415 p->pdeath_signal = 0;
1416 p->exit_state = 0;
1418 p->nr_dirtied = 0;
1419 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1420 p->dirty_paused_when = 0;
1422 INIT_LIST_HEAD(&p->thread_group);
1423 p->task_works = NULL;
1426 * Make it visible to the rest of the system, but dont wake it up yet.
1427 * Need tasklist lock for parent etc handling!
1429 write_lock_irq(&tasklist_lock);
1431 /* CLONE_PARENT re-uses the old parent */
1432 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1433 p->real_parent = current->real_parent;
1434 p->parent_exec_id = current->parent_exec_id;
1435 } else {
1436 p->real_parent = current;
1437 p->parent_exec_id = current->self_exec_id;
1440 spin_lock(&current->sighand->siglock);
1443 * Process group and session signals need to be delivered to just the
1444 * parent before the fork or both the parent and the child after the
1445 * fork. Restart if a signal comes in before we add the new process to
1446 * it's process group.
1447 * A fatal signal pending means that current will exit, so the new
1448 * thread can't slip out of an OOM kill (or normal SIGKILL).
1450 recalc_sigpending();
1451 if (signal_pending(current)) {
1452 spin_unlock(&current->sighand->siglock);
1453 write_unlock_irq(&tasklist_lock);
1454 retval = -ERESTARTNOINTR;
1455 goto bad_fork_free_pid;
1458 if (likely(p->pid)) {
1459 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1461 init_task_pid(p, PIDTYPE_PID, pid);
1462 if (thread_group_leader(p)) {
1463 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1464 init_task_pid(p, PIDTYPE_SID, task_session(current));
1466 if (is_child_reaper(pid)) {
1467 ns_of_pid(pid)->child_reaper = p;
1468 p->signal->flags |= SIGNAL_UNKILLABLE;
1471 p->signal->leader_pid = pid;
1472 p->signal->tty = tty_kref_get(current->signal->tty);
1473 list_add_tail(&p->sibling, &p->real_parent->children);
1474 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1475 attach_pid(p, PIDTYPE_PGID);
1476 attach_pid(p, PIDTYPE_SID);
1477 __this_cpu_inc(process_counts);
1478 } else {
1479 current->signal->nr_threads++;
1480 atomic_inc(&current->signal->live);
1481 atomic_inc(&current->signal->sigcnt);
1482 list_add_tail_rcu(&p->thread_group,
1483 &p->group_leader->thread_group);
1484 list_add_tail_rcu(&p->thread_node,
1485 &p->signal->thread_head);
1487 attach_pid(p, PIDTYPE_PID);
1488 nr_threads++;
1491 total_forks++;
1492 spin_unlock(&current->sighand->siglock);
1493 syscall_tracepoint_update(p);
1494 write_unlock_irq(&tasklist_lock);
1496 proc_fork_connector(p);
1497 cgroup_post_fork(p);
1498 if (clone_flags & CLONE_THREAD)
1499 threadgroup_change_end(current);
1500 perf_event_fork(p);
1502 trace_task_newtask(p, clone_flags);
1504 return p;
1506 bad_fork_free_pid:
1507 if (pid != &init_struct_pid)
1508 free_pid(pid);
1509 bad_fork_cleanup_io:
1510 if (p->io_context)
1511 exit_io_context(p);
1512 bad_fork_cleanup_namespaces:
1513 exit_task_namespaces(p);
1514 bad_fork_cleanup_mm:
1515 if (p->mm)
1516 mmput(p->mm);
1517 bad_fork_cleanup_signal:
1518 if (!(clone_flags & CLONE_THREAD))
1519 free_signal_struct(p->signal);
1520 bad_fork_cleanup_sighand:
1521 __cleanup_sighand(p->sighand);
1522 bad_fork_cleanup_fs:
1523 exit_fs(p); /* blocking */
1524 bad_fork_cleanup_files:
1525 exit_files(p); /* blocking */
1526 bad_fork_cleanup_semundo:
1527 exit_sem(p);
1528 bad_fork_cleanup_audit:
1529 audit_free(p);
1530 bad_fork_cleanup_policy:
1531 perf_event_free_task(p);
1532 #ifdef CONFIG_NUMA
1533 mpol_put(p->mempolicy);
1534 bad_fork_cleanup_cgroup:
1535 #endif
1536 if (clone_flags & CLONE_THREAD)
1537 threadgroup_change_end(current);
1538 cgroup_exit(p, 0);
1539 delayacct_tsk_free(p);
1540 module_put(task_thread_info(p)->exec_domain->module);
1541 bad_fork_cleanup_count:
1542 atomic_dec(&p->cred->user->processes);
1543 exit_creds(p);
1544 bad_fork_free:
1545 free_task(p);
1546 fork_out:
1547 return ERR_PTR(retval);
1550 static inline void init_idle_pids(struct pid_link *links)
1552 enum pid_type type;
1554 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1555 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1556 links[type].pid = &init_struct_pid;
1560 struct task_struct *fork_idle(int cpu)
1562 struct task_struct *task;
1563 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1564 if (!IS_ERR(task)) {
1565 init_idle_pids(task->pids);
1566 init_idle(task, cpu);
1569 return task;
1573 * Ok, this is the main fork-routine.
1575 * It copies the process, and if successful kick-starts
1576 * it and waits for it to finish using the VM if required.
1578 long do_fork(unsigned long clone_flags,
1579 unsigned long stack_start,
1580 unsigned long stack_size,
1581 int __user *parent_tidptr,
1582 int __user *child_tidptr)
1584 struct task_struct *p;
1585 int trace = 0;
1586 long nr;
1589 * Determine whether and which event to report to ptracer. When
1590 * called from kernel_thread or CLONE_UNTRACED is explicitly
1591 * requested, no event is reported; otherwise, report if the event
1592 * for the type of forking is enabled.
1594 if (!(clone_flags & CLONE_UNTRACED)) {
1595 if (clone_flags & CLONE_VFORK)
1596 trace = PTRACE_EVENT_VFORK;
1597 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1598 trace = PTRACE_EVENT_CLONE;
1599 else
1600 trace = PTRACE_EVENT_FORK;
1602 if (likely(!ptrace_event_enabled(current, trace)))
1603 trace = 0;
1606 p = copy_process(clone_flags, stack_start, stack_size,
1607 child_tidptr, NULL, trace);
1609 * Do this prior waking up the new thread - the thread pointer
1610 * might get invalid after that point, if the thread exits quickly.
1612 if (!IS_ERR(p)) {
1613 struct completion vfork;
1614 struct pid *pid;
1616 trace_sched_process_fork(current, p);
1618 pid = get_task_pid(p, PIDTYPE_PID);
1619 nr = pid_vnr(pid);
1621 if (clone_flags & CLONE_PARENT_SETTID)
1622 put_user(nr, parent_tidptr);
1624 if (clone_flags & CLONE_VFORK) {
1625 p->vfork_done = &vfork;
1626 init_completion(&vfork);
1627 get_task_struct(p);
1630 wake_up_new_task(p);
1632 /* forking complete and child started to run, tell ptracer */
1633 if (unlikely(trace))
1634 ptrace_event_pid(trace, pid);
1636 if (clone_flags & CLONE_VFORK) {
1637 if (!wait_for_vfork_done(p, &vfork))
1638 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1641 put_pid(pid);
1642 } else {
1643 nr = PTR_ERR(p);
1645 return nr;
1649 * Create a kernel thread.
1651 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1653 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1654 (unsigned long)arg, NULL, NULL);
1657 #ifdef __ARCH_WANT_SYS_FORK
1658 SYSCALL_DEFINE0(fork)
1660 #ifdef CONFIG_MMU
1661 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1662 #else
1663 /* can not support in nommu mode */
1664 return(-EINVAL);
1665 #endif
1667 #endif
1669 #ifdef __ARCH_WANT_SYS_VFORK
1670 SYSCALL_DEFINE0(vfork)
1672 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1673 0, NULL, NULL);
1675 #endif
1677 #ifdef __ARCH_WANT_SYS_CLONE
1678 #ifdef CONFIG_CLONE_BACKWARDS
1679 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1680 int __user *, parent_tidptr,
1681 int, tls_val,
1682 int __user *, child_tidptr)
1683 #elif defined(CONFIG_CLONE_BACKWARDS2)
1684 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1685 int __user *, parent_tidptr,
1686 int __user *, child_tidptr,
1687 int, tls_val)
1688 #elif defined(CONFIG_CLONE_BACKWARDS3)
1689 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1690 int, stack_size,
1691 int __user *, parent_tidptr,
1692 int __user *, child_tidptr,
1693 int, tls_val)
1694 #else
1695 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1696 int __user *, parent_tidptr,
1697 int __user *, child_tidptr,
1698 int, tls_val)
1699 #endif
1701 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1703 #endif
1705 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1706 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1707 #endif
1709 static void sighand_ctor(void *data)
1711 struct sighand_struct *sighand = data;
1713 spin_lock_init(&sighand->siglock);
1714 init_waitqueue_head(&sighand->signalfd_wqh);
1717 void __init proc_caches_init(void)
1719 sighand_cachep = kmem_cache_create("sighand_cache",
1720 sizeof(struct sighand_struct), 0,
1721 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1722 SLAB_NOTRACK, sighand_ctor);
1723 signal_cachep = kmem_cache_create("signal_cache",
1724 sizeof(struct signal_struct), 0,
1725 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1726 files_cachep = kmem_cache_create("files_cache",
1727 sizeof(struct files_struct), 0,
1728 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1729 fs_cachep = kmem_cache_create("fs_cache",
1730 sizeof(struct fs_struct), 0,
1731 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1733 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1734 * whole struct cpumask for the OFFSTACK case. We could change
1735 * this to *only* allocate as much of it as required by the
1736 * maximum number of CPU's we can ever have. The cpumask_allocation
1737 * is at the end of the structure, exactly for that reason.
1739 mm_cachep = kmem_cache_create("mm_struct",
1740 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1741 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1742 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1743 mmap_init();
1744 nsproxy_cache_init();
1748 * Check constraints on flags passed to the unshare system call.
1750 static int check_unshare_flags(unsigned long unshare_flags)
1752 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1753 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1754 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1755 CLONE_NEWUSER|CLONE_NEWPID))
1756 return -EINVAL;
1758 * Not implemented, but pretend it works if there is nothing to
1759 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1760 * needs to unshare vm.
1762 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1763 /* FIXME: get_task_mm() increments ->mm_users */
1764 if (atomic_read(&current->mm->mm_users) > 1)
1765 return -EINVAL;
1768 return 0;
1772 * Unshare the filesystem structure if it is being shared
1774 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1776 struct fs_struct *fs = current->fs;
1778 if (!(unshare_flags & CLONE_FS) || !fs)
1779 return 0;
1781 /* don't need lock here; in the worst case we'll do useless copy */
1782 if (fs->users == 1)
1783 return 0;
1785 *new_fsp = copy_fs_struct(fs);
1786 if (!*new_fsp)
1787 return -ENOMEM;
1789 return 0;
1793 * Unshare file descriptor table if it is being shared
1795 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1797 struct files_struct *fd = current->files;
1798 int error = 0;
1800 if ((unshare_flags & CLONE_FILES) &&
1801 (fd && atomic_read(&fd->count) > 1)) {
1802 *new_fdp = dup_fd(fd, &error);
1803 if (!*new_fdp)
1804 return error;
1807 return 0;
1811 * unshare allows a process to 'unshare' part of the process
1812 * context which was originally shared using clone. copy_*
1813 * functions used by do_fork() cannot be used here directly
1814 * because they modify an inactive task_struct that is being
1815 * constructed. Here we are modifying the current, active,
1816 * task_struct.
1818 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1820 struct fs_struct *fs, *new_fs = NULL;
1821 struct files_struct *fd, *new_fd = NULL;
1822 struct cred *new_cred = NULL;
1823 struct nsproxy *new_nsproxy = NULL;
1824 int do_sysvsem = 0;
1825 int err;
1828 * If unsharing a user namespace must also unshare the thread.
1830 if (unshare_flags & CLONE_NEWUSER)
1831 unshare_flags |= CLONE_THREAD | CLONE_FS;
1833 * If unsharing a thread from a thread group, must also unshare vm.
1835 if (unshare_flags & CLONE_THREAD)
1836 unshare_flags |= CLONE_VM;
1838 * If unsharing vm, must also unshare signal handlers.
1840 if (unshare_flags & CLONE_VM)
1841 unshare_flags |= CLONE_SIGHAND;
1843 * If unsharing namespace, must also unshare filesystem information.
1845 if (unshare_flags & CLONE_NEWNS)
1846 unshare_flags |= CLONE_FS;
1848 err = check_unshare_flags(unshare_flags);
1849 if (err)
1850 goto bad_unshare_out;
1852 * CLONE_NEWIPC must also detach from the undolist: after switching
1853 * to a new ipc namespace, the semaphore arrays from the old
1854 * namespace are unreachable.
1856 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1857 do_sysvsem = 1;
1858 err = unshare_fs(unshare_flags, &new_fs);
1859 if (err)
1860 goto bad_unshare_out;
1861 err = unshare_fd(unshare_flags, &new_fd);
1862 if (err)
1863 goto bad_unshare_cleanup_fs;
1864 err = unshare_userns(unshare_flags, &new_cred);
1865 if (err)
1866 goto bad_unshare_cleanup_fd;
1867 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1868 new_cred, new_fs);
1869 if (err)
1870 goto bad_unshare_cleanup_cred;
1872 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1873 if (do_sysvsem) {
1875 * CLONE_SYSVSEM is equivalent to sys_exit().
1877 exit_sem(current);
1880 if (new_nsproxy)
1881 switch_task_namespaces(current, new_nsproxy);
1883 task_lock(current);
1885 if (new_fs) {
1886 fs = current->fs;
1887 spin_lock(&fs->lock);
1888 current->fs = new_fs;
1889 if (--fs->users)
1890 new_fs = NULL;
1891 else
1892 new_fs = fs;
1893 spin_unlock(&fs->lock);
1896 if (new_fd) {
1897 fd = current->files;
1898 current->files = new_fd;
1899 new_fd = fd;
1902 task_unlock(current);
1904 if (new_cred) {
1905 /* Install the new user namespace */
1906 commit_creds(new_cred);
1907 new_cred = NULL;
1911 bad_unshare_cleanup_cred:
1912 if (new_cred)
1913 put_cred(new_cred);
1914 bad_unshare_cleanup_fd:
1915 if (new_fd)
1916 put_files_struct(new_fd);
1918 bad_unshare_cleanup_fs:
1919 if (new_fs)
1920 free_fs_struct(new_fs);
1922 bad_unshare_out:
1923 return err;
1927 * Helper to unshare the files of the current task.
1928 * We don't want to expose copy_files internals to
1929 * the exec layer of the kernel.
1932 int unshare_files(struct files_struct **displaced)
1934 struct task_struct *task = current;
1935 struct files_struct *copy = NULL;
1936 int error;
1938 error = unshare_fd(CLONE_FILES, &copy);
1939 if (error || !copy) {
1940 *displaced = NULL;
1941 return error;
1943 *displaced = task->files;
1944 task_lock(task);
1945 task->files = copy;
1946 task_unlock(task);
1947 return 0;