2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "time/tick-internal.h"
33 #define RCU_KTHREAD_PRIO 1
35 #ifdef CONFIG_RCU_BOOST
36 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
38 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
41 #ifdef CONFIG_RCU_NOCB_CPU
42 static cpumask_var_t rcu_nocb_mask
; /* CPUs to have callbacks offloaded. */
43 static bool have_rcu_nocb_mask
; /* Was rcu_nocb_mask allocated? */
44 static bool __read_mostly rcu_nocb_poll
; /* Offload kthread are to poll. */
45 static char __initdata nocb_buf
[NR_CPUS
* 5];
46 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
49 * Check the RCU kernel configuration parameters and print informative
50 * messages about anything out of the ordinary. If you like #ifdef, you
51 * will love this function.
53 static void __init
rcu_bootup_announce_oddness(void)
55 #ifdef CONFIG_RCU_TRACE
56 pr_info("\tRCU debugfs-based tracing is enabled.\n");
58 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
59 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
62 #ifdef CONFIG_RCU_FANOUT_EXACT
63 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
65 #ifdef CONFIG_RCU_FAST_NO_HZ
66 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
68 #ifdef CONFIG_PROVE_RCU
69 pr_info("\tRCU lockdep checking is enabled.\n");
71 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
72 pr_info("\tRCU torture testing starts during boot.\n");
74 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
75 pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
77 #if defined(CONFIG_RCU_CPU_STALL_INFO)
78 pr_info("\tAdditional per-CPU info printed with stalls.\n");
80 #if NUM_RCU_LVL_4 != 0
81 pr_info("\tFour-level hierarchy is enabled.\n");
83 if (rcu_fanout_leaf
!= CONFIG_RCU_FANOUT_LEAF
)
84 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf
);
85 if (nr_cpu_ids
!= NR_CPUS
)
86 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS
, nr_cpu_ids
);
87 #ifdef CONFIG_RCU_NOCB_CPU
88 #ifndef CONFIG_RCU_NOCB_CPU_NONE
89 if (!have_rcu_nocb_mask
) {
90 zalloc_cpumask_var(&rcu_nocb_mask
, GFP_KERNEL
);
91 have_rcu_nocb_mask
= true;
93 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
94 pr_info("\tOffload RCU callbacks from CPU 0\n");
95 cpumask_set_cpu(0, rcu_nocb_mask
);
96 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
97 #ifdef CONFIG_RCU_NOCB_CPU_ALL
98 pr_info("\tOffload RCU callbacks from all CPUs\n");
99 cpumask_setall(rcu_nocb_mask
);
100 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
101 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
102 if (have_rcu_nocb_mask
) {
103 cpulist_scnprintf(nocb_buf
, sizeof(nocb_buf
), rcu_nocb_mask
);
104 pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf
);
106 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
108 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
111 #ifdef CONFIG_TREE_PREEMPT_RCU
113 RCU_STATE_INITIALIZER(rcu_preempt
, 'p', call_rcu
);
114 static struct rcu_state
*rcu_state
= &rcu_preempt_state
;
116 static int rcu_preempted_readers_exp(struct rcu_node
*rnp
);
119 * Tell them what RCU they are running.
121 static void __init
rcu_bootup_announce(void)
123 pr_info("Preemptible hierarchical RCU implementation.\n");
124 rcu_bootup_announce_oddness();
128 * Return the number of RCU-preempt batches processed thus far
129 * for debug and statistics.
131 long rcu_batches_completed_preempt(void)
133 return rcu_preempt_state
.completed
;
135 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt
);
138 * Return the number of RCU batches processed thus far for debug & stats.
140 long rcu_batches_completed(void)
142 return rcu_batches_completed_preempt();
144 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
147 * Force a quiescent state for preemptible RCU.
149 void rcu_force_quiescent_state(void)
151 force_quiescent_state(&rcu_preempt_state
);
153 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
156 * Record a preemptible-RCU quiescent state for the specified CPU. Note
157 * that this just means that the task currently running on the CPU is
158 * not in a quiescent state. There might be any number of tasks blocked
159 * while in an RCU read-side critical section.
161 * Unlike the other rcu_*_qs() functions, callers to this function
162 * must disable irqs in order to protect the assignment to
163 * ->rcu_read_unlock_special.
165 static void rcu_preempt_qs(int cpu
)
167 struct rcu_data
*rdp
= &per_cpu(rcu_preempt_data
, cpu
);
169 if (rdp
->passed_quiesce
== 0)
170 trace_rcu_grace_period(TPS("rcu_preempt"), rdp
->gpnum
, TPS("cpuqs"));
171 rdp
->passed_quiesce
= 1;
172 current
->rcu_read_unlock_special
&= ~RCU_READ_UNLOCK_NEED_QS
;
176 * We have entered the scheduler, and the current task might soon be
177 * context-switched away from. If this task is in an RCU read-side
178 * critical section, we will no longer be able to rely on the CPU to
179 * record that fact, so we enqueue the task on the blkd_tasks list.
180 * The task will dequeue itself when it exits the outermost enclosing
181 * RCU read-side critical section. Therefore, the current grace period
182 * cannot be permitted to complete until the blkd_tasks list entries
183 * predating the current grace period drain, in other words, until
184 * rnp->gp_tasks becomes NULL.
186 * Caller must disable preemption.
188 static void rcu_preempt_note_context_switch(int cpu
)
190 struct task_struct
*t
= current
;
192 struct rcu_data
*rdp
;
193 struct rcu_node
*rnp
;
195 if (t
->rcu_read_lock_nesting
> 0 &&
196 (t
->rcu_read_unlock_special
& RCU_READ_UNLOCK_BLOCKED
) == 0) {
198 /* Possibly blocking in an RCU read-side critical section. */
199 rdp
= per_cpu_ptr(rcu_preempt_state
.rda
, cpu
);
201 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
202 t
->rcu_read_unlock_special
|= RCU_READ_UNLOCK_BLOCKED
;
203 t
->rcu_blocked_node
= rnp
;
206 * If this CPU has already checked in, then this task
207 * will hold up the next grace period rather than the
208 * current grace period. Queue the task accordingly.
209 * If the task is queued for the current grace period
210 * (i.e., this CPU has not yet passed through a quiescent
211 * state for the current grace period), then as long
212 * as that task remains queued, the current grace period
213 * cannot end. Note that there is some uncertainty as
214 * to exactly when the current grace period started.
215 * We take a conservative approach, which can result
216 * in unnecessarily waiting on tasks that started very
217 * slightly after the current grace period began. C'est
220 * But first, note that the current CPU must still be
223 WARN_ON_ONCE((rdp
->grpmask
& rnp
->qsmaskinit
) == 0);
224 WARN_ON_ONCE(!list_empty(&t
->rcu_node_entry
));
225 if ((rnp
->qsmask
& rdp
->grpmask
) && rnp
->gp_tasks
!= NULL
) {
226 list_add(&t
->rcu_node_entry
, rnp
->gp_tasks
->prev
);
227 rnp
->gp_tasks
= &t
->rcu_node_entry
;
228 #ifdef CONFIG_RCU_BOOST
229 if (rnp
->boost_tasks
!= NULL
)
230 rnp
->boost_tasks
= rnp
->gp_tasks
;
231 #endif /* #ifdef CONFIG_RCU_BOOST */
233 list_add(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
234 if (rnp
->qsmask
& rdp
->grpmask
)
235 rnp
->gp_tasks
= &t
->rcu_node_entry
;
237 trace_rcu_preempt_task(rdp
->rsp
->name
,
239 (rnp
->qsmask
& rdp
->grpmask
)
242 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
243 } else if (t
->rcu_read_lock_nesting
< 0 &&
244 t
->rcu_read_unlock_special
) {
247 * Complete exit from RCU read-side critical section on
248 * behalf of preempted instance of __rcu_read_unlock().
250 rcu_read_unlock_special(t
);
254 * Either we were not in an RCU read-side critical section to
255 * begin with, or we have now recorded that critical section
256 * globally. Either way, we can now note a quiescent state
257 * for this CPU. Again, if we were in an RCU read-side critical
258 * section, and if that critical section was blocking the current
259 * grace period, then the fact that the task has been enqueued
260 * means that we continue to block the current grace period.
262 local_irq_save(flags
);
264 local_irq_restore(flags
);
268 * Check for preempted RCU readers blocking the current grace period
269 * for the specified rcu_node structure. If the caller needs a reliable
270 * answer, it must hold the rcu_node's ->lock.
272 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
274 return rnp
->gp_tasks
!= NULL
;
278 * Record a quiescent state for all tasks that were previously queued
279 * on the specified rcu_node structure and that were blocking the current
280 * RCU grace period. The caller must hold the specified rnp->lock with
281 * irqs disabled, and this lock is released upon return, but irqs remain
284 static void rcu_report_unblock_qs_rnp(struct rcu_node
*rnp
, unsigned long flags
)
285 __releases(rnp
->lock
)
288 struct rcu_node
*rnp_p
;
290 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
291 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
292 return; /* Still need more quiescent states! */
298 * Either there is only one rcu_node in the tree,
299 * or tasks were kicked up to root rcu_node due to
300 * CPUs going offline.
302 rcu_report_qs_rsp(&rcu_preempt_state
, flags
);
306 /* Report up the rest of the hierarchy. */
308 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
309 raw_spin_lock(&rnp_p
->lock
); /* irqs already disabled. */
310 rcu_report_qs_rnp(mask
, &rcu_preempt_state
, rnp_p
, flags
);
314 * Advance a ->blkd_tasks-list pointer to the next entry, instead
315 * returning NULL if at the end of the list.
317 static struct list_head
*rcu_next_node_entry(struct task_struct
*t
,
318 struct rcu_node
*rnp
)
320 struct list_head
*np
;
322 np
= t
->rcu_node_entry
.next
;
323 if (np
== &rnp
->blkd_tasks
)
329 * Handle special cases during rcu_read_unlock(), such as needing to
330 * notify RCU core processing or task having blocked during the RCU
331 * read-side critical section.
333 void rcu_read_unlock_special(struct task_struct
*t
)
339 struct list_head
*np
;
340 #ifdef CONFIG_RCU_BOOST
341 struct rt_mutex
*rbmp
= NULL
;
342 #endif /* #ifdef CONFIG_RCU_BOOST */
343 struct rcu_node
*rnp
;
346 /* NMI handlers cannot block and cannot safely manipulate state. */
350 local_irq_save(flags
);
353 * If RCU core is waiting for this CPU to exit critical section,
354 * let it know that we have done so.
356 special
= t
->rcu_read_unlock_special
;
357 if (special
& RCU_READ_UNLOCK_NEED_QS
) {
358 rcu_preempt_qs(smp_processor_id());
361 /* Hardware IRQ handlers cannot block. */
362 if (in_irq() || in_serving_softirq()) {
363 local_irq_restore(flags
);
367 /* Clean up if blocked during RCU read-side critical section. */
368 if (special
& RCU_READ_UNLOCK_BLOCKED
) {
369 t
->rcu_read_unlock_special
&= ~RCU_READ_UNLOCK_BLOCKED
;
372 * Remove this task from the list it blocked on. The
373 * task can migrate while we acquire the lock, but at
374 * most one time. So at most two passes through loop.
377 rnp
= t
->rcu_blocked_node
;
378 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
379 if (rnp
== t
->rcu_blocked_node
)
381 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
383 empty
= !rcu_preempt_blocked_readers_cgp(rnp
);
384 empty_exp
= !rcu_preempted_readers_exp(rnp
);
385 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
386 np
= rcu_next_node_entry(t
, rnp
);
387 list_del_init(&t
->rcu_node_entry
);
388 t
->rcu_blocked_node
= NULL
;
389 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
391 if (&t
->rcu_node_entry
== rnp
->gp_tasks
)
393 if (&t
->rcu_node_entry
== rnp
->exp_tasks
)
395 #ifdef CONFIG_RCU_BOOST
396 if (&t
->rcu_node_entry
== rnp
->boost_tasks
)
397 rnp
->boost_tasks
= np
;
398 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
399 if (t
->rcu_boost_mutex
) {
400 rbmp
= t
->rcu_boost_mutex
;
401 t
->rcu_boost_mutex
= NULL
;
403 #endif /* #ifdef CONFIG_RCU_BOOST */
406 * If this was the last task on the current list, and if
407 * we aren't waiting on any CPUs, report the quiescent state.
408 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
409 * so we must take a snapshot of the expedited state.
411 empty_exp_now
= !rcu_preempted_readers_exp(rnp
);
412 if (!empty
&& !rcu_preempt_blocked_readers_cgp(rnp
)) {
413 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
420 rcu_report_unblock_qs_rnp(rnp
, flags
);
422 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
425 #ifdef CONFIG_RCU_BOOST
426 /* Unboost if we were boosted. */
428 rt_mutex_unlock(rbmp
);
429 #endif /* #ifdef CONFIG_RCU_BOOST */
432 * If this was the last task on the expedited lists,
433 * then we need to report up the rcu_node hierarchy.
435 if (!empty_exp
&& empty_exp_now
)
436 rcu_report_exp_rnp(&rcu_preempt_state
, rnp
, true);
438 local_irq_restore(flags
);
442 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
445 * Dump detailed information for all tasks blocking the current RCU
446 * grace period on the specified rcu_node structure.
448 static void rcu_print_detail_task_stall_rnp(struct rcu_node
*rnp
)
451 struct task_struct
*t
;
453 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
454 if (!rcu_preempt_blocked_readers_cgp(rnp
)) {
455 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
458 t
= list_entry(rnp
->gp_tasks
,
459 struct task_struct
, rcu_node_entry
);
460 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
)
462 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
466 * Dump detailed information for all tasks blocking the current RCU
469 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
471 struct rcu_node
*rnp
= rcu_get_root(rsp
);
473 rcu_print_detail_task_stall_rnp(rnp
);
474 rcu_for_each_leaf_node(rsp
, rnp
)
475 rcu_print_detail_task_stall_rnp(rnp
);
478 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
480 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
484 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
486 #ifdef CONFIG_RCU_CPU_STALL_INFO
488 static void rcu_print_task_stall_begin(struct rcu_node
*rnp
)
490 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
491 rnp
->level
, rnp
->grplo
, rnp
->grphi
);
494 static void rcu_print_task_stall_end(void)
499 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
501 static void rcu_print_task_stall_begin(struct rcu_node
*rnp
)
505 static void rcu_print_task_stall_end(void)
509 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
512 * Scan the current list of tasks blocked within RCU read-side critical
513 * sections, printing out the tid of each.
515 static int rcu_print_task_stall(struct rcu_node
*rnp
)
517 struct task_struct
*t
;
520 if (!rcu_preempt_blocked_readers_cgp(rnp
))
522 rcu_print_task_stall_begin(rnp
);
523 t
= list_entry(rnp
->gp_tasks
,
524 struct task_struct
, rcu_node_entry
);
525 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
) {
526 pr_cont(" P%d", t
->pid
);
529 rcu_print_task_stall_end();
534 * Check that the list of blocked tasks for the newly completed grace
535 * period is in fact empty. It is a serious bug to complete a grace
536 * period that still has RCU readers blocked! This function must be
537 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
538 * must be held by the caller.
540 * Also, if there are blocked tasks on the list, they automatically
541 * block the newly created grace period, so set up ->gp_tasks accordingly.
543 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
545 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
));
546 if (!list_empty(&rnp
->blkd_tasks
))
547 rnp
->gp_tasks
= rnp
->blkd_tasks
.next
;
548 WARN_ON_ONCE(rnp
->qsmask
);
551 #ifdef CONFIG_HOTPLUG_CPU
554 * Handle tasklist migration for case in which all CPUs covered by the
555 * specified rcu_node have gone offline. Move them up to the root
556 * rcu_node. The reason for not just moving them to the immediate
557 * parent is to remove the need for rcu_read_unlock_special() to
558 * make more than two attempts to acquire the target rcu_node's lock.
559 * Returns true if there were tasks blocking the current RCU grace
562 * Returns 1 if there was previously a task blocking the current grace
563 * period on the specified rcu_node structure.
565 * The caller must hold rnp->lock with irqs disabled.
567 static int rcu_preempt_offline_tasks(struct rcu_state
*rsp
,
568 struct rcu_node
*rnp
,
569 struct rcu_data
*rdp
)
571 struct list_head
*lp
;
572 struct list_head
*lp_root
;
574 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
575 struct task_struct
*t
;
577 if (rnp
== rnp_root
) {
578 WARN_ONCE(1, "Last CPU thought to be offlined?");
579 return 0; /* Shouldn't happen: at least one CPU online. */
582 /* If we are on an internal node, complain bitterly. */
583 WARN_ON_ONCE(rnp
!= rdp
->mynode
);
586 * Move tasks up to root rcu_node. Don't try to get fancy for
587 * this corner-case operation -- just put this node's tasks
588 * at the head of the root node's list, and update the root node's
589 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
590 * if non-NULL. This might result in waiting for more tasks than
591 * absolutely necessary, but this is a good performance/complexity
594 if (rcu_preempt_blocked_readers_cgp(rnp
) && rnp
->qsmask
== 0)
595 retval
|= RCU_OFL_TASKS_NORM_GP
;
596 if (rcu_preempted_readers_exp(rnp
))
597 retval
|= RCU_OFL_TASKS_EXP_GP
;
598 lp
= &rnp
->blkd_tasks
;
599 lp_root
= &rnp_root
->blkd_tasks
;
600 while (!list_empty(lp
)) {
601 t
= list_entry(lp
->next
, typeof(*t
), rcu_node_entry
);
602 raw_spin_lock(&rnp_root
->lock
); /* irqs already disabled */
603 list_del(&t
->rcu_node_entry
);
604 t
->rcu_blocked_node
= rnp_root
;
605 list_add(&t
->rcu_node_entry
, lp_root
);
606 if (&t
->rcu_node_entry
== rnp
->gp_tasks
)
607 rnp_root
->gp_tasks
= rnp
->gp_tasks
;
608 if (&t
->rcu_node_entry
== rnp
->exp_tasks
)
609 rnp_root
->exp_tasks
= rnp
->exp_tasks
;
610 #ifdef CONFIG_RCU_BOOST
611 if (&t
->rcu_node_entry
== rnp
->boost_tasks
)
612 rnp_root
->boost_tasks
= rnp
->boost_tasks
;
613 #endif /* #ifdef CONFIG_RCU_BOOST */
614 raw_spin_unlock(&rnp_root
->lock
); /* irqs still disabled */
617 rnp
->gp_tasks
= NULL
;
618 rnp
->exp_tasks
= NULL
;
619 #ifdef CONFIG_RCU_BOOST
620 rnp
->boost_tasks
= NULL
;
622 * In case root is being boosted and leaf was not. Make sure
623 * that we boost the tasks blocking the current grace period
626 raw_spin_lock(&rnp_root
->lock
); /* irqs already disabled */
627 if (rnp_root
->boost_tasks
!= NULL
&&
628 rnp_root
->boost_tasks
!= rnp_root
->gp_tasks
&&
629 rnp_root
->boost_tasks
!= rnp_root
->exp_tasks
)
630 rnp_root
->boost_tasks
= rnp_root
->gp_tasks
;
631 raw_spin_unlock(&rnp_root
->lock
); /* irqs still disabled */
632 #endif /* #ifdef CONFIG_RCU_BOOST */
637 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
640 * Check for a quiescent state from the current CPU. When a task blocks,
641 * the task is recorded in the corresponding CPU's rcu_node structure,
642 * which is checked elsewhere.
644 * Caller must disable hard irqs.
646 static void rcu_preempt_check_callbacks(int cpu
)
648 struct task_struct
*t
= current
;
650 if (t
->rcu_read_lock_nesting
== 0) {
654 if (t
->rcu_read_lock_nesting
> 0 &&
655 per_cpu(rcu_preempt_data
, cpu
).qs_pending
)
656 t
->rcu_read_unlock_special
|= RCU_READ_UNLOCK_NEED_QS
;
659 #ifdef CONFIG_RCU_BOOST
661 static void rcu_preempt_do_callbacks(void)
663 rcu_do_batch(&rcu_preempt_state
, &__get_cpu_var(rcu_preempt_data
));
666 #endif /* #ifdef CONFIG_RCU_BOOST */
669 * Queue a preemptible-RCU callback for invocation after a grace period.
671 void call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
673 __call_rcu(head
, func
, &rcu_preempt_state
, -1, 0);
675 EXPORT_SYMBOL_GPL(call_rcu
);
678 * Queue an RCU callback for lazy invocation after a grace period.
679 * This will likely be later named something like "call_rcu_lazy()",
680 * but this change will require some way of tagging the lazy RCU
681 * callbacks in the list of pending callbacks. Until then, this
682 * function may only be called from __kfree_rcu().
684 void kfree_call_rcu(struct rcu_head
*head
,
685 void (*func
)(struct rcu_head
*rcu
))
687 __call_rcu(head
, func
, &rcu_preempt_state
, -1, 1);
689 EXPORT_SYMBOL_GPL(kfree_call_rcu
);
692 * synchronize_rcu - wait until a grace period has elapsed.
694 * Control will return to the caller some time after a full grace
695 * period has elapsed, in other words after all currently executing RCU
696 * read-side critical sections have completed. Note, however, that
697 * upon return from synchronize_rcu(), the caller might well be executing
698 * concurrently with new RCU read-side critical sections that began while
699 * synchronize_rcu() was waiting. RCU read-side critical sections are
700 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
702 * See the description of synchronize_sched() for more detailed information
703 * on memory ordering guarantees.
705 void synchronize_rcu(void)
707 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map
) &&
708 !lock_is_held(&rcu_lock_map
) &&
709 !lock_is_held(&rcu_sched_lock_map
),
710 "Illegal synchronize_rcu() in RCU read-side critical section");
711 if (!rcu_scheduler_active
)
714 synchronize_rcu_expedited();
716 wait_rcu_gp(call_rcu
);
718 EXPORT_SYMBOL_GPL(synchronize_rcu
);
720 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq
);
721 static unsigned long sync_rcu_preempt_exp_count
;
722 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex
);
725 * Return non-zero if there are any tasks in RCU read-side critical
726 * sections blocking the current preemptible-RCU expedited grace period.
727 * If there is no preemptible-RCU expedited grace period currently in
728 * progress, returns zero unconditionally.
730 static int rcu_preempted_readers_exp(struct rcu_node
*rnp
)
732 return rnp
->exp_tasks
!= NULL
;
736 * return non-zero if there is no RCU expedited grace period in progress
737 * for the specified rcu_node structure, in other words, if all CPUs and
738 * tasks covered by the specified rcu_node structure have done their bit
739 * for the current expedited grace period. Works only for preemptible
740 * RCU -- other RCU implementation use other means.
742 * Caller must hold sync_rcu_preempt_exp_mutex.
744 static int sync_rcu_preempt_exp_done(struct rcu_node
*rnp
)
746 return !rcu_preempted_readers_exp(rnp
) &&
747 ACCESS_ONCE(rnp
->expmask
) == 0;
751 * Report the exit from RCU read-side critical section for the last task
752 * that queued itself during or before the current expedited preemptible-RCU
753 * grace period. This event is reported either to the rcu_node structure on
754 * which the task was queued or to one of that rcu_node structure's ancestors,
755 * recursively up the tree. (Calm down, calm down, we do the recursion
758 * Most callers will set the "wake" flag, but the task initiating the
759 * expedited grace period need not wake itself.
761 * Caller must hold sync_rcu_preempt_exp_mutex.
763 static void rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
769 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
771 if (!sync_rcu_preempt_exp_done(rnp
)) {
772 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
775 if (rnp
->parent
== NULL
) {
776 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
778 wake_up(&sync_rcu_preempt_exp_wq
);
782 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
784 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
785 rnp
->expmask
&= ~mask
;
790 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
791 * grace period for the specified rcu_node structure. If there are no such
792 * tasks, report it up the rcu_node hierarchy.
794 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
795 * CPU hotplug operations.
798 sync_rcu_preempt_exp_init(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
803 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
804 if (list_empty(&rnp
->blkd_tasks
)) {
805 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
807 rnp
->exp_tasks
= rnp
->blkd_tasks
.next
;
808 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock */
812 rcu_report_exp_rnp(rsp
, rnp
, false); /* Don't wake self. */
816 * synchronize_rcu_expedited - Brute-force RCU grace period
818 * Wait for an RCU-preempt grace period, but expedite it. The basic
819 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
820 * the ->blkd_tasks lists and wait for this list to drain. This consumes
821 * significant time on all CPUs and is unfriendly to real-time workloads,
822 * so is thus not recommended for any sort of common-case code.
823 * In fact, if you are using synchronize_rcu_expedited() in a loop,
824 * please restructure your code to batch your updates, and then Use a
825 * single synchronize_rcu() instead.
827 * Note that it is illegal to call this function while holding any lock
828 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
829 * to call this function from a CPU-hotplug notifier. Failing to observe
830 * these restriction will result in deadlock.
832 void synchronize_rcu_expedited(void)
835 struct rcu_node
*rnp
;
836 struct rcu_state
*rsp
= &rcu_preempt_state
;
840 smp_mb(); /* Caller's modifications seen first by other CPUs. */
841 snap
= ACCESS_ONCE(sync_rcu_preempt_exp_count
) + 1;
842 smp_mb(); /* Above access cannot bleed into critical section. */
845 * Block CPU-hotplug operations. This means that any CPU-hotplug
846 * operation that finds an rcu_node structure with tasks in the
847 * process of being boosted will know that all tasks blocking
848 * this expedited grace period will already be in the process of
849 * being boosted. This simplifies the process of moving tasks
850 * from leaf to root rcu_node structures.
855 * Acquire lock, falling back to synchronize_rcu() if too many
856 * lock-acquisition failures. Of course, if someone does the
857 * expedited grace period for us, just leave.
859 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex
)) {
860 if (ULONG_CMP_LT(snap
,
861 ACCESS_ONCE(sync_rcu_preempt_exp_count
))) {
863 goto mb_ret
; /* Others did our work for us. */
865 if (trycount
++ < 10) {
866 udelay(trycount
* num_online_cpus());
869 wait_rcu_gp(call_rcu
);
873 if (ULONG_CMP_LT(snap
, ACCESS_ONCE(sync_rcu_preempt_exp_count
))) {
875 goto unlock_mb_ret
; /* Others did our work for us. */
878 /* force all RCU readers onto ->blkd_tasks lists. */
879 synchronize_sched_expedited();
881 /* Initialize ->expmask for all non-leaf rcu_node structures. */
882 rcu_for_each_nonleaf_node_breadth_first(rsp
, rnp
) {
883 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
884 rnp
->expmask
= rnp
->qsmaskinit
;
885 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
888 /* Snapshot current state of ->blkd_tasks lists. */
889 rcu_for_each_leaf_node(rsp
, rnp
)
890 sync_rcu_preempt_exp_init(rsp
, rnp
);
891 if (NUM_RCU_NODES
> 1)
892 sync_rcu_preempt_exp_init(rsp
, rcu_get_root(rsp
));
896 /* Wait for snapshotted ->blkd_tasks lists to drain. */
897 rnp
= rcu_get_root(rsp
);
898 wait_event(sync_rcu_preempt_exp_wq
,
899 sync_rcu_preempt_exp_done(rnp
));
901 /* Clean up and exit. */
902 smp_mb(); /* ensure expedited GP seen before counter increment. */
903 ACCESS_ONCE(sync_rcu_preempt_exp_count
)++;
905 mutex_unlock(&sync_rcu_preempt_exp_mutex
);
907 smp_mb(); /* ensure subsequent action seen after grace period. */
909 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited
);
912 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
914 * Note that this primitive does not necessarily wait for an RCU grace period
915 * to complete. For example, if there are no RCU callbacks queued anywhere
916 * in the system, then rcu_barrier() is within its rights to return
917 * immediately, without waiting for anything, much less an RCU grace period.
919 void rcu_barrier(void)
921 _rcu_barrier(&rcu_preempt_state
);
923 EXPORT_SYMBOL_GPL(rcu_barrier
);
926 * Initialize preemptible RCU's state structures.
928 static void __init
__rcu_init_preempt(void)
930 rcu_init_one(&rcu_preempt_state
, &rcu_preempt_data
);
934 * Check for a task exiting while in a preemptible-RCU read-side
935 * critical section, clean up if so. No need to issue warnings,
936 * as debug_check_no_locks_held() already does this if lockdep
941 struct task_struct
*t
= current
;
943 if (likely(list_empty(¤t
->rcu_node_entry
)))
945 t
->rcu_read_lock_nesting
= 1;
947 t
->rcu_read_unlock_special
= RCU_READ_UNLOCK_BLOCKED
;
951 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
953 static struct rcu_state
*rcu_state
= &rcu_sched_state
;
956 * Tell them what RCU they are running.
958 static void __init
rcu_bootup_announce(void)
960 pr_info("Hierarchical RCU implementation.\n");
961 rcu_bootup_announce_oddness();
965 * Return the number of RCU batches processed thus far for debug & stats.
967 long rcu_batches_completed(void)
969 return rcu_batches_completed_sched();
971 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
974 * Force a quiescent state for RCU, which, because there is no preemptible
975 * RCU, becomes the same as rcu-sched.
977 void rcu_force_quiescent_state(void)
979 rcu_sched_force_quiescent_state();
981 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
984 * Because preemptible RCU does not exist, we never have to check for
985 * CPUs being in quiescent states.
987 static void rcu_preempt_note_context_switch(int cpu
)
992 * Because preemptible RCU does not exist, there are never any preempted
995 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
1000 #ifdef CONFIG_HOTPLUG_CPU
1002 /* Because preemptible RCU does not exist, no quieting of tasks. */
1003 static void rcu_report_unblock_qs_rnp(struct rcu_node
*rnp
, unsigned long flags
)
1005 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1008 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1011 * Because preemptible RCU does not exist, we never have to check for
1012 * tasks blocked within RCU read-side critical sections.
1014 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
1019 * Because preemptible RCU does not exist, we never have to check for
1020 * tasks blocked within RCU read-side critical sections.
1022 static int rcu_print_task_stall(struct rcu_node
*rnp
)
1028 * Because there is no preemptible RCU, there can be no readers blocked,
1029 * so there is no need to check for blocked tasks. So check only for
1030 * bogus qsmask values.
1032 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
1034 WARN_ON_ONCE(rnp
->qsmask
);
1037 #ifdef CONFIG_HOTPLUG_CPU
1040 * Because preemptible RCU does not exist, it never needs to migrate
1041 * tasks that were blocked within RCU read-side critical sections, and
1042 * such non-existent tasks cannot possibly have been blocking the current
1045 static int rcu_preempt_offline_tasks(struct rcu_state
*rsp
,
1046 struct rcu_node
*rnp
,
1047 struct rcu_data
*rdp
)
1052 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1055 * Because preemptible RCU does not exist, it never has any callbacks
1058 static void rcu_preempt_check_callbacks(int cpu
)
1063 * Queue an RCU callback for lazy invocation after a grace period.
1064 * This will likely be later named something like "call_rcu_lazy()",
1065 * but this change will require some way of tagging the lazy RCU
1066 * callbacks in the list of pending callbacks. Until then, this
1067 * function may only be called from __kfree_rcu().
1069 * Because there is no preemptible RCU, we use RCU-sched instead.
1071 void kfree_call_rcu(struct rcu_head
*head
,
1072 void (*func
)(struct rcu_head
*rcu
))
1074 __call_rcu(head
, func
, &rcu_sched_state
, -1, 1);
1076 EXPORT_SYMBOL_GPL(kfree_call_rcu
);
1079 * Wait for an rcu-preempt grace period, but make it happen quickly.
1080 * But because preemptible RCU does not exist, map to rcu-sched.
1082 void synchronize_rcu_expedited(void)
1084 synchronize_sched_expedited();
1086 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited
);
1088 #ifdef CONFIG_HOTPLUG_CPU
1091 * Because preemptible RCU does not exist, there is never any need to
1092 * report on tasks preempted in RCU read-side critical sections during
1093 * expedited RCU grace periods.
1095 static void rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1100 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1103 * Because preemptible RCU does not exist, rcu_barrier() is just
1104 * another name for rcu_barrier_sched().
1106 void rcu_barrier(void)
1108 rcu_barrier_sched();
1110 EXPORT_SYMBOL_GPL(rcu_barrier
);
1113 * Because preemptible RCU does not exist, it need not be initialized.
1115 static void __init
__rcu_init_preempt(void)
1120 * Because preemptible RCU does not exist, tasks cannot possibly exit
1121 * while in preemptible RCU read-side critical sections.
1127 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1129 #ifdef CONFIG_RCU_BOOST
1131 #include "rtmutex_common.h"
1133 #ifdef CONFIG_RCU_TRACE
1135 static void rcu_initiate_boost_trace(struct rcu_node
*rnp
)
1137 if (list_empty(&rnp
->blkd_tasks
))
1138 rnp
->n_balk_blkd_tasks
++;
1139 else if (rnp
->exp_tasks
== NULL
&& rnp
->gp_tasks
== NULL
)
1140 rnp
->n_balk_exp_gp_tasks
++;
1141 else if (rnp
->gp_tasks
!= NULL
&& rnp
->boost_tasks
!= NULL
)
1142 rnp
->n_balk_boost_tasks
++;
1143 else if (rnp
->gp_tasks
!= NULL
&& rnp
->qsmask
!= 0)
1144 rnp
->n_balk_notblocked
++;
1145 else if (rnp
->gp_tasks
!= NULL
&&
1146 ULONG_CMP_LT(jiffies
, rnp
->boost_time
))
1147 rnp
->n_balk_notyet
++;
1152 #else /* #ifdef CONFIG_RCU_TRACE */
1154 static void rcu_initiate_boost_trace(struct rcu_node
*rnp
)
1158 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1160 static void rcu_wake_cond(struct task_struct
*t
, int status
)
1163 * If the thread is yielding, only wake it when this
1164 * is invoked from idle
1166 if (status
!= RCU_KTHREAD_YIELDING
|| is_idle_task(current
))
1171 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1172 * or ->boost_tasks, advancing the pointer to the next task in the
1173 * ->blkd_tasks list.
1175 * Note that irqs must be enabled: boosting the task can block.
1176 * Returns 1 if there are more tasks needing to be boosted.
1178 static int rcu_boost(struct rcu_node
*rnp
)
1180 unsigned long flags
;
1181 struct rt_mutex mtx
;
1182 struct task_struct
*t
;
1183 struct list_head
*tb
;
1185 if (rnp
->exp_tasks
== NULL
&& rnp
->boost_tasks
== NULL
)
1186 return 0; /* Nothing left to boost. */
1188 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1191 * Recheck under the lock: all tasks in need of boosting
1192 * might exit their RCU read-side critical sections on their own.
1194 if (rnp
->exp_tasks
== NULL
&& rnp
->boost_tasks
== NULL
) {
1195 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1200 * Preferentially boost tasks blocking expedited grace periods.
1201 * This cannot starve the normal grace periods because a second
1202 * expedited grace period must boost all blocked tasks, including
1203 * those blocking the pre-existing normal grace period.
1205 if (rnp
->exp_tasks
!= NULL
) {
1206 tb
= rnp
->exp_tasks
;
1207 rnp
->n_exp_boosts
++;
1209 tb
= rnp
->boost_tasks
;
1210 rnp
->n_normal_boosts
++;
1212 rnp
->n_tasks_boosted
++;
1215 * We boost task t by manufacturing an rt_mutex that appears to
1216 * be held by task t. We leave a pointer to that rt_mutex where
1217 * task t can find it, and task t will release the mutex when it
1218 * exits its outermost RCU read-side critical section. Then
1219 * simply acquiring this artificial rt_mutex will boost task
1220 * t's priority. (Thanks to tglx for suggesting this approach!)
1222 * Note that task t must acquire rnp->lock to remove itself from
1223 * the ->blkd_tasks list, which it will do from exit() if from
1224 * nowhere else. We therefore are guaranteed that task t will
1225 * stay around at least until we drop rnp->lock. Note that
1226 * rnp->lock also resolves races between our priority boosting
1227 * and task t's exiting its outermost RCU read-side critical
1230 t
= container_of(tb
, struct task_struct
, rcu_node_entry
);
1231 rt_mutex_init_proxy_locked(&mtx
, t
);
1232 t
->rcu_boost_mutex
= &mtx
;
1233 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1234 rt_mutex_lock(&mtx
); /* Side effect: boosts task t's priority. */
1235 rt_mutex_unlock(&mtx
); /* Keep lockdep happy. */
1237 return ACCESS_ONCE(rnp
->exp_tasks
) != NULL
||
1238 ACCESS_ONCE(rnp
->boost_tasks
) != NULL
;
1242 * Priority-boosting kthread. One per leaf rcu_node and one for the
1245 static int rcu_boost_kthread(void *arg
)
1247 struct rcu_node
*rnp
= (struct rcu_node
*)arg
;
1251 trace_rcu_utilization(TPS("Start boost kthread@init"));
1253 rnp
->boost_kthread_status
= RCU_KTHREAD_WAITING
;
1254 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1255 rcu_wait(rnp
->boost_tasks
|| rnp
->exp_tasks
);
1256 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1257 rnp
->boost_kthread_status
= RCU_KTHREAD_RUNNING
;
1258 more2boost
= rcu_boost(rnp
);
1264 rnp
->boost_kthread_status
= RCU_KTHREAD_YIELDING
;
1265 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1266 schedule_timeout_interruptible(2);
1267 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1272 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1277 * Check to see if it is time to start boosting RCU readers that are
1278 * blocking the current grace period, and, if so, tell the per-rcu_node
1279 * kthread to start boosting them. If there is an expedited grace
1280 * period in progress, it is always time to boost.
1282 * The caller must hold rnp->lock, which this function releases.
1283 * The ->boost_kthread_task is immortal, so we don't need to worry
1284 * about it going away.
1286 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1288 struct task_struct
*t
;
1290 if (!rcu_preempt_blocked_readers_cgp(rnp
) && rnp
->exp_tasks
== NULL
) {
1291 rnp
->n_balk_exp_gp_tasks
++;
1292 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1295 if (rnp
->exp_tasks
!= NULL
||
1296 (rnp
->gp_tasks
!= NULL
&&
1297 rnp
->boost_tasks
== NULL
&&
1299 ULONG_CMP_GE(jiffies
, rnp
->boost_time
))) {
1300 if (rnp
->exp_tasks
== NULL
)
1301 rnp
->boost_tasks
= rnp
->gp_tasks
;
1302 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1303 t
= rnp
->boost_kthread_task
;
1305 rcu_wake_cond(t
, rnp
->boost_kthread_status
);
1307 rcu_initiate_boost_trace(rnp
);
1308 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1313 * Wake up the per-CPU kthread to invoke RCU callbacks.
1315 static void invoke_rcu_callbacks_kthread(void)
1317 unsigned long flags
;
1319 local_irq_save(flags
);
1320 __this_cpu_write(rcu_cpu_has_work
, 1);
1321 if (__this_cpu_read(rcu_cpu_kthread_task
) != NULL
&&
1322 current
!= __this_cpu_read(rcu_cpu_kthread_task
)) {
1323 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task
),
1324 __this_cpu_read(rcu_cpu_kthread_status
));
1326 local_irq_restore(flags
);
1330 * Is the current CPU running the RCU-callbacks kthread?
1331 * Caller must have preemption disabled.
1333 static bool rcu_is_callbacks_kthread(void)
1335 return __get_cpu_var(rcu_cpu_kthread_task
) == current
;
1338 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1341 * Do priority-boost accounting for the start of a new grace period.
1343 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1345 rnp
->boost_time
= jiffies
+ RCU_BOOST_DELAY_JIFFIES
;
1349 * Create an RCU-boost kthread for the specified node if one does not
1350 * already exist. We only create this kthread for preemptible RCU.
1351 * Returns zero if all is well, a negated errno otherwise.
1353 static int rcu_spawn_one_boost_kthread(struct rcu_state
*rsp
,
1354 struct rcu_node
*rnp
)
1356 int rnp_index
= rnp
- &rsp
->node
[0];
1357 unsigned long flags
;
1358 struct sched_param sp
;
1359 struct task_struct
*t
;
1361 if (&rcu_preempt_state
!= rsp
)
1364 if (!rcu_scheduler_fully_active
|| rnp
->qsmaskinit
== 0)
1368 if (rnp
->boost_kthread_task
!= NULL
)
1370 t
= kthread_create(rcu_boost_kthread
, (void *)rnp
,
1371 "rcub/%d", rnp_index
);
1374 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1375 rnp
->boost_kthread_task
= t
;
1376 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1377 sp
.sched_priority
= RCU_BOOST_PRIO
;
1378 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1379 wake_up_process(t
); /* get to TASK_INTERRUPTIBLE quickly. */
1383 static void rcu_kthread_do_work(void)
1385 rcu_do_batch(&rcu_sched_state
, &__get_cpu_var(rcu_sched_data
));
1386 rcu_do_batch(&rcu_bh_state
, &__get_cpu_var(rcu_bh_data
));
1387 rcu_preempt_do_callbacks();
1390 static void rcu_cpu_kthread_setup(unsigned int cpu
)
1392 struct sched_param sp
;
1394 sp
.sched_priority
= RCU_KTHREAD_PRIO
;
1395 sched_setscheduler_nocheck(current
, SCHED_FIFO
, &sp
);
1398 static void rcu_cpu_kthread_park(unsigned int cpu
)
1400 per_cpu(rcu_cpu_kthread_status
, cpu
) = RCU_KTHREAD_OFFCPU
;
1403 static int rcu_cpu_kthread_should_run(unsigned int cpu
)
1405 return __get_cpu_var(rcu_cpu_has_work
);
1409 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1410 * RCU softirq used in flavors and configurations of RCU that do not
1411 * support RCU priority boosting.
1413 static void rcu_cpu_kthread(unsigned int cpu
)
1415 unsigned int *statusp
= &__get_cpu_var(rcu_cpu_kthread_status
);
1416 char work
, *workp
= &__get_cpu_var(rcu_cpu_has_work
);
1419 for (spincnt
= 0; spincnt
< 10; spincnt
++) {
1420 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1422 *statusp
= RCU_KTHREAD_RUNNING
;
1423 this_cpu_inc(rcu_cpu_kthread_loops
);
1424 local_irq_disable();
1429 rcu_kthread_do_work();
1432 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1433 *statusp
= RCU_KTHREAD_WAITING
;
1437 *statusp
= RCU_KTHREAD_YIELDING
;
1438 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1439 schedule_timeout_interruptible(2);
1440 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1441 *statusp
= RCU_KTHREAD_WAITING
;
1445 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1446 * served by the rcu_node in question. The CPU hotplug lock is still
1447 * held, so the value of rnp->qsmaskinit will be stable.
1449 * We don't include outgoingcpu in the affinity set, use -1 if there is
1450 * no outgoing CPU. If there are no CPUs left in the affinity set,
1451 * this function allows the kthread to execute on any CPU.
1453 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1455 struct task_struct
*t
= rnp
->boost_kthread_task
;
1456 unsigned long mask
= rnp
->qsmaskinit
;
1462 if (!zalloc_cpumask_var(&cm
, GFP_KERNEL
))
1464 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++, mask
>>= 1)
1465 if ((mask
& 0x1) && cpu
!= outgoingcpu
)
1466 cpumask_set_cpu(cpu
, cm
);
1467 if (cpumask_weight(cm
) == 0) {
1469 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++)
1470 cpumask_clear_cpu(cpu
, cm
);
1471 WARN_ON_ONCE(cpumask_weight(cm
) == 0);
1473 set_cpus_allowed_ptr(t
, cm
);
1474 free_cpumask_var(cm
);
1477 static struct smp_hotplug_thread rcu_cpu_thread_spec
= {
1478 .store
= &rcu_cpu_kthread_task
,
1479 .thread_should_run
= rcu_cpu_kthread_should_run
,
1480 .thread_fn
= rcu_cpu_kthread
,
1481 .thread_comm
= "rcuc/%u",
1482 .setup
= rcu_cpu_kthread_setup
,
1483 .park
= rcu_cpu_kthread_park
,
1487 * Spawn all kthreads -- called as soon as the scheduler is running.
1489 static int __init
rcu_spawn_kthreads(void)
1491 struct rcu_node
*rnp
;
1494 rcu_scheduler_fully_active
= 1;
1495 for_each_possible_cpu(cpu
)
1496 per_cpu(rcu_cpu_has_work
, cpu
) = 0;
1497 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec
));
1498 rnp
= rcu_get_root(rcu_state
);
1499 (void)rcu_spawn_one_boost_kthread(rcu_state
, rnp
);
1500 if (NUM_RCU_NODES
> 1) {
1501 rcu_for_each_leaf_node(rcu_state
, rnp
)
1502 (void)rcu_spawn_one_boost_kthread(rcu_state
, rnp
);
1506 early_initcall(rcu_spawn_kthreads
);
1508 static void rcu_prepare_kthreads(int cpu
)
1510 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state
->rda
, cpu
);
1511 struct rcu_node
*rnp
= rdp
->mynode
;
1513 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1514 if (rcu_scheduler_fully_active
)
1515 (void)rcu_spawn_one_boost_kthread(rcu_state
, rnp
);
1518 #else /* #ifdef CONFIG_RCU_BOOST */
1520 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1522 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1525 static void invoke_rcu_callbacks_kthread(void)
1530 static bool rcu_is_callbacks_kthread(void)
1535 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1539 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1543 static int __init
rcu_scheduler_really_started(void)
1545 rcu_scheduler_fully_active
= 1;
1548 early_initcall(rcu_scheduler_really_started
);
1550 static void rcu_prepare_kthreads(int cpu
)
1554 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1556 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1559 * Check to see if any future RCU-related work will need to be done
1560 * by the current CPU, even if none need be done immediately, returning
1561 * 1 if so. This function is part of the RCU implementation; it is -not-
1562 * an exported member of the RCU API.
1564 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1565 * any flavor of RCU.
1567 int rcu_needs_cpu(int cpu
, unsigned long *delta_jiffies
)
1569 *delta_jiffies
= ULONG_MAX
;
1570 return rcu_cpu_has_callbacks(cpu
, NULL
);
1574 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1577 static void rcu_cleanup_after_idle(int cpu
)
1582 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1585 static void rcu_prepare_for_idle(int cpu
)
1590 * Don't bother keeping a running count of the number of RCU callbacks
1591 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1593 static void rcu_idle_count_callbacks_posted(void)
1597 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1600 * This code is invoked when a CPU goes idle, at which point we want
1601 * to have the CPU do everything required for RCU so that it can enter
1602 * the energy-efficient dyntick-idle mode. This is handled by a
1603 * state machine implemented by rcu_prepare_for_idle() below.
1605 * The following three proprocessor symbols control this state machine:
1607 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1608 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1609 * is sized to be roughly one RCU grace period. Those energy-efficiency
1610 * benchmarkers who might otherwise be tempted to set this to a large
1611 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1612 * system. And if you are -that- concerned about energy efficiency,
1613 * just power the system down and be done with it!
1614 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1615 * permitted to sleep in dyntick-idle mode with only lazy RCU
1616 * callbacks pending. Setting this too high can OOM your system.
1618 * The values below work well in practice. If future workloads require
1619 * adjustment, they can be converted into kernel config parameters, though
1620 * making the state machine smarter might be a better option.
1622 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1623 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1625 static int rcu_idle_gp_delay
= RCU_IDLE_GP_DELAY
;
1626 module_param(rcu_idle_gp_delay
, int, 0644);
1627 static int rcu_idle_lazy_gp_delay
= RCU_IDLE_LAZY_GP_DELAY
;
1628 module_param(rcu_idle_lazy_gp_delay
, int, 0644);
1630 extern int tick_nohz_active
;
1633 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1634 * only if it has been awhile since the last time we did so. Afterwards,
1635 * if there are any callbacks ready for immediate invocation, return true.
1637 static bool rcu_try_advance_all_cbs(void)
1639 bool cbs_ready
= false;
1640 struct rcu_data
*rdp
;
1641 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1642 struct rcu_node
*rnp
;
1643 struct rcu_state
*rsp
;
1645 /* Exit early if we advanced recently. */
1646 if (jiffies
== rdtp
->last_advance_all
)
1648 rdtp
->last_advance_all
= jiffies
;
1650 for_each_rcu_flavor(rsp
) {
1651 rdp
= this_cpu_ptr(rsp
->rda
);
1655 * Don't bother checking unless a grace period has
1656 * completed since we last checked and there are
1657 * callbacks not yet ready to invoke.
1659 if (rdp
->completed
!= rnp
->completed
&&
1660 rdp
->nxttail
[RCU_DONE_TAIL
] != rdp
->nxttail
[RCU_NEXT_TAIL
])
1661 note_gp_changes(rsp
, rdp
);
1663 if (cpu_has_callbacks_ready_to_invoke(rdp
))
1670 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1671 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1672 * caller to set the timeout based on whether or not there are non-lazy
1675 * The caller must have disabled interrupts.
1677 int rcu_needs_cpu(int cpu
, unsigned long *dj
)
1679 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
1681 /* Snapshot to detect later posting of non-lazy callback. */
1682 rdtp
->nonlazy_posted_snap
= rdtp
->nonlazy_posted
;
1684 /* If no callbacks, RCU doesn't need the CPU. */
1685 if (!rcu_cpu_has_callbacks(cpu
, &rdtp
->all_lazy
)) {
1690 /* Attempt to advance callbacks. */
1691 if (rcu_try_advance_all_cbs()) {
1692 /* Some ready to invoke, so initiate later invocation. */
1696 rdtp
->last_accelerate
= jiffies
;
1698 /* Request timer delay depending on laziness, and round. */
1699 if (!rdtp
->all_lazy
) {
1700 *dj
= round_up(rcu_idle_gp_delay
+ jiffies
,
1701 rcu_idle_gp_delay
) - jiffies
;
1703 *dj
= round_jiffies(rcu_idle_lazy_gp_delay
+ jiffies
) - jiffies
;
1709 * Prepare a CPU for idle from an RCU perspective. The first major task
1710 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1711 * The second major task is to check to see if a non-lazy callback has
1712 * arrived at a CPU that previously had only lazy callbacks. The third
1713 * major task is to accelerate (that is, assign grace-period numbers to)
1714 * any recently arrived callbacks.
1716 * The caller must have disabled interrupts.
1718 static void rcu_prepare_for_idle(int cpu
)
1720 struct rcu_data
*rdp
;
1721 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
1722 struct rcu_node
*rnp
;
1723 struct rcu_state
*rsp
;
1726 /* Handle nohz enablement switches conservatively. */
1727 tne
= ACCESS_ONCE(tick_nohz_active
);
1728 if (tne
!= rdtp
->tick_nohz_enabled_snap
) {
1729 if (rcu_cpu_has_callbacks(cpu
, NULL
))
1730 invoke_rcu_core(); /* force nohz to see update. */
1731 rdtp
->tick_nohz_enabled_snap
= tne
;
1737 /* If this is a no-CBs CPU, no callbacks, just return. */
1738 if (rcu_is_nocb_cpu(cpu
))
1742 * If a non-lazy callback arrived at a CPU having only lazy
1743 * callbacks, invoke RCU core for the side-effect of recalculating
1744 * idle duration on re-entry to idle.
1746 if (rdtp
->all_lazy
&&
1747 rdtp
->nonlazy_posted
!= rdtp
->nonlazy_posted_snap
) {
1748 rdtp
->all_lazy
= false;
1749 rdtp
->nonlazy_posted_snap
= rdtp
->nonlazy_posted
;
1755 * If we have not yet accelerated this jiffy, accelerate all
1756 * callbacks on this CPU.
1758 if (rdtp
->last_accelerate
== jiffies
)
1760 rdtp
->last_accelerate
= jiffies
;
1761 for_each_rcu_flavor(rsp
) {
1762 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1763 if (!*rdp
->nxttail
[RCU_DONE_TAIL
])
1766 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1767 rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1768 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1773 * Clean up for exit from idle. Attempt to advance callbacks based on
1774 * any grace periods that elapsed while the CPU was idle, and if any
1775 * callbacks are now ready to invoke, initiate invocation.
1777 static void rcu_cleanup_after_idle(int cpu
)
1779 struct rcu_data
*rdp
;
1780 struct rcu_state
*rsp
;
1782 if (rcu_is_nocb_cpu(cpu
))
1784 rcu_try_advance_all_cbs();
1785 for_each_rcu_flavor(rsp
) {
1786 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1787 if (cpu_has_callbacks_ready_to_invoke(rdp
))
1793 * Keep a running count of the number of non-lazy callbacks posted
1794 * on this CPU. This running counter (which is never decremented) allows
1795 * rcu_prepare_for_idle() to detect when something out of the idle loop
1796 * posts a callback, even if an equal number of callbacks are invoked.
1797 * Of course, callbacks should only be posted from within a trace event
1798 * designed to be called from idle or from within RCU_NONIDLE().
1800 static void rcu_idle_count_callbacks_posted(void)
1802 __this_cpu_add(rcu_dynticks
.nonlazy_posted
, 1);
1806 * Data for flushing lazy RCU callbacks at OOM time.
1808 static atomic_t oom_callback_count
;
1809 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq
);
1812 * RCU OOM callback -- decrement the outstanding count and deliver the
1813 * wake-up if we are the last one.
1815 static void rcu_oom_callback(struct rcu_head
*rhp
)
1817 if (atomic_dec_and_test(&oom_callback_count
))
1818 wake_up(&oom_callback_wq
);
1822 * Post an rcu_oom_notify callback on the current CPU if it has at
1823 * least one lazy callback. This will unnecessarily post callbacks
1824 * to CPUs that already have a non-lazy callback at the end of their
1825 * callback list, but this is an infrequent operation, so accept some
1826 * extra overhead to keep things simple.
1828 static void rcu_oom_notify_cpu(void *unused
)
1830 struct rcu_state
*rsp
;
1831 struct rcu_data
*rdp
;
1833 for_each_rcu_flavor(rsp
) {
1834 rdp
= __this_cpu_ptr(rsp
->rda
);
1835 if (rdp
->qlen_lazy
!= 0) {
1836 atomic_inc(&oom_callback_count
);
1837 rsp
->call(&rdp
->oom_head
, rcu_oom_callback
);
1843 * If low on memory, ensure that each CPU has a non-lazy callback.
1844 * This will wake up CPUs that have only lazy callbacks, in turn
1845 * ensuring that they free up the corresponding memory in a timely manner.
1846 * Because an uncertain amount of memory will be freed in some uncertain
1847 * timeframe, we do not claim to have freed anything.
1849 static int rcu_oom_notify(struct notifier_block
*self
,
1850 unsigned long notused
, void *nfreed
)
1854 /* Wait for callbacks from earlier instance to complete. */
1855 wait_event(oom_callback_wq
, atomic_read(&oom_callback_count
) == 0);
1858 * Prevent premature wakeup: ensure that all increments happen
1859 * before there is a chance of the counter reaching zero.
1861 atomic_set(&oom_callback_count
, 1);
1864 for_each_online_cpu(cpu
) {
1865 smp_call_function_single(cpu
, rcu_oom_notify_cpu
, NULL
, 1);
1870 /* Unconditionally decrement: no need to wake ourselves up. */
1871 atomic_dec(&oom_callback_count
);
1876 static struct notifier_block rcu_oom_nb
= {
1877 .notifier_call
= rcu_oom_notify
1880 static int __init
rcu_register_oom_notifier(void)
1882 register_oom_notifier(&rcu_oom_nb
);
1885 early_initcall(rcu_register_oom_notifier
);
1887 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1889 #ifdef CONFIG_RCU_CPU_STALL_INFO
1891 #ifdef CONFIG_RCU_FAST_NO_HZ
1893 static void print_cpu_stall_fast_no_hz(char *cp
, int cpu
)
1895 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
1896 unsigned long nlpd
= rdtp
->nonlazy_posted
- rdtp
->nonlazy_posted_snap
;
1898 sprintf(cp
, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1899 rdtp
->last_accelerate
& 0xffff, jiffies
& 0xffff,
1901 rdtp
->all_lazy
? 'L' : '.',
1902 rdtp
->tick_nohz_enabled_snap
? '.' : 'D');
1905 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1907 static void print_cpu_stall_fast_no_hz(char *cp
, int cpu
)
1912 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1914 /* Initiate the stall-info list. */
1915 static void print_cpu_stall_info_begin(void)
1921 * Print out diagnostic information for the specified stalled CPU.
1923 * If the specified CPU is aware of the current RCU grace period
1924 * (flavor specified by rsp), then print the number of scheduling
1925 * clock interrupts the CPU has taken during the time that it has
1926 * been aware. Otherwise, print the number of RCU grace periods
1927 * that this CPU is ignorant of, for example, "1" if the CPU was
1928 * aware of the previous grace period.
1930 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1932 static void print_cpu_stall_info(struct rcu_state
*rsp
, int cpu
)
1934 char fast_no_hz
[72];
1935 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1936 struct rcu_dynticks
*rdtp
= rdp
->dynticks
;
1938 unsigned long ticks_value
;
1940 if (rsp
->gpnum
== rdp
->gpnum
) {
1941 ticks_title
= "ticks this GP";
1942 ticks_value
= rdp
->ticks_this_gp
;
1944 ticks_title
= "GPs behind";
1945 ticks_value
= rsp
->gpnum
- rdp
->gpnum
;
1947 print_cpu_stall_fast_no_hz(fast_no_hz
, cpu
);
1948 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1949 cpu
, ticks_value
, ticks_title
,
1950 atomic_read(&rdtp
->dynticks
) & 0xfff,
1951 rdtp
->dynticks_nesting
, rdtp
->dynticks_nmi_nesting
,
1952 rdp
->softirq_snap
, kstat_softirqs_cpu(RCU_SOFTIRQ
, cpu
),
1956 /* Terminate the stall-info list. */
1957 static void print_cpu_stall_info_end(void)
1962 /* Zero ->ticks_this_gp for all flavors of RCU. */
1963 static void zero_cpu_stall_ticks(struct rcu_data
*rdp
)
1965 rdp
->ticks_this_gp
= 0;
1966 rdp
->softirq_snap
= kstat_softirqs_cpu(RCU_SOFTIRQ
, smp_processor_id());
1969 /* Increment ->ticks_this_gp for all flavors of RCU. */
1970 static void increment_cpu_stall_ticks(void)
1972 struct rcu_state
*rsp
;
1974 for_each_rcu_flavor(rsp
)
1975 __this_cpu_ptr(rsp
->rda
)->ticks_this_gp
++;
1978 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1980 static void print_cpu_stall_info_begin(void)
1985 static void print_cpu_stall_info(struct rcu_state
*rsp
, int cpu
)
1987 pr_cont(" %d", cpu
);
1990 static void print_cpu_stall_info_end(void)
1995 static void zero_cpu_stall_ticks(struct rcu_data
*rdp
)
1999 static void increment_cpu_stall_ticks(void)
2003 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
2005 #ifdef CONFIG_RCU_NOCB_CPU
2008 * Offload callback processing from the boot-time-specified set of CPUs
2009 * specified by rcu_nocb_mask. For each CPU in the set, there is a
2010 * kthread created that pulls the callbacks from the corresponding CPU,
2011 * waits for a grace period to elapse, and invokes the callbacks.
2012 * The no-CBs CPUs do a wake_up() on their kthread when they insert
2013 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
2014 * has been specified, in which case each kthread actively polls its
2015 * CPU. (Which isn't so great for energy efficiency, but which does
2016 * reduce RCU's overhead on that CPU.)
2018 * This is intended to be used in conjunction with Frederic Weisbecker's
2019 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2020 * running CPU-bound user-mode computations.
2022 * Offloading of callback processing could also in theory be used as
2023 * an energy-efficiency measure because CPUs with no RCU callbacks
2024 * queued are more aggressive about entering dyntick-idle mode.
2028 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2029 static int __init
rcu_nocb_setup(char *str
)
2031 alloc_bootmem_cpumask_var(&rcu_nocb_mask
);
2032 have_rcu_nocb_mask
= true;
2033 cpulist_parse(str
, rcu_nocb_mask
);
2036 __setup("rcu_nocbs=", rcu_nocb_setup
);
2038 static int __init
parse_rcu_nocb_poll(char *arg
)
2043 early_param("rcu_nocb_poll", parse_rcu_nocb_poll
);
2046 * Do any no-CBs CPUs need another grace period?
2048 * Interrupts must be disabled. If the caller does not hold the root
2049 * rnp_node structure's ->lock, the results are advisory only.
2051 static int rcu_nocb_needs_gp(struct rcu_state
*rsp
)
2053 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2055 return rnp
->need_future_gp
[(ACCESS_ONCE(rnp
->completed
) + 1) & 0x1];
2059 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2062 static void rcu_nocb_gp_cleanup(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
2064 wake_up_all(&rnp
->nocb_gp_wq
[rnp
->completed
& 0x1]);
2068 * Set the root rcu_node structure's ->need_future_gp field
2069 * based on the sum of those of all rcu_node structures. This does
2070 * double-count the root rcu_node structure's requests, but this
2071 * is necessary to handle the possibility of a rcu_nocb_kthread()
2072 * having awakened during the time that the rcu_node structures
2073 * were being updated for the end of the previous grace period.
2075 static void rcu_nocb_gp_set(struct rcu_node
*rnp
, int nrq
)
2077 rnp
->need_future_gp
[(rnp
->completed
+ 1) & 0x1] += nrq
;
2080 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
2082 init_waitqueue_head(&rnp
->nocb_gp_wq
[0]);
2083 init_waitqueue_head(&rnp
->nocb_gp_wq
[1]);
2086 /* Is the specified CPU a no-CPUs CPU? */
2087 bool rcu_is_nocb_cpu(int cpu
)
2089 if (have_rcu_nocb_mask
)
2090 return cpumask_test_cpu(cpu
, rcu_nocb_mask
);
2095 * Enqueue the specified string of rcu_head structures onto the specified
2096 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2097 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2098 * counts are supplied by rhcount and rhcount_lazy.
2100 * If warranted, also wake up the kthread servicing this CPUs queues.
2102 static void __call_rcu_nocb_enqueue(struct rcu_data
*rdp
,
2103 struct rcu_head
*rhp
,
2104 struct rcu_head
**rhtp
,
2105 int rhcount
, int rhcount_lazy
)
2108 struct rcu_head
**old_rhpp
;
2109 struct task_struct
*t
;
2111 /* Enqueue the callback on the nocb list and update counts. */
2112 old_rhpp
= xchg(&rdp
->nocb_tail
, rhtp
);
2113 ACCESS_ONCE(*old_rhpp
) = rhp
;
2114 atomic_long_add(rhcount
, &rdp
->nocb_q_count
);
2115 atomic_long_add(rhcount_lazy
, &rdp
->nocb_q_count_lazy
);
2117 /* If we are not being polled and there is a kthread, awaken it ... */
2118 t
= ACCESS_ONCE(rdp
->nocb_kthread
);
2119 if (rcu_nocb_poll
| !t
)
2121 len
= atomic_long_read(&rdp
->nocb_q_count
);
2122 if (old_rhpp
== &rdp
->nocb_head
) {
2123 wake_up(&rdp
->nocb_wq
); /* ... only if queue was empty ... */
2124 rdp
->qlen_last_fqs_check
= 0;
2125 } else if (len
> rdp
->qlen_last_fqs_check
+ qhimark
) {
2126 wake_up_process(t
); /* ... or if many callbacks queued. */
2127 rdp
->qlen_last_fqs_check
= LONG_MAX
/ 2;
2133 * This is a helper for __call_rcu(), which invokes this when the normal
2134 * callback queue is inoperable. If this is not a no-CBs CPU, this
2135 * function returns failure back to __call_rcu(), which can complain
2138 * Otherwise, this function queues the callback where the corresponding
2139 * "rcuo" kthread can find it.
2141 static bool __call_rcu_nocb(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2145 if (!rcu_is_nocb_cpu(rdp
->cpu
))
2147 __call_rcu_nocb_enqueue(rdp
, rhp
, &rhp
->next
, 1, lazy
);
2148 if (__is_kfree_rcu_offset((unsigned long)rhp
->func
))
2149 trace_rcu_kfree_callback(rdp
->rsp
->name
, rhp
,
2150 (unsigned long)rhp
->func
,
2151 rdp
->qlen_lazy
, rdp
->qlen
);
2153 trace_rcu_callback(rdp
->rsp
->name
, rhp
,
2154 rdp
->qlen_lazy
, rdp
->qlen
);
2159 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2162 static bool __maybe_unused
rcu_nocb_adopt_orphan_cbs(struct rcu_state
*rsp
,
2163 struct rcu_data
*rdp
)
2165 long ql
= rsp
->qlen
;
2166 long qll
= rsp
->qlen_lazy
;
2168 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2169 if (!rcu_is_nocb_cpu(smp_processor_id()))
2174 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2175 if (rsp
->orphan_donelist
!= NULL
) {
2176 __call_rcu_nocb_enqueue(rdp
, rsp
->orphan_donelist
,
2177 rsp
->orphan_donetail
, ql
, qll
);
2179 rsp
->orphan_donelist
= NULL
;
2180 rsp
->orphan_donetail
= &rsp
->orphan_donelist
;
2182 if (rsp
->orphan_nxtlist
!= NULL
) {
2183 __call_rcu_nocb_enqueue(rdp
, rsp
->orphan_nxtlist
,
2184 rsp
->orphan_nxttail
, ql
, qll
);
2186 rsp
->orphan_nxtlist
= NULL
;
2187 rsp
->orphan_nxttail
= &rsp
->orphan_nxtlist
;
2193 * If necessary, kick off a new grace period, and either way wait
2194 * for a subsequent grace period to complete.
2196 static void rcu_nocb_wait_gp(struct rcu_data
*rdp
)
2200 unsigned long flags
;
2201 struct rcu_node
*rnp
= rdp
->mynode
;
2203 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
2204 c
= rcu_start_future_gp(rnp
, rdp
);
2205 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2208 * Wait for the grace period. Do so interruptibly to avoid messing
2209 * up the load average.
2211 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("StartWait"));
2213 wait_event_interruptible(
2214 rnp
->nocb_gp_wq
[c
& 0x1],
2215 (d
= ULONG_CMP_GE(ACCESS_ONCE(rnp
->completed
), c
)));
2218 flush_signals(current
);
2219 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("ResumeWait"));
2221 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("EndWait"));
2222 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2226 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2227 * callbacks queued by the corresponding no-CBs CPU.
2229 static int rcu_nocb_kthread(void *arg
)
2232 struct rcu_head
*list
;
2233 struct rcu_head
*next
;
2234 struct rcu_head
**tail
;
2235 struct rcu_data
*rdp
= arg
;
2237 /* Each pass through this loop invokes one batch of callbacks */
2239 /* If not polling, wait for next batch of callbacks. */
2241 wait_event_interruptible(rdp
->nocb_wq
, rdp
->nocb_head
);
2242 list
= ACCESS_ONCE(rdp
->nocb_head
);
2244 schedule_timeout_interruptible(1);
2245 flush_signals(current
);
2250 * Extract queued callbacks, update counts, and wait
2251 * for a grace period to elapse.
2253 ACCESS_ONCE(rdp
->nocb_head
) = NULL
;
2254 tail
= xchg(&rdp
->nocb_tail
, &rdp
->nocb_head
);
2255 c
= atomic_long_xchg(&rdp
->nocb_q_count
, 0);
2256 cl
= atomic_long_xchg(&rdp
->nocb_q_count_lazy
, 0);
2257 ACCESS_ONCE(rdp
->nocb_p_count
) += c
;
2258 ACCESS_ONCE(rdp
->nocb_p_count_lazy
) += cl
;
2259 rcu_nocb_wait_gp(rdp
);
2261 /* Each pass through the following loop invokes a callback. */
2262 trace_rcu_batch_start(rdp
->rsp
->name
, cl
, c
, -1);
2266 /* Wait for enqueuing to complete, if needed. */
2267 while (next
== NULL
&& &list
->next
!= tail
) {
2268 schedule_timeout_interruptible(1);
2271 debug_rcu_head_unqueue(list
);
2273 if (__rcu_reclaim(rdp
->rsp
->name
, list
))
2279 trace_rcu_batch_end(rdp
->rsp
->name
, c
, !!list
, 0, 0, 1);
2280 ACCESS_ONCE(rdp
->nocb_p_count
) -= c
;
2281 ACCESS_ONCE(rdp
->nocb_p_count_lazy
) -= cl
;
2282 rdp
->n_nocbs_invoked
+= c
;
2287 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2288 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2290 rdp
->nocb_tail
= &rdp
->nocb_head
;
2291 init_waitqueue_head(&rdp
->nocb_wq
);
2294 /* Create a kthread for each RCU flavor for each no-CBs CPU. */
2295 static void __init
rcu_spawn_nocb_kthreads(struct rcu_state
*rsp
)
2298 struct rcu_data
*rdp
;
2299 struct task_struct
*t
;
2301 if (rcu_nocb_mask
== NULL
)
2303 for_each_cpu(cpu
, rcu_nocb_mask
) {
2304 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2305 t
= kthread_run(rcu_nocb_kthread
, rdp
,
2306 "rcuo%c/%d", rsp
->abbr
, cpu
);
2308 ACCESS_ONCE(rdp
->nocb_kthread
) = t
;
2312 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2313 static bool init_nocb_callback_list(struct rcu_data
*rdp
)
2315 if (rcu_nocb_mask
== NULL
||
2316 !cpumask_test_cpu(rdp
->cpu
, rcu_nocb_mask
))
2318 rdp
->nxttail
[RCU_NEXT_TAIL
] = NULL
;
2322 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2324 static int rcu_nocb_needs_gp(struct rcu_state
*rsp
)
2329 static void rcu_nocb_gp_cleanup(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
2333 static void rcu_nocb_gp_set(struct rcu_node
*rnp
, int nrq
)
2337 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
2341 static bool __call_rcu_nocb(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2347 static bool __maybe_unused
rcu_nocb_adopt_orphan_cbs(struct rcu_state
*rsp
,
2348 struct rcu_data
*rdp
)
2353 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2357 static void __init
rcu_spawn_nocb_kthreads(struct rcu_state
*rsp
)
2361 static bool init_nocb_callback_list(struct rcu_data
*rdp
)
2366 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2369 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2370 * arbitrarily long period of time with the scheduling-clock tick turned
2371 * off. RCU will be paying attention to this CPU because it is in the
2372 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2373 * machine because the scheduling-clock tick has been disabled. Therefore,
2374 * if an adaptive-ticks CPU is failing to respond to the current grace
2375 * period and has not be idle from an RCU perspective, kick it.
2377 static void rcu_kick_nohz_cpu(int cpu
)
2379 #ifdef CONFIG_NO_HZ_FULL
2380 if (tick_nohz_full_cpu(cpu
))
2381 smp_send_reschedule(cpu
);
2382 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2386 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2389 * Define RCU flavor that holds sysidle state. This needs to be the
2390 * most active flavor of RCU.
2392 #ifdef CONFIG_PREEMPT_RCU
2393 static struct rcu_state
*rcu_sysidle_state
= &rcu_preempt_state
;
2394 #else /* #ifdef CONFIG_PREEMPT_RCU */
2395 static struct rcu_state
*rcu_sysidle_state
= &rcu_sched_state
;
2396 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2398 static int full_sysidle_state
; /* Current system-idle state. */
2399 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2400 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2401 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2402 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2403 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2406 * Invoked to note exit from irq or task transition to idle. Note that
2407 * usermode execution does -not- count as idle here! After all, we want
2408 * to detect full-system idle states, not RCU quiescent states and grace
2409 * periods. The caller must have disabled interrupts.
2411 static void rcu_sysidle_enter(struct rcu_dynticks
*rdtp
, int irq
)
2415 /* Adjust nesting, check for fully idle. */
2417 rdtp
->dynticks_idle_nesting
--;
2418 WARN_ON_ONCE(rdtp
->dynticks_idle_nesting
< 0);
2419 if (rdtp
->dynticks_idle_nesting
!= 0)
2420 return; /* Still not fully idle. */
2422 if ((rdtp
->dynticks_idle_nesting
& DYNTICK_TASK_NEST_MASK
) ==
2423 DYNTICK_TASK_NEST_VALUE
) {
2424 rdtp
->dynticks_idle_nesting
= 0;
2426 rdtp
->dynticks_idle_nesting
-= DYNTICK_TASK_NEST_VALUE
;
2427 WARN_ON_ONCE(rdtp
->dynticks_idle_nesting
< 0);
2428 return; /* Still not fully idle. */
2432 /* Record start of fully idle period. */
2434 ACCESS_ONCE(rdtp
->dynticks_idle_jiffies
) = j
;
2435 smp_mb__before_atomic_inc();
2436 atomic_inc(&rdtp
->dynticks_idle
);
2437 smp_mb__after_atomic_inc();
2438 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks_idle
) & 0x1);
2442 * Unconditionally force exit from full system-idle state. This is
2443 * invoked when a normal CPU exits idle, but must be called separately
2444 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2445 * is that the timekeeping CPU is permitted to take scheduling-clock
2446 * interrupts while the system is in system-idle state, and of course
2447 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2448 * interrupt from any other type of interrupt.
2450 void rcu_sysidle_force_exit(void)
2452 int oldstate
= ACCESS_ONCE(full_sysidle_state
);
2456 * Each pass through the following loop attempts to exit full
2457 * system-idle state. If contention proves to be a problem,
2458 * a trylock-based contention tree could be used here.
2460 while (oldstate
> RCU_SYSIDLE_SHORT
) {
2461 newoldstate
= cmpxchg(&full_sysidle_state
,
2462 oldstate
, RCU_SYSIDLE_NOT
);
2463 if (oldstate
== newoldstate
&&
2464 oldstate
== RCU_SYSIDLE_FULL_NOTED
) {
2465 rcu_kick_nohz_cpu(tick_do_timer_cpu
);
2466 return; /* We cleared it, done! */
2468 oldstate
= newoldstate
;
2470 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2474 * Invoked to note entry to irq or task transition from idle. Note that
2475 * usermode execution does -not- count as idle here! The caller must
2476 * have disabled interrupts.
2478 static void rcu_sysidle_exit(struct rcu_dynticks
*rdtp
, int irq
)
2480 /* Adjust nesting, check for already non-idle. */
2482 rdtp
->dynticks_idle_nesting
++;
2483 WARN_ON_ONCE(rdtp
->dynticks_idle_nesting
<= 0);
2484 if (rdtp
->dynticks_idle_nesting
!= 1)
2485 return; /* Already non-idle. */
2488 * Allow for irq misnesting. Yes, it really is possible
2489 * to enter an irq handler then never leave it, and maybe
2490 * also vice versa. Handle both possibilities.
2492 if (rdtp
->dynticks_idle_nesting
& DYNTICK_TASK_NEST_MASK
) {
2493 rdtp
->dynticks_idle_nesting
+= DYNTICK_TASK_NEST_VALUE
;
2494 WARN_ON_ONCE(rdtp
->dynticks_idle_nesting
<= 0);
2495 return; /* Already non-idle. */
2497 rdtp
->dynticks_idle_nesting
= DYNTICK_TASK_EXIT_IDLE
;
2501 /* Record end of idle period. */
2502 smp_mb__before_atomic_inc();
2503 atomic_inc(&rdtp
->dynticks_idle
);
2504 smp_mb__after_atomic_inc();
2505 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks_idle
) & 0x1));
2508 * If we are the timekeeping CPU, we are permitted to be non-idle
2509 * during a system-idle state. This must be the case, because
2510 * the timekeeping CPU has to take scheduling-clock interrupts
2511 * during the time that the system is transitioning to full
2512 * system-idle state. This means that the timekeeping CPU must
2513 * invoke rcu_sysidle_force_exit() directly if it does anything
2514 * more than take a scheduling-clock interrupt.
2516 if (smp_processor_id() == tick_do_timer_cpu
)
2519 /* Update system-idle state: We are clearly no longer fully idle! */
2520 rcu_sysidle_force_exit();
2524 * Check to see if the current CPU is idle. Note that usermode execution
2525 * does not count as idle. The caller must have disabled interrupts.
2527 static void rcu_sysidle_check_cpu(struct rcu_data
*rdp
, bool *isidle
,
2528 unsigned long *maxj
)
2532 struct rcu_dynticks
*rdtp
= rdp
->dynticks
;
2535 * If some other CPU has already reported non-idle, if this is
2536 * not the flavor of RCU that tracks sysidle state, or if this
2537 * is an offline or the timekeeping CPU, nothing to do.
2539 if (!*isidle
|| rdp
->rsp
!= rcu_sysidle_state
||
2540 cpu_is_offline(rdp
->cpu
) || rdp
->cpu
== tick_do_timer_cpu
)
2542 if (rcu_gp_in_progress(rdp
->rsp
))
2543 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu
);
2545 /* Pick up current idle and NMI-nesting counter and check. */
2546 cur
= atomic_read(&rdtp
->dynticks_idle
);
2548 *isidle
= false; /* We are not idle! */
2551 smp_mb(); /* Read counters before timestamps. */
2553 /* Pick up timestamps. */
2554 j
= ACCESS_ONCE(rdtp
->dynticks_idle_jiffies
);
2555 /* If this CPU entered idle more recently, update maxj timestamp. */
2556 if (ULONG_CMP_LT(*maxj
, j
))
2561 * Is this the flavor of RCU that is handling full-system idle?
2563 static bool is_sysidle_rcu_state(struct rcu_state
*rsp
)
2565 return rsp
== rcu_sysidle_state
;
2569 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2572 static void rcu_bind_gp_kthread(void)
2574 int cpu
= ACCESS_ONCE(tick_do_timer_cpu
);
2576 if (cpu
< 0 || cpu
>= nr_cpu_ids
)
2578 if (raw_smp_processor_id() != cpu
)
2579 set_cpus_allowed_ptr(current
, cpumask_of(cpu
));
2583 * Return a delay in jiffies based on the number of CPUs, rcu_node
2584 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2585 * systems more time to transition to full-idle state in order to
2586 * avoid the cache thrashing that otherwise occur on the state variable.
2587 * Really small systems (less than a couple of tens of CPUs) should
2588 * instead use a single global atomically incremented counter, and later
2589 * versions of this will automatically reconfigure themselves accordingly.
2591 static unsigned long rcu_sysidle_delay(void)
2593 if (nr_cpu_ids
<= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL
)
2595 return DIV_ROUND_UP(nr_cpu_ids
* HZ
, rcu_fanout_leaf
* 1000);
2599 * Advance the full-system-idle state. This is invoked when all of
2600 * the non-timekeeping CPUs are idle.
2602 static void rcu_sysidle(unsigned long j
)
2604 /* Check the current state. */
2605 switch (ACCESS_ONCE(full_sysidle_state
)) {
2606 case RCU_SYSIDLE_NOT
:
2608 /* First time all are idle, so note a short idle period. */
2609 ACCESS_ONCE(full_sysidle_state
) = RCU_SYSIDLE_SHORT
;
2612 case RCU_SYSIDLE_SHORT
:
2615 * Idle for a bit, time to advance to next state?
2616 * cmpxchg failure means race with non-idle, let them win.
2618 if (ULONG_CMP_GE(jiffies
, j
+ rcu_sysidle_delay()))
2619 (void)cmpxchg(&full_sysidle_state
,
2620 RCU_SYSIDLE_SHORT
, RCU_SYSIDLE_LONG
);
2623 case RCU_SYSIDLE_LONG
:
2626 * Do an additional check pass before advancing to full.
2627 * cmpxchg failure means race with non-idle, let them win.
2629 if (ULONG_CMP_GE(jiffies
, j
+ rcu_sysidle_delay()))
2630 (void)cmpxchg(&full_sysidle_state
,
2631 RCU_SYSIDLE_LONG
, RCU_SYSIDLE_FULL
);
2640 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2641 * back to the beginning.
2643 static void rcu_sysidle_cancel(void)
2646 ACCESS_ONCE(full_sysidle_state
) = RCU_SYSIDLE_NOT
;
2650 * Update the sysidle state based on the results of a force-quiescent-state
2651 * scan of the CPUs' dyntick-idle state.
2653 static void rcu_sysidle_report(struct rcu_state
*rsp
, int isidle
,
2654 unsigned long maxj
, bool gpkt
)
2656 if (rsp
!= rcu_sysidle_state
)
2657 return; /* Wrong flavor, ignore. */
2658 if (gpkt
&& nr_cpu_ids
<= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL
)
2659 return; /* Running state machine from timekeeping CPU. */
2661 rcu_sysidle(maxj
); /* More idle! */
2663 rcu_sysidle_cancel(); /* Idle is over. */
2667 * Wrapper for rcu_sysidle_report() when called from the grace-period
2668 * kthread's context.
2670 static void rcu_sysidle_report_gp(struct rcu_state
*rsp
, int isidle
,
2673 rcu_sysidle_report(rsp
, isidle
, maxj
, true);
2676 /* Callback and function for forcing an RCU grace period. */
2677 struct rcu_sysidle_head
{
2682 static void rcu_sysidle_cb(struct rcu_head
*rhp
)
2684 struct rcu_sysidle_head
*rshp
;
2687 * The following memory barrier is needed to replace the
2688 * memory barriers that would normally be in the memory
2691 smp_mb(); /* grace period precedes setting inuse. */
2693 rshp
= container_of(rhp
, struct rcu_sysidle_head
, rh
);
2694 ACCESS_ONCE(rshp
->inuse
) = 0;
2698 * Check to see if the system is fully idle, other than the timekeeping CPU.
2699 * The caller must have disabled interrupts.
2701 bool rcu_sys_is_idle(void)
2703 static struct rcu_sysidle_head rsh
;
2704 int rss
= ACCESS_ONCE(full_sysidle_state
);
2706 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu
))
2709 /* Handle small-system case by doing a full scan of CPUs. */
2710 if (nr_cpu_ids
<= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL
) {
2711 int oldrss
= rss
- 1;
2714 * One pass to advance to each state up to _FULL.
2715 * Give up if any pass fails to advance the state.
2717 while (rss
< RCU_SYSIDLE_FULL
&& oldrss
< rss
) {
2720 unsigned long maxj
= jiffies
- ULONG_MAX
/ 4;
2721 struct rcu_data
*rdp
;
2723 /* Scan all the CPUs looking for nonidle CPUs. */
2724 for_each_possible_cpu(cpu
) {
2725 rdp
= per_cpu_ptr(rcu_sysidle_state
->rda
, cpu
);
2726 rcu_sysidle_check_cpu(rdp
, &isidle
, &maxj
);
2730 rcu_sysidle_report(rcu_sysidle_state
,
2731 isidle
, maxj
, false);
2733 rss
= ACCESS_ONCE(full_sysidle_state
);
2737 /* If this is the first observation of an idle period, record it. */
2738 if (rss
== RCU_SYSIDLE_FULL
) {
2739 rss
= cmpxchg(&full_sysidle_state
,
2740 RCU_SYSIDLE_FULL
, RCU_SYSIDLE_FULL_NOTED
);
2741 return rss
== RCU_SYSIDLE_FULL
;
2744 smp_mb(); /* ensure rss load happens before later caller actions. */
2746 /* If already fully idle, tell the caller (in case of races). */
2747 if (rss
== RCU_SYSIDLE_FULL_NOTED
)
2751 * If we aren't there yet, and a grace period is not in flight,
2752 * initiate a grace period. Either way, tell the caller that
2753 * we are not there yet. We use an xchg() rather than an assignment
2754 * to make up for the memory barriers that would otherwise be
2755 * provided by the memory allocator.
2757 if (nr_cpu_ids
> CONFIG_NO_HZ_FULL_SYSIDLE_SMALL
&&
2758 !rcu_gp_in_progress(rcu_sysidle_state
) &&
2759 !rsh
.inuse
&& xchg(&rsh
.inuse
, 1) == 0)
2760 call_rcu(&rsh
.rh
, rcu_sysidle_cb
);
2765 * Initialize dynticks sysidle state for CPUs coming online.
2767 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks
*rdtp
)
2769 rdtp
->dynticks_idle_nesting
= DYNTICK_TASK_NEST_VALUE
;
2772 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2774 static void rcu_sysidle_enter(struct rcu_dynticks
*rdtp
, int irq
)
2778 static void rcu_sysidle_exit(struct rcu_dynticks
*rdtp
, int irq
)
2782 static void rcu_sysidle_check_cpu(struct rcu_data
*rdp
, bool *isidle
,
2783 unsigned long *maxj
)
2787 static bool is_sysidle_rcu_state(struct rcu_state
*rsp
)
2792 static void rcu_bind_gp_kthread(void)
2796 static void rcu_sysidle_report_gp(struct rcu_state
*rsp
, int isidle
,
2801 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks
*rdtp
)
2805 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */