x86/xen: resume timer irqs early
[linux/fpc-iii.git] / mm / rmap.c
blob4271107aa46eaeab68989330752be159176e2957
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
61 #include <asm/tlbflush.h>
63 #include "internal.h"
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
68 static inline struct anon_vma *anon_vma_alloc(void)
70 struct anon_vma *anon_vma;
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
79 anon_vma->root = anon_vma;
82 return anon_vma;
85 static inline void anon_vma_free(struct anon_vma *anon_vma)
87 VM_BUG_ON(atomic_read(&anon_vma->refcount));
90 * Synchronize against page_lock_anon_vma_read() such that
91 * we can safely hold the lock without the anon_vma getting
92 * freed.
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
96 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
98 * page_lock_anon_vma_read() VS put_anon_vma()
99 * down_read_trylock() atomic_dec_and_test()
100 * LOCK MB
101 * atomic_read() rwsem_is_locked()
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
106 might_sleep();
107 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
108 anon_vma_lock_write(anon_vma);
109 anon_vma_unlock_write(anon_vma);
112 kmem_cache_free(anon_vma_cachep, anon_vma);
115 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
117 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
125 static void anon_vma_chain_link(struct vm_area_struct *vma,
126 struct anon_vma_chain *avc,
127 struct anon_vma *anon_vma)
129 avc->vma = vma;
130 avc->anon_vma = anon_vma;
131 list_add(&avc->same_vma, &vma->anon_vma_chain);
132 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
136 * anon_vma_prepare - attach an anon_vma to a memory region
137 * @vma: the memory region in question
139 * This makes sure the memory mapping described by 'vma' has
140 * an 'anon_vma' attached to it, so that we can associate the
141 * anonymous pages mapped into it with that anon_vma.
143 * The common case will be that we already have one, but if
144 * not we either need to find an adjacent mapping that we
145 * can re-use the anon_vma from (very common when the only
146 * reason for splitting a vma has been mprotect()), or we
147 * allocate a new one.
149 * Anon-vma allocations are very subtle, because we may have
150 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
151 * and that may actually touch the spinlock even in the newly
152 * allocated vma (it depends on RCU to make sure that the
153 * anon_vma isn't actually destroyed).
155 * As a result, we need to do proper anon_vma locking even
156 * for the new allocation. At the same time, we do not want
157 * to do any locking for the common case of already having
158 * an anon_vma.
160 * This must be called with the mmap_sem held for reading.
162 int anon_vma_prepare(struct vm_area_struct *vma)
164 struct anon_vma *anon_vma = vma->anon_vma;
165 struct anon_vma_chain *avc;
167 might_sleep();
168 if (unlikely(!anon_vma)) {
169 struct mm_struct *mm = vma->vm_mm;
170 struct anon_vma *allocated;
172 avc = anon_vma_chain_alloc(GFP_KERNEL);
173 if (!avc)
174 goto out_enomem;
176 anon_vma = find_mergeable_anon_vma(vma);
177 allocated = NULL;
178 if (!anon_vma) {
179 anon_vma = anon_vma_alloc();
180 if (unlikely(!anon_vma))
181 goto out_enomem_free_avc;
182 allocated = anon_vma;
185 anon_vma_lock_write(anon_vma);
186 /* page_table_lock to protect against threads */
187 spin_lock(&mm->page_table_lock);
188 if (likely(!vma->anon_vma)) {
189 vma->anon_vma = anon_vma;
190 anon_vma_chain_link(vma, avc, anon_vma);
191 allocated = NULL;
192 avc = NULL;
194 spin_unlock(&mm->page_table_lock);
195 anon_vma_unlock_write(anon_vma);
197 if (unlikely(allocated))
198 put_anon_vma(allocated);
199 if (unlikely(avc))
200 anon_vma_chain_free(avc);
202 return 0;
204 out_enomem_free_avc:
205 anon_vma_chain_free(avc);
206 out_enomem:
207 return -ENOMEM;
211 * This is a useful helper function for locking the anon_vma root as
212 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
213 * have the same vma.
215 * Such anon_vma's should have the same root, so you'd expect to see
216 * just a single mutex_lock for the whole traversal.
218 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
220 struct anon_vma *new_root = anon_vma->root;
221 if (new_root != root) {
222 if (WARN_ON_ONCE(root))
223 up_write(&root->rwsem);
224 root = new_root;
225 down_write(&root->rwsem);
227 return root;
230 static inline void unlock_anon_vma_root(struct anon_vma *root)
232 if (root)
233 up_write(&root->rwsem);
237 * Attach the anon_vmas from src to dst.
238 * Returns 0 on success, -ENOMEM on failure.
240 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
242 struct anon_vma_chain *avc, *pavc;
243 struct anon_vma *root = NULL;
245 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
246 struct anon_vma *anon_vma;
248 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
249 if (unlikely(!avc)) {
250 unlock_anon_vma_root(root);
251 root = NULL;
252 avc = anon_vma_chain_alloc(GFP_KERNEL);
253 if (!avc)
254 goto enomem_failure;
256 anon_vma = pavc->anon_vma;
257 root = lock_anon_vma_root(root, anon_vma);
258 anon_vma_chain_link(dst, avc, anon_vma);
260 unlock_anon_vma_root(root);
261 return 0;
263 enomem_failure:
264 unlink_anon_vmas(dst);
265 return -ENOMEM;
269 * Attach vma to its own anon_vma, as well as to the anon_vmas that
270 * the corresponding VMA in the parent process is attached to.
271 * Returns 0 on success, non-zero on failure.
273 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
275 struct anon_vma_chain *avc;
276 struct anon_vma *anon_vma;
278 /* Don't bother if the parent process has no anon_vma here. */
279 if (!pvma->anon_vma)
280 return 0;
283 * First, attach the new VMA to the parent VMA's anon_vmas,
284 * so rmap can find non-COWed pages in child processes.
286 if (anon_vma_clone(vma, pvma))
287 return -ENOMEM;
289 /* Then add our own anon_vma. */
290 anon_vma = anon_vma_alloc();
291 if (!anon_vma)
292 goto out_error;
293 avc = anon_vma_chain_alloc(GFP_KERNEL);
294 if (!avc)
295 goto out_error_free_anon_vma;
298 * The root anon_vma's spinlock is the lock actually used when we
299 * lock any of the anon_vmas in this anon_vma tree.
301 anon_vma->root = pvma->anon_vma->root;
303 * With refcounts, an anon_vma can stay around longer than the
304 * process it belongs to. The root anon_vma needs to be pinned until
305 * this anon_vma is freed, because the lock lives in the root.
307 get_anon_vma(anon_vma->root);
308 /* Mark this anon_vma as the one where our new (COWed) pages go. */
309 vma->anon_vma = anon_vma;
310 anon_vma_lock_write(anon_vma);
311 anon_vma_chain_link(vma, avc, anon_vma);
312 anon_vma_unlock_write(anon_vma);
314 return 0;
316 out_error_free_anon_vma:
317 put_anon_vma(anon_vma);
318 out_error:
319 unlink_anon_vmas(vma);
320 return -ENOMEM;
323 void unlink_anon_vmas(struct vm_area_struct *vma)
325 struct anon_vma_chain *avc, *next;
326 struct anon_vma *root = NULL;
329 * Unlink each anon_vma chained to the VMA. This list is ordered
330 * from newest to oldest, ensuring the root anon_vma gets freed last.
332 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
333 struct anon_vma *anon_vma = avc->anon_vma;
335 root = lock_anon_vma_root(root, anon_vma);
336 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
339 * Leave empty anon_vmas on the list - we'll need
340 * to free them outside the lock.
342 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
343 continue;
345 list_del(&avc->same_vma);
346 anon_vma_chain_free(avc);
348 unlock_anon_vma_root(root);
351 * Iterate the list once more, it now only contains empty and unlinked
352 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
353 * needing to write-acquire the anon_vma->root->rwsem.
355 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
356 struct anon_vma *anon_vma = avc->anon_vma;
358 put_anon_vma(anon_vma);
360 list_del(&avc->same_vma);
361 anon_vma_chain_free(avc);
365 static void anon_vma_ctor(void *data)
367 struct anon_vma *anon_vma = data;
369 init_rwsem(&anon_vma->rwsem);
370 atomic_set(&anon_vma->refcount, 0);
371 anon_vma->rb_root = RB_ROOT;
374 void __init anon_vma_init(void)
376 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
377 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
378 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
382 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
384 * Since there is no serialization what so ever against page_remove_rmap()
385 * the best this function can do is return a locked anon_vma that might
386 * have been relevant to this page.
388 * The page might have been remapped to a different anon_vma or the anon_vma
389 * returned may already be freed (and even reused).
391 * In case it was remapped to a different anon_vma, the new anon_vma will be a
392 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
393 * ensure that any anon_vma obtained from the page will still be valid for as
394 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
396 * All users of this function must be very careful when walking the anon_vma
397 * chain and verify that the page in question is indeed mapped in it
398 * [ something equivalent to page_mapped_in_vma() ].
400 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
401 * that the anon_vma pointer from page->mapping is valid if there is a
402 * mapcount, we can dereference the anon_vma after observing those.
404 struct anon_vma *page_get_anon_vma(struct page *page)
406 struct anon_vma *anon_vma = NULL;
407 unsigned long anon_mapping;
409 rcu_read_lock();
410 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
411 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
412 goto out;
413 if (!page_mapped(page))
414 goto out;
416 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
417 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
418 anon_vma = NULL;
419 goto out;
423 * If this page is still mapped, then its anon_vma cannot have been
424 * freed. But if it has been unmapped, we have no security against the
425 * anon_vma structure being freed and reused (for another anon_vma:
426 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
427 * above cannot corrupt).
429 if (!page_mapped(page)) {
430 rcu_read_unlock();
431 put_anon_vma(anon_vma);
432 return NULL;
434 out:
435 rcu_read_unlock();
437 return anon_vma;
441 * Similar to page_get_anon_vma() except it locks the anon_vma.
443 * Its a little more complex as it tries to keep the fast path to a single
444 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
445 * reference like with page_get_anon_vma() and then block on the mutex.
447 struct anon_vma *page_lock_anon_vma_read(struct page *page)
449 struct anon_vma *anon_vma = NULL;
450 struct anon_vma *root_anon_vma;
451 unsigned long anon_mapping;
453 rcu_read_lock();
454 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
455 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
456 goto out;
457 if (!page_mapped(page))
458 goto out;
460 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
461 root_anon_vma = ACCESS_ONCE(anon_vma->root);
462 if (down_read_trylock(&root_anon_vma->rwsem)) {
464 * If the page is still mapped, then this anon_vma is still
465 * its anon_vma, and holding the mutex ensures that it will
466 * not go away, see anon_vma_free().
468 if (!page_mapped(page)) {
469 up_read(&root_anon_vma->rwsem);
470 anon_vma = NULL;
472 goto out;
475 /* trylock failed, we got to sleep */
476 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
477 anon_vma = NULL;
478 goto out;
481 if (!page_mapped(page)) {
482 rcu_read_unlock();
483 put_anon_vma(anon_vma);
484 return NULL;
487 /* we pinned the anon_vma, its safe to sleep */
488 rcu_read_unlock();
489 anon_vma_lock_read(anon_vma);
491 if (atomic_dec_and_test(&anon_vma->refcount)) {
493 * Oops, we held the last refcount, release the lock
494 * and bail -- can't simply use put_anon_vma() because
495 * we'll deadlock on the anon_vma_lock_write() recursion.
497 anon_vma_unlock_read(anon_vma);
498 __put_anon_vma(anon_vma);
499 anon_vma = NULL;
502 return anon_vma;
504 out:
505 rcu_read_unlock();
506 return anon_vma;
509 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
511 anon_vma_unlock_read(anon_vma);
515 * At what user virtual address is page expected in @vma?
517 static inline unsigned long
518 __vma_address(struct page *page, struct vm_area_struct *vma)
520 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
522 if (unlikely(is_vm_hugetlb_page(vma)))
523 pgoff = page->index << huge_page_order(page_hstate(page));
525 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
528 inline unsigned long
529 vma_address(struct page *page, struct vm_area_struct *vma)
531 unsigned long address = __vma_address(page, vma);
533 /* page should be within @vma mapping range */
534 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
536 return address;
540 * At what user virtual address is page expected in vma?
541 * Caller should check the page is actually part of the vma.
543 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
545 unsigned long address;
546 if (PageAnon(page)) {
547 struct anon_vma *page__anon_vma = page_anon_vma(page);
549 * Note: swapoff's unuse_vma() is more efficient with this
550 * check, and needs it to match anon_vma when KSM is active.
552 if (!vma->anon_vma || !page__anon_vma ||
553 vma->anon_vma->root != page__anon_vma->root)
554 return -EFAULT;
555 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
556 if (!vma->vm_file ||
557 vma->vm_file->f_mapping != page->mapping)
558 return -EFAULT;
559 } else
560 return -EFAULT;
561 address = __vma_address(page, vma);
562 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
563 return -EFAULT;
564 return address;
567 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
569 pgd_t *pgd;
570 pud_t *pud;
571 pmd_t *pmd = NULL;
573 pgd = pgd_offset(mm, address);
574 if (!pgd_present(*pgd))
575 goto out;
577 pud = pud_offset(pgd, address);
578 if (!pud_present(*pud))
579 goto out;
581 pmd = pmd_offset(pud, address);
582 if (!pmd_present(*pmd))
583 pmd = NULL;
584 out:
585 return pmd;
589 * Check that @page is mapped at @address into @mm.
591 * If @sync is false, page_check_address may perform a racy check to avoid
592 * the page table lock when the pte is not present (helpful when reclaiming
593 * highly shared pages).
595 * On success returns with pte mapped and locked.
597 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
598 unsigned long address, spinlock_t **ptlp, int sync)
600 pmd_t *pmd;
601 pte_t *pte;
602 spinlock_t *ptl;
604 if (unlikely(PageHuge(page))) {
605 /* when pud is not present, pte will be NULL */
606 pte = huge_pte_offset(mm, address);
607 if (!pte)
608 return NULL;
610 ptl = &mm->page_table_lock;
611 goto check;
614 pmd = mm_find_pmd(mm, address);
615 if (!pmd)
616 return NULL;
618 if (pmd_trans_huge(*pmd))
619 return NULL;
621 pte = pte_offset_map(pmd, address);
622 /* Make a quick check before getting the lock */
623 if (!sync && !pte_present(*pte)) {
624 pte_unmap(pte);
625 return NULL;
628 ptl = pte_lockptr(mm, pmd);
629 check:
630 spin_lock(ptl);
631 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
632 *ptlp = ptl;
633 return pte;
635 pte_unmap_unlock(pte, ptl);
636 return NULL;
640 * page_mapped_in_vma - check whether a page is really mapped in a VMA
641 * @page: the page to test
642 * @vma: the VMA to test
644 * Returns 1 if the page is mapped into the page tables of the VMA, 0
645 * if the page is not mapped into the page tables of this VMA. Only
646 * valid for normal file or anonymous VMAs.
648 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
650 unsigned long address;
651 pte_t *pte;
652 spinlock_t *ptl;
654 address = __vma_address(page, vma);
655 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
656 return 0;
657 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
658 if (!pte) /* the page is not in this mm */
659 return 0;
660 pte_unmap_unlock(pte, ptl);
662 return 1;
666 * Subfunctions of page_referenced: page_referenced_one called
667 * repeatedly from either page_referenced_anon or page_referenced_file.
669 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
670 unsigned long address, unsigned int *mapcount,
671 unsigned long *vm_flags)
673 struct mm_struct *mm = vma->vm_mm;
674 int referenced = 0;
676 if (unlikely(PageTransHuge(page))) {
677 pmd_t *pmd;
679 spin_lock(&mm->page_table_lock);
681 * rmap might return false positives; we must filter
682 * these out using page_check_address_pmd().
684 pmd = page_check_address_pmd(page, mm, address,
685 PAGE_CHECK_ADDRESS_PMD_FLAG);
686 if (!pmd) {
687 spin_unlock(&mm->page_table_lock);
688 goto out;
691 if (vma->vm_flags & VM_LOCKED) {
692 spin_unlock(&mm->page_table_lock);
693 *mapcount = 0; /* break early from loop */
694 *vm_flags |= VM_LOCKED;
695 goto out;
698 /* go ahead even if the pmd is pmd_trans_splitting() */
699 if (pmdp_clear_flush_young_notify(vma, address, pmd))
700 referenced++;
701 spin_unlock(&mm->page_table_lock);
702 } else {
703 pte_t *pte;
704 spinlock_t *ptl;
707 * rmap might return false positives; we must filter
708 * these out using page_check_address().
710 pte = page_check_address(page, mm, address, &ptl, 0);
711 if (!pte)
712 goto out;
714 if (vma->vm_flags & VM_LOCKED) {
715 pte_unmap_unlock(pte, ptl);
716 *mapcount = 0; /* break early from loop */
717 *vm_flags |= VM_LOCKED;
718 goto out;
721 if (ptep_clear_flush_young_notify(vma, address, pte)) {
723 * Don't treat a reference through a sequentially read
724 * mapping as such. If the page has been used in
725 * another mapping, we will catch it; if this other
726 * mapping is already gone, the unmap path will have
727 * set PG_referenced or activated the page.
729 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
730 referenced++;
732 pte_unmap_unlock(pte, ptl);
735 (*mapcount)--;
737 if (referenced)
738 *vm_flags |= vma->vm_flags;
739 out:
740 return referenced;
743 static int page_referenced_anon(struct page *page,
744 struct mem_cgroup *memcg,
745 unsigned long *vm_flags)
747 unsigned int mapcount;
748 struct anon_vma *anon_vma;
749 pgoff_t pgoff;
750 struct anon_vma_chain *avc;
751 int referenced = 0;
753 anon_vma = page_lock_anon_vma_read(page);
754 if (!anon_vma)
755 return referenced;
757 mapcount = page_mapcount(page);
758 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
759 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
760 struct vm_area_struct *vma = avc->vma;
761 unsigned long address = vma_address(page, vma);
763 * If we are reclaiming on behalf of a cgroup, skip
764 * counting on behalf of references from different
765 * cgroups
767 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
768 continue;
769 referenced += page_referenced_one(page, vma, address,
770 &mapcount, vm_flags);
771 if (!mapcount)
772 break;
775 page_unlock_anon_vma_read(anon_vma);
776 return referenced;
780 * page_referenced_file - referenced check for object-based rmap
781 * @page: the page we're checking references on.
782 * @memcg: target memory control group
783 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
785 * For an object-based mapped page, find all the places it is mapped and
786 * check/clear the referenced flag. This is done by following the page->mapping
787 * pointer, then walking the chain of vmas it holds. It returns the number
788 * of references it found.
790 * This function is only called from page_referenced for object-based pages.
792 static int page_referenced_file(struct page *page,
793 struct mem_cgroup *memcg,
794 unsigned long *vm_flags)
796 unsigned int mapcount;
797 struct address_space *mapping = page->mapping;
798 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
799 struct vm_area_struct *vma;
800 int referenced = 0;
803 * The caller's checks on page->mapping and !PageAnon have made
804 * sure that this is a file page: the check for page->mapping
805 * excludes the case just before it gets set on an anon page.
807 BUG_ON(PageAnon(page));
810 * The page lock not only makes sure that page->mapping cannot
811 * suddenly be NULLified by truncation, it makes sure that the
812 * structure at mapping cannot be freed and reused yet,
813 * so we can safely take mapping->i_mmap_mutex.
815 BUG_ON(!PageLocked(page));
817 mutex_lock(&mapping->i_mmap_mutex);
820 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
821 * is more likely to be accurate if we note it after spinning.
823 mapcount = page_mapcount(page);
825 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
826 unsigned long address = vma_address(page, vma);
828 * If we are reclaiming on behalf of a cgroup, skip
829 * counting on behalf of references from different
830 * cgroups
832 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
833 continue;
834 referenced += page_referenced_one(page, vma, address,
835 &mapcount, vm_flags);
836 if (!mapcount)
837 break;
840 mutex_unlock(&mapping->i_mmap_mutex);
841 return referenced;
845 * page_referenced - test if the page was referenced
846 * @page: the page to test
847 * @is_locked: caller holds lock on the page
848 * @memcg: target memory cgroup
849 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
851 * Quick test_and_clear_referenced for all mappings to a page,
852 * returns the number of ptes which referenced the page.
854 int page_referenced(struct page *page,
855 int is_locked,
856 struct mem_cgroup *memcg,
857 unsigned long *vm_flags)
859 int referenced = 0;
860 int we_locked = 0;
862 *vm_flags = 0;
863 if (page_mapped(page) && page_rmapping(page)) {
864 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
865 we_locked = trylock_page(page);
866 if (!we_locked) {
867 referenced++;
868 goto out;
871 if (unlikely(PageKsm(page)))
872 referenced += page_referenced_ksm(page, memcg,
873 vm_flags);
874 else if (PageAnon(page))
875 referenced += page_referenced_anon(page, memcg,
876 vm_flags);
877 else if (page->mapping)
878 referenced += page_referenced_file(page, memcg,
879 vm_flags);
880 if (we_locked)
881 unlock_page(page);
883 out:
884 return referenced;
887 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
888 unsigned long address)
890 struct mm_struct *mm = vma->vm_mm;
891 pte_t *pte;
892 spinlock_t *ptl;
893 int ret = 0;
895 pte = page_check_address(page, mm, address, &ptl, 1);
896 if (!pte)
897 goto out;
899 if (pte_dirty(*pte) || pte_write(*pte)) {
900 pte_t entry;
902 flush_cache_page(vma, address, pte_pfn(*pte));
903 entry = ptep_clear_flush(vma, address, pte);
904 entry = pte_wrprotect(entry);
905 entry = pte_mkclean(entry);
906 set_pte_at(mm, address, pte, entry);
907 ret = 1;
910 pte_unmap_unlock(pte, ptl);
912 if (ret)
913 mmu_notifier_invalidate_page(mm, address);
914 out:
915 return ret;
918 static int page_mkclean_file(struct address_space *mapping, struct page *page)
920 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
921 struct vm_area_struct *vma;
922 int ret = 0;
924 BUG_ON(PageAnon(page));
926 mutex_lock(&mapping->i_mmap_mutex);
927 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
928 if (vma->vm_flags & VM_SHARED) {
929 unsigned long address = vma_address(page, vma);
930 ret += page_mkclean_one(page, vma, address);
933 mutex_unlock(&mapping->i_mmap_mutex);
934 return ret;
937 int page_mkclean(struct page *page)
939 int ret = 0;
941 BUG_ON(!PageLocked(page));
943 if (page_mapped(page)) {
944 struct address_space *mapping = page_mapping(page);
945 if (mapping)
946 ret = page_mkclean_file(mapping, page);
949 return ret;
951 EXPORT_SYMBOL_GPL(page_mkclean);
954 * page_move_anon_rmap - move a page to our anon_vma
955 * @page: the page to move to our anon_vma
956 * @vma: the vma the page belongs to
957 * @address: the user virtual address mapped
959 * When a page belongs exclusively to one process after a COW event,
960 * that page can be moved into the anon_vma that belongs to just that
961 * process, so the rmap code will not search the parent or sibling
962 * processes.
964 void page_move_anon_rmap(struct page *page,
965 struct vm_area_struct *vma, unsigned long address)
967 struct anon_vma *anon_vma = vma->anon_vma;
969 VM_BUG_ON(!PageLocked(page));
970 VM_BUG_ON(!anon_vma);
971 VM_BUG_ON(page->index != linear_page_index(vma, address));
973 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
974 page->mapping = (struct address_space *) anon_vma;
978 * __page_set_anon_rmap - set up new anonymous rmap
979 * @page: Page to add to rmap
980 * @vma: VM area to add page to.
981 * @address: User virtual address of the mapping
982 * @exclusive: the page is exclusively owned by the current process
984 static void __page_set_anon_rmap(struct page *page,
985 struct vm_area_struct *vma, unsigned long address, int exclusive)
987 struct anon_vma *anon_vma = vma->anon_vma;
989 BUG_ON(!anon_vma);
991 if (PageAnon(page))
992 return;
995 * If the page isn't exclusively mapped into this vma,
996 * we must use the _oldest_ possible anon_vma for the
997 * page mapping!
999 if (!exclusive)
1000 anon_vma = anon_vma->root;
1002 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1003 page->mapping = (struct address_space *) anon_vma;
1004 page->index = linear_page_index(vma, address);
1008 * __page_check_anon_rmap - sanity check anonymous rmap addition
1009 * @page: the page to add the mapping to
1010 * @vma: the vm area in which the mapping is added
1011 * @address: the user virtual address mapped
1013 static void __page_check_anon_rmap(struct page *page,
1014 struct vm_area_struct *vma, unsigned long address)
1016 #ifdef CONFIG_DEBUG_VM
1018 * The page's anon-rmap details (mapping and index) are guaranteed to
1019 * be set up correctly at this point.
1021 * We have exclusion against page_add_anon_rmap because the caller
1022 * always holds the page locked, except if called from page_dup_rmap,
1023 * in which case the page is already known to be setup.
1025 * We have exclusion against page_add_new_anon_rmap because those pages
1026 * are initially only visible via the pagetables, and the pte is locked
1027 * over the call to page_add_new_anon_rmap.
1029 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1030 BUG_ON(page->index != linear_page_index(vma, address));
1031 #endif
1035 * page_add_anon_rmap - add pte mapping to an anonymous page
1036 * @page: the page to add the mapping to
1037 * @vma: the vm area in which the mapping is added
1038 * @address: the user virtual address mapped
1040 * The caller needs to hold the pte lock, and the page must be locked in
1041 * the anon_vma case: to serialize mapping,index checking after setting,
1042 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1043 * (but PageKsm is never downgraded to PageAnon).
1045 void page_add_anon_rmap(struct page *page,
1046 struct vm_area_struct *vma, unsigned long address)
1048 do_page_add_anon_rmap(page, vma, address, 0);
1052 * Special version of the above for do_swap_page, which often runs
1053 * into pages that are exclusively owned by the current process.
1054 * Everybody else should continue to use page_add_anon_rmap above.
1056 void do_page_add_anon_rmap(struct page *page,
1057 struct vm_area_struct *vma, unsigned long address, int exclusive)
1059 int first = atomic_inc_and_test(&page->_mapcount);
1060 if (first) {
1061 if (PageTransHuge(page))
1062 __inc_zone_page_state(page,
1063 NR_ANON_TRANSPARENT_HUGEPAGES);
1064 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1065 hpage_nr_pages(page));
1067 if (unlikely(PageKsm(page)))
1068 return;
1070 VM_BUG_ON(!PageLocked(page));
1071 /* address might be in next vma when migration races vma_adjust */
1072 if (first)
1073 __page_set_anon_rmap(page, vma, address, exclusive);
1074 else
1075 __page_check_anon_rmap(page, vma, address);
1079 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1080 * @page: the page to add the mapping to
1081 * @vma: the vm area in which the mapping is added
1082 * @address: the user virtual address mapped
1084 * Same as page_add_anon_rmap but must only be called on *new* pages.
1085 * This means the inc-and-test can be bypassed.
1086 * Page does not have to be locked.
1088 void page_add_new_anon_rmap(struct page *page,
1089 struct vm_area_struct *vma, unsigned long address)
1091 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1092 SetPageSwapBacked(page);
1093 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1094 if (PageTransHuge(page))
1095 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1096 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1097 hpage_nr_pages(page));
1098 __page_set_anon_rmap(page, vma, address, 1);
1099 if (!mlocked_vma_newpage(vma, page)) {
1100 SetPageActive(page);
1101 lru_cache_add(page);
1102 } else
1103 add_page_to_unevictable_list(page);
1107 * page_add_file_rmap - add pte mapping to a file page
1108 * @page: the page to add the mapping to
1110 * The caller needs to hold the pte lock.
1112 void page_add_file_rmap(struct page *page)
1114 bool locked;
1115 unsigned long flags;
1117 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1118 if (atomic_inc_and_test(&page->_mapcount)) {
1119 __inc_zone_page_state(page, NR_FILE_MAPPED);
1120 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1122 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1126 * page_remove_rmap - take down pte mapping from a page
1127 * @page: page to remove mapping from
1129 * The caller needs to hold the pte lock.
1131 void page_remove_rmap(struct page *page)
1133 bool anon = PageAnon(page);
1134 bool locked;
1135 unsigned long flags;
1138 * The anon case has no mem_cgroup page_stat to update; but may
1139 * uncharge_page() below, where the lock ordering can deadlock if
1140 * we hold the lock against page_stat move: so avoid it on anon.
1142 if (!anon)
1143 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1145 /* page still mapped by someone else? */
1146 if (!atomic_add_negative(-1, &page->_mapcount))
1147 goto out;
1150 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1151 * and not charged by memcg for now.
1153 if (unlikely(PageHuge(page)))
1154 goto out;
1155 if (anon) {
1156 mem_cgroup_uncharge_page(page);
1157 if (PageTransHuge(page))
1158 __dec_zone_page_state(page,
1159 NR_ANON_TRANSPARENT_HUGEPAGES);
1160 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1161 -hpage_nr_pages(page));
1162 } else {
1163 __dec_zone_page_state(page, NR_FILE_MAPPED);
1164 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1165 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1167 if (unlikely(PageMlocked(page)))
1168 clear_page_mlock(page);
1170 * It would be tidy to reset the PageAnon mapping here,
1171 * but that might overwrite a racing page_add_anon_rmap
1172 * which increments mapcount after us but sets mapping
1173 * before us: so leave the reset to free_hot_cold_page,
1174 * and remember that it's only reliable while mapped.
1175 * Leaving it set also helps swapoff to reinstate ptes
1176 * faster for those pages still in swapcache.
1178 return;
1179 out:
1180 if (!anon)
1181 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1185 * Subfunctions of try_to_unmap: try_to_unmap_one called
1186 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1188 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1189 unsigned long address, enum ttu_flags flags)
1191 struct mm_struct *mm = vma->vm_mm;
1192 pte_t *pte;
1193 pte_t pteval;
1194 spinlock_t *ptl;
1195 int ret = SWAP_AGAIN;
1197 pte = page_check_address(page, mm, address, &ptl, 0);
1198 if (!pte)
1199 goto out;
1202 * If the page is mlock()d, we cannot swap it out.
1203 * If it's recently referenced (perhaps page_referenced
1204 * skipped over this mm) then we should reactivate it.
1206 if (!(flags & TTU_IGNORE_MLOCK)) {
1207 if (vma->vm_flags & VM_LOCKED)
1208 goto out_mlock;
1210 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1211 goto out_unmap;
1213 if (!(flags & TTU_IGNORE_ACCESS)) {
1214 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1215 ret = SWAP_FAIL;
1216 goto out_unmap;
1220 /* Nuke the page table entry. */
1221 flush_cache_page(vma, address, page_to_pfn(page));
1222 pteval = ptep_clear_flush(vma, address, pte);
1224 /* Move the dirty bit to the physical page now the pte is gone. */
1225 if (pte_dirty(pteval))
1226 set_page_dirty(page);
1228 /* Update high watermark before we lower rss */
1229 update_hiwater_rss(mm);
1231 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1232 if (!PageHuge(page)) {
1233 if (PageAnon(page))
1234 dec_mm_counter(mm, MM_ANONPAGES);
1235 else
1236 dec_mm_counter(mm, MM_FILEPAGES);
1238 set_pte_at(mm, address, pte,
1239 swp_entry_to_pte(make_hwpoison_entry(page)));
1240 } else if (PageAnon(page)) {
1241 swp_entry_t entry = { .val = page_private(page) };
1242 pte_t swp_pte;
1244 if (PageSwapCache(page)) {
1246 * Store the swap location in the pte.
1247 * See handle_pte_fault() ...
1249 if (swap_duplicate(entry) < 0) {
1250 set_pte_at(mm, address, pte, pteval);
1251 ret = SWAP_FAIL;
1252 goto out_unmap;
1254 if (list_empty(&mm->mmlist)) {
1255 spin_lock(&mmlist_lock);
1256 if (list_empty(&mm->mmlist))
1257 list_add(&mm->mmlist, &init_mm.mmlist);
1258 spin_unlock(&mmlist_lock);
1260 dec_mm_counter(mm, MM_ANONPAGES);
1261 inc_mm_counter(mm, MM_SWAPENTS);
1262 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1264 * Store the pfn of the page in a special migration
1265 * pte. do_swap_page() will wait until the migration
1266 * pte is removed and then restart fault handling.
1268 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1269 entry = make_migration_entry(page, pte_write(pteval));
1271 swp_pte = swp_entry_to_pte(entry);
1272 if (pte_soft_dirty(pteval))
1273 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1274 set_pte_at(mm, address, pte, swp_pte);
1275 BUG_ON(pte_file(*pte));
1276 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1277 (TTU_ACTION(flags) == TTU_MIGRATION)) {
1278 /* Establish migration entry for a file page */
1279 swp_entry_t entry;
1280 entry = make_migration_entry(page, pte_write(pteval));
1281 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1282 } else
1283 dec_mm_counter(mm, MM_FILEPAGES);
1285 page_remove_rmap(page);
1286 page_cache_release(page);
1288 out_unmap:
1289 pte_unmap_unlock(pte, ptl);
1290 if (ret != SWAP_FAIL)
1291 mmu_notifier_invalidate_page(mm, address);
1292 out:
1293 return ret;
1295 out_mlock:
1296 pte_unmap_unlock(pte, ptl);
1300 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1301 * unstable result and race. Plus, We can't wait here because
1302 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1303 * if trylock failed, the page remain in evictable lru and later
1304 * vmscan could retry to move the page to unevictable lru if the
1305 * page is actually mlocked.
1307 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1308 if (vma->vm_flags & VM_LOCKED) {
1309 mlock_vma_page(page);
1310 ret = SWAP_MLOCK;
1312 up_read(&vma->vm_mm->mmap_sem);
1314 return ret;
1318 * objrmap doesn't work for nonlinear VMAs because the assumption that
1319 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1320 * Consequently, given a particular page and its ->index, we cannot locate the
1321 * ptes which are mapping that page without an exhaustive linear search.
1323 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1324 * maps the file to which the target page belongs. The ->vm_private_data field
1325 * holds the current cursor into that scan. Successive searches will circulate
1326 * around the vma's virtual address space.
1328 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1329 * more scanning pressure is placed against them as well. Eventually pages
1330 * will become fully unmapped and are eligible for eviction.
1332 * For very sparsely populated VMAs this is a little inefficient - chances are
1333 * there there won't be many ptes located within the scan cluster. In this case
1334 * maybe we could scan further - to the end of the pte page, perhaps.
1336 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1337 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1338 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1339 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1341 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1342 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1344 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1345 struct vm_area_struct *vma, struct page *check_page)
1347 struct mm_struct *mm = vma->vm_mm;
1348 pmd_t *pmd;
1349 pte_t *pte;
1350 pte_t pteval;
1351 spinlock_t *ptl;
1352 struct page *page;
1353 unsigned long address;
1354 unsigned long mmun_start; /* For mmu_notifiers */
1355 unsigned long mmun_end; /* For mmu_notifiers */
1356 unsigned long end;
1357 int ret = SWAP_AGAIN;
1358 int locked_vma = 0;
1360 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1361 end = address + CLUSTER_SIZE;
1362 if (address < vma->vm_start)
1363 address = vma->vm_start;
1364 if (end > vma->vm_end)
1365 end = vma->vm_end;
1367 pmd = mm_find_pmd(mm, address);
1368 if (!pmd)
1369 return ret;
1371 mmun_start = address;
1372 mmun_end = end;
1373 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1376 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1377 * keep the sem while scanning the cluster for mlocking pages.
1379 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1380 locked_vma = (vma->vm_flags & VM_LOCKED);
1381 if (!locked_vma)
1382 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1385 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1387 /* Update high watermark before we lower rss */
1388 update_hiwater_rss(mm);
1390 for (; address < end; pte++, address += PAGE_SIZE) {
1391 if (!pte_present(*pte))
1392 continue;
1393 page = vm_normal_page(vma, address, *pte);
1394 BUG_ON(!page || PageAnon(page));
1396 if (locked_vma) {
1397 if (page == check_page) {
1398 /* we know we have check_page locked */
1399 mlock_vma_page(page);
1400 ret = SWAP_MLOCK;
1401 } else if (trylock_page(page)) {
1403 * If we can lock the page, perform mlock.
1404 * Otherwise leave the page alone, it will be
1405 * eventually encountered again later.
1407 mlock_vma_page(page);
1408 unlock_page(page);
1410 continue; /* don't unmap */
1413 if (ptep_clear_flush_young_notify(vma, address, pte))
1414 continue;
1416 /* Nuke the page table entry. */
1417 flush_cache_page(vma, address, pte_pfn(*pte));
1418 pteval = ptep_clear_flush(vma, address, pte);
1420 /* If nonlinear, store the file page offset in the pte. */
1421 if (page->index != linear_page_index(vma, address)) {
1422 pte_t ptfile = pgoff_to_pte(page->index);
1423 if (pte_soft_dirty(pteval))
1424 pte_file_mksoft_dirty(ptfile);
1425 set_pte_at(mm, address, pte, ptfile);
1428 /* Move the dirty bit to the physical page now the pte is gone. */
1429 if (pte_dirty(pteval))
1430 set_page_dirty(page);
1432 page_remove_rmap(page);
1433 page_cache_release(page);
1434 dec_mm_counter(mm, MM_FILEPAGES);
1435 (*mapcount)--;
1437 pte_unmap_unlock(pte - 1, ptl);
1438 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1439 if (locked_vma)
1440 up_read(&vma->vm_mm->mmap_sem);
1441 return ret;
1444 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1446 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1448 if (!maybe_stack)
1449 return false;
1451 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1452 VM_STACK_INCOMPLETE_SETUP)
1453 return true;
1455 return false;
1459 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1460 * rmap method
1461 * @page: the page to unmap/unlock
1462 * @flags: action and flags
1464 * Find all the mappings of a page using the mapping pointer and the vma chains
1465 * contained in the anon_vma struct it points to.
1467 * This function is only called from try_to_unmap/try_to_munlock for
1468 * anonymous pages.
1469 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1470 * where the page was found will be held for write. So, we won't recheck
1471 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1472 * 'LOCKED.
1474 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1476 struct anon_vma *anon_vma;
1477 pgoff_t pgoff;
1478 struct anon_vma_chain *avc;
1479 int ret = SWAP_AGAIN;
1481 anon_vma = page_lock_anon_vma_read(page);
1482 if (!anon_vma)
1483 return ret;
1485 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1486 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1487 struct vm_area_struct *vma = avc->vma;
1488 unsigned long address;
1491 * During exec, a temporary VMA is setup and later moved.
1492 * The VMA is moved under the anon_vma lock but not the
1493 * page tables leading to a race where migration cannot
1494 * find the migration ptes. Rather than increasing the
1495 * locking requirements of exec(), migration skips
1496 * temporary VMAs until after exec() completes.
1498 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1499 is_vma_temporary_stack(vma))
1500 continue;
1502 address = vma_address(page, vma);
1503 ret = try_to_unmap_one(page, vma, address, flags);
1504 if (ret != SWAP_AGAIN || !page_mapped(page))
1505 break;
1508 page_unlock_anon_vma_read(anon_vma);
1509 return ret;
1513 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1514 * @page: the page to unmap/unlock
1515 * @flags: action and flags
1517 * Find all the mappings of a page using the mapping pointer and the vma chains
1518 * contained in the address_space struct it points to.
1520 * This function is only called from try_to_unmap/try_to_munlock for
1521 * object-based pages.
1522 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1523 * where the page was found will be held for write. So, we won't recheck
1524 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1525 * 'LOCKED.
1527 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1529 struct address_space *mapping = page->mapping;
1530 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1531 struct vm_area_struct *vma;
1532 int ret = SWAP_AGAIN;
1533 unsigned long cursor;
1534 unsigned long max_nl_cursor = 0;
1535 unsigned long max_nl_size = 0;
1536 unsigned int mapcount;
1538 if (PageHuge(page))
1539 pgoff = page->index << compound_order(page);
1541 mutex_lock(&mapping->i_mmap_mutex);
1542 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1543 unsigned long address = vma_address(page, vma);
1544 ret = try_to_unmap_one(page, vma, address, flags);
1545 if (ret != SWAP_AGAIN || !page_mapped(page))
1546 goto out;
1549 if (list_empty(&mapping->i_mmap_nonlinear))
1550 goto out;
1553 * We don't bother to try to find the munlocked page in nonlinears.
1554 * It's costly. Instead, later, page reclaim logic may call
1555 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1557 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1558 goto out;
1560 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1561 shared.nonlinear) {
1562 cursor = (unsigned long) vma->vm_private_data;
1563 if (cursor > max_nl_cursor)
1564 max_nl_cursor = cursor;
1565 cursor = vma->vm_end - vma->vm_start;
1566 if (cursor > max_nl_size)
1567 max_nl_size = cursor;
1570 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1571 ret = SWAP_FAIL;
1572 goto out;
1576 * We don't try to search for this page in the nonlinear vmas,
1577 * and page_referenced wouldn't have found it anyway. Instead
1578 * just walk the nonlinear vmas trying to age and unmap some.
1579 * The mapcount of the page we came in with is irrelevant,
1580 * but even so use it as a guide to how hard we should try?
1582 mapcount = page_mapcount(page);
1583 if (!mapcount)
1584 goto out;
1585 cond_resched();
1587 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1588 if (max_nl_cursor == 0)
1589 max_nl_cursor = CLUSTER_SIZE;
1591 do {
1592 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1593 shared.nonlinear) {
1594 cursor = (unsigned long) vma->vm_private_data;
1595 while ( cursor < max_nl_cursor &&
1596 cursor < vma->vm_end - vma->vm_start) {
1597 if (try_to_unmap_cluster(cursor, &mapcount,
1598 vma, page) == SWAP_MLOCK)
1599 ret = SWAP_MLOCK;
1600 cursor += CLUSTER_SIZE;
1601 vma->vm_private_data = (void *) cursor;
1602 if ((int)mapcount <= 0)
1603 goto out;
1605 vma->vm_private_data = (void *) max_nl_cursor;
1607 cond_resched();
1608 max_nl_cursor += CLUSTER_SIZE;
1609 } while (max_nl_cursor <= max_nl_size);
1612 * Don't loop forever (perhaps all the remaining pages are
1613 * in locked vmas). Reset cursor on all unreserved nonlinear
1614 * vmas, now forgetting on which ones it had fallen behind.
1616 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1617 vma->vm_private_data = NULL;
1618 out:
1619 mutex_unlock(&mapping->i_mmap_mutex);
1620 return ret;
1624 * try_to_unmap - try to remove all page table mappings to a page
1625 * @page: the page to get unmapped
1626 * @flags: action and flags
1628 * Tries to remove all the page table entries which are mapping this
1629 * page, used in the pageout path. Caller must hold the page lock.
1630 * Return values are:
1632 * SWAP_SUCCESS - we succeeded in removing all mappings
1633 * SWAP_AGAIN - we missed a mapping, try again later
1634 * SWAP_FAIL - the page is unswappable
1635 * SWAP_MLOCK - page is mlocked.
1637 int try_to_unmap(struct page *page, enum ttu_flags flags)
1639 int ret;
1641 BUG_ON(!PageLocked(page));
1642 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1644 if (unlikely(PageKsm(page)))
1645 ret = try_to_unmap_ksm(page, flags);
1646 else if (PageAnon(page))
1647 ret = try_to_unmap_anon(page, flags);
1648 else
1649 ret = try_to_unmap_file(page, flags);
1650 if (ret != SWAP_MLOCK && !page_mapped(page))
1651 ret = SWAP_SUCCESS;
1652 return ret;
1656 * try_to_munlock - try to munlock a page
1657 * @page: the page to be munlocked
1659 * Called from munlock code. Checks all of the VMAs mapping the page
1660 * to make sure nobody else has this page mlocked. The page will be
1661 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1663 * Return values are:
1665 * SWAP_AGAIN - no vma is holding page mlocked, or,
1666 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1667 * SWAP_FAIL - page cannot be located at present
1668 * SWAP_MLOCK - page is now mlocked.
1670 int try_to_munlock(struct page *page)
1672 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1674 if (unlikely(PageKsm(page)))
1675 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1676 else if (PageAnon(page))
1677 return try_to_unmap_anon(page, TTU_MUNLOCK);
1678 else
1679 return try_to_unmap_file(page, TTU_MUNLOCK);
1682 void __put_anon_vma(struct anon_vma *anon_vma)
1684 struct anon_vma *root = anon_vma->root;
1686 anon_vma_free(anon_vma);
1687 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1688 anon_vma_free(root);
1691 #ifdef CONFIG_MIGRATION
1693 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1694 * Called by migrate.c to remove migration ptes, but might be used more later.
1696 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1697 struct vm_area_struct *, unsigned long, void *), void *arg)
1699 struct anon_vma *anon_vma;
1700 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1701 struct anon_vma_chain *avc;
1702 int ret = SWAP_AGAIN;
1705 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1706 * because that depends on page_mapped(); but not all its usages
1707 * are holding mmap_sem. Users without mmap_sem are required to
1708 * take a reference count to prevent the anon_vma disappearing
1710 anon_vma = page_anon_vma(page);
1711 if (!anon_vma)
1712 return ret;
1713 anon_vma_lock_read(anon_vma);
1714 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1715 struct vm_area_struct *vma = avc->vma;
1716 unsigned long address = vma_address(page, vma);
1717 ret = rmap_one(page, vma, address, arg);
1718 if (ret != SWAP_AGAIN)
1719 break;
1721 anon_vma_unlock_read(anon_vma);
1722 return ret;
1725 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1726 struct vm_area_struct *, unsigned long, void *), void *arg)
1728 struct address_space *mapping = page->mapping;
1729 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1730 struct vm_area_struct *vma;
1731 int ret = SWAP_AGAIN;
1733 if (!mapping)
1734 return ret;
1735 mutex_lock(&mapping->i_mmap_mutex);
1736 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1737 unsigned long address = vma_address(page, vma);
1738 ret = rmap_one(page, vma, address, arg);
1739 if (ret != SWAP_AGAIN)
1740 break;
1743 * No nonlinear handling: being always shared, nonlinear vmas
1744 * never contain migration ptes. Decide what to do about this
1745 * limitation to linear when we need rmap_walk() on nonlinear.
1747 mutex_unlock(&mapping->i_mmap_mutex);
1748 return ret;
1751 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1752 struct vm_area_struct *, unsigned long, void *), void *arg)
1754 VM_BUG_ON(!PageLocked(page));
1756 if (unlikely(PageKsm(page)))
1757 return rmap_walk_ksm(page, rmap_one, arg);
1758 else if (PageAnon(page))
1759 return rmap_walk_anon(page, rmap_one, arg);
1760 else
1761 return rmap_walk_file(page, rmap_one, arg);
1763 #endif /* CONFIG_MIGRATION */
1765 #ifdef CONFIG_HUGETLB_PAGE
1767 * The following three functions are for anonymous (private mapped) hugepages.
1768 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1769 * and no lru code, because we handle hugepages differently from common pages.
1771 static void __hugepage_set_anon_rmap(struct page *page,
1772 struct vm_area_struct *vma, unsigned long address, int exclusive)
1774 struct anon_vma *anon_vma = vma->anon_vma;
1776 BUG_ON(!anon_vma);
1778 if (PageAnon(page))
1779 return;
1780 if (!exclusive)
1781 anon_vma = anon_vma->root;
1783 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1784 page->mapping = (struct address_space *) anon_vma;
1785 page->index = linear_page_index(vma, address);
1788 void hugepage_add_anon_rmap(struct page *page,
1789 struct vm_area_struct *vma, unsigned long address)
1791 struct anon_vma *anon_vma = vma->anon_vma;
1792 int first;
1794 BUG_ON(!PageLocked(page));
1795 BUG_ON(!anon_vma);
1796 /* address might be in next vma when migration races vma_adjust */
1797 first = atomic_inc_and_test(&page->_mapcount);
1798 if (first)
1799 __hugepage_set_anon_rmap(page, vma, address, 0);
1802 void hugepage_add_new_anon_rmap(struct page *page,
1803 struct vm_area_struct *vma, unsigned long address)
1805 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1806 atomic_set(&page->_mapcount, 0);
1807 __hugepage_set_anon_rmap(page, vma, address, 1);
1809 #endif /* CONFIG_HUGETLB_PAGE */