4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/llist.h>
31 #include <asm/uaccess.h>
32 #include <asm/tlbflush.h>
33 #include <asm/shmparam.h>
35 struct vfree_deferred
{
36 struct llist_head list
;
37 struct work_struct wq
;
39 static DEFINE_PER_CPU(struct vfree_deferred
, vfree_deferred
);
41 static void __vunmap(const void *, int);
43 static void free_work(struct work_struct
*w
)
45 struct vfree_deferred
*p
= container_of(w
, struct vfree_deferred
, wq
);
46 struct llist_node
*llnode
= llist_del_all(&p
->list
);
49 llnode
= llist_next(llnode
);
54 /*** Page table manipulation functions ***/
56 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
60 pte
= pte_offset_kernel(pmd
, addr
);
62 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
63 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
64 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
67 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
72 pmd
= pmd_offset(pud
, addr
);
74 next
= pmd_addr_end(addr
, end
);
75 if (pmd_none_or_clear_bad(pmd
))
77 vunmap_pte_range(pmd
, addr
, next
);
78 } while (pmd
++, addr
= next
, addr
!= end
);
81 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
86 pud
= pud_offset(pgd
, addr
);
88 next
= pud_addr_end(addr
, end
);
89 if (pud_none_or_clear_bad(pud
))
91 vunmap_pmd_range(pud
, addr
, next
);
92 } while (pud
++, addr
= next
, addr
!= end
);
95 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
101 pgd
= pgd_offset_k(addr
);
103 next
= pgd_addr_end(addr
, end
);
104 if (pgd_none_or_clear_bad(pgd
))
106 vunmap_pud_range(pgd
, addr
, next
);
107 } while (pgd
++, addr
= next
, addr
!= end
);
110 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
111 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
116 * nr is a running index into the array which helps higher level
117 * callers keep track of where we're up to.
120 pte
= pte_alloc_kernel(pmd
, addr
);
124 struct page
*page
= pages
[*nr
];
126 if (WARN_ON(!pte_none(*pte
)))
130 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
132 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
136 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
137 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
142 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
146 next
= pmd_addr_end(addr
, end
);
147 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
149 } while (pmd
++, addr
= next
, addr
!= end
);
153 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
154 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
159 pud
= pud_alloc(&init_mm
, pgd
, addr
);
163 next
= pud_addr_end(addr
, end
);
164 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
166 } while (pud
++, addr
= next
, addr
!= end
);
171 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
172 * will have pfns corresponding to the "pages" array.
174 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
176 static int vmap_page_range_noflush(unsigned long start
, unsigned long end
,
177 pgprot_t prot
, struct page
**pages
)
181 unsigned long addr
= start
;
186 pgd
= pgd_offset_k(addr
);
188 next
= pgd_addr_end(addr
, end
);
189 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
192 } while (pgd
++, addr
= next
, addr
!= end
);
197 static int vmap_page_range(unsigned long start
, unsigned long end
,
198 pgprot_t prot
, struct page
**pages
)
202 ret
= vmap_page_range_noflush(start
, end
, prot
, pages
);
203 flush_cache_vmap(start
, end
);
207 int is_vmalloc_or_module_addr(const void *x
)
210 * ARM, x86-64 and sparc64 put modules in a special place,
211 * and fall back on vmalloc() if that fails. Others
212 * just put it in the vmalloc space.
214 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
215 unsigned long addr
= (unsigned long)x
;
216 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
219 return is_vmalloc_addr(x
);
223 * Walk a vmap address to the struct page it maps.
225 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
227 unsigned long addr
= (unsigned long) vmalloc_addr
;
228 struct page
*page
= NULL
;
229 pgd_t
*pgd
= pgd_offset_k(addr
);
232 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
233 * architectures that do not vmalloc module space
235 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
237 if (!pgd_none(*pgd
)) {
238 pud_t
*pud
= pud_offset(pgd
, addr
);
239 if (!pud_none(*pud
)) {
240 pmd_t
*pmd
= pmd_offset(pud
, addr
);
241 if (!pmd_none(*pmd
)) {
244 ptep
= pte_offset_map(pmd
, addr
);
246 if (pte_present(pte
))
247 page
= pte_page(pte
);
254 EXPORT_SYMBOL(vmalloc_to_page
);
257 * Map a vmalloc()-space virtual address to the physical page frame number.
259 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
261 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
263 EXPORT_SYMBOL(vmalloc_to_pfn
);
266 /*** Global kva allocator ***/
268 #define VM_LAZY_FREE 0x01
269 #define VM_LAZY_FREEING 0x02
270 #define VM_VM_AREA 0x04
272 static DEFINE_SPINLOCK(vmap_area_lock
);
273 /* Export for kexec only */
274 LIST_HEAD(vmap_area_list
);
275 static struct rb_root vmap_area_root
= RB_ROOT
;
277 /* The vmap cache globals are protected by vmap_area_lock */
278 static struct rb_node
*free_vmap_cache
;
279 static unsigned long cached_hole_size
;
280 static unsigned long cached_vstart
;
281 static unsigned long cached_align
;
283 static unsigned long vmap_area_pcpu_hole
;
285 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
287 struct rb_node
*n
= vmap_area_root
.rb_node
;
290 struct vmap_area
*va
;
292 va
= rb_entry(n
, struct vmap_area
, rb_node
);
293 if (addr
< va
->va_start
)
295 else if (addr
>= va
->va_end
)
304 static void __insert_vmap_area(struct vmap_area
*va
)
306 struct rb_node
**p
= &vmap_area_root
.rb_node
;
307 struct rb_node
*parent
= NULL
;
311 struct vmap_area
*tmp_va
;
314 tmp_va
= rb_entry(parent
, struct vmap_area
, rb_node
);
315 if (va
->va_start
< tmp_va
->va_end
)
317 else if (va
->va_end
> tmp_va
->va_start
)
323 rb_link_node(&va
->rb_node
, parent
, p
);
324 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
326 /* address-sort this list */
327 tmp
= rb_prev(&va
->rb_node
);
329 struct vmap_area
*prev
;
330 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
331 list_add_rcu(&va
->list
, &prev
->list
);
333 list_add_rcu(&va
->list
, &vmap_area_list
);
336 static void purge_vmap_area_lazy(void);
339 * Allocate a region of KVA of the specified size and alignment, within the
342 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
344 unsigned long vstart
, unsigned long vend
,
345 int node
, gfp_t gfp_mask
)
347 struct vmap_area
*va
;
351 struct vmap_area
*first
;
354 BUG_ON(size
& ~PAGE_MASK
);
355 BUG_ON(!is_power_of_2(align
));
357 va
= kmalloc_node(sizeof(struct vmap_area
),
358 gfp_mask
& GFP_RECLAIM_MASK
, node
);
360 return ERR_PTR(-ENOMEM
);
363 * Only scan the relevant parts containing pointers to other objects
364 * to avoid false negatives.
366 kmemleak_scan_area(&va
->rb_node
, SIZE_MAX
, gfp_mask
& GFP_RECLAIM_MASK
);
369 spin_lock(&vmap_area_lock
);
371 * Invalidate cache if we have more permissive parameters.
372 * cached_hole_size notes the largest hole noticed _below_
373 * the vmap_area cached in free_vmap_cache: if size fits
374 * into that hole, we want to scan from vstart to reuse
375 * the hole instead of allocating above free_vmap_cache.
376 * Note that __free_vmap_area may update free_vmap_cache
377 * without updating cached_hole_size or cached_align.
379 if (!free_vmap_cache
||
380 size
< cached_hole_size
||
381 vstart
< cached_vstart
||
382 align
< cached_align
) {
384 cached_hole_size
= 0;
385 free_vmap_cache
= NULL
;
387 /* record if we encounter less permissive parameters */
388 cached_vstart
= vstart
;
389 cached_align
= align
;
391 /* find starting point for our search */
392 if (free_vmap_cache
) {
393 first
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
394 addr
= ALIGN(first
->va_end
, align
);
397 if (addr
+ size
< addr
)
401 addr
= ALIGN(vstart
, align
);
402 if (addr
+ size
< addr
)
405 n
= vmap_area_root
.rb_node
;
409 struct vmap_area
*tmp
;
410 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
411 if (tmp
->va_end
>= addr
) {
413 if (tmp
->va_start
<= addr
)
424 /* from the starting point, walk areas until a suitable hole is found */
425 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
426 if (addr
+ cached_hole_size
< first
->va_start
)
427 cached_hole_size
= first
->va_start
- addr
;
428 addr
= ALIGN(first
->va_end
, align
);
429 if (addr
+ size
< addr
)
432 if (list_is_last(&first
->list
, &vmap_area_list
))
435 first
= list_entry(first
->list
.next
,
436 struct vmap_area
, list
);
440 if (addr
+ size
> vend
)
444 va
->va_end
= addr
+ size
;
446 __insert_vmap_area(va
);
447 free_vmap_cache
= &va
->rb_node
;
448 spin_unlock(&vmap_area_lock
);
450 BUG_ON(va
->va_start
& (align
-1));
451 BUG_ON(va
->va_start
< vstart
);
452 BUG_ON(va
->va_end
> vend
);
457 spin_unlock(&vmap_area_lock
);
459 purge_vmap_area_lazy();
463 if (printk_ratelimit())
465 "vmap allocation for size %lu failed: "
466 "use vmalloc=<size> to increase size.\n", size
);
468 return ERR_PTR(-EBUSY
);
471 static void __free_vmap_area(struct vmap_area
*va
)
473 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
475 if (free_vmap_cache
) {
476 if (va
->va_end
< cached_vstart
) {
477 free_vmap_cache
= NULL
;
479 struct vmap_area
*cache
;
480 cache
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
481 if (va
->va_start
<= cache
->va_start
) {
482 free_vmap_cache
= rb_prev(&va
->rb_node
);
484 * We don't try to update cached_hole_size or
485 * cached_align, but it won't go very wrong.
490 rb_erase(&va
->rb_node
, &vmap_area_root
);
491 RB_CLEAR_NODE(&va
->rb_node
);
492 list_del_rcu(&va
->list
);
495 * Track the highest possible candidate for pcpu area
496 * allocation. Areas outside of vmalloc area can be returned
497 * here too, consider only end addresses which fall inside
498 * vmalloc area proper.
500 if (va
->va_end
> VMALLOC_START
&& va
->va_end
<= VMALLOC_END
)
501 vmap_area_pcpu_hole
= max(vmap_area_pcpu_hole
, va
->va_end
);
503 kfree_rcu(va
, rcu_head
);
507 * Free a region of KVA allocated by alloc_vmap_area
509 static void free_vmap_area(struct vmap_area
*va
)
511 spin_lock(&vmap_area_lock
);
512 __free_vmap_area(va
);
513 spin_unlock(&vmap_area_lock
);
517 * Clear the pagetable entries of a given vmap_area
519 static void unmap_vmap_area(struct vmap_area
*va
)
521 vunmap_page_range(va
->va_start
, va
->va_end
);
524 static void vmap_debug_free_range(unsigned long start
, unsigned long end
)
527 * Unmap page tables and force a TLB flush immediately if
528 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
529 * bugs similarly to those in linear kernel virtual address
530 * space after a page has been freed.
532 * All the lazy freeing logic is still retained, in order to
533 * minimise intrusiveness of this debugging feature.
535 * This is going to be *slow* (linear kernel virtual address
536 * debugging doesn't do a broadcast TLB flush so it is a lot
539 #ifdef CONFIG_DEBUG_PAGEALLOC
540 vunmap_page_range(start
, end
);
541 flush_tlb_kernel_range(start
, end
);
546 * lazy_max_pages is the maximum amount of virtual address space we gather up
547 * before attempting to purge with a TLB flush.
549 * There is a tradeoff here: a larger number will cover more kernel page tables
550 * and take slightly longer to purge, but it will linearly reduce the number of
551 * global TLB flushes that must be performed. It would seem natural to scale
552 * this number up linearly with the number of CPUs (because vmapping activity
553 * could also scale linearly with the number of CPUs), however it is likely
554 * that in practice, workloads might be constrained in other ways that mean
555 * vmap activity will not scale linearly with CPUs. Also, I want to be
556 * conservative and not introduce a big latency on huge systems, so go with
557 * a less aggressive log scale. It will still be an improvement over the old
558 * code, and it will be simple to change the scale factor if we find that it
559 * becomes a problem on bigger systems.
561 static unsigned long lazy_max_pages(void)
565 log
= fls(num_online_cpus());
567 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
570 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
572 /* for per-CPU blocks */
573 static void purge_fragmented_blocks_allcpus(void);
576 * called before a call to iounmap() if the caller wants vm_area_struct's
579 void set_iounmap_nonlazy(void)
581 atomic_set(&vmap_lazy_nr
, lazy_max_pages()+1);
585 * Purges all lazily-freed vmap areas.
587 * If sync is 0 then don't purge if there is already a purge in progress.
588 * If force_flush is 1, then flush kernel TLBs between *start and *end even
589 * if we found no lazy vmap areas to unmap (callers can use this to optimise
590 * their own TLB flushing).
591 * Returns with *start = min(*start, lowest purged address)
592 * *end = max(*end, highest purged address)
594 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
595 int sync
, int force_flush
)
597 static DEFINE_SPINLOCK(purge_lock
);
599 struct vmap_area
*va
;
600 struct vmap_area
*n_va
;
604 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
605 * should not expect such behaviour. This just simplifies locking for
606 * the case that isn't actually used at the moment anyway.
608 if (!sync
&& !force_flush
) {
609 if (!spin_trylock(&purge_lock
))
612 spin_lock(&purge_lock
);
615 purge_fragmented_blocks_allcpus();
618 list_for_each_entry_rcu(va
, &vmap_area_list
, list
) {
619 if (va
->flags
& VM_LAZY_FREE
) {
620 if (va
->va_start
< *start
)
621 *start
= va
->va_start
;
622 if (va
->va_end
> *end
)
624 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
625 list_add_tail(&va
->purge_list
, &valist
);
626 va
->flags
|= VM_LAZY_FREEING
;
627 va
->flags
&= ~VM_LAZY_FREE
;
633 atomic_sub(nr
, &vmap_lazy_nr
);
635 if (nr
|| force_flush
)
636 flush_tlb_kernel_range(*start
, *end
);
639 spin_lock(&vmap_area_lock
);
640 list_for_each_entry_safe(va
, n_va
, &valist
, purge_list
)
641 __free_vmap_area(va
);
642 spin_unlock(&vmap_area_lock
);
644 spin_unlock(&purge_lock
);
648 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
649 * is already purging.
651 static void try_purge_vmap_area_lazy(void)
653 unsigned long start
= ULONG_MAX
, end
= 0;
655 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
659 * Kick off a purge of the outstanding lazy areas.
661 static void purge_vmap_area_lazy(void)
663 unsigned long start
= ULONG_MAX
, end
= 0;
665 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
669 * Free a vmap area, caller ensuring that the area has been unmapped
670 * and flush_cache_vunmap had been called for the correct range
673 static void free_vmap_area_noflush(struct vmap_area
*va
)
675 va
->flags
|= VM_LAZY_FREE
;
676 atomic_add((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
, &vmap_lazy_nr
);
677 if (unlikely(atomic_read(&vmap_lazy_nr
) > lazy_max_pages()))
678 try_purge_vmap_area_lazy();
682 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
683 * called for the correct range previously.
685 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
688 free_vmap_area_noflush(va
);
692 * Free and unmap a vmap area
694 static void free_unmap_vmap_area(struct vmap_area
*va
)
696 flush_cache_vunmap(va
->va_start
, va
->va_end
);
697 free_unmap_vmap_area_noflush(va
);
700 static struct vmap_area
*find_vmap_area(unsigned long addr
)
702 struct vmap_area
*va
;
704 spin_lock(&vmap_area_lock
);
705 va
= __find_vmap_area(addr
);
706 spin_unlock(&vmap_area_lock
);
711 static void free_unmap_vmap_area_addr(unsigned long addr
)
713 struct vmap_area
*va
;
715 va
= find_vmap_area(addr
);
717 free_unmap_vmap_area(va
);
721 /*** Per cpu kva allocator ***/
724 * vmap space is limited especially on 32 bit architectures. Ensure there is
725 * room for at least 16 percpu vmap blocks per CPU.
728 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
729 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
730 * instead (we just need a rough idea)
732 #if BITS_PER_LONG == 32
733 #define VMALLOC_SPACE (128UL*1024*1024)
735 #define VMALLOC_SPACE (128UL*1024*1024*1024)
738 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
739 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
740 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
741 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
742 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
743 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
744 #define VMAP_BBMAP_BITS \
745 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
746 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
747 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
749 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
751 static bool vmap_initialized __read_mostly
= false;
753 struct vmap_block_queue
{
755 struct list_head free
;
760 struct vmap_area
*va
;
761 unsigned long free
, dirty
;
762 DECLARE_BITMAP(dirty_map
, VMAP_BBMAP_BITS
);
763 struct list_head free_list
;
764 struct rcu_head rcu_head
;
765 struct list_head purge
;
768 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
769 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
772 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
773 * in the free path. Could get rid of this if we change the API to return a
774 * "cookie" from alloc, to be passed to free. But no big deal yet.
776 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
777 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
780 * We should probably have a fallback mechanism to allocate virtual memory
781 * out of partially filled vmap blocks. However vmap block sizing should be
782 * fairly reasonable according to the vmalloc size, so it shouldn't be a
786 static unsigned long addr_to_vb_idx(unsigned long addr
)
788 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
789 addr
/= VMAP_BLOCK_SIZE
;
793 static struct vmap_block
*new_vmap_block(gfp_t gfp_mask
)
795 struct vmap_block_queue
*vbq
;
796 struct vmap_block
*vb
;
797 struct vmap_area
*va
;
798 unsigned long vb_idx
;
801 node
= numa_node_id();
803 vb
= kmalloc_node(sizeof(struct vmap_block
),
804 gfp_mask
& GFP_RECLAIM_MASK
, node
);
806 return ERR_PTR(-ENOMEM
);
808 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
809 VMALLOC_START
, VMALLOC_END
,
816 err
= radix_tree_preload(gfp_mask
);
823 spin_lock_init(&vb
->lock
);
825 vb
->free
= VMAP_BBMAP_BITS
;
827 bitmap_zero(vb
->dirty_map
, VMAP_BBMAP_BITS
);
828 INIT_LIST_HEAD(&vb
->free_list
);
830 vb_idx
= addr_to_vb_idx(va
->va_start
);
831 spin_lock(&vmap_block_tree_lock
);
832 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
833 spin_unlock(&vmap_block_tree_lock
);
835 radix_tree_preload_end();
837 vbq
= &get_cpu_var(vmap_block_queue
);
838 spin_lock(&vbq
->lock
);
839 list_add_rcu(&vb
->free_list
, &vbq
->free
);
840 spin_unlock(&vbq
->lock
);
841 put_cpu_var(vmap_block_queue
);
846 static void free_vmap_block(struct vmap_block
*vb
)
848 struct vmap_block
*tmp
;
849 unsigned long vb_idx
;
851 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
852 spin_lock(&vmap_block_tree_lock
);
853 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
854 spin_unlock(&vmap_block_tree_lock
);
857 free_vmap_area_noflush(vb
->va
);
858 kfree_rcu(vb
, rcu_head
);
861 static void purge_fragmented_blocks(int cpu
)
864 struct vmap_block
*vb
;
865 struct vmap_block
*n_vb
;
866 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
869 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
871 if (!(vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
))
874 spin_lock(&vb
->lock
);
875 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
) {
876 vb
->free
= 0; /* prevent further allocs after releasing lock */
877 vb
->dirty
= VMAP_BBMAP_BITS
; /* prevent purging it again */
878 bitmap_fill(vb
->dirty_map
, VMAP_BBMAP_BITS
);
879 spin_lock(&vbq
->lock
);
880 list_del_rcu(&vb
->free_list
);
881 spin_unlock(&vbq
->lock
);
882 spin_unlock(&vb
->lock
);
883 list_add_tail(&vb
->purge
, &purge
);
885 spin_unlock(&vb
->lock
);
889 list_for_each_entry_safe(vb
, n_vb
, &purge
, purge
) {
890 list_del(&vb
->purge
);
895 static void purge_fragmented_blocks_allcpus(void)
899 for_each_possible_cpu(cpu
)
900 purge_fragmented_blocks(cpu
);
903 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
905 struct vmap_block_queue
*vbq
;
906 struct vmap_block
*vb
;
907 unsigned long addr
= 0;
910 BUG_ON(size
& ~PAGE_MASK
);
911 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
912 if (WARN_ON(size
== 0)) {
914 * Allocating 0 bytes isn't what caller wants since
915 * get_order(0) returns funny result. Just warn and terminate
920 order
= get_order(size
);
924 vbq
= &get_cpu_var(vmap_block_queue
);
925 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
928 spin_lock(&vb
->lock
);
929 if (vb
->free
< 1UL << order
)
932 i
= VMAP_BBMAP_BITS
- vb
->free
;
933 addr
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
934 BUG_ON(addr_to_vb_idx(addr
) !=
935 addr_to_vb_idx(vb
->va
->va_start
));
936 vb
->free
-= 1UL << order
;
938 spin_lock(&vbq
->lock
);
939 list_del_rcu(&vb
->free_list
);
940 spin_unlock(&vbq
->lock
);
942 spin_unlock(&vb
->lock
);
945 spin_unlock(&vb
->lock
);
948 put_cpu_var(vmap_block_queue
);
952 vb
= new_vmap_block(gfp_mask
);
961 static void vb_free(const void *addr
, unsigned long size
)
963 unsigned long offset
;
964 unsigned long vb_idx
;
966 struct vmap_block
*vb
;
968 BUG_ON(size
& ~PAGE_MASK
);
969 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
971 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
973 order
= get_order(size
);
975 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
977 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
979 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
983 vunmap_page_range((unsigned long)addr
, (unsigned long)addr
+ size
);
985 spin_lock(&vb
->lock
);
986 BUG_ON(bitmap_allocate_region(vb
->dirty_map
, offset
>> PAGE_SHIFT
, order
));
988 vb
->dirty
+= 1UL << order
;
989 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
991 spin_unlock(&vb
->lock
);
994 spin_unlock(&vb
->lock
);
998 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1000 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1001 * to amortize TLB flushing overheads. What this means is that any page you
1002 * have now, may, in a former life, have been mapped into kernel virtual
1003 * address by the vmap layer and so there might be some CPUs with TLB entries
1004 * still referencing that page (additional to the regular 1:1 kernel mapping).
1006 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1007 * be sure that none of the pages we have control over will have any aliases
1008 * from the vmap layer.
1010 void vm_unmap_aliases(void)
1012 unsigned long start
= ULONG_MAX
, end
= 0;
1016 if (unlikely(!vmap_initialized
))
1019 for_each_possible_cpu(cpu
) {
1020 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
1021 struct vmap_block
*vb
;
1024 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
1027 spin_lock(&vb
->lock
);
1028 i
= find_first_bit(vb
->dirty_map
, VMAP_BBMAP_BITS
);
1029 if (i
< VMAP_BBMAP_BITS
) {
1032 j
= find_last_bit(vb
->dirty_map
,
1034 j
= j
+ 1; /* need exclusive index */
1036 s
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
1037 e
= vb
->va
->va_start
+ (j
<< PAGE_SHIFT
);
1045 spin_unlock(&vb
->lock
);
1050 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
1052 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
1055 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1056 * @mem: the pointer returned by vm_map_ram
1057 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1059 void vm_unmap_ram(const void *mem
, unsigned int count
)
1061 unsigned long size
= count
<< PAGE_SHIFT
;
1062 unsigned long addr
= (unsigned long)mem
;
1065 BUG_ON(addr
< VMALLOC_START
);
1066 BUG_ON(addr
> VMALLOC_END
);
1067 BUG_ON(addr
& (PAGE_SIZE
-1));
1069 debug_check_no_locks_freed(mem
, size
);
1070 vmap_debug_free_range(addr
, addr
+size
);
1072 if (likely(count
<= VMAP_MAX_ALLOC
))
1075 free_unmap_vmap_area_addr(addr
);
1077 EXPORT_SYMBOL(vm_unmap_ram
);
1080 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1081 * @pages: an array of pointers to the pages to be mapped
1082 * @count: number of pages
1083 * @node: prefer to allocate data structures on this node
1084 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1086 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1088 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
1090 unsigned long size
= count
<< PAGE_SHIFT
;
1094 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1095 mem
= vb_alloc(size
, GFP_KERNEL
);
1098 addr
= (unsigned long)mem
;
1100 struct vmap_area
*va
;
1101 va
= alloc_vmap_area(size
, PAGE_SIZE
,
1102 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
1106 addr
= va
->va_start
;
1109 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
1110 vm_unmap_ram(mem
, count
);
1115 EXPORT_SYMBOL(vm_map_ram
);
1117 static struct vm_struct
*vmlist __initdata
;
1119 * vm_area_add_early - add vmap area early during boot
1120 * @vm: vm_struct to add
1122 * This function is used to add fixed kernel vm area to vmlist before
1123 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1124 * should contain proper values and the other fields should be zero.
1126 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1128 void __init
vm_area_add_early(struct vm_struct
*vm
)
1130 struct vm_struct
*tmp
, **p
;
1132 BUG_ON(vmap_initialized
);
1133 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1134 if (tmp
->addr
>= vm
->addr
) {
1135 BUG_ON(tmp
->addr
< vm
->addr
+ vm
->size
);
1138 BUG_ON(tmp
->addr
+ tmp
->size
> vm
->addr
);
1145 * vm_area_register_early - register vmap area early during boot
1146 * @vm: vm_struct to register
1147 * @align: requested alignment
1149 * This function is used to register kernel vm area before
1150 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1151 * proper values on entry and other fields should be zero. On return,
1152 * vm->addr contains the allocated address.
1154 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1156 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1158 static size_t vm_init_off __initdata
;
1161 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1162 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1164 vm
->addr
= (void *)addr
;
1166 vm_area_add_early(vm
);
1169 void __init
vmalloc_init(void)
1171 struct vmap_area
*va
;
1172 struct vm_struct
*tmp
;
1175 for_each_possible_cpu(i
) {
1176 struct vmap_block_queue
*vbq
;
1177 struct vfree_deferred
*p
;
1179 vbq
= &per_cpu(vmap_block_queue
, i
);
1180 spin_lock_init(&vbq
->lock
);
1181 INIT_LIST_HEAD(&vbq
->free
);
1182 p
= &per_cpu(vfree_deferred
, i
);
1183 init_llist_head(&p
->list
);
1184 INIT_WORK(&p
->wq
, free_work
);
1187 /* Import existing vmlist entries. */
1188 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1189 va
= kzalloc(sizeof(struct vmap_area
), GFP_NOWAIT
);
1190 va
->flags
= VM_VM_AREA
;
1191 va
->va_start
= (unsigned long)tmp
->addr
;
1192 va
->va_end
= va
->va_start
+ tmp
->size
;
1194 __insert_vmap_area(va
);
1197 vmap_area_pcpu_hole
= VMALLOC_END
;
1199 vmap_initialized
= true;
1203 * map_kernel_range_noflush - map kernel VM area with the specified pages
1204 * @addr: start of the VM area to map
1205 * @size: size of the VM area to map
1206 * @prot: page protection flags to use
1207 * @pages: pages to map
1209 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1210 * specify should have been allocated using get_vm_area() and its
1214 * This function does NOT do any cache flushing. The caller is
1215 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1216 * before calling this function.
1219 * The number of pages mapped on success, -errno on failure.
1221 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
1222 pgprot_t prot
, struct page
**pages
)
1224 return vmap_page_range_noflush(addr
, addr
+ size
, prot
, pages
);
1228 * unmap_kernel_range_noflush - unmap kernel VM area
1229 * @addr: start of the VM area to unmap
1230 * @size: size of the VM area to unmap
1232 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1233 * specify should have been allocated using get_vm_area() and its
1237 * This function does NOT do any cache flushing. The caller is
1238 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1239 * before calling this function and flush_tlb_kernel_range() after.
1241 void unmap_kernel_range_noflush(unsigned long addr
, unsigned long size
)
1243 vunmap_page_range(addr
, addr
+ size
);
1245 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush
);
1248 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1249 * @addr: start of the VM area to unmap
1250 * @size: size of the VM area to unmap
1252 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1253 * the unmapping and tlb after.
1255 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1257 unsigned long end
= addr
+ size
;
1259 flush_cache_vunmap(addr
, end
);
1260 vunmap_page_range(addr
, end
);
1261 flush_tlb_kernel_range(addr
, end
);
1264 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
***pages
)
1266 unsigned long addr
= (unsigned long)area
->addr
;
1267 unsigned long end
= addr
+ get_vm_area_size(area
);
1270 err
= vmap_page_range(addr
, end
, prot
, *pages
);
1278 EXPORT_SYMBOL_GPL(map_vm_area
);
1280 static void setup_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1281 unsigned long flags
, const void *caller
)
1283 spin_lock(&vmap_area_lock
);
1285 vm
->addr
= (void *)va
->va_start
;
1286 vm
->size
= va
->va_end
- va
->va_start
;
1287 vm
->caller
= caller
;
1289 va
->flags
|= VM_VM_AREA
;
1290 spin_unlock(&vmap_area_lock
);
1293 static void clear_vm_uninitialized_flag(struct vm_struct
*vm
)
1296 * Before removing VM_UNINITIALIZED,
1297 * we should make sure that vm has proper values.
1298 * Pair with smp_rmb() in show_numa_info().
1301 vm
->flags
&= ~VM_UNINITIALIZED
;
1304 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1305 unsigned long align
, unsigned long flags
, unsigned long start
,
1306 unsigned long end
, int node
, gfp_t gfp_mask
, const void *caller
)
1308 struct vmap_area
*va
;
1309 struct vm_struct
*area
;
1311 BUG_ON(in_interrupt());
1312 if (flags
& VM_IOREMAP
)
1313 align
= 1ul << clamp(fls(size
), PAGE_SHIFT
, IOREMAP_MAX_ORDER
);
1315 size
= PAGE_ALIGN(size
);
1316 if (unlikely(!size
))
1319 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1320 if (unlikely(!area
))
1324 * We always allocate a guard page.
1328 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1334 setup_vmalloc_vm(area
, va
, flags
, caller
);
1339 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1340 unsigned long start
, unsigned long end
)
1342 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1343 GFP_KERNEL
, __builtin_return_address(0));
1345 EXPORT_SYMBOL_GPL(__get_vm_area
);
1347 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
1348 unsigned long start
, unsigned long end
,
1351 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1352 GFP_KERNEL
, caller
);
1356 * get_vm_area - reserve a contiguous kernel virtual area
1357 * @size: size of the area
1358 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1360 * Search an area of @size in the kernel virtual mapping area,
1361 * and reserved it for out purposes. Returns the area descriptor
1362 * on success or %NULL on failure.
1364 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1366 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1367 NUMA_NO_NODE
, GFP_KERNEL
,
1368 __builtin_return_address(0));
1371 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1374 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1375 NUMA_NO_NODE
, GFP_KERNEL
, caller
);
1379 * find_vm_area - find a continuous kernel virtual area
1380 * @addr: base address
1382 * Search for the kernel VM area starting at @addr, and return it.
1383 * It is up to the caller to do all required locking to keep the returned
1386 struct vm_struct
*find_vm_area(const void *addr
)
1388 struct vmap_area
*va
;
1390 va
= find_vmap_area((unsigned long)addr
);
1391 if (va
&& va
->flags
& VM_VM_AREA
)
1398 * remove_vm_area - find and remove a continuous kernel virtual area
1399 * @addr: base address
1401 * Search for the kernel VM area starting at @addr, and remove it.
1402 * This function returns the found VM area, but using it is NOT safe
1403 * on SMP machines, except for its size or flags.
1405 struct vm_struct
*remove_vm_area(const void *addr
)
1407 struct vmap_area
*va
;
1409 va
= find_vmap_area((unsigned long)addr
);
1410 if (va
&& va
->flags
& VM_VM_AREA
) {
1411 struct vm_struct
*vm
= va
->vm
;
1413 spin_lock(&vmap_area_lock
);
1415 va
->flags
&= ~VM_VM_AREA
;
1416 spin_unlock(&vmap_area_lock
);
1418 vmap_debug_free_range(va
->va_start
, va
->va_end
);
1419 free_unmap_vmap_area(va
);
1420 vm
->size
-= PAGE_SIZE
;
1427 static void __vunmap(const void *addr
, int deallocate_pages
)
1429 struct vm_struct
*area
;
1434 if (WARN(!PAGE_ALIGNED(addr
), "Trying to vfree() bad address (%p)\n",
1438 area
= remove_vm_area(addr
);
1439 if (unlikely(!area
)) {
1440 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1445 debug_check_no_locks_freed(addr
, area
->size
);
1446 debug_check_no_obj_freed(addr
, area
->size
);
1448 if (deallocate_pages
) {
1451 for (i
= 0; i
< area
->nr_pages
; i
++) {
1452 struct page
*page
= area
->pages
[i
];
1458 if (area
->flags
& VM_VPAGES
)
1469 * vfree - release memory allocated by vmalloc()
1470 * @addr: memory base address
1472 * Free the virtually continuous memory area starting at @addr, as
1473 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1474 * NULL, no operation is performed.
1476 * Must not be called in NMI context (strictly speaking, only if we don't
1477 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1478 * conventions for vfree() arch-depenedent would be a really bad idea)
1480 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1482 void vfree(const void *addr
)
1486 kmemleak_free(addr
);
1490 if (unlikely(in_interrupt())) {
1491 struct vfree_deferred
*p
= &__get_cpu_var(vfree_deferred
);
1492 if (llist_add((struct llist_node
*)addr
, &p
->list
))
1493 schedule_work(&p
->wq
);
1497 EXPORT_SYMBOL(vfree
);
1500 * vunmap - release virtual mapping obtained by vmap()
1501 * @addr: memory base address
1503 * Free the virtually contiguous memory area starting at @addr,
1504 * which was created from the page array passed to vmap().
1506 * Must not be called in interrupt context.
1508 void vunmap(const void *addr
)
1510 BUG_ON(in_interrupt());
1515 EXPORT_SYMBOL(vunmap
);
1518 * vmap - map an array of pages into virtually contiguous space
1519 * @pages: array of page pointers
1520 * @count: number of pages to map
1521 * @flags: vm_area->flags
1522 * @prot: page protection for the mapping
1524 * Maps @count pages from @pages into contiguous kernel virtual
1527 void *vmap(struct page
**pages
, unsigned int count
,
1528 unsigned long flags
, pgprot_t prot
)
1530 struct vm_struct
*area
;
1534 if (count
> totalram_pages
)
1537 area
= get_vm_area_caller((count
<< PAGE_SHIFT
), flags
,
1538 __builtin_return_address(0));
1542 if (map_vm_area(area
, prot
, &pages
)) {
1549 EXPORT_SYMBOL(vmap
);
1551 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1552 gfp_t gfp_mask
, pgprot_t prot
,
1553 int node
, const void *caller
);
1554 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1555 pgprot_t prot
, int node
, const void *caller
)
1557 const int order
= 0;
1558 struct page
**pages
;
1559 unsigned int nr_pages
, array_size
, i
;
1560 gfp_t nested_gfp
= (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
;
1562 nr_pages
= get_vm_area_size(area
) >> PAGE_SHIFT
;
1563 array_size
= (nr_pages
* sizeof(struct page
*));
1565 area
->nr_pages
= nr_pages
;
1566 /* Please note that the recursion is strictly bounded. */
1567 if (array_size
> PAGE_SIZE
) {
1568 pages
= __vmalloc_node(array_size
, 1, nested_gfp
|__GFP_HIGHMEM
,
1569 PAGE_KERNEL
, node
, caller
);
1570 area
->flags
|= VM_VPAGES
;
1572 pages
= kmalloc_node(array_size
, nested_gfp
, node
);
1574 area
->pages
= pages
;
1575 area
->caller
= caller
;
1577 remove_vm_area(area
->addr
);
1582 for (i
= 0; i
< area
->nr_pages
; i
++) {
1584 gfp_t tmp_mask
= gfp_mask
| __GFP_NOWARN
;
1587 page
= alloc_page(tmp_mask
);
1589 page
= alloc_pages_node(node
, tmp_mask
, order
);
1591 if (unlikely(!page
)) {
1592 /* Successfully allocated i pages, free them in __vunmap() */
1596 area
->pages
[i
] = page
;
1599 if (map_vm_area(area
, prot
, &pages
))
1604 warn_alloc_failed(gfp_mask
, order
,
1605 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1606 (area
->nr_pages
*PAGE_SIZE
), area
->size
);
1612 * __vmalloc_node_range - allocate virtually contiguous memory
1613 * @size: allocation size
1614 * @align: desired alignment
1615 * @start: vm area range start
1616 * @end: vm area range end
1617 * @gfp_mask: flags for the page level allocator
1618 * @prot: protection mask for the allocated pages
1619 * @node: node to use for allocation or NUMA_NO_NODE
1620 * @caller: caller's return address
1622 * Allocate enough pages to cover @size from the page level
1623 * allocator with @gfp_mask flags. Map them into contiguous
1624 * kernel virtual space, using a pagetable protection of @prot.
1626 void *__vmalloc_node_range(unsigned long size
, unsigned long align
,
1627 unsigned long start
, unsigned long end
, gfp_t gfp_mask
,
1628 pgprot_t prot
, int node
, const void *caller
)
1630 struct vm_struct
*area
;
1632 unsigned long real_size
= size
;
1634 size
= PAGE_ALIGN(size
);
1635 if (!size
|| (size
>> PAGE_SHIFT
) > totalram_pages
)
1638 area
= __get_vm_area_node(size
, align
, VM_ALLOC
| VM_UNINITIALIZED
,
1639 start
, end
, node
, gfp_mask
, caller
);
1643 addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, node
, caller
);
1648 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1649 * flag. It means that vm_struct is not fully initialized.
1650 * Now, it is fully initialized, so remove this flag here.
1652 clear_vm_uninitialized_flag(area
);
1655 * A ref_count = 2 is needed because vm_struct allocated in
1656 * __get_vm_area_node() contains a reference to the virtual address of
1657 * the vmalloc'ed block.
1659 kmemleak_alloc(addr
, real_size
, 2, gfp_mask
);
1664 warn_alloc_failed(gfp_mask
, 0,
1665 "vmalloc: allocation failure: %lu bytes\n",
1671 * __vmalloc_node - allocate virtually contiguous memory
1672 * @size: allocation size
1673 * @align: desired alignment
1674 * @gfp_mask: flags for the page level allocator
1675 * @prot: protection mask for the allocated pages
1676 * @node: node to use for allocation or NUMA_NO_NODE
1677 * @caller: caller's return address
1679 * Allocate enough pages to cover @size from the page level
1680 * allocator with @gfp_mask flags. Map them into contiguous
1681 * kernel virtual space, using a pagetable protection of @prot.
1683 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1684 gfp_t gfp_mask
, pgprot_t prot
,
1685 int node
, const void *caller
)
1687 return __vmalloc_node_range(size
, align
, VMALLOC_START
, VMALLOC_END
,
1688 gfp_mask
, prot
, node
, caller
);
1691 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1693 return __vmalloc_node(size
, 1, gfp_mask
, prot
, NUMA_NO_NODE
,
1694 __builtin_return_address(0));
1696 EXPORT_SYMBOL(__vmalloc
);
1698 static inline void *__vmalloc_node_flags(unsigned long size
,
1699 int node
, gfp_t flags
)
1701 return __vmalloc_node(size
, 1, flags
, PAGE_KERNEL
,
1702 node
, __builtin_return_address(0));
1706 * vmalloc - allocate virtually contiguous memory
1707 * @size: allocation size
1708 * Allocate enough pages to cover @size from the page level
1709 * allocator and map them into contiguous kernel virtual space.
1711 * For tight control over page level allocator and protection flags
1712 * use __vmalloc() instead.
1714 void *vmalloc(unsigned long size
)
1716 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1717 GFP_KERNEL
| __GFP_HIGHMEM
);
1719 EXPORT_SYMBOL(vmalloc
);
1722 * vzalloc - allocate virtually contiguous memory with zero fill
1723 * @size: allocation size
1724 * Allocate enough pages to cover @size from the page level
1725 * allocator and map them into contiguous kernel virtual space.
1726 * The memory allocated is set to zero.
1728 * For tight control over page level allocator and protection flags
1729 * use __vmalloc() instead.
1731 void *vzalloc(unsigned long size
)
1733 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1734 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1736 EXPORT_SYMBOL(vzalloc
);
1739 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1740 * @size: allocation size
1742 * The resulting memory area is zeroed so it can be mapped to userspace
1743 * without leaking data.
1745 void *vmalloc_user(unsigned long size
)
1747 struct vm_struct
*area
;
1750 ret
= __vmalloc_node(size
, SHMLBA
,
1751 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
1752 PAGE_KERNEL
, NUMA_NO_NODE
,
1753 __builtin_return_address(0));
1755 area
= find_vm_area(ret
);
1756 area
->flags
|= VM_USERMAP
;
1760 EXPORT_SYMBOL(vmalloc_user
);
1763 * vmalloc_node - allocate memory on a specific node
1764 * @size: allocation size
1767 * Allocate enough pages to cover @size from the page level
1768 * allocator and map them into contiguous kernel virtual space.
1770 * For tight control over page level allocator and protection flags
1771 * use __vmalloc() instead.
1773 void *vmalloc_node(unsigned long size
, int node
)
1775 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1776 node
, __builtin_return_address(0));
1778 EXPORT_SYMBOL(vmalloc_node
);
1781 * vzalloc_node - allocate memory on a specific node with zero fill
1782 * @size: allocation size
1785 * Allocate enough pages to cover @size from the page level
1786 * allocator and map them into contiguous kernel virtual space.
1787 * The memory allocated is set to zero.
1789 * For tight control over page level allocator and protection flags
1790 * use __vmalloc_node() instead.
1792 void *vzalloc_node(unsigned long size
, int node
)
1794 return __vmalloc_node_flags(size
, node
,
1795 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1797 EXPORT_SYMBOL(vzalloc_node
);
1799 #ifndef PAGE_KERNEL_EXEC
1800 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1804 * vmalloc_exec - allocate virtually contiguous, executable memory
1805 * @size: allocation size
1807 * Kernel-internal function to allocate enough pages to cover @size
1808 * the page level allocator and map them into contiguous and
1809 * executable kernel virtual space.
1811 * For tight control over page level allocator and protection flags
1812 * use __vmalloc() instead.
1815 void *vmalloc_exec(unsigned long size
)
1817 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
,
1818 NUMA_NO_NODE
, __builtin_return_address(0));
1821 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1822 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1823 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1824 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1826 #define GFP_VMALLOC32 GFP_KERNEL
1830 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1831 * @size: allocation size
1833 * Allocate enough 32bit PA addressable pages to cover @size from the
1834 * page level allocator and map them into contiguous kernel virtual space.
1836 void *vmalloc_32(unsigned long size
)
1838 return __vmalloc_node(size
, 1, GFP_VMALLOC32
, PAGE_KERNEL
,
1839 NUMA_NO_NODE
, __builtin_return_address(0));
1841 EXPORT_SYMBOL(vmalloc_32
);
1844 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1845 * @size: allocation size
1847 * The resulting memory area is 32bit addressable and zeroed so it can be
1848 * mapped to userspace without leaking data.
1850 void *vmalloc_32_user(unsigned long size
)
1852 struct vm_struct
*area
;
1855 ret
= __vmalloc_node(size
, 1, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1856 NUMA_NO_NODE
, __builtin_return_address(0));
1858 area
= find_vm_area(ret
);
1859 area
->flags
|= VM_USERMAP
;
1863 EXPORT_SYMBOL(vmalloc_32_user
);
1866 * small helper routine , copy contents to buf from addr.
1867 * If the page is not present, fill zero.
1870 static int aligned_vread(char *buf
, char *addr
, unsigned long count
)
1876 unsigned long offset
, length
;
1878 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1879 length
= PAGE_SIZE
- offset
;
1882 p
= vmalloc_to_page(addr
);
1884 * To do safe access to this _mapped_ area, we need
1885 * lock. But adding lock here means that we need to add
1886 * overhead of vmalloc()/vfree() calles for this _debug_
1887 * interface, rarely used. Instead of that, we'll use
1888 * kmap() and get small overhead in this access function.
1892 * we can expect USER0 is not used (see vread/vwrite's
1893 * function description)
1895 void *map
= kmap_atomic(p
);
1896 memcpy(buf
, map
+ offset
, length
);
1899 memset(buf
, 0, length
);
1909 static int aligned_vwrite(char *buf
, char *addr
, unsigned long count
)
1915 unsigned long offset
, length
;
1917 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1918 length
= PAGE_SIZE
- offset
;
1921 p
= vmalloc_to_page(addr
);
1923 * To do safe access to this _mapped_ area, we need
1924 * lock. But adding lock here means that we need to add
1925 * overhead of vmalloc()/vfree() calles for this _debug_
1926 * interface, rarely used. Instead of that, we'll use
1927 * kmap() and get small overhead in this access function.
1931 * we can expect USER0 is not used (see vread/vwrite's
1932 * function description)
1934 void *map
= kmap_atomic(p
);
1935 memcpy(map
+ offset
, buf
, length
);
1947 * vread() - read vmalloc area in a safe way.
1948 * @buf: buffer for reading data
1949 * @addr: vm address.
1950 * @count: number of bytes to be read.
1952 * Returns # of bytes which addr and buf should be increased.
1953 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1954 * includes any intersect with alive vmalloc area.
1956 * This function checks that addr is a valid vmalloc'ed area, and
1957 * copy data from that area to a given buffer. If the given memory range
1958 * of [addr...addr+count) includes some valid address, data is copied to
1959 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1960 * IOREMAP area is treated as memory hole and no copy is done.
1962 * If [addr...addr+count) doesn't includes any intersects with alive
1963 * vm_struct area, returns 0. @buf should be kernel's buffer.
1965 * Note: In usual ops, vread() is never necessary because the caller
1966 * should know vmalloc() area is valid and can use memcpy().
1967 * This is for routines which have to access vmalloc area without
1968 * any informaion, as /dev/kmem.
1972 long vread(char *buf
, char *addr
, unsigned long count
)
1974 struct vmap_area
*va
;
1975 struct vm_struct
*vm
;
1976 char *vaddr
, *buf_start
= buf
;
1977 unsigned long buflen
= count
;
1980 /* Don't allow overflow */
1981 if ((unsigned long) addr
+ count
< count
)
1982 count
= -(unsigned long) addr
;
1984 spin_lock(&vmap_area_lock
);
1985 list_for_each_entry(va
, &vmap_area_list
, list
) {
1989 if (!(va
->flags
& VM_VM_AREA
))
1993 vaddr
= (char *) vm
->addr
;
1994 if (addr
>= vaddr
+ get_vm_area_size(vm
))
1996 while (addr
< vaddr
) {
2004 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2007 if (!(vm
->flags
& VM_IOREMAP
))
2008 aligned_vread(buf
, addr
, n
);
2009 else /* IOREMAP area is treated as memory hole */
2016 spin_unlock(&vmap_area_lock
);
2018 if (buf
== buf_start
)
2020 /* zero-fill memory holes */
2021 if (buf
!= buf_start
+ buflen
)
2022 memset(buf
, 0, buflen
- (buf
- buf_start
));
2028 * vwrite() - write vmalloc area in a safe way.
2029 * @buf: buffer for source data
2030 * @addr: vm address.
2031 * @count: number of bytes to be read.
2033 * Returns # of bytes which addr and buf should be incresed.
2034 * (same number to @count).
2035 * If [addr...addr+count) doesn't includes any intersect with valid
2036 * vmalloc area, returns 0.
2038 * This function checks that addr is a valid vmalloc'ed area, and
2039 * copy data from a buffer to the given addr. If specified range of
2040 * [addr...addr+count) includes some valid address, data is copied from
2041 * proper area of @buf. If there are memory holes, no copy to hole.
2042 * IOREMAP area is treated as memory hole and no copy is done.
2044 * If [addr...addr+count) doesn't includes any intersects with alive
2045 * vm_struct area, returns 0. @buf should be kernel's buffer.
2047 * Note: In usual ops, vwrite() is never necessary because the caller
2048 * should know vmalloc() area is valid and can use memcpy().
2049 * This is for routines which have to access vmalloc area without
2050 * any informaion, as /dev/kmem.
2053 long vwrite(char *buf
, char *addr
, unsigned long count
)
2055 struct vmap_area
*va
;
2056 struct vm_struct
*vm
;
2058 unsigned long n
, buflen
;
2061 /* Don't allow overflow */
2062 if ((unsigned long) addr
+ count
< count
)
2063 count
= -(unsigned long) addr
;
2066 spin_lock(&vmap_area_lock
);
2067 list_for_each_entry(va
, &vmap_area_list
, list
) {
2071 if (!(va
->flags
& VM_VM_AREA
))
2075 vaddr
= (char *) vm
->addr
;
2076 if (addr
>= vaddr
+ get_vm_area_size(vm
))
2078 while (addr
< vaddr
) {
2085 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2088 if (!(vm
->flags
& VM_IOREMAP
)) {
2089 aligned_vwrite(buf
, addr
, n
);
2097 spin_unlock(&vmap_area_lock
);
2104 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2105 * @vma: vma to cover
2106 * @uaddr: target user address to start at
2107 * @kaddr: virtual address of vmalloc kernel memory
2108 * @size: size of map area
2110 * Returns: 0 for success, -Exxx on failure
2112 * This function checks that @kaddr is a valid vmalloc'ed area,
2113 * and that it is big enough to cover the range starting at
2114 * @uaddr in @vma. Will return failure if that criteria isn't
2117 * Similar to remap_pfn_range() (see mm/memory.c)
2119 int remap_vmalloc_range_partial(struct vm_area_struct
*vma
, unsigned long uaddr
,
2120 void *kaddr
, unsigned long size
)
2122 struct vm_struct
*area
;
2124 size
= PAGE_ALIGN(size
);
2126 if (!PAGE_ALIGNED(uaddr
) || !PAGE_ALIGNED(kaddr
))
2129 area
= find_vm_area(kaddr
);
2133 if (!(area
->flags
& VM_USERMAP
))
2136 if (kaddr
+ size
> area
->addr
+ area
->size
)
2140 struct page
*page
= vmalloc_to_page(kaddr
);
2143 ret
= vm_insert_page(vma
, uaddr
, page
);
2152 vma
->vm_flags
|= VM_DONTEXPAND
| VM_DONTDUMP
;
2156 EXPORT_SYMBOL(remap_vmalloc_range_partial
);
2159 * remap_vmalloc_range - map vmalloc pages to userspace
2160 * @vma: vma to cover (map full range of vma)
2161 * @addr: vmalloc memory
2162 * @pgoff: number of pages into addr before first page to map
2164 * Returns: 0 for success, -Exxx on failure
2166 * This function checks that addr is a valid vmalloc'ed area, and
2167 * that it is big enough to cover the vma. Will return failure if
2168 * that criteria isn't met.
2170 * Similar to remap_pfn_range() (see mm/memory.c)
2172 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
2173 unsigned long pgoff
)
2175 return remap_vmalloc_range_partial(vma
, vma
->vm_start
,
2176 addr
+ (pgoff
<< PAGE_SHIFT
),
2177 vma
->vm_end
- vma
->vm_start
);
2179 EXPORT_SYMBOL(remap_vmalloc_range
);
2182 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2185 void __attribute__((weak
)) vmalloc_sync_all(void)
2190 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
2202 * alloc_vm_area - allocate a range of kernel address space
2203 * @size: size of the area
2204 * @ptes: returns the PTEs for the address space
2206 * Returns: NULL on failure, vm_struct on success
2208 * This function reserves a range of kernel address space, and
2209 * allocates pagetables to map that range. No actual mappings
2212 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2213 * allocated for the VM area are returned.
2215 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
2217 struct vm_struct
*area
;
2219 area
= get_vm_area_caller(size
, VM_IOREMAP
,
2220 __builtin_return_address(0));
2225 * This ensures that page tables are constructed for this region
2226 * of kernel virtual address space and mapped into init_mm.
2228 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
2229 size
, f
, ptes
? &ptes
: NULL
)) {
2236 EXPORT_SYMBOL_GPL(alloc_vm_area
);
2238 void free_vm_area(struct vm_struct
*area
)
2240 struct vm_struct
*ret
;
2241 ret
= remove_vm_area(area
->addr
);
2242 BUG_ON(ret
!= area
);
2245 EXPORT_SYMBOL_GPL(free_vm_area
);
2248 static struct vmap_area
*node_to_va(struct rb_node
*n
)
2250 return n
? rb_entry(n
, struct vmap_area
, rb_node
) : NULL
;
2254 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2255 * @end: target address
2256 * @pnext: out arg for the next vmap_area
2257 * @pprev: out arg for the previous vmap_area
2259 * Returns: %true if either or both of next and prev are found,
2260 * %false if no vmap_area exists
2262 * Find vmap_areas end addresses of which enclose @end. ie. if not
2263 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2265 static bool pvm_find_next_prev(unsigned long end
,
2266 struct vmap_area
**pnext
,
2267 struct vmap_area
**pprev
)
2269 struct rb_node
*n
= vmap_area_root
.rb_node
;
2270 struct vmap_area
*va
= NULL
;
2273 va
= rb_entry(n
, struct vmap_area
, rb_node
);
2274 if (end
< va
->va_end
)
2276 else if (end
> va
->va_end
)
2285 if (va
->va_end
> end
) {
2287 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2290 *pnext
= node_to_va(rb_next(&(*pprev
)->rb_node
));
2296 * pvm_determine_end - find the highest aligned address between two vmap_areas
2297 * @pnext: in/out arg for the next vmap_area
2298 * @pprev: in/out arg for the previous vmap_area
2301 * Returns: determined end address
2303 * Find the highest aligned address between *@pnext and *@pprev below
2304 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2305 * down address is between the end addresses of the two vmap_areas.
2307 * Please note that the address returned by this function may fall
2308 * inside *@pnext vmap_area. The caller is responsible for checking
2311 static unsigned long pvm_determine_end(struct vmap_area
**pnext
,
2312 struct vmap_area
**pprev
,
2313 unsigned long align
)
2315 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2319 addr
= min((*pnext
)->va_start
& ~(align
- 1), vmalloc_end
);
2323 while (*pprev
&& (*pprev
)->va_end
> addr
) {
2325 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2332 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2333 * @offsets: array containing offset of each area
2334 * @sizes: array containing size of each area
2335 * @nr_vms: the number of areas to allocate
2336 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2338 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2339 * vm_structs on success, %NULL on failure
2341 * Percpu allocator wants to use congruent vm areas so that it can
2342 * maintain the offsets among percpu areas. This function allocates
2343 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2344 * be scattered pretty far, distance between two areas easily going up
2345 * to gigabytes. To avoid interacting with regular vmallocs, these
2346 * areas are allocated from top.
2348 * Despite its complicated look, this allocator is rather simple. It
2349 * does everything top-down and scans areas from the end looking for
2350 * matching slot. While scanning, if any of the areas overlaps with
2351 * existing vmap_area, the base address is pulled down to fit the
2352 * area. Scanning is repeated till all the areas fit and then all
2353 * necessary data structres are inserted and the result is returned.
2355 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
2356 const size_t *sizes
, int nr_vms
,
2359 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
2360 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2361 struct vmap_area
**vas
, *prev
, *next
;
2362 struct vm_struct
**vms
;
2363 int area
, area2
, last_area
, term_area
;
2364 unsigned long base
, start
, end
, last_end
;
2365 bool purged
= false;
2367 /* verify parameters and allocate data structures */
2368 BUG_ON(align
& ~PAGE_MASK
|| !is_power_of_2(align
));
2369 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
2370 start
= offsets
[area
];
2371 end
= start
+ sizes
[area
];
2373 /* is everything aligned properly? */
2374 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
2375 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
2377 /* detect the area with the highest address */
2378 if (start
> offsets
[last_area
])
2381 for (area2
= 0; area2
< nr_vms
; area2
++) {
2382 unsigned long start2
= offsets
[area2
];
2383 unsigned long end2
= start2
+ sizes
[area2
];
2388 BUG_ON(start2
>= start
&& start2
< end
);
2389 BUG_ON(end2
<= end
&& end2
> start
);
2392 last_end
= offsets
[last_area
] + sizes
[last_area
];
2394 if (vmalloc_end
- vmalloc_start
< last_end
) {
2399 vms
= kcalloc(nr_vms
, sizeof(vms
[0]), GFP_KERNEL
);
2400 vas
= kcalloc(nr_vms
, sizeof(vas
[0]), GFP_KERNEL
);
2404 for (area
= 0; area
< nr_vms
; area
++) {
2405 vas
[area
] = kzalloc(sizeof(struct vmap_area
), GFP_KERNEL
);
2406 vms
[area
] = kzalloc(sizeof(struct vm_struct
), GFP_KERNEL
);
2407 if (!vas
[area
] || !vms
[area
])
2411 spin_lock(&vmap_area_lock
);
2413 /* start scanning - we scan from the top, begin with the last area */
2414 area
= term_area
= last_area
;
2415 start
= offsets
[area
];
2416 end
= start
+ sizes
[area
];
2418 if (!pvm_find_next_prev(vmap_area_pcpu_hole
, &next
, &prev
)) {
2419 base
= vmalloc_end
- last_end
;
2422 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2425 BUG_ON(next
&& next
->va_end
<= base
+ end
);
2426 BUG_ON(prev
&& prev
->va_end
> base
+ end
);
2429 * base might have underflowed, add last_end before
2432 if (base
+ last_end
< vmalloc_start
+ last_end
) {
2433 spin_unlock(&vmap_area_lock
);
2435 purge_vmap_area_lazy();
2443 * If next overlaps, move base downwards so that it's
2444 * right below next and then recheck.
2446 if (next
&& next
->va_start
< base
+ end
) {
2447 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2453 * If prev overlaps, shift down next and prev and move
2454 * base so that it's right below new next and then
2457 if (prev
&& prev
->va_end
> base
+ start
) {
2459 prev
= node_to_va(rb_prev(&next
->rb_node
));
2460 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2466 * This area fits, move on to the previous one. If
2467 * the previous one is the terminal one, we're done.
2469 area
= (area
+ nr_vms
- 1) % nr_vms
;
2470 if (area
== term_area
)
2472 start
= offsets
[area
];
2473 end
= start
+ sizes
[area
];
2474 pvm_find_next_prev(base
+ end
, &next
, &prev
);
2477 /* we've found a fitting base, insert all va's */
2478 for (area
= 0; area
< nr_vms
; area
++) {
2479 struct vmap_area
*va
= vas
[area
];
2481 va
->va_start
= base
+ offsets
[area
];
2482 va
->va_end
= va
->va_start
+ sizes
[area
];
2483 __insert_vmap_area(va
);
2486 vmap_area_pcpu_hole
= base
+ offsets
[last_area
];
2488 spin_unlock(&vmap_area_lock
);
2490 /* insert all vm's */
2491 for (area
= 0; area
< nr_vms
; area
++)
2492 setup_vmalloc_vm(vms
[area
], vas
[area
], VM_ALLOC
,
2499 for (area
= 0; area
< nr_vms
; area
++) {
2510 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2511 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2512 * @nr_vms: the number of allocated areas
2514 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2516 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
2520 for (i
= 0; i
< nr_vms
; i
++)
2521 free_vm_area(vms
[i
]);
2524 #endif /* CONFIG_SMP */
2526 #ifdef CONFIG_PROC_FS
2527 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2528 __acquires(&vmap_area_lock
)
2531 struct vmap_area
*va
;
2533 spin_lock(&vmap_area_lock
);
2534 va
= list_entry((&vmap_area_list
)->next
, typeof(*va
), list
);
2535 while (n
> 0 && &va
->list
!= &vmap_area_list
) {
2537 va
= list_entry(va
->list
.next
, typeof(*va
), list
);
2539 if (!n
&& &va
->list
!= &vmap_area_list
)
2546 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2548 struct vmap_area
*va
= p
, *next
;
2551 next
= list_entry(va
->list
.next
, typeof(*va
), list
);
2552 if (&next
->list
!= &vmap_area_list
)
2558 static void s_stop(struct seq_file
*m
, void *p
)
2559 __releases(&vmap_area_lock
)
2561 spin_unlock(&vmap_area_lock
);
2564 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
2566 if (IS_ENABLED(CONFIG_NUMA
)) {
2567 unsigned int nr
, *counters
= m
->private;
2572 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
2574 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
2575 counters
[page_to_nid(v
->pages
[nr
])]++;
2577 for_each_node_state(nr
, N_HIGH_MEMORY
)
2579 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
2583 static int s_show(struct seq_file
*m
, void *p
)
2585 struct vmap_area
*va
= p
;
2586 struct vm_struct
*v
;
2588 if (va
->flags
& (VM_LAZY_FREE
| VM_LAZY_FREEING
))
2591 if (!(va
->flags
& VM_VM_AREA
)) {
2592 seq_printf(m
, "0x%pK-0x%pK %7ld vm_map_ram\n",
2593 (void *)va
->va_start
, (void *)va
->va_end
,
2594 va
->va_end
- va
->va_start
);
2600 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2602 if (v
->flags
& VM_UNINITIALIZED
)
2605 seq_printf(m
, "0x%pK-0x%pK %7ld",
2606 v
->addr
, v
->addr
+ v
->size
, v
->size
);
2609 seq_printf(m
, " %pS", v
->caller
);
2612 seq_printf(m
, " pages=%d", v
->nr_pages
);
2615 seq_printf(m
, " phys=%llx", (unsigned long long)v
->phys_addr
);
2617 if (v
->flags
& VM_IOREMAP
)
2618 seq_printf(m
, " ioremap");
2620 if (v
->flags
& VM_ALLOC
)
2621 seq_printf(m
, " vmalloc");
2623 if (v
->flags
& VM_MAP
)
2624 seq_printf(m
, " vmap");
2626 if (v
->flags
& VM_USERMAP
)
2627 seq_printf(m
, " user");
2629 if (v
->flags
& VM_VPAGES
)
2630 seq_printf(m
, " vpages");
2632 show_numa_info(m
, v
);
2637 static const struct seq_operations vmalloc_op
= {
2644 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
2646 unsigned int *ptr
= NULL
;
2649 if (IS_ENABLED(CONFIG_NUMA
)) {
2650 ptr
= kmalloc(nr_node_ids
* sizeof(unsigned int), GFP_KERNEL
);
2654 ret
= seq_open(file
, &vmalloc_op
);
2656 struct seq_file
*m
= file
->private_data
;
2663 static const struct file_operations proc_vmalloc_operations
= {
2664 .open
= vmalloc_open
,
2666 .llseek
= seq_lseek
,
2667 .release
= seq_release_private
,
2670 static int __init
proc_vmalloc_init(void)
2672 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
2675 module_init(proc_vmalloc_init
);
2677 void get_vmalloc_info(struct vmalloc_info
*vmi
)
2679 struct vmap_area
*va
;
2680 unsigned long free_area_size
;
2681 unsigned long prev_end
;
2684 vmi
->largest_chunk
= 0;
2686 prev_end
= VMALLOC_START
;
2688 spin_lock(&vmap_area_lock
);
2690 if (list_empty(&vmap_area_list
)) {
2691 vmi
->largest_chunk
= VMALLOC_TOTAL
;
2695 list_for_each_entry(va
, &vmap_area_list
, list
) {
2696 unsigned long addr
= va
->va_start
;
2699 * Some archs keep another range for modules in vmalloc space
2701 if (addr
< VMALLOC_START
)
2703 if (addr
>= VMALLOC_END
)
2706 if (va
->flags
& (VM_LAZY_FREE
| VM_LAZY_FREEING
))
2709 vmi
->used
+= (va
->va_end
- va
->va_start
);
2711 free_area_size
= addr
- prev_end
;
2712 if (vmi
->largest_chunk
< free_area_size
)
2713 vmi
->largest_chunk
= free_area_size
;
2715 prev_end
= va
->va_end
;
2718 if (VMALLOC_END
- prev_end
> vmi
->largest_chunk
)
2719 vmi
->largest_chunk
= VMALLOC_END
- prev_end
;
2722 spin_unlock(&vmap_area_lock
);