x86/xen: resume timer irqs early
[linux/fpc-iii.git] / net / bluetooth / rfcomm / sock.c
blobc1c6028e389adc8b7ad0d40ef94120633c033613
1 /*
2 RFCOMM implementation for Linux Bluetooth stack (BlueZ).
3 Copyright (C) 2002 Maxim Krasnyansky <maxk@qualcomm.com>
4 Copyright (C) 2002 Marcel Holtmann <marcel@holtmann.org>
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
25 * RFCOMM sockets.
28 #include <linux/export.h>
29 #include <linux/debugfs.h>
31 #include <net/bluetooth/bluetooth.h>
32 #include <net/bluetooth/hci_core.h>
33 #include <net/bluetooth/l2cap.h>
34 #include <net/bluetooth/rfcomm.h>
36 static const struct proto_ops rfcomm_sock_ops;
38 static struct bt_sock_list rfcomm_sk_list = {
39 .lock = __RW_LOCK_UNLOCKED(rfcomm_sk_list.lock)
42 static void rfcomm_sock_close(struct sock *sk);
43 static void rfcomm_sock_kill(struct sock *sk);
45 /* ---- DLC callbacks ----
47 * called under rfcomm_dlc_lock()
49 static void rfcomm_sk_data_ready(struct rfcomm_dlc *d, struct sk_buff *skb)
51 struct sock *sk = d->owner;
52 if (!sk)
53 return;
55 atomic_add(skb->len, &sk->sk_rmem_alloc);
56 skb_queue_tail(&sk->sk_receive_queue, skb);
57 sk->sk_data_ready(sk, skb->len);
59 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
60 rfcomm_dlc_throttle(d);
63 static void rfcomm_sk_state_change(struct rfcomm_dlc *d, int err)
65 struct sock *sk = d->owner, *parent;
66 unsigned long flags;
68 if (!sk)
69 return;
71 BT_DBG("dlc %p state %ld err %d", d, d->state, err);
73 local_irq_save(flags);
74 bh_lock_sock(sk);
76 if (err)
77 sk->sk_err = err;
79 sk->sk_state = d->state;
81 parent = bt_sk(sk)->parent;
82 if (parent) {
83 if (d->state == BT_CLOSED) {
84 sock_set_flag(sk, SOCK_ZAPPED);
85 bt_accept_unlink(sk);
87 parent->sk_data_ready(parent, 0);
88 } else {
89 if (d->state == BT_CONNECTED)
90 rfcomm_session_getaddr(d->session, &bt_sk(sk)->src, NULL);
91 sk->sk_state_change(sk);
94 bh_unlock_sock(sk);
95 local_irq_restore(flags);
97 if (parent && sock_flag(sk, SOCK_ZAPPED)) {
98 /* We have to drop DLC lock here, otherwise
99 * rfcomm_sock_destruct() will dead lock. */
100 rfcomm_dlc_unlock(d);
101 rfcomm_sock_kill(sk);
102 rfcomm_dlc_lock(d);
106 /* ---- Socket functions ---- */
107 static struct sock *__rfcomm_get_sock_by_addr(u8 channel, bdaddr_t *src)
109 struct sock *sk = NULL;
111 sk_for_each(sk, &rfcomm_sk_list.head) {
112 if (rfcomm_pi(sk)->channel == channel &&
113 !bacmp(&bt_sk(sk)->src, src))
114 break;
117 return sk ? sk : NULL;
120 /* Find socket with channel and source bdaddr.
121 * Returns closest match.
123 static struct sock *rfcomm_get_sock_by_channel(int state, u8 channel, bdaddr_t *src)
125 struct sock *sk = NULL, *sk1 = NULL;
127 read_lock(&rfcomm_sk_list.lock);
129 sk_for_each(sk, &rfcomm_sk_list.head) {
130 if (state && sk->sk_state != state)
131 continue;
133 if (rfcomm_pi(sk)->channel == channel) {
134 /* Exact match. */
135 if (!bacmp(&bt_sk(sk)->src, src))
136 break;
138 /* Closest match */
139 if (!bacmp(&bt_sk(sk)->src, BDADDR_ANY))
140 sk1 = sk;
144 read_unlock(&rfcomm_sk_list.lock);
146 return sk ? sk : sk1;
149 static void rfcomm_sock_destruct(struct sock *sk)
151 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
153 BT_DBG("sk %p dlc %p", sk, d);
155 skb_queue_purge(&sk->sk_receive_queue);
156 skb_queue_purge(&sk->sk_write_queue);
158 rfcomm_dlc_lock(d);
159 rfcomm_pi(sk)->dlc = NULL;
161 /* Detach DLC if it's owned by this socket */
162 if (d->owner == sk)
163 d->owner = NULL;
164 rfcomm_dlc_unlock(d);
166 rfcomm_dlc_put(d);
169 static void rfcomm_sock_cleanup_listen(struct sock *parent)
171 struct sock *sk;
173 BT_DBG("parent %p", parent);
175 /* Close not yet accepted dlcs */
176 while ((sk = bt_accept_dequeue(parent, NULL))) {
177 rfcomm_sock_close(sk);
178 rfcomm_sock_kill(sk);
181 parent->sk_state = BT_CLOSED;
182 sock_set_flag(parent, SOCK_ZAPPED);
185 /* Kill socket (only if zapped and orphan)
186 * Must be called on unlocked socket.
188 static void rfcomm_sock_kill(struct sock *sk)
190 if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
191 return;
193 BT_DBG("sk %p state %d refcnt %d", sk, sk->sk_state, atomic_read(&sk->sk_refcnt));
195 /* Kill poor orphan */
196 bt_sock_unlink(&rfcomm_sk_list, sk);
197 sock_set_flag(sk, SOCK_DEAD);
198 sock_put(sk);
201 static void __rfcomm_sock_close(struct sock *sk)
203 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
205 BT_DBG("sk %p state %d socket %p", sk, sk->sk_state, sk->sk_socket);
207 switch (sk->sk_state) {
208 case BT_LISTEN:
209 rfcomm_sock_cleanup_listen(sk);
210 break;
212 case BT_CONNECT:
213 case BT_CONNECT2:
214 case BT_CONFIG:
215 case BT_CONNECTED:
216 rfcomm_dlc_close(d, 0);
218 default:
219 sock_set_flag(sk, SOCK_ZAPPED);
220 break;
224 /* Close socket.
225 * Must be called on unlocked socket.
227 static void rfcomm_sock_close(struct sock *sk)
229 lock_sock(sk);
230 __rfcomm_sock_close(sk);
231 release_sock(sk);
234 static void rfcomm_sock_init(struct sock *sk, struct sock *parent)
236 struct rfcomm_pinfo *pi = rfcomm_pi(sk);
238 BT_DBG("sk %p", sk);
240 if (parent) {
241 sk->sk_type = parent->sk_type;
242 pi->dlc->defer_setup = test_bit(BT_SK_DEFER_SETUP,
243 &bt_sk(parent)->flags);
245 pi->sec_level = rfcomm_pi(parent)->sec_level;
246 pi->role_switch = rfcomm_pi(parent)->role_switch;
248 security_sk_clone(parent, sk);
249 } else {
250 pi->dlc->defer_setup = 0;
252 pi->sec_level = BT_SECURITY_LOW;
253 pi->role_switch = 0;
256 pi->dlc->sec_level = pi->sec_level;
257 pi->dlc->role_switch = pi->role_switch;
260 static struct proto rfcomm_proto = {
261 .name = "RFCOMM",
262 .owner = THIS_MODULE,
263 .obj_size = sizeof(struct rfcomm_pinfo)
266 static struct sock *rfcomm_sock_alloc(struct net *net, struct socket *sock, int proto, gfp_t prio)
268 struct rfcomm_dlc *d;
269 struct sock *sk;
271 sk = sk_alloc(net, PF_BLUETOOTH, prio, &rfcomm_proto);
272 if (!sk)
273 return NULL;
275 sock_init_data(sock, sk);
276 INIT_LIST_HEAD(&bt_sk(sk)->accept_q);
278 d = rfcomm_dlc_alloc(prio);
279 if (!d) {
280 sk_free(sk);
281 return NULL;
284 d->data_ready = rfcomm_sk_data_ready;
285 d->state_change = rfcomm_sk_state_change;
287 rfcomm_pi(sk)->dlc = d;
288 d->owner = sk;
290 sk->sk_destruct = rfcomm_sock_destruct;
291 sk->sk_sndtimeo = RFCOMM_CONN_TIMEOUT;
293 sk->sk_sndbuf = RFCOMM_MAX_CREDITS * RFCOMM_DEFAULT_MTU * 10;
294 sk->sk_rcvbuf = RFCOMM_MAX_CREDITS * RFCOMM_DEFAULT_MTU * 10;
296 sock_reset_flag(sk, SOCK_ZAPPED);
298 sk->sk_protocol = proto;
299 sk->sk_state = BT_OPEN;
301 bt_sock_link(&rfcomm_sk_list, sk);
303 BT_DBG("sk %p", sk);
304 return sk;
307 static int rfcomm_sock_create(struct net *net, struct socket *sock,
308 int protocol, int kern)
310 struct sock *sk;
312 BT_DBG("sock %p", sock);
314 sock->state = SS_UNCONNECTED;
316 if (sock->type != SOCK_STREAM && sock->type != SOCK_RAW)
317 return -ESOCKTNOSUPPORT;
319 sock->ops = &rfcomm_sock_ops;
321 sk = rfcomm_sock_alloc(net, sock, protocol, GFP_ATOMIC);
322 if (!sk)
323 return -ENOMEM;
325 rfcomm_sock_init(sk, NULL);
326 return 0;
329 static int rfcomm_sock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
331 struct sockaddr_rc *sa = (struct sockaddr_rc *) addr;
332 struct sock *sk = sock->sk;
333 int err = 0;
335 BT_DBG("sk %p %pMR", sk, &sa->rc_bdaddr);
337 if (!addr || addr->sa_family != AF_BLUETOOTH)
338 return -EINVAL;
340 lock_sock(sk);
342 if (sk->sk_state != BT_OPEN) {
343 err = -EBADFD;
344 goto done;
347 if (sk->sk_type != SOCK_STREAM) {
348 err = -EINVAL;
349 goto done;
352 write_lock(&rfcomm_sk_list.lock);
354 if (sa->rc_channel && __rfcomm_get_sock_by_addr(sa->rc_channel, &sa->rc_bdaddr)) {
355 err = -EADDRINUSE;
356 } else {
357 /* Save source address */
358 bacpy(&bt_sk(sk)->src, &sa->rc_bdaddr);
359 rfcomm_pi(sk)->channel = sa->rc_channel;
360 sk->sk_state = BT_BOUND;
363 write_unlock(&rfcomm_sk_list.lock);
365 done:
366 release_sock(sk);
367 return err;
370 static int rfcomm_sock_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags)
372 struct sockaddr_rc *sa = (struct sockaddr_rc *) addr;
373 struct sock *sk = sock->sk;
374 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
375 int err = 0;
377 BT_DBG("sk %p", sk);
379 if (alen < sizeof(struct sockaddr_rc) ||
380 addr->sa_family != AF_BLUETOOTH)
381 return -EINVAL;
383 lock_sock(sk);
385 if (sk->sk_state != BT_OPEN && sk->sk_state != BT_BOUND) {
386 err = -EBADFD;
387 goto done;
390 if (sk->sk_type != SOCK_STREAM) {
391 err = -EINVAL;
392 goto done;
395 sk->sk_state = BT_CONNECT;
396 bacpy(&bt_sk(sk)->dst, &sa->rc_bdaddr);
397 rfcomm_pi(sk)->channel = sa->rc_channel;
399 d->sec_level = rfcomm_pi(sk)->sec_level;
400 d->role_switch = rfcomm_pi(sk)->role_switch;
402 err = rfcomm_dlc_open(d, &bt_sk(sk)->src, &sa->rc_bdaddr, sa->rc_channel);
403 if (!err)
404 err = bt_sock_wait_state(sk, BT_CONNECTED,
405 sock_sndtimeo(sk, flags & O_NONBLOCK));
407 done:
408 release_sock(sk);
409 return err;
412 static int rfcomm_sock_listen(struct socket *sock, int backlog)
414 struct sock *sk = sock->sk;
415 int err = 0;
417 BT_DBG("sk %p backlog %d", sk, backlog);
419 lock_sock(sk);
421 if (sk->sk_state != BT_BOUND) {
422 err = -EBADFD;
423 goto done;
426 if (sk->sk_type != SOCK_STREAM) {
427 err = -EINVAL;
428 goto done;
431 if (!rfcomm_pi(sk)->channel) {
432 bdaddr_t *src = &bt_sk(sk)->src;
433 u8 channel;
435 err = -EINVAL;
437 write_lock(&rfcomm_sk_list.lock);
439 for (channel = 1; channel < 31; channel++)
440 if (!__rfcomm_get_sock_by_addr(channel, src)) {
441 rfcomm_pi(sk)->channel = channel;
442 err = 0;
443 break;
446 write_unlock(&rfcomm_sk_list.lock);
448 if (err < 0)
449 goto done;
452 sk->sk_max_ack_backlog = backlog;
453 sk->sk_ack_backlog = 0;
454 sk->sk_state = BT_LISTEN;
456 done:
457 release_sock(sk);
458 return err;
461 static int rfcomm_sock_accept(struct socket *sock, struct socket *newsock, int flags)
463 DECLARE_WAITQUEUE(wait, current);
464 struct sock *sk = sock->sk, *nsk;
465 long timeo;
466 int err = 0;
468 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
470 if (sk->sk_type != SOCK_STREAM) {
471 err = -EINVAL;
472 goto done;
475 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
477 BT_DBG("sk %p timeo %ld", sk, timeo);
479 /* Wait for an incoming connection. (wake-one). */
480 add_wait_queue_exclusive(sk_sleep(sk), &wait);
481 while (1) {
482 set_current_state(TASK_INTERRUPTIBLE);
484 if (sk->sk_state != BT_LISTEN) {
485 err = -EBADFD;
486 break;
489 nsk = bt_accept_dequeue(sk, newsock);
490 if (nsk)
491 break;
493 if (!timeo) {
494 err = -EAGAIN;
495 break;
498 if (signal_pending(current)) {
499 err = sock_intr_errno(timeo);
500 break;
503 release_sock(sk);
504 timeo = schedule_timeout(timeo);
505 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
507 __set_current_state(TASK_RUNNING);
508 remove_wait_queue(sk_sleep(sk), &wait);
510 if (err)
511 goto done;
513 newsock->state = SS_CONNECTED;
515 BT_DBG("new socket %p", nsk);
517 done:
518 release_sock(sk);
519 return err;
522 static int rfcomm_sock_getname(struct socket *sock, struct sockaddr *addr, int *len, int peer)
524 struct sockaddr_rc *sa = (struct sockaddr_rc *) addr;
525 struct sock *sk = sock->sk;
527 BT_DBG("sock %p, sk %p", sock, sk);
529 memset(sa, 0, sizeof(*sa));
530 sa->rc_family = AF_BLUETOOTH;
531 sa->rc_channel = rfcomm_pi(sk)->channel;
532 if (peer)
533 bacpy(&sa->rc_bdaddr, &bt_sk(sk)->dst);
534 else
535 bacpy(&sa->rc_bdaddr, &bt_sk(sk)->src);
537 *len = sizeof(struct sockaddr_rc);
538 return 0;
541 static int rfcomm_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
542 struct msghdr *msg, size_t len)
544 struct sock *sk = sock->sk;
545 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
546 struct sk_buff *skb;
547 int sent = 0;
549 if (test_bit(RFCOMM_DEFER_SETUP, &d->flags))
550 return -ENOTCONN;
552 if (msg->msg_flags & MSG_OOB)
553 return -EOPNOTSUPP;
555 if (sk->sk_shutdown & SEND_SHUTDOWN)
556 return -EPIPE;
558 BT_DBG("sock %p, sk %p", sock, sk);
560 lock_sock(sk);
562 while (len) {
563 size_t size = min_t(size_t, len, d->mtu);
564 int err;
566 skb = sock_alloc_send_skb(sk, size + RFCOMM_SKB_RESERVE,
567 msg->msg_flags & MSG_DONTWAIT, &err);
568 if (!skb) {
569 if (sent == 0)
570 sent = err;
571 break;
573 skb_reserve(skb, RFCOMM_SKB_HEAD_RESERVE);
575 err = memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size);
576 if (err) {
577 kfree_skb(skb);
578 if (sent == 0)
579 sent = err;
580 break;
583 skb->priority = sk->sk_priority;
585 err = rfcomm_dlc_send(d, skb);
586 if (err < 0) {
587 kfree_skb(skb);
588 if (sent == 0)
589 sent = err;
590 break;
593 sent += size;
594 len -= size;
597 release_sock(sk);
599 return sent;
602 static int rfcomm_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
603 struct msghdr *msg, size_t size, int flags)
605 struct sock *sk = sock->sk;
606 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
607 int len;
609 if (test_and_clear_bit(RFCOMM_DEFER_SETUP, &d->flags)) {
610 rfcomm_dlc_accept(d);
611 return 0;
614 len = bt_sock_stream_recvmsg(iocb, sock, msg, size, flags);
616 lock_sock(sk);
617 if (!(flags & MSG_PEEK) && len > 0)
618 atomic_sub(len, &sk->sk_rmem_alloc);
620 if (atomic_read(&sk->sk_rmem_alloc) <= (sk->sk_rcvbuf >> 2))
621 rfcomm_dlc_unthrottle(rfcomm_pi(sk)->dlc);
622 release_sock(sk);
624 return len;
627 static int rfcomm_sock_setsockopt_old(struct socket *sock, int optname, char __user *optval, unsigned int optlen)
629 struct sock *sk = sock->sk;
630 int err = 0;
631 u32 opt;
633 BT_DBG("sk %p", sk);
635 lock_sock(sk);
637 switch (optname) {
638 case RFCOMM_LM:
639 if (get_user(opt, (u32 __user *) optval)) {
640 err = -EFAULT;
641 break;
644 if (opt & RFCOMM_LM_AUTH)
645 rfcomm_pi(sk)->sec_level = BT_SECURITY_LOW;
646 if (opt & RFCOMM_LM_ENCRYPT)
647 rfcomm_pi(sk)->sec_level = BT_SECURITY_MEDIUM;
648 if (opt & RFCOMM_LM_SECURE)
649 rfcomm_pi(sk)->sec_level = BT_SECURITY_HIGH;
651 rfcomm_pi(sk)->role_switch = (opt & RFCOMM_LM_MASTER);
652 break;
654 default:
655 err = -ENOPROTOOPT;
656 break;
659 release_sock(sk);
660 return err;
663 static int rfcomm_sock_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
665 struct sock *sk = sock->sk;
666 struct bt_security sec;
667 int err = 0;
668 size_t len;
669 u32 opt;
671 BT_DBG("sk %p", sk);
673 if (level == SOL_RFCOMM)
674 return rfcomm_sock_setsockopt_old(sock, optname, optval, optlen);
676 if (level != SOL_BLUETOOTH)
677 return -ENOPROTOOPT;
679 lock_sock(sk);
681 switch (optname) {
682 case BT_SECURITY:
683 if (sk->sk_type != SOCK_STREAM) {
684 err = -EINVAL;
685 break;
688 sec.level = BT_SECURITY_LOW;
690 len = min_t(unsigned int, sizeof(sec), optlen);
691 if (copy_from_user((char *) &sec, optval, len)) {
692 err = -EFAULT;
693 break;
696 if (sec.level > BT_SECURITY_HIGH) {
697 err = -EINVAL;
698 break;
701 rfcomm_pi(sk)->sec_level = sec.level;
702 break;
704 case BT_DEFER_SETUP:
705 if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) {
706 err = -EINVAL;
707 break;
710 if (get_user(opt, (u32 __user *) optval)) {
711 err = -EFAULT;
712 break;
715 if (opt)
716 set_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags);
717 else
718 clear_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags);
720 break;
722 default:
723 err = -ENOPROTOOPT;
724 break;
727 release_sock(sk);
728 return err;
731 static int rfcomm_sock_getsockopt_old(struct socket *sock, int optname, char __user *optval, int __user *optlen)
733 struct sock *sk = sock->sk;
734 struct rfcomm_conninfo cinfo;
735 struct l2cap_conn *conn = l2cap_pi(sk)->chan->conn;
736 int len, err = 0;
737 u32 opt;
739 BT_DBG("sk %p", sk);
741 if (get_user(len, optlen))
742 return -EFAULT;
744 lock_sock(sk);
746 switch (optname) {
747 case RFCOMM_LM:
748 switch (rfcomm_pi(sk)->sec_level) {
749 case BT_SECURITY_LOW:
750 opt = RFCOMM_LM_AUTH;
751 break;
752 case BT_SECURITY_MEDIUM:
753 opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT;
754 break;
755 case BT_SECURITY_HIGH:
756 opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT |
757 RFCOMM_LM_SECURE;
758 break;
759 default:
760 opt = 0;
761 break;
764 if (rfcomm_pi(sk)->role_switch)
765 opt |= RFCOMM_LM_MASTER;
767 if (put_user(opt, (u32 __user *) optval))
768 err = -EFAULT;
769 break;
771 case RFCOMM_CONNINFO:
772 if (sk->sk_state != BT_CONNECTED &&
773 !rfcomm_pi(sk)->dlc->defer_setup) {
774 err = -ENOTCONN;
775 break;
778 memset(&cinfo, 0, sizeof(cinfo));
779 cinfo.hci_handle = conn->hcon->handle;
780 memcpy(cinfo.dev_class, conn->hcon->dev_class, 3);
782 len = min_t(unsigned int, len, sizeof(cinfo));
783 if (copy_to_user(optval, (char *) &cinfo, len))
784 err = -EFAULT;
786 break;
788 default:
789 err = -ENOPROTOOPT;
790 break;
793 release_sock(sk);
794 return err;
797 static int rfcomm_sock_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen)
799 struct sock *sk = sock->sk;
800 struct bt_security sec;
801 int len, err = 0;
803 BT_DBG("sk %p", sk);
805 if (level == SOL_RFCOMM)
806 return rfcomm_sock_getsockopt_old(sock, optname, optval, optlen);
808 if (level != SOL_BLUETOOTH)
809 return -ENOPROTOOPT;
811 if (get_user(len, optlen))
812 return -EFAULT;
814 lock_sock(sk);
816 switch (optname) {
817 case BT_SECURITY:
818 if (sk->sk_type != SOCK_STREAM) {
819 err = -EINVAL;
820 break;
823 sec.level = rfcomm_pi(sk)->sec_level;
824 sec.key_size = 0;
826 len = min_t(unsigned int, len, sizeof(sec));
827 if (copy_to_user(optval, (char *) &sec, len))
828 err = -EFAULT;
830 break;
832 case BT_DEFER_SETUP:
833 if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) {
834 err = -EINVAL;
835 break;
838 if (put_user(test_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags),
839 (u32 __user *) optval))
840 err = -EFAULT;
842 break;
844 default:
845 err = -ENOPROTOOPT;
846 break;
849 release_sock(sk);
850 return err;
853 static int rfcomm_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
855 struct sock *sk __maybe_unused = sock->sk;
856 int err;
858 BT_DBG("sk %p cmd %x arg %lx", sk, cmd, arg);
860 err = bt_sock_ioctl(sock, cmd, arg);
862 if (err == -ENOIOCTLCMD) {
863 #ifdef CONFIG_BT_RFCOMM_TTY
864 lock_sock(sk);
865 err = rfcomm_dev_ioctl(sk, cmd, (void __user *) arg);
866 release_sock(sk);
867 #else
868 err = -EOPNOTSUPP;
869 #endif
872 return err;
875 static int rfcomm_sock_shutdown(struct socket *sock, int how)
877 struct sock *sk = sock->sk;
878 int err = 0;
880 BT_DBG("sock %p, sk %p", sock, sk);
882 if (!sk)
883 return 0;
885 lock_sock(sk);
886 if (!sk->sk_shutdown) {
887 sk->sk_shutdown = SHUTDOWN_MASK;
888 __rfcomm_sock_close(sk);
890 if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
891 err = bt_sock_wait_state(sk, BT_CLOSED, sk->sk_lingertime);
893 release_sock(sk);
894 return err;
897 static int rfcomm_sock_release(struct socket *sock)
899 struct sock *sk = sock->sk;
900 int err;
902 BT_DBG("sock %p, sk %p", sock, sk);
904 if (!sk)
905 return 0;
907 err = rfcomm_sock_shutdown(sock, 2);
909 sock_orphan(sk);
910 rfcomm_sock_kill(sk);
911 return err;
914 /* ---- RFCOMM core layer callbacks ----
916 * called under rfcomm_lock()
918 int rfcomm_connect_ind(struct rfcomm_session *s, u8 channel, struct rfcomm_dlc **d)
920 struct sock *sk, *parent;
921 bdaddr_t src, dst;
922 int result = 0;
924 BT_DBG("session %p channel %d", s, channel);
926 rfcomm_session_getaddr(s, &src, &dst);
928 /* Check if we have socket listening on channel */
929 parent = rfcomm_get_sock_by_channel(BT_LISTEN, channel, &src);
930 if (!parent)
931 return 0;
933 bh_lock_sock(parent);
935 /* Check for backlog size */
936 if (sk_acceptq_is_full(parent)) {
937 BT_DBG("backlog full %d", parent->sk_ack_backlog);
938 goto done;
941 sk = rfcomm_sock_alloc(sock_net(parent), NULL, BTPROTO_RFCOMM, GFP_ATOMIC);
942 if (!sk)
943 goto done;
945 bt_sock_reclassify_lock(sk, BTPROTO_RFCOMM);
947 rfcomm_sock_init(sk, parent);
948 bacpy(&bt_sk(sk)->src, &src);
949 bacpy(&bt_sk(sk)->dst, &dst);
950 rfcomm_pi(sk)->channel = channel;
952 sk->sk_state = BT_CONFIG;
953 bt_accept_enqueue(parent, sk);
955 /* Accept connection and return socket DLC */
956 *d = rfcomm_pi(sk)->dlc;
957 result = 1;
959 done:
960 bh_unlock_sock(parent);
962 if (test_bit(BT_SK_DEFER_SETUP, &bt_sk(parent)->flags))
963 parent->sk_state_change(parent);
965 return result;
968 static int rfcomm_sock_debugfs_show(struct seq_file *f, void *p)
970 struct sock *sk;
972 read_lock(&rfcomm_sk_list.lock);
974 sk_for_each(sk, &rfcomm_sk_list.head) {
975 seq_printf(f, "%pMR %pMR %d %d\n",
976 &bt_sk(sk)->src, &bt_sk(sk)->dst,
977 sk->sk_state, rfcomm_pi(sk)->channel);
980 read_unlock(&rfcomm_sk_list.lock);
982 return 0;
985 static int rfcomm_sock_debugfs_open(struct inode *inode, struct file *file)
987 return single_open(file, rfcomm_sock_debugfs_show, inode->i_private);
990 static const struct file_operations rfcomm_sock_debugfs_fops = {
991 .open = rfcomm_sock_debugfs_open,
992 .read = seq_read,
993 .llseek = seq_lseek,
994 .release = single_release,
997 static struct dentry *rfcomm_sock_debugfs;
999 static const struct proto_ops rfcomm_sock_ops = {
1000 .family = PF_BLUETOOTH,
1001 .owner = THIS_MODULE,
1002 .release = rfcomm_sock_release,
1003 .bind = rfcomm_sock_bind,
1004 .connect = rfcomm_sock_connect,
1005 .listen = rfcomm_sock_listen,
1006 .accept = rfcomm_sock_accept,
1007 .getname = rfcomm_sock_getname,
1008 .sendmsg = rfcomm_sock_sendmsg,
1009 .recvmsg = rfcomm_sock_recvmsg,
1010 .shutdown = rfcomm_sock_shutdown,
1011 .setsockopt = rfcomm_sock_setsockopt,
1012 .getsockopt = rfcomm_sock_getsockopt,
1013 .ioctl = rfcomm_sock_ioctl,
1014 .poll = bt_sock_poll,
1015 .socketpair = sock_no_socketpair,
1016 .mmap = sock_no_mmap
1019 static const struct net_proto_family rfcomm_sock_family_ops = {
1020 .family = PF_BLUETOOTH,
1021 .owner = THIS_MODULE,
1022 .create = rfcomm_sock_create
1025 int __init rfcomm_init_sockets(void)
1027 int err;
1029 err = proto_register(&rfcomm_proto, 0);
1030 if (err < 0)
1031 return err;
1033 err = bt_sock_register(BTPROTO_RFCOMM, &rfcomm_sock_family_ops);
1034 if (err < 0) {
1035 BT_ERR("RFCOMM socket layer registration failed");
1036 goto error;
1039 err = bt_procfs_init(&init_net, "rfcomm", &rfcomm_sk_list, NULL);
1040 if (err < 0) {
1041 BT_ERR("Failed to create RFCOMM proc file");
1042 bt_sock_unregister(BTPROTO_RFCOMM);
1043 goto error;
1046 if (bt_debugfs) {
1047 rfcomm_sock_debugfs = debugfs_create_file("rfcomm", 0444,
1048 bt_debugfs, NULL, &rfcomm_sock_debugfs_fops);
1049 if (!rfcomm_sock_debugfs)
1050 BT_ERR("Failed to create RFCOMM debug file");
1053 BT_INFO("RFCOMM socket layer initialized");
1055 return 0;
1057 error:
1058 proto_unregister(&rfcomm_proto);
1059 return err;
1062 void __exit rfcomm_cleanup_sockets(void)
1064 bt_procfs_cleanup(&init_net, "rfcomm");
1066 debugfs_remove(rfcomm_sock_debugfs);
1068 bt_sock_unregister(BTPROTO_RFCOMM);
1070 proto_unregister(&rfcomm_proto);