x86/xen: resume timer irqs early
[linux/fpc-iii.git] / sound / soc / atmel / atmel_ssc_dai.c
blobbb53dea85b17eefc55090dfb4190ee5863337a2d
1 /*
2 * atmel_ssc_dai.c -- ALSA SoC ATMEL SSC Audio Layer Platform driver
4 * Copyright (C) 2005 SAN People
5 * Copyright (C) 2008 Atmel
7 * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com>
8 * ATMEL CORP.
10 * Based on at91-ssc.c by
11 * Frank Mandarino <fmandarino@endrelia.com>
12 * Based on pxa2xx Platform drivers by
13 * Liam Girdwood <lrg@slimlogic.co.uk>
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 * GNU General Public License for more details.
25 * You should have received a copy of the GNU General Public License
26 * along with this program; if not, write to the Free Software
27 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
30 #include <linux/init.h>
31 #include <linux/module.h>
32 #include <linux/interrupt.h>
33 #include <linux/device.h>
34 #include <linux/delay.h>
35 #include <linux/clk.h>
36 #include <linux/atmel_pdc.h>
38 #include <linux/atmel-ssc.h>
39 #include <sound/core.h>
40 #include <sound/pcm.h>
41 #include <sound/pcm_params.h>
42 #include <sound/initval.h>
43 #include <sound/soc.h>
45 #include "atmel-pcm.h"
46 #include "atmel_ssc_dai.h"
49 #define NUM_SSC_DEVICES 3
52 * SSC PDC registers required by the PCM DMA engine.
54 static struct atmel_pdc_regs pdc_tx_reg = {
55 .xpr = ATMEL_PDC_TPR,
56 .xcr = ATMEL_PDC_TCR,
57 .xnpr = ATMEL_PDC_TNPR,
58 .xncr = ATMEL_PDC_TNCR,
61 static struct atmel_pdc_regs pdc_rx_reg = {
62 .xpr = ATMEL_PDC_RPR,
63 .xcr = ATMEL_PDC_RCR,
64 .xnpr = ATMEL_PDC_RNPR,
65 .xncr = ATMEL_PDC_RNCR,
69 * SSC & PDC status bits for transmit and receive.
71 static struct atmel_ssc_mask ssc_tx_mask = {
72 .ssc_enable = SSC_BIT(CR_TXEN),
73 .ssc_disable = SSC_BIT(CR_TXDIS),
74 .ssc_endx = SSC_BIT(SR_ENDTX),
75 .ssc_endbuf = SSC_BIT(SR_TXBUFE),
76 .ssc_error = SSC_BIT(SR_OVRUN),
77 .pdc_enable = ATMEL_PDC_TXTEN,
78 .pdc_disable = ATMEL_PDC_TXTDIS,
81 static struct atmel_ssc_mask ssc_rx_mask = {
82 .ssc_enable = SSC_BIT(CR_RXEN),
83 .ssc_disable = SSC_BIT(CR_RXDIS),
84 .ssc_endx = SSC_BIT(SR_ENDRX),
85 .ssc_endbuf = SSC_BIT(SR_RXBUFF),
86 .ssc_error = SSC_BIT(SR_OVRUN),
87 .pdc_enable = ATMEL_PDC_RXTEN,
88 .pdc_disable = ATMEL_PDC_RXTDIS,
93 * DMA parameters.
95 static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = {
97 .name = "SSC0 PCM out",
98 .pdc = &pdc_tx_reg,
99 .mask = &ssc_tx_mask,
102 .name = "SSC0 PCM in",
103 .pdc = &pdc_rx_reg,
104 .mask = &ssc_rx_mask,
105 } },
107 .name = "SSC1 PCM out",
108 .pdc = &pdc_tx_reg,
109 .mask = &ssc_tx_mask,
112 .name = "SSC1 PCM in",
113 .pdc = &pdc_rx_reg,
114 .mask = &ssc_rx_mask,
115 } },
117 .name = "SSC2 PCM out",
118 .pdc = &pdc_tx_reg,
119 .mask = &ssc_tx_mask,
122 .name = "SSC2 PCM in",
123 .pdc = &pdc_rx_reg,
124 .mask = &ssc_rx_mask,
125 } },
129 static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = {
131 .name = "ssc0",
132 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[0].lock),
133 .dir_mask = SSC_DIR_MASK_UNUSED,
134 .initialized = 0,
137 .name = "ssc1",
138 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[1].lock),
139 .dir_mask = SSC_DIR_MASK_UNUSED,
140 .initialized = 0,
143 .name = "ssc2",
144 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[2].lock),
145 .dir_mask = SSC_DIR_MASK_UNUSED,
146 .initialized = 0,
152 * SSC interrupt handler. Passes PDC interrupts to the DMA
153 * interrupt handler in the PCM driver.
155 static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id)
157 struct atmel_ssc_info *ssc_p = dev_id;
158 struct atmel_pcm_dma_params *dma_params;
159 u32 ssc_sr;
160 u32 ssc_substream_mask;
161 int i;
163 ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR)
164 & (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR);
167 * Loop through the substreams attached to this SSC. If
168 * a DMA-related interrupt occurred on that substream, call
169 * the DMA interrupt handler function, if one has been
170 * registered in the dma_params structure by the PCM driver.
172 for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) {
173 dma_params = ssc_p->dma_params[i];
175 if ((dma_params != NULL) &&
176 (dma_params->dma_intr_handler != NULL)) {
177 ssc_substream_mask = (dma_params->mask->ssc_endx |
178 dma_params->mask->ssc_endbuf);
179 if (ssc_sr & ssc_substream_mask) {
180 dma_params->dma_intr_handler(ssc_sr,
181 dma_params->
182 substream);
187 return IRQ_HANDLED;
191 /*-------------------------------------------------------------------------*\
192 * DAI functions
193 \*-------------------------------------------------------------------------*/
195 * Startup. Only that one substream allowed in each direction.
197 static int atmel_ssc_startup(struct snd_pcm_substream *substream,
198 struct snd_soc_dai *dai)
200 struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
201 struct atmel_pcm_dma_params *dma_params;
202 int dir, dir_mask;
204 pr_debug("atmel_ssc_startup: SSC_SR=0x%u\n",
205 ssc_readl(ssc_p->ssc->regs, SR));
207 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
208 dir = 0;
209 dir_mask = SSC_DIR_MASK_PLAYBACK;
210 } else {
211 dir = 1;
212 dir_mask = SSC_DIR_MASK_CAPTURE;
215 dma_params = &ssc_dma_params[dai->id][dir];
216 dma_params->ssc = ssc_p->ssc;
217 dma_params->substream = substream;
219 ssc_p->dma_params[dir] = dma_params;
221 snd_soc_dai_set_dma_data(dai, substream, dma_params);
223 spin_lock_irq(&ssc_p->lock);
224 if (ssc_p->dir_mask & dir_mask) {
225 spin_unlock_irq(&ssc_p->lock);
226 return -EBUSY;
228 ssc_p->dir_mask |= dir_mask;
229 spin_unlock_irq(&ssc_p->lock);
231 return 0;
235 * Shutdown. Clear DMA parameters and shutdown the SSC if there
236 * are no other substreams open.
238 static void atmel_ssc_shutdown(struct snd_pcm_substream *substream,
239 struct snd_soc_dai *dai)
241 struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
242 struct atmel_pcm_dma_params *dma_params;
243 int dir, dir_mask;
245 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
246 dir = 0;
247 else
248 dir = 1;
250 dma_params = ssc_p->dma_params[dir];
252 if (dma_params != NULL) {
253 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
254 pr_debug("atmel_ssc_shutdown: %s disabled SSC_SR=0x%08x\n",
255 (dir ? "receive" : "transmit"),
256 ssc_readl(ssc_p->ssc->regs, SR));
258 dma_params->ssc = NULL;
259 dma_params->substream = NULL;
260 ssc_p->dma_params[dir] = NULL;
263 dir_mask = 1 << dir;
265 spin_lock_irq(&ssc_p->lock);
266 ssc_p->dir_mask &= ~dir_mask;
267 if (!ssc_p->dir_mask) {
268 if (ssc_p->initialized) {
269 /* Shutdown the SSC clock. */
270 pr_debug("atmel_ssc_dau: Stopping clock\n");
271 clk_disable(ssc_p->ssc->clk);
273 free_irq(ssc_p->ssc->irq, ssc_p);
274 ssc_p->initialized = 0;
277 /* Reset the SSC */
278 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
279 /* Clear the SSC dividers */
280 ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0;
282 spin_unlock_irq(&ssc_p->lock);
287 * Record the DAI format for use in hw_params().
289 static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai,
290 unsigned int fmt)
292 struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
294 ssc_p->daifmt = fmt;
295 return 0;
299 * Record SSC clock dividers for use in hw_params().
301 static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai,
302 int div_id, int div)
304 struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
306 switch (div_id) {
307 case ATMEL_SSC_CMR_DIV:
309 * The same master clock divider is used for both
310 * transmit and receive, so if a value has already
311 * been set, it must match this value.
313 if (ssc_p->cmr_div == 0)
314 ssc_p->cmr_div = div;
315 else
316 if (div != ssc_p->cmr_div)
317 return -EBUSY;
318 break;
320 case ATMEL_SSC_TCMR_PERIOD:
321 ssc_p->tcmr_period = div;
322 break;
324 case ATMEL_SSC_RCMR_PERIOD:
325 ssc_p->rcmr_period = div;
326 break;
328 default:
329 return -EINVAL;
332 return 0;
336 * Configure the SSC.
338 static int atmel_ssc_hw_params(struct snd_pcm_substream *substream,
339 struct snd_pcm_hw_params *params,
340 struct snd_soc_dai *dai)
342 int id = dai->id;
343 struct atmel_ssc_info *ssc_p = &ssc_info[id];
344 struct atmel_pcm_dma_params *dma_params;
345 int dir, channels, bits;
346 u32 tfmr, rfmr, tcmr, rcmr;
347 int start_event;
348 int ret;
351 * Currently, there is only one set of dma params for
352 * each direction. If more are added, this code will
353 * have to be changed to select the proper set.
355 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
356 dir = 0;
357 else
358 dir = 1;
360 dma_params = ssc_p->dma_params[dir];
362 channels = params_channels(params);
365 * Determine sample size in bits and the PDC increment.
367 switch (params_format(params)) {
368 case SNDRV_PCM_FORMAT_S8:
369 bits = 8;
370 dma_params->pdc_xfer_size = 1;
371 break;
372 case SNDRV_PCM_FORMAT_S16_LE:
373 bits = 16;
374 dma_params->pdc_xfer_size = 2;
375 break;
376 case SNDRV_PCM_FORMAT_S24_LE:
377 bits = 24;
378 dma_params->pdc_xfer_size = 4;
379 break;
380 case SNDRV_PCM_FORMAT_S32_LE:
381 bits = 32;
382 dma_params->pdc_xfer_size = 4;
383 break;
384 default:
385 printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format");
386 return -EINVAL;
390 * The SSC only supports up to 16-bit samples in I2S format, due
391 * to the size of the Frame Mode Register FSLEN field.
393 if ((ssc_p->daifmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_I2S
394 && bits > 16) {
395 printk(KERN_WARNING
396 "atmel_ssc_dai: sample size %d "
397 "is too large for I2S\n", bits);
398 return -EINVAL;
402 * Compute SSC register settings.
404 switch (ssc_p->daifmt
405 & (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) {
407 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS:
409 * I2S format, SSC provides BCLK and LRC clocks.
411 * The SSC transmit and receive clocks are generated
412 * from the MCK divider, and the BCLK signal
413 * is output on the SSC TK line.
415 rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
416 | SSC_BF(RCMR_STTDLY, START_DELAY)
417 | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
418 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
419 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
420 | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
422 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
423 | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
424 | SSC_BF(RFMR_FSLEN, (bits - 1))
425 | SSC_BF(RFMR_DATNB, (channels - 1))
426 | SSC_BIT(RFMR_MSBF)
427 | SSC_BF(RFMR_LOOP, 0)
428 | SSC_BF(RFMR_DATLEN, (bits - 1));
430 tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
431 | SSC_BF(TCMR_STTDLY, START_DELAY)
432 | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
433 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
434 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
435 | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
437 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
438 | SSC_BF(TFMR_FSDEN, 0)
439 | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
440 | SSC_BF(TFMR_FSLEN, (bits - 1))
441 | SSC_BF(TFMR_DATNB, (channels - 1))
442 | SSC_BIT(TFMR_MSBF)
443 | SSC_BF(TFMR_DATDEF, 0)
444 | SSC_BF(TFMR_DATLEN, (bits - 1));
445 break;
447 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM:
449 * I2S format, CODEC supplies BCLK and LRC clocks.
451 * The SSC transmit clock is obtained from the BCLK signal on
452 * on the TK line, and the SSC receive clock is
453 * generated from the transmit clock.
455 * For single channel data, one sample is transferred
456 * on the falling edge of the LRC clock.
457 * For two channel data, one sample is
458 * transferred on both edges of the LRC clock.
460 start_event = ((channels == 1)
461 ? SSC_START_FALLING_RF
462 : SSC_START_EDGE_RF);
464 rcmr = SSC_BF(RCMR_PERIOD, 0)
465 | SSC_BF(RCMR_STTDLY, START_DELAY)
466 | SSC_BF(RCMR_START, start_event)
467 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
468 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
469 | SSC_BF(RCMR_CKS, SSC_CKS_CLOCK);
471 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
472 | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
473 | SSC_BF(RFMR_FSLEN, 0)
474 | SSC_BF(RFMR_DATNB, 0)
475 | SSC_BIT(RFMR_MSBF)
476 | SSC_BF(RFMR_LOOP, 0)
477 | SSC_BF(RFMR_DATLEN, (bits - 1));
479 tcmr = SSC_BF(TCMR_PERIOD, 0)
480 | SSC_BF(TCMR_STTDLY, START_DELAY)
481 | SSC_BF(TCMR_START, start_event)
482 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
483 | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
484 | SSC_BF(TCMR_CKS, SSC_CKS_PIN);
486 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
487 | SSC_BF(TFMR_FSDEN, 0)
488 | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
489 | SSC_BF(TFMR_FSLEN, 0)
490 | SSC_BF(TFMR_DATNB, 0)
491 | SSC_BIT(TFMR_MSBF)
492 | SSC_BF(TFMR_DATDEF, 0)
493 | SSC_BF(TFMR_DATLEN, (bits - 1));
494 break;
496 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS:
498 * DSP/PCM Mode A format, SSC provides BCLK and LRC clocks.
500 * The SSC transmit and receive clocks are generated from the
501 * MCK divider, and the BCLK signal is output
502 * on the SSC TK line.
504 rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
505 | SSC_BF(RCMR_STTDLY, 1)
506 | SSC_BF(RCMR_START, SSC_START_RISING_RF)
507 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
508 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
509 | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
511 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
512 | SSC_BF(RFMR_FSOS, SSC_FSOS_POSITIVE)
513 | SSC_BF(RFMR_FSLEN, 0)
514 | SSC_BF(RFMR_DATNB, (channels - 1))
515 | SSC_BIT(RFMR_MSBF)
516 | SSC_BF(RFMR_LOOP, 0)
517 | SSC_BF(RFMR_DATLEN, (bits - 1));
519 tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
520 | SSC_BF(TCMR_STTDLY, 1)
521 | SSC_BF(TCMR_START, SSC_START_RISING_RF)
522 | SSC_BF(TCMR_CKI, SSC_CKI_RISING)
523 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
524 | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
526 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
527 | SSC_BF(TFMR_FSDEN, 0)
528 | SSC_BF(TFMR_FSOS, SSC_FSOS_POSITIVE)
529 | SSC_BF(TFMR_FSLEN, 0)
530 | SSC_BF(TFMR_DATNB, (channels - 1))
531 | SSC_BIT(TFMR_MSBF)
532 | SSC_BF(TFMR_DATDEF, 0)
533 | SSC_BF(TFMR_DATLEN, (bits - 1));
534 break;
536 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM:
538 * DSP/PCM Mode A format, CODEC supplies BCLK and LRC clocks.
540 * The SSC transmit clock is obtained from the BCLK signal on
541 * on the TK line, and the SSC receive clock is
542 * generated from the transmit clock.
544 * Data is transferred on first BCLK after LRC pulse rising
545 * edge.If stereo, the right channel data is contiguous with
546 * the left channel data.
548 rcmr = SSC_BF(RCMR_PERIOD, 0)
549 | SSC_BF(RCMR_STTDLY, START_DELAY)
550 | SSC_BF(RCMR_START, SSC_START_RISING_RF)
551 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
552 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
553 | SSC_BF(RCMR_CKS, SSC_CKS_PIN);
555 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
556 | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
557 | SSC_BF(RFMR_FSLEN, 0)
558 | SSC_BF(RFMR_DATNB, (channels - 1))
559 | SSC_BIT(RFMR_MSBF)
560 | SSC_BF(RFMR_LOOP, 0)
561 | SSC_BF(RFMR_DATLEN, (bits - 1));
563 tcmr = SSC_BF(TCMR_PERIOD, 0)
564 | SSC_BF(TCMR_STTDLY, START_DELAY)
565 | SSC_BF(TCMR_START, SSC_START_RISING_RF)
566 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
567 | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
568 | SSC_BF(TCMR_CKS, SSC_CKS_PIN);
570 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
571 | SSC_BF(TFMR_FSDEN, 0)
572 | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
573 | SSC_BF(TFMR_FSLEN, 0)
574 | SSC_BF(TFMR_DATNB, (channels - 1))
575 | SSC_BIT(TFMR_MSBF)
576 | SSC_BF(TFMR_DATDEF, 0)
577 | SSC_BF(TFMR_DATLEN, (bits - 1));
578 break;
580 default:
581 printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n",
582 ssc_p->daifmt);
583 return -EINVAL;
585 pr_debug("atmel_ssc_hw_params: "
586 "RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n",
587 rcmr, rfmr, tcmr, tfmr);
589 if (!ssc_p->initialized) {
591 /* Enable PMC peripheral clock for this SSC */
592 pr_debug("atmel_ssc_dai: Starting clock\n");
593 clk_enable(ssc_p->ssc->clk);
595 /* Reset the SSC and its PDC registers */
596 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
598 ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0);
599 ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0);
600 ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0);
601 ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0);
603 ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0);
604 ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0);
605 ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0);
606 ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0);
608 ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0,
609 ssc_p->name, ssc_p);
610 if (ret < 0) {
611 printk(KERN_WARNING
612 "atmel_ssc_dai: request_irq failure\n");
613 pr_debug("Atmel_ssc_dai: Stoping clock\n");
614 clk_disable(ssc_p->ssc->clk);
615 return ret;
618 ssc_p->initialized = 1;
621 /* set SSC clock mode register */
622 ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->cmr_div);
624 /* set receive clock mode and format */
625 ssc_writel(ssc_p->ssc->regs, RCMR, rcmr);
626 ssc_writel(ssc_p->ssc->regs, RFMR, rfmr);
628 /* set transmit clock mode and format */
629 ssc_writel(ssc_p->ssc->regs, TCMR, tcmr);
630 ssc_writel(ssc_p->ssc->regs, TFMR, tfmr);
632 pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n");
633 return 0;
637 static int atmel_ssc_prepare(struct snd_pcm_substream *substream,
638 struct snd_soc_dai *dai)
640 struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
641 struct atmel_pcm_dma_params *dma_params;
642 int dir;
644 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
645 dir = 0;
646 else
647 dir = 1;
649 dma_params = ssc_p->dma_params[dir];
651 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable);
652 ssc_writel(ssc_p->ssc->regs, IDR, dma_params->mask->ssc_error);
654 pr_debug("%s enabled SSC_SR=0x%08x\n",
655 dir ? "receive" : "transmit",
656 ssc_readl(ssc_p->ssc->regs, SR));
657 return 0;
661 #ifdef CONFIG_PM
662 static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai)
664 struct atmel_ssc_info *ssc_p;
666 if (!cpu_dai->active)
667 return 0;
669 ssc_p = &ssc_info[cpu_dai->id];
671 /* Save the status register before disabling transmit and receive */
672 ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR);
673 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS));
675 /* Save the current interrupt mask, then disable unmasked interrupts */
676 ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR);
677 ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr);
679 ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR);
680 ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR);
681 ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR);
682 ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR);
683 ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR);
685 return 0;
690 static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai)
692 struct atmel_ssc_info *ssc_p;
693 u32 cr;
695 if (!cpu_dai->active)
696 return 0;
698 ssc_p = &ssc_info[cpu_dai->id];
700 /* restore SSC register settings */
701 ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr);
702 ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr);
703 ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr);
704 ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr);
705 ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr);
707 /* re-enable interrupts */
708 ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr);
710 /* Re-enable receive and transmit as appropriate */
711 cr = 0;
712 cr |=
713 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0;
714 cr |=
715 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0;
716 ssc_writel(ssc_p->ssc->regs, CR, cr);
718 return 0;
720 #else /* CONFIG_PM */
721 # define atmel_ssc_suspend NULL
722 # define atmel_ssc_resume NULL
723 #endif /* CONFIG_PM */
725 #define ATMEL_SSC_RATES (SNDRV_PCM_RATE_8000_96000)
727 #define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE |\
728 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
730 static const struct snd_soc_dai_ops atmel_ssc_dai_ops = {
731 .startup = atmel_ssc_startup,
732 .shutdown = atmel_ssc_shutdown,
733 .prepare = atmel_ssc_prepare,
734 .hw_params = atmel_ssc_hw_params,
735 .set_fmt = atmel_ssc_set_dai_fmt,
736 .set_clkdiv = atmel_ssc_set_dai_clkdiv,
739 static struct snd_soc_dai_driver atmel_ssc_dai = {
740 .suspend = atmel_ssc_suspend,
741 .resume = atmel_ssc_resume,
742 .playback = {
743 .channels_min = 1,
744 .channels_max = 2,
745 .rates = ATMEL_SSC_RATES,
746 .formats = ATMEL_SSC_FORMATS,},
747 .capture = {
748 .channels_min = 1,
749 .channels_max = 2,
750 .rates = ATMEL_SSC_RATES,
751 .formats = ATMEL_SSC_FORMATS,},
752 .ops = &atmel_ssc_dai_ops,
755 static const struct snd_soc_component_driver atmel_ssc_component = {
756 .name = "atmel-ssc",
759 static int asoc_ssc_init(struct device *dev)
761 struct platform_device *pdev = to_platform_device(dev);
762 struct ssc_device *ssc = platform_get_drvdata(pdev);
763 int ret;
765 ret = snd_soc_register_component(dev, &atmel_ssc_component,
766 &atmel_ssc_dai, 1);
767 if (ret) {
768 dev_err(dev, "Could not register DAI: %d\n", ret);
769 goto err;
772 if (ssc->pdata->use_dma)
773 ret = atmel_pcm_dma_platform_register(dev);
774 else
775 ret = atmel_pcm_pdc_platform_register(dev);
777 if (ret) {
778 dev_err(dev, "Could not register PCM: %d\n", ret);
779 goto err_unregister_dai;
782 return 0;
784 err_unregister_dai:
785 snd_soc_unregister_component(dev);
786 err:
787 return ret;
790 static void asoc_ssc_exit(struct device *dev)
792 struct platform_device *pdev = to_platform_device(dev);
793 struct ssc_device *ssc = platform_get_drvdata(pdev);
795 if (ssc->pdata->use_dma)
796 atmel_pcm_dma_platform_unregister(dev);
797 else
798 atmel_pcm_pdc_platform_unregister(dev);
800 snd_soc_unregister_component(dev);
804 * atmel_ssc_set_audio - Allocate the specified SSC for audio use.
806 int atmel_ssc_set_audio(int ssc_id)
808 struct ssc_device *ssc;
809 int ret;
811 /* If we can grab the SSC briefly to parent the DAI device off it */
812 ssc = ssc_request(ssc_id);
813 if (IS_ERR(ssc)) {
814 pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n",
815 PTR_ERR(ssc));
816 return PTR_ERR(ssc);
817 } else {
818 ssc_info[ssc_id].ssc = ssc;
821 ret = asoc_ssc_init(&ssc->pdev->dev);
823 return ret;
825 EXPORT_SYMBOL_GPL(atmel_ssc_set_audio);
827 void atmel_ssc_put_audio(int ssc_id)
829 struct ssc_device *ssc = ssc_info[ssc_id].ssc;
831 asoc_ssc_exit(&ssc->pdev->dev);
832 ssc_free(ssc);
834 EXPORT_SYMBOL_GPL(atmel_ssc_put_audio);
836 /* Module information */
837 MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com");
838 MODULE_DESCRIPTION("ATMEL SSC ASoC Interface");
839 MODULE_LICENSE("GPL");