x86/xen: resume timer irqs early
[linux/fpc-iii.git] / tools / perf / builtin-sched.c
blobd8c51b2f263f7475da99a28df87cad3d1f6bb4d2
1 #include "builtin.h"
2 #include "perf.h"
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
14 #include "util/parse-options.h"
15 #include "util/trace-event.h"
17 #include "util/debug.h"
19 #include <sys/prctl.h>
20 #include <sys/resource.h>
22 #include <semaphore.h>
23 #include <pthread.h>
24 #include <math.h>
26 #define PR_SET_NAME 15 /* Set process name */
27 #define MAX_CPUS 4096
28 #define COMM_LEN 20
29 #define SYM_LEN 129
30 #define MAX_PID 65536
32 struct sched_atom;
34 struct task_desc {
35 unsigned long nr;
36 unsigned long pid;
37 char comm[COMM_LEN];
39 unsigned long nr_events;
40 unsigned long curr_event;
41 struct sched_atom **atoms;
43 pthread_t thread;
44 sem_t sleep_sem;
46 sem_t ready_for_work;
47 sem_t work_done_sem;
49 u64 cpu_usage;
52 enum sched_event_type {
53 SCHED_EVENT_RUN,
54 SCHED_EVENT_SLEEP,
55 SCHED_EVENT_WAKEUP,
56 SCHED_EVENT_MIGRATION,
59 struct sched_atom {
60 enum sched_event_type type;
61 int specific_wait;
62 u64 timestamp;
63 u64 duration;
64 unsigned long nr;
65 sem_t *wait_sem;
66 struct task_desc *wakee;
69 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
71 enum thread_state {
72 THREAD_SLEEPING = 0,
73 THREAD_WAIT_CPU,
74 THREAD_SCHED_IN,
75 THREAD_IGNORE
78 struct work_atom {
79 struct list_head list;
80 enum thread_state state;
81 u64 sched_out_time;
82 u64 wake_up_time;
83 u64 sched_in_time;
84 u64 runtime;
87 struct work_atoms {
88 struct list_head work_list;
89 struct thread *thread;
90 struct rb_node node;
91 u64 max_lat;
92 u64 max_lat_at;
93 u64 total_lat;
94 u64 nb_atoms;
95 u64 total_runtime;
98 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
100 struct perf_sched;
102 struct trace_sched_handler {
103 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
104 struct perf_sample *sample, struct machine *machine);
106 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
107 struct perf_sample *sample, struct machine *machine);
109 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
110 struct perf_sample *sample, struct machine *machine);
112 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
113 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
114 struct machine *machine);
116 int (*migrate_task_event)(struct perf_sched *sched,
117 struct perf_evsel *evsel,
118 struct perf_sample *sample,
119 struct machine *machine);
122 struct perf_sched {
123 struct perf_tool tool;
124 const char *sort_order;
125 unsigned long nr_tasks;
126 struct task_desc *pid_to_task[MAX_PID];
127 struct task_desc **tasks;
128 const struct trace_sched_handler *tp_handler;
129 pthread_mutex_t start_work_mutex;
130 pthread_mutex_t work_done_wait_mutex;
131 int profile_cpu;
133 * Track the current task - that way we can know whether there's any
134 * weird events, such as a task being switched away that is not current.
136 int max_cpu;
137 u32 curr_pid[MAX_CPUS];
138 struct thread *curr_thread[MAX_CPUS];
139 char next_shortname1;
140 char next_shortname2;
141 unsigned int replay_repeat;
142 unsigned long nr_run_events;
143 unsigned long nr_sleep_events;
144 unsigned long nr_wakeup_events;
145 unsigned long nr_sleep_corrections;
146 unsigned long nr_run_events_optimized;
147 unsigned long targetless_wakeups;
148 unsigned long multitarget_wakeups;
149 unsigned long nr_runs;
150 unsigned long nr_timestamps;
151 unsigned long nr_unordered_timestamps;
152 unsigned long nr_state_machine_bugs;
153 unsigned long nr_context_switch_bugs;
154 unsigned long nr_events;
155 unsigned long nr_lost_chunks;
156 unsigned long nr_lost_events;
157 u64 run_measurement_overhead;
158 u64 sleep_measurement_overhead;
159 u64 start_time;
160 u64 cpu_usage;
161 u64 runavg_cpu_usage;
162 u64 parent_cpu_usage;
163 u64 runavg_parent_cpu_usage;
164 u64 sum_runtime;
165 u64 sum_fluct;
166 u64 run_avg;
167 u64 all_runtime;
168 u64 all_count;
169 u64 cpu_last_switched[MAX_CPUS];
170 struct rb_root atom_root, sorted_atom_root;
171 struct list_head sort_list, cmp_pid;
174 static u64 get_nsecs(void)
176 struct timespec ts;
178 clock_gettime(CLOCK_MONOTONIC, &ts);
180 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
183 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
185 u64 T0 = get_nsecs(), T1;
187 do {
188 T1 = get_nsecs();
189 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
192 static void sleep_nsecs(u64 nsecs)
194 struct timespec ts;
196 ts.tv_nsec = nsecs % 999999999;
197 ts.tv_sec = nsecs / 999999999;
199 nanosleep(&ts, NULL);
202 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
204 u64 T0, T1, delta, min_delta = 1000000000ULL;
205 int i;
207 for (i = 0; i < 10; i++) {
208 T0 = get_nsecs();
209 burn_nsecs(sched, 0);
210 T1 = get_nsecs();
211 delta = T1-T0;
212 min_delta = min(min_delta, delta);
214 sched->run_measurement_overhead = min_delta;
216 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
219 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
221 u64 T0, T1, delta, min_delta = 1000000000ULL;
222 int i;
224 for (i = 0; i < 10; i++) {
225 T0 = get_nsecs();
226 sleep_nsecs(10000);
227 T1 = get_nsecs();
228 delta = T1-T0;
229 min_delta = min(min_delta, delta);
231 min_delta -= 10000;
232 sched->sleep_measurement_overhead = min_delta;
234 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
237 static struct sched_atom *
238 get_new_event(struct task_desc *task, u64 timestamp)
240 struct sched_atom *event = zalloc(sizeof(*event));
241 unsigned long idx = task->nr_events;
242 size_t size;
244 event->timestamp = timestamp;
245 event->nr = idx;
247 task->nr_events++;
248 size = sizeof(struct sched_atom *) * task->nr_events;
249 task->atoms = realloc(task->atoms, size);
250 BUG_ON(!task->atoms);
252 task->atoms[idx] = event;
254 return event;
257 static struct sched_atom *last_event(struct task_desc *task)
259 if (!task->nr_events)
260 return NULL;
262 return task->atoms[task->nr_events - 1];
265 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
266 u64 timestamp, u64 duration)
268 struct sched_atom *event, *curr_event = last_event(task);
271 * optimize an existing RUN event by merging this one
272 * to it:
274 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
275 sched->nr_run_events_optimized++;
276 curr_event->duration += duration;
277 return;
280 event = get_new_event(task, timestamp);
282 event->type = SCHED_EVENT_RUN;
283 event->duration = duration;
285 sched->nr_run_events++;
288 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
289 u64 timestamp, struct task_desc *wakee)
291 struct sched_atom *event, *wakee_event;
293 event = get_new_event(task, timestamp);
294 event->type = SCHED_EVENT_WAKEUP;
295 event->wakee = wakee;
297 wakee_event = last_event(wakee);
298 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
299 sched->targetless_wakeups++;
300 return;
302 if (wakee_event->wait_sem) {
303 sched->multitarget_wakeups++;
304 return;
307 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
308 sem_init(wakee_event->wait_sem, 0, 0);
309 wakee_event->specific_wait = 1;
310 event->wait_sem = wakee_event->wait_sem;
312 sched->nr_wakeup_events++;
315 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
316 u64 timestamp, u64 task_state __maybe_unused)
318 struct sched_atom *event = get_new_event(task, timestamp);
320 event->type = SCHED_EVENT_SLEEP;
322 sched->nr_sleep_events++;
325 static struct task_desc *register_pid(struct perf_sched *sched,
326 unsigned long pid, const char *comm)
328 struct task_desc *task;
330 BUG_ON(pid >= MAX_PID);
332 task = sched->pid_to_task[pid];
334 if (task)
335 return task;
337 task = zalloc(sizeof(*task));
338 task->pid = pid;
339 task->nr = sched->nr_tasks;
340 strcpy(task->comm, comm);
342 * every task starts in sleeping state - this gets ignored
343 * if there's no wakeup pointing to this sleep state:
345 add_sched_event_sleep(sched, task, 0, 0);
347 sched->pid_to_task[pid] = task;
348 sched->nr_tasks++;
349 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
350 BUG_ON(!sched->tasks);
351 sched->tasks[task->nr] = task;
353 if (verbose)
354 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
356 return task;
360 static void print_task_traces(struct perf_sched *sched)
362 struct task_desc *task;
363 unsigned long i;
365 for (i = 0; i < sched->nr_tasks; i++) {
366 task = sched->tasks[i];
367 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
368 task->nr, task->comm, task->pid, task->nr_events);
372 static void add_cross_task_wakeups(struct perf_sched *sched)
374 struct task_desc *task1, *task2;
375 unsigned long i, j;
377 for (i = 0; i < sched->nr_tasks; i++) {
378 task1 = sched->tasks[i];
379 j = i + 1;
380 if (j == sched->nr_tasks)
381 j = 0;
382 task2 = sched->tasks[j];
383 add_sched_event_wakeup(sched, task1, 0, task2);
387 static void perf_sched__process_event(struct perf_sched *sched,
388 struct sched_atom *atom)
390 int ret = 0;
392 switch (atom->type) {
393 case SCHED_EVENT_RUN:
394 burn_nsecs(sched, atom->duration);
395 break;
396 case SCHED_EVENT_SLEEP:
397 if (atom->wait_sem)
398 ret = sem_wait(atom->wait_sem);
399 BUG_ON(ret);
400 break;
401 case SCHED_EVENT_WAKEUP:
402 if (atom->wait_sem)
403 ret = sem_post(atom->wait_sem);
404 BUG_ON(ret);
405 break;
406 case SCHED_EVENT_MIGRATION:
407 break;
408 default:
409 BUG_ON(1);
413 static u64 get_cpu_usage_nsec_parent(void)
415 struct rusage ru;
416 u64 sum;
417 int err;
419 err = getrusage(RUSAGE_SELF, &ru);
420 BUG_ON(err);
422 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
423 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
425 return sum;
428 static int self_open_counters(void)
430 struct perf_event_attr attr;
431 int fd;
433 memset(&attr, 0, sizeof(attr));
435 attr.type = PERF_TYPE_SOFTWARE;
436 attr.config = PERF_COUNT_SW_TASK_CLOCK;
438 fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
440 if (fd < 0)
441 pr_err("Error: sys_perf_event_open() syscall returned "
442 "with %d (%s)\n", fd, strerror(errno));
443 return fd;
446 static u64 get_cpu_usage_nsec_self(int fd)
448 u64 runtime;
449 int ret;
451 ret = read(fd, &runtime, sizeof(runtime));
452 BUG_ON(ret != sizeof(runtime));
454 return runtime;
457 struct sched_thread_parms {
458 struct task_desc *task;
459 struct perf_sched *sched;
462 static void *thread_func(void *ctx)
464 struct sched_thread_parms *parms = ctx;
465 struct task_desc *this_task = parms->task;
466 struct perf_sched *sched = parms->sched;
467 u64 cpu_usage_0, cpu_usage_1;
468 unsigned long i, ret;
469 char comm2[22];
470 int fd;
472 free(parms);
474 sprintf(comm2, ":%s", this_task->comm);
475 prctl(PR_SET_NAME, comm2);
476 fd = self_open_counters();
477 if (fd < 0)
478 return NULL;
479 again:
480 ret = sem_post(&this_task->ready_for_work);
481 BUG_ON(ret);
482 ret = pthread_mutex_lock(&sched->start_work_mutex);
483 BUG_ON(ret);
484 ret = pthread_mutex_unlock(&sched->start_work_mutex);
485 BUG_ON(ret);
487 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
489 for (i = 0; i < this_task->nr_events; i++) {
490 this_task->curr_event = i;
491 perf_sched__process_event(sched, this_task->atoms[i]);
494 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
495 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
496 ret = sem_post(&this_task->work_done_sem);
497 BUG_ON(ret);
499 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
500 BUG_ON(ret);
501 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
502 BUG_ON(ret);
504 goto again;
507 static void create_tasks(struct perf_sched *sched)
509 struct task_desc *task;
510 pthread_attr_t attr;
511 unsigned long i;
512 int err;
514 err = pthread_attr_init(&attr);
515 BUG_ON(err);
516 err = pthread_attr_setstacksize(&attr,
517 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
518 BUG_ON(err);
519 err = pthread_mutex_lock(&sched->start_work_mutex);
520 BUG_ON(err);
521 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
522 BUG_ON(err);
523 for (i = 0; i < sched->nr_tasks; i++) {
524 struct sched_thread_parms *parms = malloc(sizeof(*parms));
525 BUG_ON(parms == NULL);
526 parms->task = task = sched->tasks[i];
527 parms->sched = sched;
528 sem_init(&task->sleep_sem, 0, 0);
529 sem_init(&task->ready_for_work, 0, 0);
530 sem_init(&task->work_done_sem, 0, 0);
531 task->curr_event = 0;
532 err = pthread_create(&task->thread, &attr, thread_func, parms);
533 BUG_ON(err);
537 static void wait_for_tasks(struct perf_sched *sched)
539 u64 cpu_usage_0, cpu_usage_1;
540 struct task_desc *task;
541 unsigned long i, ret;
543 sched->start_time = get_nsecs();
544 sched->cpu_usage = 0;
545 pthread_mutex_unlock(&sched->work_done_wait_mutex);
547 for (i = 0; i < sched->nr_tasks; i++) {
548 task = sched->tasks[i];
549 ret = sem_wait(&task->ready_for_work);
550 BUG_ON(ret);
551 sem_init(&task->ready_for_work, 0, 0);
553 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
554 BUG_ON(ret);
556 cpu_usage_0 = get_cpu_usage_nsec_parent();
558 pthread_mutex_unlock(&sched->start_work_mutex);
560 for (i = 0; i < sched->nr_tasks; i++) {
561 task = sched->tasks[i];
562 ret = sem_wait(&task->work_done_sem);
563 BUG_ON(ret);
564 sem_init(&task->work_done_sem, 0, 0);
565 sched->cpu_usage += task->cpu_usage;
566 task->cpu_usage = 0;
569 cpu_usage_1 = get_cpu_usage_nsec_parent();
570 if (!sched->runavg_cpu_usage)
571 sched->runavg_cpu_usage = sched->cpu_usage;
572 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
574 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
575 if (!sched->runavg_parent_cpu_usage)
576 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
577 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
578 sched->parent_cpu_usage)/10;
580 ret = pthread_mutex_lock(&sched->start_work_mutex);
581 BUG_ON(ret);
583 for (i = 0; i < sched->nr_tasks; i++) {
584 task = sched->tasks[i];
585 sem_init(&task->sleep_sem, 0, 0);
586 task->curr_event = 0;
590 static void run_one_test(struct perf_sched *sched)
592 u64 T0, T1, delta, avg_delta, fluct;
594 T0 = get_nsecs();
595 wait_for_tasks(sched);
596 T1 = get_nsecs();
598 delta = T1 - T0;
599 sched->sum_runtime += delta;
600 sched->nr_runs++;
602 avg_delta = sched->sum_runtime / sched->nr_runs;
603 if (delta < avg_delta)
604 fluct = avg_delta - delta;
605 else
606 fluct = delta - avg_delta;
607 sched->sum_fluct += fluct;
608 if (!sched->run_avg)
609 sched->run_avg = delta;
610 sched->run_avg = (sched->run_avg * 9 + delta) / 10;
612 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
614 printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
616 printf("cpu: %0.2f / %0.2f",
617 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
619 #if 0
621 * rusage statistics done by the parent, these are less
622 * accurate than the sched->sum_exec_runtime based statistics:
624 printf(" [%0.2f / %0.2f]",
625 (double)sched->parent_cpu_usage/1e6,
626 (double)sched->runavg_parent_cpu_usage/1e6);
627 #endif
629 printf("\n");
631 if (sched->nr_sleep_corrections)
632 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
633 sched->nr_sleep_corrections = 0;
636 static void test_calibrations(struct perf_sched *sched)
638 u64 T0, T1;
640 T0 = get_nsecs();
641 burn_nsecs(sched, 1e6);
642 T1 = get_nsecs();
644 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
646 T0 = get_nsecs();
647 sleep_nsecs(1e6);
648 T1 = get_nsecs();
650 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
653 static int
654 replay_wakeup_event(struct perf_sched *sched,
655 struct perf_evsel *evsel, struct perf_sample *sample,
656 struct machine *machine __maybe_unused)
658 const char *comm = perf_evsel__strval(evsel, sample, "comm");
659 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
660 struct task_desc *waker, *wakee;
662 if (verbose) {
663 printf("sched_wakeup event %p\n", evsel);
665 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
668 waker = register_pid(sched, sample->tid, "<unknown>");
669 wakee = register_pid(sched, pid, comm);
671 add_sched_event_wakeup(sched, waker, sample->time, wakee);
672 return 0;
675 static int replay_switch_event(struct perf_sched *sched,
676 struct perf_evsel *evsel,
677 struct perf_sample *sample,
678 struct machine *machine __maybe_unused)
680 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
681 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
682 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
683 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
684 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
685 struct task_desc *prev, __maybe_unused *next;
686 u64 timestamp0, timestamp = sample->time;
687 int cpu = sample->cpu;
688 s64 delta;
690 if (verbose)
691 printf("sched_switch event %p\n", evsel);
693 if (cpu >= MAX_CPUS || cpu < 0)
694 return 0;
696 timestamp0 = sched->cpu_last_switched[cpu];
697 if (timestamp0)
698 delta = timestamp - timestamp0;
699 else
700 delta = 0;
702 if (delta < 0) {
703 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
704 return -1;
707 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
708 prev_comm, prev_pid, next_comm, next_pid, delta);
710 prev = register_pid(sched, prev_pid, prev_comm);
711 next = register_pid(sched, next_pid, next_comm);
713 sched->cpu_last_switched[cpu] = timestamp;
715 add_sched_event_run(sched, prev, timestamp, delta);
716 add_sched_event_sleep(sched, prev, timestamp, prev_state);
718 return 0;
721 static int replay_fork_event(struct perf_sched *sched,
722 union perf_event *event,
723 struct machine *machine)
725 struct thread *child, *parent;
727 child = machine__findnew_thread(machine, event->fork.pid,
728 event->fork.tid);
729 parent = machine__findnew_thread(machine, event->fork.ppid,
730 event->fork.ptid);
732 if (child == NULL || parent == NULL) {
733 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
734 child, parent);
735 return 0;
738 if (verbose) {
739 printf("fork event\n");
740 printf("... parent: %s/%d\n", parent->comm, parent->tid);
741 printf("... child: %s/%d\n", child->comm, child->tid);
744 register_pid(sched, parent->tid, parent->comm);
745 register_pid(sched, child->tid, child->comm);
746 return 0;
749 struct sort_dimension {
750 const char *name;
751 sort_fn_t cmp;
752 struct list_head list;
755 static int
756 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
758 struct sort_dimension *sort;
759 int ret = 0;
761 BUG_ON(list_empty(list));
763 list_for_each_entry(sort, list, list) {
764 ret = sort->cmp(l, r);
765 if (ret)
766 return ret;
769 return ret;
772 static struct work_atoms *
773 thread_atoms_search(struct rb_root *root, struct thread *thread,
774 struct list_head *sort_list)
776 struct rb_node *node = root->rb_node;
777 struct work_atoms key = { .thread = thread };
779 while (node) {
780 struct work_atoms *atoms;
781 int cmp;
783 atoms = container_of(node, struct work_atoms, node);
785 cmp = thread_lat_cmp(sort_list, &key, atoms);
786 if (cmp > 0)
787 node = node->rb_left;
788 else if (cmp < 0)
789 node = node->rb_right;
790 else {
791 BUG_ON(thread != atoms->thread);
792 return atoms;
795 return NULL;
798 static void
799 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
800 struct list_head *sort_list)
802 struct rb_node **new = &(root->rb_node), *parent = NULL;
804 while (*new) {
805 struct work_atoms *this;
806 int cmp;
808 this = container_of(*new, struct work_atoms, node);
809 parent = *new;
811 cmp = thread_lat_cmp(sort_list, data, this);
813 if (cmp > 0)
814 new = &((*new)->rb_left);
815 else
816 new = &((*new)->rb_right);
819 rb_link_node(&data->node, parent, new);
820 rb_insert_color(&data->node, root);
823 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
825 struct work_atoms *atoms = zalloc(sizeof(*atoms));
826 if (!atoms) {
827 pr_err("No memory at %s\n", __func__);
828 return -1;
831 atoms->thread = thread;
832 INIT_LIST_HEAD(&atoms->work_list);
833 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
834 return 0;
837 static char sched_out_state(u64 prev_state)
839 const char *str = TASK_STATE_TO_CHAR_STR;
841 return str[prev_state];
844 static int
845 add_sched_out_event(struct work_atoms *atoms,
846 char run_state,
847 u64 timestamp)
849 struct work_atom *atom = zalloc(sizeof(*atom));
850 if (!atom) {
851 pr_err("Non memory at %s", __func__);
852 return -1;
855 atom->sched_out_time = timestamp;
857 if (run_state == 'R') {
858 atom->state = THREAD_WAIT_CPU;
859 atom->wake_up_time = atom->sched_out_time;
862 list_add_tail(&atom->list, &atoms->work_list);
863 return 0;
866 static void
867 add_runtime_event(struct work_atoms *atoms, u64 delta,
868 u64 timestamp __maybe_unused)
870 struct work_atom *atom;
872 BUG_ON(list_empty(&atoms->work_list));
874 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
876 atom->runtime += delta;
877 atoms->total_runtime += delta;
880 static void
881 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
883 struct work_atom *atom;
884 u64 delta;
886 if (list_empty(&atoms->work_list))
887 return;
889 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
891 if (atom->state != THREAD_WAIT_CPU)
892 return;
894 if (timestamp < atom->wake_up_time) {
895 atom->state = THREAD_IGNORE;
896 return;
899 atom->state = THREAD_SCHED_IN;
900 atom->sched_in_time = timestamp;
902 delta = atom->sched_in_time - atom->wake_up_time;
903 atoms->total_lat += delta;
904 if (delta > atoms->max_lat) {
905 atoms->max_lat = delta;
906 atoms->max_lat_at = timestamp;
908 atoms->nb_atoms++;
911 static int latency_switch_event(struct perf_sched *sched,
912 struct perf_evsel *evsel,
913 struct perf_sample *sample,
914 struct machine *machine)
916 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
917 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
918 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
919 struct work_atoms *out_events, *in_events;
920 struct thread *sched_out, *sched_in;
921 u64 timestamp0, timestamp = sample->time;
922 int cpu = sample->cpu;
923 s64 delta;
925 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
927 timestamp0 = sched->cpu_last_switched[cpu];
928 sched->cpu_last_switched[cpu] = timestamp;
929 if (timestamp0)
930 delta = timestamp - timestamp0;
931 else
932 delta = 0;
934 if (delta < 0) {
935 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
936 return -1;
939 sched_out = machine__findnew_thread(machine, 0, prev_pid);
940 sched_in = machine__findnew_thread(machine, 0, next_pid);
942 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
943 if (!out_events) {
944 if (thread_atoms_insert(sched, sched_out))
945 return -1;
946 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
947 if (!out_events) {
948 pr_err("out-event: Internal tree error");
949 return -1;
952 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
953 return -1;
955 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
956 if (!in_events) {
957 if (thread_atoms_insert(sched, sched_in))
958 return -1;
959 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
960 if (!in_events) {
961 pr_err("in-event: Internal tree error");
962 return -1;
965 * Take came in we have not heard about yet,
966 * add in an initial atom in runnable state:
968 if (add_sched_out_event(in_events, 'R', timestamp))
969 return -1;
971 add_sched_in_event(in_events, timestamp);
973 return 0;
976 static int latency_runtime_event(struct perf_sched *sched,
977 struct perf_evsel *evsel,
978 struct perf_sample *sample,
979 struct machine *machine)
981 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
982 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
983 struct thread *thread = machine__findnew_thread(machine, 0, pid);
984 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
985 u64 timestamp = sample->time;
986 int cpu = sample->cpu;
988 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
989 if (!atoms) {
990 if (thread_atoms_insert(sched, thread))
991 return -1;
992 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
993 if (!atoms) {
994 pr_err("in-event: Internal tree error");
995 return -1;
997 if (add_sched_out_event(atoms, 'R', timestamp))
998 return -1;
1001 add_runtime_event(atoms, runtime, timestamp);
1002 return 0;
1005 static int latency_wakeup_event(struct perf_sched *sched,
1006 struct perf_evsel *evsel,
1007 struct perf_sample *sample,
1008 struct machine *machine)
1010 const u32 pid = perf_evsel__intval(evsel, sample, "pid"),
1011 success = perf_evsel__intval(evsel, sample, "success");
1012 struct work_atoms *atoms;
1013 struct work_atom *atom;
1014 struct thread *wakee;
1015 u64 timestamp = sample->time;
1017 /* Note for later, it may be interesting to observe the failing cases */
1018 if (!success)
1019 return 0;
1021 wakee = machine__findnew_thread(machine, 0, pid);
1022 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1023 if (!atoms) {
1024 if (thread_atoms_insert(sched, wakee))
1025 return -1;
1026 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1027 if (!atoms) {
1028 pr_err("wakeup-event: Internal tree error");
1029 return -1;
1031 if (add_sched_out_event(atoms, 'S', timestamp))
1032 return -1;
1035 BUG_ON(list_empty(&atoms->work_list));
1037 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1040 * You WILL be missing events if you've recorded only
1041 * one CPU, or are only looking at only one, so don't
1042 * make useless noise.
1044 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1045 sched->nr_state_machine_bugs++;
1047 sched->nr_timestamps++;
1048 if (atom->sched_out_time > timestamp) {
1049 sched->nr_unordered_timestamps++;
1050 return 0;
1053 atom->state = THREAD_WAIT_CPU;
1054 atom->wake_up_time = timestamp;
1055 return 0;
1058 static int latency_migrate_task_event(struct perf_sched *sched,
1059 struct perf_evsel *evsel,
1060 struct perf_sample *sample,
1061 struct machine *machine)
1063 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1064 u64 timestamp = sample->time;
1065 struct work_atoms *atoms;
1066 struct work_atom *atom;
1067 struct thread *migrant;
1070 * Only need to worry about migration when profiling one CPU.
1072 if (sched->profile_cpu == -1)
1073 return 0;
1075 migrant = machine__findnew_thread(machine, 0, pid);
1076 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1077 if (!atoms) {
1078 if (thread_atoms_insert(sched, migrant))
1079 return -1;
1080 register_pid(sched, migrant->tid, migrant->comm);
1081 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1082 if (!atoms) {
1083 pr_err("migration-event: Internal tree error");
1084 return -1;
1086 if (add_sched_out_event(atoms, 'R', timestamp))
1087 return -1;
1090 BUG_ON(list_empty(&atoms->work_list));
1092 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1093 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1095 sched->nr_timestamps++;
1097 if (atom->sched_out_time > timestamp)
1098 sched->nr_unordered_timestamps++;
1100 return 0;
1103 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1105 int i;
1106 int ret;
1107 u64 avg;
1109 if (!work_list->nb_atoms)
1110 return;
1112 * Ignore idle threads:
1114 if (!strcmp(work_list->thread->comm, "swapper"))
1115 return;
1117 sched->all_runtime += work_list->total_runtime;
1118 sched->all_count += work_list->nb_atoms;
1120 ret = printf(" %s:%d ", work_list->thread->comm, work_list->thread->tid);
1122 for (i = 0; i < 24 - ret; i++)
1123 printf(" ");
1125 avg = work_list->total_lat / work_list->nb_atoms;
1127 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1128 (double)work_list->total_runtime / 1e6,
1129 work_list->nb_atoms, (double)avg / 1e6,
1130 (double)work_list->max_lat / 1e6,
1131 (double)work_list->max_lat_at / 1e9);
1134 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1136 if (l->thread->tid < r->thread->tid)
1137 return -1;
1138 if (l->thread->tid > r->thread->tid)
1139 return 1;
1141 return 0;
1144 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1146 u64 avgl, avgr;
1148 if (!l->nb_atoms)
1149 return -1;
1151 if (!r->nb_atoms)
1152 return 1;
1154 avgl = l->total_lat / l->nb_atoms;
1155 avgr = r->total_lat / r->nb_atoms;
1157 if (avgl < avgr)
1158 return -1;
1159 if (avgl > avgr)
1160 return 1;
1162 return 0;
1165 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1167 if (l->max_lat < r->max_lat)
1168 return -1;
1169 if (l->max_lat > r->max_lat)
1170 return 1;
1172 return 0;
1175 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1177 if (l->nb_atoms < r->nb_atoms)
1178 return -1;
1179 if (l->nb_atoms > r->nb_atoms)
1180 return 1;
1182 return 0;
1185 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1187 if (l->total_runtime < r->total_runtime)
1188 return -1;
1189 if (l->total_runtime > r->total_runtime)
1190 return 1;
1192 return 0;
1195 static int sort_dimension__add(const char *tok, struct list_head *list)
1197 size_t i;
1198 static struct sort_dimension avg_sort_dimension = {
1199 .name = "avg",
1200 .cmp = avg_cmp,
1202 static struct sort_dimension max_sort_dimension = {
1203 .name = "max",
1204 .cmp = max_cmp,
1206 static struct sort_dimension pid_sort_dimension = {
1207 .name = "pid",
1208 .cmp = pid_cmp,
1210 static struct sort_dimension runtime_sort_dimension = {
1211 .name = "runtime",
1212 .cmp = runtime_cmp,
1214 static struct sort_dimension switch_sort_dimension = {
1215 .name = "switch",
1216 .cmp = switch_cmp,
1218 struct sort_dimension *available_sorts[] = {
1219 &pid_sort_dimension,
1220 &avg_sort_dimension,
1221 &max_sort_dimension,
1222 &switch_sort_dimension,
1223 &runtime_sort_dimension,
1226 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1227 if (!strcmp(available_sorts[i]->name, tok)) {
1228 list_add_tail(&available_sorts[i]->list, list);
1230 return 0;
1234 return -1;
1237 static void perf_sched__sort_lat(struct perf_sched *sched)
1239 struct rb_node *node;
1241 for (;;) {
1242 struct work_atoms *data;
1243 node = rb_first(&sched->atom_root);
1244 if (!node)
1245 break;
1247 rb_erase(node, &sched->atom_root);
1248 data = rb_entry(node, struct work_atoms, node);
1249 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1253 static int process_sched_wakeup_event(struct perf_tool *tool,
1254 struct perf_evsel *evsel,
1255 struct perf_sample *sample,
1256 struct machine *machine)
1258 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1260 if (sched->tp_handler->wakeup_event)
1261 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1263 return 0;
1266 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1267 struct perf_sample *sample, struct machine *machine)
1269 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1270 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1271 struct thread *sched_out __maybe_unused, *sched_in;
1272 int new_shortname;
1273 u64 timestamp0, timestamp = sample->time;
1274 s64 delta;
1275 int cpu, this_cpu = sample->cpu;
1277 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1279 if (this_cpu > sched->max_cpu)
1280 sched->max_cpu = this_cpu;
1282 timestamp0 = sched->cpu_last_switched[this_cpu];
1283 sched->cpu_last_switched[this_cpu] = timestamp;
1284 if (timestamp0)
1285 delta = timestamp - timestamp0;
1286 else
1287 delta = 0;
1289 if (delta < 0) {
1290 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1291 return -1;
1294 sched_out = machine__findnew_thread(machine, 0, prev_pid);
1295 sched_in = machine__findnew_thread(machine, 0, next_pid);
1297 sched->curr_thread[this_cpu] = sched_in;
1299 printf(" ");
1301 new_shortname = 0;
1302 if (!sched_in->shortname[0]) {
1303 sched_in->shortname[0] = sched->next_shortname1;
1304 sched_in->shortname[1] = sched->next_shortname2;
1306 if (sched->next_shortname1 < 'Z') {
1307 sched->next_shortname1++;
1308 } else {
1309 sched->next_shortname1='A';
1310 if (sched->next_shortname2 < '9') {
1311 sched->next_shortname2++;
1312 } else {
1313 sched->next_shortname2='0';
1316 new_shortname = 1;
1319 for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1320 if (cpu != this_cpu)
1321 printf(" ");
1322 else
1323 printf("*");
1325 if (sched->curr_thread[cpu]) {
1326 if (sched->curr_thread[cpu]->tid)
1327 printf("%2s ", sched->curr_thread[cpu]->shortname);
1328 else
1329 printf(". ");
1330 } else
1331 printf(" ");
1334 printf(" %12.6f secs ", (double)timestamp/1e9);
1335 if (new_shortname) {
1336 printf("%s => %s:%d\n",
1337 sched_in->shortname, sched_in->comm, sched_in->tid);
1338 } else {
1339 printf("\n");
1342 return 0;
1345 static int process_sched_switch_event(struct perf_tool *tool,
1346 struct perf_evsel *evsel,
1347 struct perf_sample *sample,
1348 struct machine *machine)
1350 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1351 int this_cpu = sample->cpu, err = 0;
1352 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1353 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1355 if (sched->curr_pid[this_cpu] != (u32)-1) {
1357 * Are we trying to switch away a PID that is
1358 * not current?
1360 if (sched->curr_pid[this_cpu] != prev_pid)
1361 sched->nr_context_switch_bugs++;
1364 if (sched->tp_handler->switch_event)
1365 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1367 sched->curr_pid[this_cpu] = next_pid;
1368 return err;
1371 static int process_sched_runtime_event(struct perf_tool *tool,
1372 struct perf_evsel *evsel,
1373 struct perf_sample *sample,
1374 struct machine *machine)
1376 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1378 if (sched->tp_handler->runtime_event)
1379 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1381 return 0;
1384 static int perf_sched__process_fork_event(struct perf_tool *tool,
1385 union perf_event *event,
1386 struct perf_sample *sample,
1387 struct machine *machine)
1389 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1391 /* run the fork event through the perf machineruy */
1392 perf_event__process_fork(tool, event, sample, machine);
1394 /* and then run additional processing needed for this command */
1395 if (sched->tp_handler->fork_event)
1396 return sched->tp_handler->fork_event(sched, event, machine);
1398 return 0;
1401 static int process_sched_migrate_task_event(struct perf_tool *tool,
1402 struct perf_evsel *evsel,
1403 struct perf_sample *sample,
1404 struct machine *machine)
1406 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1408 if (sched->tp_handler->migrate_task_event)
1409 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1411 return 0;
1414 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1415 struct perf_evsel *evsel,
1416 struct perf_sample *sample,
1417 struct machine *machine);
1419 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1420 union perf_event *event __maybe_unused,
1421 struct perf_sample *sample,
1422 struct perf_evsel *evsel,
1423 struct machine *machine)
1425 int err = 0;
1427 evsel->hists.stats.total_period += sample->period;
1428 hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1430 if (evsel->handler.func != NULL) {
1431 tracepoint_handler f = evsel->handler.func;
1432 err = f(tool, evsel, sample, machine);
1435 return err;
1438 static int perf_sched__read_events(struct perf_sched *sched,
1439 struct perf_session **psession)
1441 const struct perf_evsel_str_handler handlers[] = {
1442 { "sched:sched_switch", process_sched_switch_event, },
1443 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1444 { "sched:sched_wakeup", process_sched_wakeup_event, },
1445 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1446 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1448 struct perf_session *session;
1450 session = perf_session__new(input_name, O_RDONLY, 0, false, &sched->tool);
1451 if (session == NULL) {
1452 pr_debug("No Memory for session\n");
1453 return -1;
1456 if (perf_session__set_tracepoints_handlers(session, handlers))
1457 goto out_delete;
1459 if (perf_session__has_traces(session, "record -R")) {
1460 int err = perf_session__process_events(session, &sched->tool);
1461 if (err) {
1462 pr_err("Failed to process events, error %d", err);
1463 goto out_delete;
1466 sched->nr_events = session->stats.nr_events[0];
1467 sched->nr_lost_events = session->stats.total_lost;
1468 sched->nr_lost_chunks = session->stats.nr_events[PERF_RECORD_LOST];
1471 if (psession)
1472 *psession = session;
1473 else
1474 perf_session__delete(session);
1476 return 0;
1478 out_delete:
1479 perf_session__delete(session);
1480 return -1;
1483 static void print_bad_events(struct perf_sched *sched)
1485 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1486 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1487 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1488 sched->nr_unordered_timestamps, sched->nr_timestamps);
1490 if (sched->nr_lost_events && sched->nr_events) {
1491 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1492 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1493 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1495 if (sched->nr_state_machine_bugs && sched->nr_timestamps) {
1496 printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
1497 (double)sched->nr_state_machine_bugs/(double)sched->nr_timestamps*100.0,
1498 sched->nr_state_machine_bugs, sched->nr_timestamps);
1499 if (sched->nr_lost_events)
1500 printf(" (due to lost events?)");
1501 printf("\n");
1503 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1504 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1505 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1506 sched->nr_context_switch_bugs, sched->nr_timestamps);
1507 if (sched->nr_lost_events)
1508 printf(" (due to lost events?)");
1509 printf("\n");
1513 static int perf_sched__lat(struct perf_sched *sched)
1515 struct rb_node *next;
1516 struct perf_session *session;
1518 setup_pager();
1520 /* save session -- references to threads are held in work_list */
1521 if (perf_sched__read_events(sched, &session))
1522 return -1;
1524 perf_sched__sort_lat(sched);
1526 printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1527 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1528 printf(" ---------------------------------------------------------------------------------------------------------------\n");
1530 next = rb_first(&sched->sorted_atom_root);
1532 while (next) {
1533 struct work_atoms *work_list;
1535 work_list = rb_entry(next, struct work_atoms, node);
1536 output_lat_thread(sched, work_list);
1537 next = rb_next(next);
1540 printf(" -----------------------------------------------------------------------------------------\n");
1541 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1542 (double)sched->all_runtime / 1e6, sched->all_count);
1544 printf(" ---------------------------------------------------\n");
1546 print_bad_events(sched);
1547 printf("\n");
1549 perf_session__delete(session);
1550 return 0;
1553 static int perf_sched__map(struct perf_sched *sched)
1555 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1557 setup_pager();
1558 if (perf_sched__read_events(sched, NULL))
1559 return -1;
1560 print_bad_events(sched);
1561 return 0;
1564 static int perf_sched__replay(struct perf_sched *sched)
1566 unsigned long i;
1568 calibrate_run_measurement_overhead(sched);
1569 calibrate_sleep_measurement_overhead(sched);
1571 test_calibrations(sched);
1573 if (perf_sched__read_events(sched, NULL))
1574 return -1;
1576 printf("nr_run_events: %ld\n", sched->nr_run_events);
1577 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
1578 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
1580 if (sched->targetless_wakeups)
1581 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
1582 if (sched->multitarget_wakeups)
1583 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1584 if (sched->nr_run_events_optimized)
1585 printf("run atoms optimized: %ld\n",
1586 sched->nr_run_events_optimized);
1588 print_task_traces(sched);
1589 add_cross_task_wakeups(sched);
1591 create_tasks(sched);
1592 printf("------------------------------------------------------------\n");
1593 for (i = 0; i < sched->replay_repeat; i++)
1594 run_one_test(sched);
1596 return 0;
1599 static void setup_sorting(struct perf_sched *sched, const struct option *options,
1600 const char * const usage_msg[])
1602 char *tmp, *tok, *str = strdup(sched->sort_order);
1604 for (tok = strtok_r(str, ", ", &tmp);
1605 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1606 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1607 error("Unknown --sort key: `%s'", tok);
1608 usage_with_options(usage_msg, options);
1612 free(str);
1614 sort_dimension__add("pid", &sched->cmp_pid);
1617 static int __cmd_record(int argc, const char **argv)
1619 unsigned int rec_argc, i, j;
1620 const char **rec_argv;
1621 const char * const record_args[] = {
1622 "record",
1623 "-a",
1624 "-R",
1625 "-m", "1024",
1626 "-c", "1",
1627 "-e", "sched:sched_switch",
1628 "-e", "sched:sched_stat_wait",
1629 "-e", "sched:sched_stat_sleep",
1630 "-e", "sched:sched_stat_iowait",
1631 "-e", "sched:sched_stat_runtime",
1632 "-e", "sched:sched_process_fork",
1633 "-e", "sched:sched_wakeup",
1634 "-e", "sched:sched_migrate_task",
1637 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1638 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1640 if (rec_argv == NULL)
1641 return -ENOMEM;
1643 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1644 rec_argv[i] = strdup(record_args[i]);
1646 for (j = 1; j < (unsigned int)argc; j++, i++)
1647 rec_argv[i] = argv[j];
1649 BUG_ON(i != rec_argc);
1651 return cmd_record(i, rec_argv, NULL);
1654 static const char default_sort_order[] = "avg, max, switch, runtime";
1655 static struct perf_sched sched = {
1656 .tool = {
1657 .sample = perf_sched__process_tracepoint_sample,
1658 .comm = perf_event__process_comm,
1659 .lost = perf_event__process_lost,
1660 .fork = perf_sched__process_fork_event,
1661 .ordered_samples = true,
1663 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
1664 .sort_list = LIST_HEAD_INIT(sched.sort_list),
1665 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
1666 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1667 .curr_pid = { [0 ... MAX_CPUS - 1] = -1 },
1668 .sort_order = default_sort_order,
1669 .replay_repeat = 10,
1670 .profile_cpu = -1,
1671 .next_shortname1 = 'A',
1672 .next_shortname2 = '0',
1675 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1677 const struct option latency_options[] = {
1678 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1679 "sort by key(s): runtime, switch, avg, max"),
1680 OPT_INCR('v', "verbose", &verbose,
1681 "be more verbose (show symbol address, etc)"),
1682 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1683 "CPU to profile on"),
1684 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1685 "dump raw trace in ASCII"),
1686 OPT_END()
1688 const struct option replay_options[] = {
1689 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1690 "repeat the workload replay N times (-1: infinite)"),
1691 OPT_INCR('v', "verbose", &verbose,
1692 "be more verbose (show symbol address, etc)"),
1693 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1694 "dump raw trace in ASCII"),
1695 OPT_END()
1697 const struct option sched_options[] = {
1698 OPT_STRING('i', "input", &input_name, "file",
1699 "input file name"),
1700 OPT_INCR('v', "verbose", &verbose,
1701 "be more verbose (show symbol address, etc)"),
1702 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1703 "dump raw trace in ASCII"),
1704 OPT_END()
1706 const char * const latency_usage[] = {
1707 "perf sched latency [<options>]",
1708 NULL
1710 const char * const replay_usage[] = {
1711 "perf sched replay [<options>]",
1712 NULL
1714 const char * const sched_usage[] = {
1715 "perf sched [<options>] {record|latency|map|replay|script}",
1716 NULL
1718 struct trace_sched_handler lat_ops = {
1719 .wakeup_event = latency_wakeup_event,
1720 .switch_event = latency_switch_event,
1721 .runtime_event = latency_runtime_event,
1722 .migrate_task_event = latency_migrate_task_event,
1724 struct trace_sched_handler map_ops = {
1725 .switch_event = map_switch_event,
1727 struct trace_sched_handler replay_ops = {
1728 .wakeup_event = replay_wakeup_event,
1729 .switch_event = replay_switch_event,
1730 .fork_event = replay_fork_event,
1733 argc = parse_options(argc, argv, sched_options, sched_usage,
1734 PARSE_OPT_STOP_AT_NON_OPTION);
1735 if (!argc)
1736 usage_with_options(sched_usage, sched_options);
1739 * Aliased to 'perf script' for now:
1741 if (!strcmp(argv[0], "script"))
1742 return cmd_script(argc, argv, prefix);
1744 symbol__init();
1745 if (!strncmp(argv[0], "rec", 3)) {
1746 return __cmd_record(argc, argv);
1747 } else if (!strncmp(argv[0], "lat", 3)) {
1748 sched.tp_handler = &lat_ops;
1749 if (argc > 1) {
1750 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1751 if (argc)
1752 usage_with_options(latency_usage, latency_options);
1754 setup_sorting(&sched, latency_options, latency_usage);
1755 return perf_sched__lat(&sched);
1756 } else if (!strcmp(argv[0], "map")) {
1757 sched.tp_handler = &map_ops;
1758 setup_sorting(&sched, latency_options, latency_usage);
1759 return perf_sched__map(&sched);
1760 } else if (!strncmp(argv[0], "rep", 3)) {
1761 sched.tp_handler = &replay_ops;
1762 if (argc) {
1763 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1764 if (argc)
1765 usage_with_options(replay_usage, replay_options);
1767 return perf_sched__replay(&sched);
1768 } else {
1769 usage_with_options(sched_usage, sched_options);
1772 return 0;