2 * EDMA3 support for DaVinci
4 * Copyright (C) 2006-2009 Texas Instruments.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 #include <linux/err.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28 #include <linux/edma.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/of_dma.h>
33 #include <linux/of_irq.h>
34 #include <linux/pm_runtime.h>
36 #include <linux/platform_data/edma.h>
38 /* Offsets matching "struct edmacc_param" */
41 #define PARM_A_B_CNT 0x08
43 #define PARM_SRC_DST_BIDX 0x10
44 #define PARM_LINK_BCNTRLD 0x14
45 #define PARM_SRC_DST_CIDX 0x18
46 #define PARM_CCNT 0x1c
48 #define PARM_SIZE 0x20
50 /* Offsets for EDMA CC global channel registers and their shadows */
51 #define SH_ER 0x00 /* 64 bits */
52 #define SH_ECR 0x08 /* 64 bits */
53 #define SH_ESR 0x10 /* 64 bits */
54 #define SH_CER 0x18 /* 64 bits */
55 #define SH_EER 0x20 /* 64 bits */
56 #define SH_EECR 0x28 /* 64 bits */
57 #define SH_EESR 0x30 /* 64 bits */
58 #define SH_SER 0x38 /* 64 bits */
59 #define SH_SECR 0x40 /* 64 bits */
60 #define SH_IER 0x50 /* 64 bits */
61 #define SH_IECR 0x58 /* 64 bits */
62 #define SH_IESR 0x60 /* 64 bits */
63 #define SH_IPR 0x68 /* 64 bits */
64 #define SH_ICR 0x70 /* 64 bits */
74 /* Offsets for EDMA CC global registers */
75 #define EDMA_REV 0x0000
76 #define EDMA_CCCFG 0x0004
77 #define EDMA_QCHMAP 0x0200 /* 8 registers */
78 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
79 #define EDMA_QDMAQNUM 0x0260
80 #define EDMA_QUETCMAP 0x0280
81 #define EDMA_QUEPRI 0x0284
82 #define EDMA_EMR 0x0300 /* 64 bits */
83 #define EDMA_EMCR 0x0308 /* 64 bits */
84 #define EDMA_QEMR 0x0310
85 #define EDMA_QEMCR 0x0314
86 #define EDMA_CCERR 0x0318
87 #define EDMA_CCERRCLR 0x031c
88 #define EDMA_EEVAL 0x0320
89 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
90 #define EDMA_QRAE 0x0380 /* 4 registers */
91 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
92 #define EDMA_QSTAT 0x0600 /* 2 registers */
93 #define EDMA_QWMTHRA 0x0620
94 #define EDMA_QWMTHRB 0x0624
95 #define EDMA_CCSTAT 0x0640
97 #define EDMA_M 0x1000 /* global channel registers */
98 #define EDMA_ECR 0x1008
99 #define EDMA_ECRH 0x100C
100 #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
101 #define EDMA_PARM 0x4000 /* 128 param entries */
103 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
105 #define EDMA_DCHMAP 0x0100 /* 64 registers */
108 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
109 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
110 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
111 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
112 #define CHMAP_EXIST BIT(24)
114 #define EDMA_MAX_DMACH 64
115 #define EDMA_MAX_PARAMENTRY 512
117 /*****************************************************************************/
119 static void __iomem
*edmacc_regs_base
[EDMA_MAX_CC
];
121 static inline unsigned int edma_read(unsigned ctlr
, int offset
)
123 return (unsigned int)__raw_readl(edmacc_regs_base
[ctlr
] + offset
);
126 static inline void edma_write(unsigned ctlr
, int offset
, int val
)
128 __raw_writel(val
, edmacc_regs_base
[ctlr
] + offset
);
130 static inline void edma_modify(unsigned ctlr
, int offset
, unsigned and,
133 unsigned val
= edma_read(ctlr
, offset
);
136 edma_write(ctlr
, offset
, val
);
138 static inline void edma_and(unsigned ctlr
, int offset
, unsigned and)
140 unsigned val
= edma_read(ctlr
, offset
);
142 edma_write(ctlr
, offset
, val
);
144 static inline void edma_or(unsigned ctlr
, int offset
, unsigned or)
146 unsigned val
= edma_read(ctlr
, offset
);
148 edma_write(ctlr
, offset
, val
);
150 static inline unsigned int edma_read_array(unsigned ctlr
, int offset
, int i
)
152 return edma_read(ctlr
, offset
+ (i
<< 2));
154 static inline void edma_write_array(unsigned ctlr
, int offset
, int i
,
157 edma_write(ctlr
, offset
+ (i
<< 2), val
);
159 static inline void edma_modify_array(unsigned ctlr
, int offset
, int i
,
160 unsigned and, unsigned or)
162 edma_modify(ctlr
, offset
+ (i
<< 2), and, or);
164 static inline void edma_or_array(unsigned ctlr
, int offset
, int i
, unsigned or)
166 edma_or(ctlr
, offset
+ (i
<< 2), or);
168 static inline void edma_or_array2(unsigned ctlr
, int offset
, int i
, int j
,
171 edma_or(ctlr
, offset
+ ((i
*2 + j
) << 2), or);
173 static inline void edma_write_array2(unsigned ctlr
, int offset
, int i
, int j
,
176 edma_write(ctlr
, offset
+ ((i
*2 + j
) << 2), val
);
178 static inline unsigned int edma_shadow0_read(unsigned ctlr
, int offset
)
180 return edma_read(ctlr
, EDMA_SHADOW0
+ offset
);
182 static inline unsigned int edma_shadow0_read_array(unsigned ctlr
, int offset
,
185 return edma_read(ctlr
, EDMA_SHADOW0
+ offset
+ (i
<< 2));
187 static inline void edma_shadow0_write(unsigned ctlr
, int offset
, unsigned val
)
189 edma_write(ctlr
, EDMA_SHADOW0
+ offset
, val
);
191 static inline void edma_shadow0_write_array(unsigned ctlr
, int offset
, int i
,
194 edma_write(ctlr
, EDMA_SHADOW0
+ offset
+ (i
<< 2), val
);
196 static inline unsigned int edma_parm_read(unsigned ctlr
, int offset
,
199 return edma_read(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5));
201 static inline void edma_parm_write(unsigned ctlr
, int offset
, int param_no
,
204 edma_write(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), val
);
206 static inline void edma_parm_modify(unsigned ctlr
, int offset
, int param_no
,
207 unsigned and, unsigned or)
209 edma_modify(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), and, or);
211 static inline void edma_parm_and(unsigned ctlr
, int offset
, int param_no
,
214 edma_and(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), and);
216 static inline void edma_parm_or(unsigned ctlr
, int offset
, int param_no
,
219 edma_or(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), or);
222 static inline void set_bits(int offset
, int len
, unsigned long *p
)
224 for (; len
> 0; len
--)
225 set_bit(offset
+ (len
- 1), p
);
228 static inline void clear_bits(int offset
, int len
, unsigned long *p
)
230 for (; len
> 0; len
--)
231 clear_bit(offset
+ (len
- 1), p
);
234 /*****************************************************************************/
236 /* actual number of DMA channels and slots on this silicon */
238 /* how many dma resources of each type */
239 unsigned num_channels
;
243 enum dma_event_q default_queue
;
245 /* list of channels with no even trigger; terminated by "-1" */
248 struct edma_soc_info
*info
;
250 /* The edma_inuse bit for each PaRAM slot is clear unless the
251 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
253 DECLARE_BITMAP(edma_inuse
, EDMA_MAX_PARAMENTRY
);
255 /* The edma_unused bit for each channel is clear unless
256 * it is not being used on this platform. It uses a bit
257 * of SOC-specific initialization code.
259 DECLARE_BITMAP(edma_unused
, EDMA_MAX_DMACH
);
261 unsigned irq_res_start
;
262 unsigned irq_res_end
;
264 struct dma_interrupt_data
{
265 void (*callback
)(unsigned channel
, unsigned short ch_status
,
268 } intr_data
[EDMA_MAX_DMACH
];
271 static struct edma
*edma_cc
[EDMA_MAX_CC
];
272 static int arch_num_cc
;
274 /* dummy param set used to (re)initialize parameter RAM slots */
275 static const struct edmacc_param dummy_paramset
= {
276 .link_bcntrld
= 0xffff,
280 static const struct of_device_id edma_of_ids
[] = {
281 { .compatible
= "ti,edma3", },
285 /*****************************************************************************/
287 static void map_dmach_queue(unsigned ctlr
, unsigned ch_no
,
288 enum dma_event_q queue_no
)
290 int bit
= (ch_no
& 0x7) * 4;
292 /* default to low priority queue */
293 if (queue_no
== EVENTQ_DEFAULT
)
294 queue_no
= edma_cc
[ctlr
]->default_queue
;
297 edma_modify_array(ctlr
, EDMA_DMAQNUM
, (ch_no
>> 3),
298 ~(0x7 << bit
), queue_no
<< bit
);
301 static void assign_priority_to_queue(unsigned ctlr
, int queue_no
,
304 int bit
= queue_no
* 4;
305 edma_modify(ctlr
, EDMA_QUEPRI
, ~(0x7 << bit
),
306 ((priority
& 0x7) << bit
));
310 * map_dmach_param - Maps channel number to param entry number
312 * This maps the dma channel number to param entry numberter. In
313 * other words using the DMA channel mapping registers a param entry
314 * can be mapped to any channel
316 * Callers are responsible for ensuring the channel mapping logic is
317 * included in that particular EDMA variant (Eg : dm646x)
320 static void map_dmach_param(unsigned ctlr
)
323 for (i
= 0; i
< EDMA_MAX_DMACH
; i
++)
324 edma_write_array(ctlr
, EDMA_DCHMAP
, i
, (i
<< 5));
328 setup_dma_interrupt(unsigned lch
,
329 void (*callback
)(unsigned channel
, u16 ch_status
, void *data
),
334 ctlr
= EDMA_CTLR(lch
);
335 lch
= EDMA_CHAN_SLOT(lch
);
338 edma_shadow0_write_array(ctlr
, SH_IECR
, lch
>> 5,
341 edma_cc
[ctlr
]->intr_data
[lch
].callback
= callback
;
342 edma_cc
[ctlr
]->intr_data
[lch
].data
= data
;
345 edma_shadow0_write_array(ctlr
, SH_ICR
, lch
>> 5,
347 edma_shadow0_write_array(ctlr
, SH_IESR
, lch
>> 5,
352 static int irq2ctlr(int irq
)
354 if (irq
>= edma_cc
[0]->irq_res_start
&& irq
<= edma_cc
[0]->irq_res_end
)
356 else if (irq
>= edma_cc
[1]->irq_res_start
&&
357 irq
<= edma_cc
[1]->irq_res_end
)
363 /******************************************************************************
365 * DMA interrupt handler
367 *****************************************************************************/
368 static irqreturn_t
dma_irq_handler(int irq
, void *data
)
375 ctlr
= irq2ctlr(irq
);
379 dev_dbg(data
, "dma_irq_handler\n");
381 sh_ipr
= edma_shadow0_read_array(ctlr
, SH_IPR
, 0);
383 sh_ipr
= edma_shadow0_read_array(ctlr
, SH_IPR
, 1);
386 sh_ier
= edma_shadow0_read_array(ctlr
, SH_IER
, 1);
389 sh_ier
= edma_shadow0_read_array(ctlr
, SH_IER
, 0);
397 dev_dbg(data
, "IPR%d %08x\n", bank
, sh_ipr
);
399 slot
= __ffs(sh_ipr
);
400 sh_ipr
&= ~(BIT(slot
));
402 if (sh_ier
& BIT(slot
)) {
403 channel
= (bank
<< 5) | slot
;
404 /* Clear the corresponding IPR bits */
405 edma_shadow0_write_array(ctlr
, SH_ICR
, bank
,
407 if (edma_cc
[ctlr
]->intr_data
[channel
].callback
)
408 edma_cc
[ctlr
]->intr_data
[channel
].callback(
409 EDMA_CTLR_CHAN(ctlr
, channel
),
411 edma_cc
[ctlr
]->intr_data
[channel
].data
);
415 edma_shadow0_write(ctlr
, SH_IEVAL
, 1);
419 /******************************************************************************
421 * DMA error interrupt handler
423 *****************************************************************************/
424 static irqreturn_t
dma_ccerr_handler(int irq
, void *data
)
428 unsigned int cnt
= 0;
430 ctlr
= irq2ctlr(irq
);
434 dev_dbg(data
, "dma_ccerr_handler\n");
436 if ((edma_read_array(ctlr
, EDMA_EMR
, 0) == 0) &&
437 (edma_read_array(ctlr
, EDMA_EMR
, 1) == 0) &&
438 (edma_read(ctlr
, EDMA_QEMR
) == 0) &&
439 (edma_read(ctlr
, EDMA_CCERR
) == 0))
444 if (edma_read_array(ctlr
, EDMA_EMR
, 0))
446 else if (edma_read_array(ctlr
, EDMA_EMR
, 1))
449 dev_dbg(data
, "EMR%d %08x\n", j
,
450 edma_read_array(ctlr
, EDMA_EMR
, j
));
451 for (i
= 0; i
< 32; i
++) {
452 int k
= (j
<< 5) + i
;
453 if (edma_read_array(ctlr
, EDMA_EMR
, j
) &
455 /* Clear the corresponding EMR bits */
456 edma_write_array(ctlr
, EDMA_EMCR
, j
,
459 edma_shadow0_write_array(ctlr
, SH_SECR
,
461 if (edma_cc
[ctlr
]->intr_data
[k
].
463 edma_cc
[ctlr
]->intr_data
[k
].
465 EDMA_CTLR_CHAN(ctlr
, k
),
467 edma_cc
[ctlr
]->intr_data
472 } else if (edma_read(ctlr
, EDMA_QEMR
)) {
473 dev_dbg(data
, "QEMR %02x\n",
474 edma_read(ctlr
, EDMA_QEMR
));
475 for (i
= 0; i
< 8; i
++) {
476 if (edma_read(ctlr
, EDMA_QEMR
) & BIT(i
)) {
477 /* Clear the corresponding IPR bits */
478 edma_write(ctlr
, EDMA_QEMCR
, BIT(i
));
479 edma_shadow0_write(ctlr
, SH_QSECR
,
482 /* NOTE: not reported!! */
485 } else if (edma_read(ctlr
, EDMA_CCERR
)) {
486 dev_dbg(data
, "CCERR %08x\n",
487 edma_read(ctlr
, EDMA_CCERR
));
488 /* FIXME: CCERR.BIT(16) ignored! much better
489 * to just write CCERRCLR with CCERR value...
491 for (i
= 0; i
< 8; i
++) {
492 if (edma_read(ctlr
, EDMA_CCERR
) & BIT(i
)) {
493 /* Clear the corresponding IPR bits */
494 edma_write(ctlr
, EDMA_CCERRCLR
, BIT(i
));
496 /* NOTE: not reported!! */
500 if ((edma_read_array(ctlr
, EDMA_EMR
, 0) == 0) &&
501 (edma_read_array(ctlr
, EDMA_EMR
, 1) == 0) &&
502 (edma_read(ctlr
, EDMA_QEMR
) == 0) &&
503 (edma_read(ctlr
, EDMA_CCERR
) == 0))
509 edma_write(ctlr
, EDMA_EEVAL
, 1);
513 static int reserve_contiguous_slots(int ctlr
, unsigned int id
,
514 unsigned int num_slots
,
515 unsigned int start_slot
)
518 unsigned int count
= num_slots
;
519 int stop_slot
= start_slot
;
520 DECLARE_BITMAP(tmp_inuse
, EDMA_MAX_PARAMENTRY
);
522 for (i
= start_slot
; i
< edma_cc
[ctlr
]->num_slots
; ++i
) {
523 j
= EDMA_CHAN_SLOT(i
);
524 if (!test_and_set_bit(j
, edma_cc
[ctlr
]->edma_inuse
)) {
525 /* Record our current beginning slot */
526 if (count
== num_slots
)
530 set_bit(j
, tmp_inuse
);
535 clear_bit(j
, tmp_inuse
);
537 if (id
== EDMA_CONT_PARAMS_FIXED_EXACT
) {
547 * We have to clear any bits that we set
548 * if we run out parameter RAM slots, i.e we do find a set
549 * of contiguous parameter RAM slots but do not find the exact number
550 * requested as we may reach the total number of parameter RAM slots
552 if (i
== edma_cc
[ctlr
]->num_slots
)
556 for_each_set_bit_from(j
, tmp_inuse
, stop_slot
)
557 clear_bit(j
, edma_cc
[ctlr
]->edma_inuse
);
562 for (j
= i
- num_slots
+ 1; j
<= i
; ++j
)
563 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(j
),
564 &dummy_paramset
, PARM_SIZE
);
566 return EDMA_CTLR_CHAN(ctlr
, i
- num_slots
+ 1);
569 static int prepare_unused_channel_list(struct device
*dev
, void *data
)
571 struct platform_device
*pdev
= to_platform_device(dev
);
573 struct of_phandle_args dma_spec
;
576 count
= of_property_count_strings(dev
->of_node
, "dma-names");
579 for (i
= 0; i
< count
; i
++) {
580 if (of_parse_phandle_with_args(dev
->of_node
, "dmas",
585 if (!of_match_node(edma_of_ids
, dma_spec
.np
)) {
586 of_node_put(dma_spec
.np
);
590 clear_bit(EDMA_CHAN_SLOT(dma_spec
.args
[0]),
591 edma_cc
[0]->edma_unused
);
592 of_node_put(dma_spec
.np
);
597 /* For non-OF case */
598 for (i
= 0; i
< pdev
->num_resources
; i
++) {
599 if ((pdev
->resource
[i
].flags
& IORESOURCE_DMA
) &&
600 (int)pdev
->resource
[i
].start
>= 0) {
601 ctlr
= EDMA_CTLR(pdev
->resource
[i
].start
);
602 clear_bit(EDMA_CHAN_SLOT(pdev
->resource
[i
].start
),
603 edma_cc
[ctlr
]->edma_unused
);
610 /*-----------------------------------------------------------------------*/
612 static bool unused_chan_list_done
;
614 /* Resource alloc/free: dma channels, parameter RAM slots */
617 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
618 * @channel: specific channel to allocate; negative for "any unmapped channel"
619 * @callback: optional; to be issued on DMA completion or errors
620 * @data: passed to callback
621 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
622 * Controller (TC) executes requests using this channel. Use
623 * EVENTQ_DEFAULT unless you really need a high priority queue.
625 * This allocates a DMA channel and its associated parameter RAM slot.
626 * The parameter RAM is initialized to hold a dummy transfer.
628 * Normal use is to pass a specific channel number as @channel, to make
629 * use of hardware events mapped to that channel. When the channel will
630 * be used only for software triggering or event chaining, channels not
631 * mapped to hardware events (or mapped to unused events) are preferable.
633 * DMA transfers start from a channel using edma_start(), or by
634 * chaining. When the transfer described in that channel's parameter RAM
635 * slot completes, that slot's data may be reloaded through a link.
637 * DMA errors are only reported to the @callback associated with the
638 * channel driving that transfer, but transfer completion callbacks can
639 * be sent to another channel under control of the TCC field in
640 * the option word of the transfer's parameter RAM set. Drivers must not
641 * use DMA transfer completion callbacks for channels they did not allocate.
642 * (The same applies to TCC codes used in transfer chaining.)
644 * Returns the number of the channel, else negative errno.
646 int edma_alloc_channel(int channel
,
647 void (*callback
)(unsigned channel
, u16 ch_status
, void *data
),
649 enum dma_event_q eventq_no
)
651 unsigned i
, done
= 0, ctlr
= 0;
654 if (!unused_chan_list_done
) {
656 * Scan all the platform devices to find out the EDMA channels
657 * used and clear them in the unused list, making the rest
658 * available for ARM usage.
660 ret
= bus_for_each_dev(&platform_bus_type
, NULL
, NULL
,
661 prepare_unused_channel_list
);
665 unused_chan_list_done
= true;
669 ctlr
= EDMA_CTLR(channel
);
670 channel
= EDMA_CHAN_SLOT(channel
);
674 for (i
= 0; i
< arch_num_cc
; i
++) {
677 channel
= find_next_bit(edma_cc
[i
]->edma_unused
,
678 edma_cc
[i
]->num_channels
,
680 if (channel
== edma_cc
[i
]->num_channels
)
682 if (!test_and_set_bit(channel
,
683 edma_cc
[i
]->edma_inuse
)) {
695 } else if (channel
>= edma_cc
[ctlr
]->num_channels
) {
697 } else if (test_and_set_bit(channel
, edma_cc
[ctlr
]->edma_inuse
)) {
701 /* ensure access through shadow region 0 */
702 edma_or_array2(ctlr
, EDMA_DRAE
, 0, channel
>> 5, BIT(channel
& 0x1f));
704 /* ensure no events are pending */
705 edma_stop(EDMA_CTLR_CHAN(ctlr
, channel
));
706 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(channel
),
707 &dummy_paramset
, PARM_SIZE
);
710 setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr
, channel
),
713 map_dmach_queue(ctlr
, channel
, eventq_no
);
715 return EDMA_CTLR_CHAN(ctlr
, channel
);
717 EXPORT_SYMBOL(edma_alloc_channel
);
721 * edma_free_channel - deallocate DMA channel
722 * @channel: dma channel returned from edma_alloc_channel()
724 * This deallocates the DMA channel and associated parameter RAM slot
725 * allocated by edma_alloc_channel().
727 * Callers are responsible for ensuring the channel is inactive, and
728 * will not be reactivated by linking, chaining, or software calls to
731 void edma_free_channel(unsigned channel
)
735 ctlr
= EDMA_CTLR(channel
);
736 channel
= EDMA_CHAN_SLOT(channel
);
738 if (channel
>= edma_cc
[ctlr
]->num_channels
)
741 setup_dma_interrupt(channel
, NULL
, NULL
);
742 /* REVISIT should probably take out of shadow region 0 */
744 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(channel
),
745 &dummy_paramset
, PARM_SIZE
);
746 clear_bit(channel
, edma_cc
[ctlr
]->edma_inuse
);
748 EXPORT_SYMBOL(edma_free_channel
);
751 * edma_alloc_slot - allocate DMA parameter RAM
752 * @slot: specific slot to allocate; negative for "any unused slot"
754 * This allocates a parameter RAM slot, initializing it to hold a
755 * dummy transfer. Slots allocated using this routine have not been
756 * mapped to a hardware DMA channel, and will normally be used by
757 * linking to them from a slot associated with a DMA channel.
759 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
760 * slots may be allocated on behalf of DSP firmware.
762 * Returns the number of the slot, else negative errno.
764 int edma_alloc_slot(unsigned ctlr
, int slot
)
770 slot
= EDMA_CHAN_SLOT(slot
);
773 slot
= edma_cc
[ctlr
]->num_channels
;
775 slot
= find_next_zero_bit(edma_cc
[ctlr
]->edma_inuse
,
776 edma_cc
[ctlr
]->num_slots
, slot
);
777 if (slot
== edma_cc
[ctlr
]->num_slots
)
779 if (!test_and_set_bit(slot
, edma_cc
[ctlr
]->edma_inuse
))
782 } else if (slot
< edma_cc
[ctlr
]->num_channels
||
783 slot
>= edma_cc
[ctlr
]->num_slots
) {
785 } else if (test_and_set_bit(slot
, edma_cc
[ctlr
]->edma_inuse
)) {
789 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
790 &dummy_paramset
, PARM_SIZE
);
792 return EDMA_CTLR_CHAN(ctlr
, slot
);
794 EXPORT_SYMBOL(edma_alloc_slot
);
797 * edma_free_slot - deallocate DMA parameter RAM
798 * @slot: parameter RAM slot returned from edma_alloc_slot()
800 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
801 * Callers are responsible for ensuring the slot is inactive, and will
804 void edma_free_slot(unsigned slot
)
808 ctlr
= EDMA_CTLR(slot
);
809 slot
= EDMA_CHAN_SLOT(slot
);
811 if (slot
< edma_cc
[ctlr
]->num_channels
||
812 slot
>= edma_cc
[ctlr
]->num_slots
)
815 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
816 &dummy_paramset
, PARM_SIZE
);
817 clear_bit(slot
, edma_cc
[ctlr
]->edma_inuse
);
819 EXPORT_SYMBOL(edma_free_slot
);
823 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
824 * The API will return the starting point of a set of
825 * contiguous parameter RAM slots that have been requested
827 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
828 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
829 * @count: number of contiguous Paramter RAM slots
830 * @slot - the start value of Parameter RAM slot that should be passed if id
831 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
833 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
834 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
835 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
837 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
838 * set of contiguous parameter RAM slots from the "slot" that is passed as an
839 * argument to the API.
841 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
842 * starts looking for a set of contiguous parameter RAMs from the "slot"
843 * that is passed as an argument to the API. On failure the API will try to
844 * find a set of contiguous Parameter RAM slots from the remaining Parameter
847 int edma_alloc_cont_slots(unsigned ctlr
, unsigned int id
, int slot
, int count
)
850 * The start slot requested should be greater than
851 * the number of channels and lesser than the total number
854 if ((id
!= EDMA_CONT_PARAMS_ANY
) &&
855 (slot
< edma_cc
[ctlr
]->num_channels
||
856 slot
>= edma_cc
[ctlr
]->num_slots
))
860 * The number of parameter RAM slots requested cannot be less than 1
861 * and cannot be more than the number of slots minus the number of
864 if (count
< 1 || count
>
865 (edma_cc
[ctlr
]->num_slots
- edma_cc
[ctlr
]->num_channels
))
869 case EDMA_CONT_PARAMS_ANY
:
870 return reserve_contiguous_slots(ctlr
, id
, count
,
871 edma_cc
[ctlr
]->num_channels
);
872 case EDMA_CONT_PARAMS_FIXED_EXACT
:
873 case EDMA_CONT_PARAMS_FIXED_NOT_EXACT
:
874 return reserve_contiguous_slots(ctlr
, id
, count
, slot
);
880 EXPORT_SYMBOL(edma_alloc_cont_slots
);
883 * edma_free_cont_slots - deallocate DMA parameter RAM slots
884 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
885 * @count: the number of contiguous parameter RAM slots to be freed
887 * This deallocates the parameter RAM slots allocated by
888 * edma_alloc_cont_slots.
889 * Callers/applications need to keep track of sets of contiguous
890 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
892 * Callers are responsible for ensuring the slots are inactive, and will
895 int edma_free_cont_slots(unsigned slot
, int count
)
897 unsigned ctlr
, slot_to_free
;
900 ctlr
= EDMA_CTLR(slot
);
901 slot
= EDMA_CHAN_SLOT(slot
);
903 if (slot
< edma_cc
[ctlr
]->num_channels
||
904 slot
>= edma_cc
[ctlr
]->num_slots
||
908 for (i
= slot
; i
< slot
+ count
; ++i
) {
910 slot_to_free
= EDMA_CHAN_SLOT(i
);
912 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot_to_free
),
913 &dummy_paramset
, PARM_SIZE
);
914 clear_bit(slot_to_free
, edma_cc
[ctlr
]->edma_inuse
);
919 EXPORT_SYMBOL(edma_free_cont_slots
);
921 /*-----------------------------------------------------------------------*/
923 /* Parameter RAM operations (i) -- read/write partial slots */
926 * edma_set_src - set initial DMA source address in parameter RAM slot
927 * @slot: parameter RAM slot being configured
928 * @src_port: physical address of source (memory, controller FIFO, etc)
929 * @addressMode: INCR, except in very rare cases
930 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
931 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
933 * Note that the source address is modified during the DMA transfer
934 * according to edma_set_src_index().
936 void edma_set_src(unsigned slot
, dma_addr_t src_port
,
937 enum address_mode mode
, enum fifo_width width
)
941 ctlr
= EDMA_CTLR(slot
);
942 slot
= EDMA_CHAN_SLOT(slot
);
944 if (slot
< edma_cc
[ctlr
]->num_slots
) {
945 unsigned int i
= edma_parm_read(ctlr
, PARM_OPT
, slot
);
948 /* set SAM and program FWID */
949 i
= (i
& ~(EDMA_FWID
)) | (SAM
| ((width
& 0x7) << 8));
954 edma_parm_write(ctlr
, PARM_OPT
, slot
, i
);
956 /* set the source port address
957 in source register of param structure */
958 edma_parm_write(ctlr
, PARM_SRC
, slot
, src_port
);
961 EXPORT_SYMBOL(edma_set_src
);
964 * edma_set_dest - set initial DMA destination address in parameter RAM slot
965 * @slot: parameter RAM slot being configured
966 * @dest_port: physical address of destination (memory, controller FIFO, etc)
967 * @addressMode: INCR, except in very rare cases
968 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
969 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
971 * Note that the destination address is modified during the DMA transfer
972 * according to edma_set_dest_index().
974 void edma_set_dest(unsigned slot
, dma_addr_t dest_port
,
975 enum address_mode mode
, enum fifo_width width
)
979 ctlr
= EDMA_CTLR(slot
);
980 slot
= EDMA_CHAN_SLOT(slot
);
982 if (slot
< edma_cc
[ctlr
]->num_slots
) {
983 unsigned int i
= edma_parm_read(ctlr
, PARM_OPT
, slot
);
986 /* set DAM and program FWID */
987 i
= (i
& ~(EDMA_FWID
)) | (DAM
| ((width
& 0x7) << 8));
992 edma_parm_write(ctlr
, PARM_OPT
, slot
, i
);
993 /* set the destination port address
994 in dest register of param structure */
995 edma_parm_write(ctlr
, PARM_DST
, slot
, dest_port
);
998 EXPORT_SYMBOL(edma_set_dest
);
1001 * edma_get_position - returns the current transfer point
1002 * @slot: parameter RAM slot being examined
1003 * @dst: true selects the dest position, false the source
1005 * Returns the position of the current active slot
1007 dma_addr_t
edma_get_position(unsigned slot
, bool dst
)
1009 u32 offs
, ctlr
= EDMA_CTLR(slot
);
1011 slot
= EDMA_CHAN_SLOT(slot
);
1013 offs
= PARM_OFFSET(slot
);
1014 offs
+= dst
? PARM_DST
: PARM_SRC
;
1016 return edma_read(ctlr
, offs
);
1020 * edma_set_src_index - configure DMA source address indexing
1021 * @slot: parameter RAM slot being configured
1022 * @src_bidx: byte offset between source arrays in a frame
1023 * @src_cidx: byte offset between source frames in a block
1025 * Offsets are specified to support either contiguous or discontiguous
1026 * memory transfers, or repeated access to a hardware register, as needed.
1027 * When accessing hardware registers, both offsets are normally zero.
1029 void edma_set_src_index(unsigned slot
, s16 src_bidx
, s16 src_cidx
)
1033 ctlr
= EDMA_CTLR(slot
);
1034 slot
= EDMA_CHAN_SLOT(slot
);
1036 if (slot
< edma_cc
[ctlr
]->num_slots
) {
1037 edma_parm_modify(ctlr
, PARM_SRC_DST_BIDX
, slot
,
1038 0xffff0000, src_bidx
);
1039 edma_parm_modify(ctlr
, PARM_SRC_DST_CIDX
, slot
,
1040 0xffff0000, src_cidx
);
1043 EXPORT_SYMBOL(edma_set_src_index
);
1046 * edma_set_dest_index - configure DMA destination address indexing
1047 * @slot: parameter RAM slot being configured
1048 * @dest_bidx: byte offset between destination arrays in a frame
1049 * @dest_cidx: byte offset between destination frames in a block
1051 * Offsets are specified to support either contiguous or discontiguous
1052 * memory transfers, or repeated access to a hardware register, as needed.
1053 * When accessing hardware registers, both offsets are normally zero.
1055 void edma_set_dest_index(unsigned slot
, s16 dest_bidx
, s16 dest_cidx
)
1059 ctlr
= EDMA_CTLR(slot
);
1060 slot
= EDMA_CHAN_SLOT(slot
);
1062 if (slot
< edma_cc
[ctlr
]->num_slots
) {
1063 edma_parm_modify(ctlr
, PARM_SRC_DST_BIDX
, slot
,
1064 0x0000ffff, dest_bidx
<< 16);
1065 edma_parm_modify(ctlr
, PARM_SRC_DST_CIDX
, slot
,
1066 0x0000ffff, dest_cidx
<< 16);
1069 EXPORT_SYMBOL(edma_set_dest_index
);
1072 * edma_set_transfer_params - configure DMA transfer parameters
1073 * @slot: parameter RAM slot being configured
1074 * @acnt: how many bytes per array (at least one)
1075 * @bcnt: how many arrays per frame (at least one)
1076 * @ccnt: how many frames per block (at least one)
1077 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1078 * the value to reload into bcnt when it decrements to zero
1079 * @sync_mode: ASYNC or ABSYNC
1081 * See the EDMA3 documentation to understand how to configure and link
1082 * transfers using the fields in PaRAM slots. If you are not doing it
1083 * all at once with edma_write_slot(), you will use this routine
1084 * plus two calls each for source and destination, setting the initial
1085 * address and saying how to index that address.
1087 * An example of an A-Synchronized transfer is a serial link using a
1088 * single word shift register. In that case, @acnt would be equal to
1089 * that word size; the serial controller issues a DMA synchronization
1090 * event to transfer each word, and memory access by the DMA transfer
1091 * controller will be word-at-a-time.
1093 * An example of an AB-Synchronized transfer is a device using a FIFO.
1094 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1095 * The controller with the FIFO issues DMA synchronization events when
1096 * the FIFO threshold is reached, and the DMA transfer controller will
1097 * transfer one frame to (or from) the FIFO. It will probably use
1098 * efficient burst modes to access memory.
1100 void edma_set_transfer_params(unsigned slot
,
1101 u16 acnt
, u16 bcnt
, u16 ccnt
,
1102 u16 bcnt_rld
, enum sync_dimension sync_mode
)
1106 ctlr
= EDMA_CTLR(slot
);
1107 slot
= EDMA_CHAN_SLOT(slot
);
1109 if (slot
< edma_cc
[ctlr
]->num_slots
) {
1110 edma_parm_modify(ctlr
, PARM_LINK_BCNTRLD
, slot
,
1111 0x0000ffff, bcnt_rld
<< 16);
1112 if (sync_mode
== ASYNC
)
1113 edma_parm_and(ctlr
, PARM_OPT
, slot
, ~SYNCDIM
);
1115 edma_parm_or(ctlr
, PARM_OPT
, slot
, SYNCDIM
);
1116 /* Set the acount, bcount, ccount registers */
1117 edma_parm_write(ctlr
, PARM_A_B_CNT
, slot
, (bcnt
<< 16) | acnt
);
1118 edma_parm_write(ctlr
, PARM_CCNT
, slot
, ccnt
);
1121 EXPORT_SYMBOL(edma_set_transfer_params
);
1124 * edma_link - link one parameter RAM slot to another
1125 * @from: parameter RAM slot originating the link
1126 * @to: parameter RAM slot which is the link target
1128 * The originating slot should not be part of any active DMA transfer.
1130 void edma_link(unsigned from
, unsigned to
)
1132 unsigned ctlr_from
, ctlr_to
;
1134 ctlr_from
= EDMA_CTLR(from
);
1135 from
= EDMA_CHAN_SLOT(from
);
1136 ctlr_to
= EDMA_CTLR(to
);
1137 to
= EDMA_CHAN_SLOT(to
);
1139 if (from
>= edma_cc
[ctlr_from
]->num_slots
)
1141 if (to
>= edma_cc
[ctlr_to
]->num_slots
)
1143 edma_parm_modify(ctlr_from
, PARM_LINK_BCNTRLD
, from
, 0xffff0000,
1146 EXPORT_SYMBOL(edma_link
);
1149 * edma_unlink - cut link from one parameter RAM slot
1150 * @from: parameter RAM slot originating the link
1152 * The originating slot should not be part of any active DMA transfer.
1153 * Its link is set to 0xffff.
1155 void edma_unlink(unsigned from
)
1159 ctlr
= EDMA_CTLR(from
);
1160 from
= EDMA_CHAN_SLOT(from
);
1162 if (from
>= edma_cc
[ctlr
]->num_slots
)
1164 edma_parm_or(ctlr
, PARM_LINK_BCNTRLD
, from
, 0xffff);
1166 EXPORT_SYMBOL(edma_unlink
);
1168 /*-----------------------------------------------------------------------*/
1170 /* Parameter RAM operations (ii) -- read/write whole parameter sets */
1173 * edma_write_slot - write parameter RAM data for slot
1174 * @slot: number of parameter RAM slot being modified
1175 * @param: data to be written into parameter RAM slot
1177 * Use this to assign all parameters of a transfer at once. This
1178 * allows more efficient setup of transfers than issuing multiple
1179 * calls to set up those parameters in small pieces, and provides
1180 * complete control over all transfer options.
1182 void edma_write_slot(unsigned slot
, const struct edmacc_param
*param
)
1186 ctlr
= EDMA_CTLR(slot
);
1187 slot
= EDMA_CHAN_SLOT(slot
);
1189 if (slot
>= edma_cc
[ctlr
]->num_slots
)
1191 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
), param
,
1194 EXPORT_SYMBOL(edma_write_slot
);
1197 * edma_read_slot - read parameter RAM data from slot
1198 * @slot: number of parameter RAM slot being copied
1199 * @param: where to store copy of parameter RAM data
1201 * Use this to read data from a parameter RAM slot, perhaps to
1202 * save them as a template for later reuse.
1204 void edma_read_slot(unsigned slot
, struct edmacc_param
*param
)
1208 ctlr
= EDMA_CTLR(slot
);
1209 slot
= EDMA_CHAN_SLOT(slot
);
1211 if (slot
>= edma_cc
[ctlr
]->num_slots
)
1213 memcpy_fromio(param
, edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
1216 EXPORT_SYMBOL(edma_read_slot
);
1218 /*-----------------------------------------------------------------------*/
1220 /* Various EDMA channel control operations */
1223 * edma_pause - pause dma on a channel
1224 * @channel: on which edma_start() has been called
1226 * This temporarily disables EDMA hardware events on the specified channel,
1227 * preventing them from triggering new transfers on its behalf
1229 void edma_pause(unsigned channel
)
1233 ctlr
= EDMA_CTLR(channel
);
1234 channel
= EDMA_CHAN_SLOT(channel
);
1236 if (channel
< edma_cc
[ctlr
]->num_channels
) {
1237 unsigned int mask
= BIT(channel
& 0x1f);
1239 edma_shadow0_write_array(ctlr
, SH_EECR
, channel
>> 5, mask
);
1242 EXPORT_SYMBOL(edma_pause
);
1245 * edma_resume - resumes dma on a paused channel
1246 * @channel: on which edma_pause() has been called
1248 * This re-enables EDMA hardware events on the specified channel.
1250 void edma_resume(unsigned channel
)
1254 ctlr
= EDMA_CTLR(channel
);
1255 channel
= EDMA_CHAN_SLOT(channel
);
1257 if (channel
< edma_cc
[ctlr
]->num_channels
) {
1258 unsigned int mask
= BIT(channel
& 0x1f);
1260 edma_shadow0_write_array(ctlr
, SH_EESR
, channel
>> 5, mask
);
1263 EXPORT_SYMBOL(edma_resume
);
1265 int edma_trigger_channel(unsigned channel
)
1270 ctlr
= EDMA_CTLR(channel
);
1271 channel
= EDMA_CHAN_SLOT(channel
);
1272 mask
= BIT(channel
& 0x1f);
1274 edma_shadow0_write_array(ctlr
, SH_ESR
, (channel
>> 5), mask
);
1276 pr_debug("EDMA: ESR%d %08x\n", (channel
>> 5),
1277 edma_shadow0_read_array(ctlr
, SH_ESR
, (channel
>> 5)));
1280 EXPORT_SYMBOL(edma_trigger_channel
);
1283 * edma_start - start dma on a channel
1284 * @channel: channel being activated
1286 * Channels with event associations will be triggered by their hardware
1287 * events, and channels without such associations will be triggered by
1288 * software. (At this writing there is no interface for using software
1289 * triggers except with channels that don't support hardware triggers.)
1291 * Returns zero on success, else negative errno.
1293 int edma_start(unsigned channel
)
1297 ctlr
= EDMA_CTLR(channel
);
1298 channel
= EDMA_CHAN_SLOT(channel
);
1300 if (channel
< edma_cc
[ctlr
]->num_channels
) {
1301 int j
= channel
>> 5;
1302 unsigned int mask
= BIT(channel
& 0x1f);
1304 /* EDMA channels without event association */
1305 if (test_bit(channel
, edma_cc
[ctlr
]->edma_unused
)) {
1306 pr_debug("EDMA: ESR%d %08x\n", j
,
1307 edma_shadow0_read_array(ctlr
, SH_ESR
, j
));
1308 edma_shadow0_write_array(ctlr
, SH_ESR
, j
, mask
);
1312 /* EDMA channel with event association */
1313 pr_debug("EDMA: ER%d %08x\n", j
,
1314 edma_shadow0_read_array(ctlr
, SH_ER
, j
));
1315 /* Clear any pending event or error */
1316 edma_write_array(ctlr
, EDMA_ECR
, j
, mask
);
1317 edma_write_array(ctlr
, EDMA_EMCR
, j
, mask
);
1319 edma_shadow0_write_array(ctlr
, SH_SECR
, j
, mask
);
1320 edma_shadow0_write_array(ctlr
, SH_EESR
, j
, mask
);
1321 pr_debug("EDMA: EER%d %08x\n", j
,
1322 edma_shadow0_read_array(ctlr
, SH_EER
, j
));
1328 EXPORT_SYMBOL(edma_start
);
1331 * edma_stop - stops dma on the channel passed
1332 * @channel: channel being deactivated
1334 * When @lch is a channel, any active transfer is paused and
1335 * all pending hardware events are cleared. The current transfer
1336 * may not be resumed, and the channel's Parameter RAM should be
1337 * reinitialized before being reused.
1339 void edma_stop(unsigned channel
)
1343 ctlr
= EDMA_CTLR(channel
);
1344 channel
= EDMA_CHAN_SLOT(channel
);
1346 if (channel
< edma_cc
[ctlr
]->num_channels
) {
1347 int j
= channel
>> 5;
1348 unsigned int mask
= BIT(channel
& 0x1f);
1350 edma_shadow0_write_array(ctlr
, SH_EECR
, j
, mask
);
1351 edma_shadow0_write_array(ctlr
, SH_ECR
, j
, mask
);
1352 edma_shadow0_write_array(ctlr
, SH_SECR
, j
, mask
);
1353 edma_write_array(ctlr
, EDMA_EMCR
, j
, mask
);
1355 pr_debug("EDMA: EER%d %08x\n", j
,
1356 edma_shadow0_read_array(ctlr
, SH_EER
, j
));
1358 /* REVISIT: consider guarding against inappropriate event
1359 * chaining by overwriting with dummy_paramset.
1363 EXPORT_SYMBOL(edma_stop
);
1365 /******************************************************************************
1367 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1368 * been removed before EDMA has finished.It is usedful for removable media.
1370 * ch_no - channel no
1372 * Return: zero on success, or corresponding error no on failure
1374 * FIXME this should not be needed ... edma_stop() should suffice.
1376 *****************************************************************************/
1378 void edma_clean_channel(unsigned channel
)
1382 ctlr
= EDMA_CTLR(channel
);
1383 channel
= EDMA_CHAN_SLOT(channel
);
1385 if (channel
< edma_cc
[ctlr
]->num_channels
) {
1386 int j
= (channel
>> 5);
1387 unsigned int mask
= BIT(channel
& 0x1f);
1389 pr_debug("EDMA: EMR%d %08x\n", j
,
1390 edma_read_array(ctlr
, EDMA_EMR
, j
));
1391 edma_shadow0_write_array(ctlr
, SH_ECR
, j
, mask
);
1392 /* Clear the corresponding EMR bits */
1393 edma_write_array(ctlr
, EDMA_EMCR
, j
, mask
);
1395 edma_shadow0_write_array(ctlr
, SH_SECR
, j
, mask
);
1396 edma_write(ctlr
, EDMA_CCERRCLR
, BIT(16) | BIT(1) | BIT(0));
1399 EXPORT_SYMBOL(edma_clean_channel
);
1402 * edma_clear_event - clear an outstanding event on the DMA channel
1404 * channel - channel number
1406 void edma_clear_event(unsigned channel
)
1410 ctlr
= EDMA_CTLR(channel
);
1411 channel
= EDMA_CHAN_SLOT(channel
);
1413 if (channel
>= edma_cc
[ctlr
]->num_channels
)
1416 edma_write(ctlr
, EDMA_ECR
, BIT(channel
));
1418 edma_write(ctlr
, EDMA_ECRH
, BIT(channel
- 32));
1420 EXPORT_SYMBOL(edma_clear_event
);
1423 * edma_assign_channel_eventq - move given channel to desired eventq
1425 * channel - channel number
1426 * eventq_no - queue to move the channel
1428 * Can be used to move a channel to a selected event queue.
1430 void edma_assign_channel_eventq(unsigned channel
, enum dma_event_q eventq_no
)
1434 ctlr
= EDMA_CTLR(channel
);
1435 channel
= EDMA_CHAN_SLOT(channel
);
1437 if (channel
>= edma_cc
[ctlr
]->num_channels
)
1440 /* default to low priority queue */
1441 if (eventq_no
== EVENTQ_DEFAULT
)
1442 eventq_no
= edma_cc
[ctlr
]->default_queue
;
1443 if (eventq_no
>= edma_cc
[ctlr
]->num_tc
)
1446 map_dmach_queue(ctlr
, channel
, eventq_no
);
1448 EXPORT_SYMBOL(edma_assign_channel_eventq
);
1450 static int edma_setup_from_hw(struct device
*dev
, struct edma_soc_info
*pdata
,
1451 struct edma
*edma_cc
, int cc_id
)
1455 s8 (*queue_priority_map
)[2];
1457 /* Decode the eDMA3 configuration from CCCFG register */
1458 cccfg
= edma_read(cc_id
, EDMA_CCCFG
);
1460 value
= GET_NUM_REGN(cccfg
);
1461 edma_cc
->num_region
= BIT(value
);
1463 value
= GET_NUM_DMACH(cccfg
);
1464 edma_cc
->num_channels
= BIT(value
+ 1);
1466 value
= GET_NUM_PAENTRY(cccfg
);
1467 edma_cc
->num_slots
= BIT(value
+ 4);
1469 value
= GET_NUM_EVQUE(cccfg
);
1470 edma_cc
->num_tc
= value
+ 1;
1472 dev_dbg(dev
, "eDMA3 CC%d HW configuration (cccfg: 0x%08x):\n", cc_id
,
1474 dev_dbg(dev
, "num_region: %u\n", edma_cc
->num_region
);
1475 dev_dbg(dev
, "num_channel: %u\n", edma_cc
->num_channels
);
1476 dev_dbg(dev
, "num_slot: %u\n", edma_cc
->num_slots
);
1477 dev_dbg(dev
, "num_tc: %u\n", edma_cc
->num_tc
);
1479 /* Nothing need to be done if queue priority is provided */
1480 if (pdata
->queue_priority_mapping
)
1484 * Configure TC/queue priority as follows:
1489 * The meaning of priority numbers: 0 highest priority, 7 lowest
1490 * priority. So Q0 is the highest priority queue and the last queue has
1491 * the lowest priority.
1493 queue_priority_map
= devm_kzalloc(dev
,
1494 (edma_cc
->num_tc
+ 1) * sizeof(s8
),
1496 if (!queue_priority_map
)
1499 for (i
= 0; i
< edma_cc
->num_tc
; i
++) {
1500 queue_priority_map
[i
][0] = i
;
1501 queue_priority_map
[i
][1] = i
;
1503 queue_priority_map
[i
][0] = -1;
1504 queue_priority_map
[i
][1] = -1;
1506 pdata
->queue_priority_mapping
= queue_priority_map
;
1507 /* Default queue has the lowest priority */
1508 pdata
->default_queue
= i
- 1;
1513 #if IS_ENABLED(CONFIG_OF) && IS_ENABLED(CONFIG_DMADEVICES)
1515 static int edma_xbar_event_map(struct device
*dev
, struct device_node
*node
,
1516 struct edma_soc_info
*pdata
, size_t sz
)
1518 const char pname
[] = "ti,edma-xbar-event-map";
1519 struct resource res
;
1521 s16 (*xbar_chans
)[2];
1522 size_t nelm
= sz
/ sizeof(s16
);
1523 u32 shift
, offset
, mux
;
1526 xbar_chans
= devm_kzalloc(dev
, (nelm
+ 2) * sizeof(s16
), GFP_KERNEL
);
1530 ret
= of_address_to_resource(node
, 1, &res
);
1534 xbar
= devm_ioremap(dev
, res
.start
, resource_size(&res
));
1538 ret
= of_property_read_u16_array(node
, pname
, (u16
*)xbar_chans
, nelm
);
1542 /* Invalidate last entry for the other user of this mess */
1544 xbar_chans
[nelm
][0] = xbar_chans
[nelm
][1] = -1;
1546 for (i
= 0; i
< nelm
; i
++) {
1547 shift
= (xbar_chans
[i
][1] & 0x03) << 3;
1548 offset
= xbar_chans
[i
][1] & 0xfffffffc;
1549 mux
= readl(xbar
+ offset
);
1550 mux
&= ~(0xff << shift
);
1551 mux
|= xbar_chans
[i
][0] << shift
;
1552 writel(mux
, (xbar
+ offset
));
1555 pdata
->xbar_chans
= (const s16 (*)[2]) xbar_chans
;
1559 static int edma_of_parse_dt(struct device
*dev
,
1560 struct device_node
*node
,
1561 struct edma_soc_info
*pdata
)
1564 struct property
*prop
;
1566 struct edma_rsv_info
*rsv_info
;
1568 rsv_info
= devm_kzalloc(dev
, sizeof(struct edma_rsv_info
), GFP_KERNEL
);
1571 pdata
->rsv
= rsv_info
;
1573 prop
= of_find_property(node
, "ti,edma-xbar-event-map", &sz
);
1575 ret
= edma_xbar_event_map(dev
, node
, pdata
, sz
);
1580 static struct of_dma_filter_info edma_filter_info
= {
1581 .filter_fn
= edma_filter_fn
,
1584 static struct edma_soc_info
*edma_setup_info_from_dt(struct device
*dev
,
1585 struct device_node
*node
)
1587 struct edma_soc_info
*info
;
1590 info
= devm_kzalloc(dev
, sizeof(struct edma_soc_info
), GFP_KERNEL
);
1592 return ERR_PTR(-ENOMEM
);
1594 ret
= edma_of_parse_dt(dev
, node
, info
);
1596 return ERR_PTR(ret
);
1598 dma_cap_set(DMA_SLAVE
, edma_filter_info
.dma_cap
);
1599 dma_cap_set(DMA_CYCLIC
, edma_filter_info
.dma_cap
);
1600 of_dma_controller_register(dev
->of_node
, of_dma_simple_xlate
,
1606 static struct edma_soc_info
*edma_setup_info_from_dt(struct device
*dev
,
1607 struct device_node
*node
)
1609 return ERR_PTR(-ENOSYS
);
1613 static int edma_probe(struct platform_device
*pdev
)
1615 struct edma_soc_info
**info
= pdev
->dev
.platform_data
;
1616 struct edma_soc_info
*ninfo
[EDMA_MAX_CC
] = {NULL
};
1617 s8 (*queue_priority_mapping
)[2];
1618 int i
, j
, off
, ln
, found
= 0;
1620 const s16 (*rsv_chans
)[2];
1621 const s16 (*rsv_slots
)[2];
1622 const s16 (*xbar_chans
)[2];
1623 int irq
[EDMA_MAX_CC
] = {0, 0};
1624 int err_irq
[EDMA_MAX_CC
] = {0, 0};
1625 struct resource
*r
[EDMA_MAX_CC
] = {NULL
};
1626 struct resource res
[EDMA_MAX_CC
];
1628 struct device_node
*node
= pdev
->dev
.of_node
;
1629 struct device
*dev
= &pdev
->dev
;
1631 struct platform_device_info edma_dev_info
= {
1632 .name
= "edma-dma-engine",
1633 .dma_mask
= DMA_BIT_MASK(32),
1634 .parent
= &pdev
->dev
,
1638 /* Check if this is a second instance registered */
1640 dev_err(dev
, "only one EDMA instance is supported via DT\n");
1644 ninfo
[0] = edma_setup_info_from_dt(dev
, node
);
1645 if (IS_ERR(ninfo
[0])) {
1646 dev_err(dev
, "failed to get DT data\n");
1647 return PTR_ERR(ninfo
[0]);
1656 pm_runtime_enable(dev
);
1657 ret
= pm_runtime_get_sync(dev
);
1659 dev_err(dev
, "pm_runtime_get_sync() failed\n");
1663 for (j
= 0; j
< EDMA_MAX_CC
; j
++) {
1670 ret
= of_address_to_resource(node
, j
, &res
[j
]);
1674 sprintf(res_name
, "edma_cc%d", j
);
1675 r
[j
] = platform_get_resource_byname(pdev
,
1688 edmacc_regs_base
[j
] = devm_ioremap_resource(&pdev
->dev
, r
[j
]);
1689 if (IS_ERR(edmacc_regs_base
[j
]))
1690 return PTR_ERR(edmacc_regs_base
[j
]);
1692 edma_cc
[j
] = devm_kzalloc(&pdev
->dev
, sizeof(struct edma
),
1697 /* Get eDMA3 configuration from IP */
1698 ret
= edma_setup_from_hw(dev
, info
[j
], edma_cc
[j
], j
);
1702 edma_cc
[j
]->default_queue
= info
[j
]->default_queue
;
1704 dev_dbg(&pdev
->dev
, "DMA REG BASE ADDR=%p\n",
1705 edmacc_regs_base
[j
]);
1707 for (i
= 0; i
< edma_cc
[j
]->num_slots
; i
++)
1708 memcpy_toio(edmacc_regs_base
[j
] + PARM_OFFSET(i
),
1709 &dummy_paramset
, PARM_SIZE
);
1711 /* Mark all channels as unused */
1712 memset(edma_cc
[j
]->edma_unused
, 0xff,
1713 sizeof(edma_cc
[j
]->edma_unused
));
1717 /* Clear the reserved channels in unused list */
1718 rsv_chans
= info
[j
]->rsv
->rsv_chans
;
1720 for (i
= 0; rsv_chans
[i
][0] != -1; i
++) {
1721 off
= rsv_chans
[i
][0];
1722 ln
= rsv_chans
[i
][1];
1724 edma_cc
[j
]->edma_unused
);
1728 /* Set the reserved slots in inuse list */
1729 rsv_slots
= info
[j
]->rsv
->rsv_slots
;
1731 for (i
= 0; rsv_slots
[i
][0] != -1; i
++) {
1732 off
= rsv_slots
[i
][0];
1733 ln
= rsv_slots
[i
][1];
1735 edma_cc
[j
]->edma_inuse
);
1740 /* Clear the xbar mapped channels in unused list */
1741 xbar_chans
= info
[j
]->xbar_chans
;
1743 for (i
= 0; xbar_chans
[i
][1] != -1; i
++) {
1744 off
= xbar_chans
[i
][1];
1746 edma_cc
[j
]->edma_unused
);
1751 irq
[j
] = irq_of_parse_and_map(node
, 0);
1752 err_irq
[j
] = irq_of_parse_and_map(node
, 2);
1756 sprintf(irq_name
, "edma%d", j
);
1757 irq
[j
] = platform_get_irq_byname(pdev
, irq_name
);
1759 sprintf(irq_name
, "edma%d_err", j
);
1760 err_irq
[j
] = platform_get_irq_byname(pdev
, irq_name
);
1762 edma_cc
[j
]->irq_res_start
= irq
[j
];
1763 edma_cc
[j
]->irq_res_end
= err_irq
[j
];
1765 status
= devm_request_irq(dev
, irq
[j
], dma_irq_handler
, 0,
1769 "devm_request_irq %d failed --> %d\n",
1774 status
= devm_request_irq(dev
, err_irq
[j
], dma_ccerr_handler
, 0,
1778 "devm_request_irq %d failed --> %d\n",
1779 err_irq
[j
], status
);
1783 for (i
= 0; i
< edma_cc
[j
]->num_channels
; i
++)
1784 map_dmach_queue(j
, i
, info
[j
]->default_queue
);
1786 queue_priority_mapping
= info
[j
]->queue_priority_mapping
;
1788 /* Event queue priority mapping */
1789 for (i
= 0; queue_priority_mapping
[i
][0] != -1; i
++)
1790 assign_priority_to_queue(j
,
1791 queue_priority_mapping
[i
][0],
1792 queue_priority_mapping
[i
][1]);
1794 /* Map the channel to param entry if channel mapping logic
1797 if (edma_read(j
, EDMA_CCCFG
) & CHMAP_EXIST
)
1800 for (i
= 0; i
< edma_cc
[j
]->num_region
; i
++) {
1801 edma_write_array2(j
, EDMA_DRAE
, i
, 0, 0x0);
1802 edma_write_array2(j
, EDMA_DRAE
, i
, 1, 0x0);
1803 edma_write_array(j
, EDMA_QRAE
, i
, 0x0);
1805 edma_cc
[j
]->info
= info
[j
];
1808 edma_dev_info
.id
= j
;
1809 platform_device_register_full(&edma_dev_info
);
1815 #ifdef CONFIG_PM_SLEEP
1816 static int edma_pm_resume(struct device
*dev
)
1820 for (j
= 0; j
< arch_num_cc
; j
++) {
1821 struct edma
*cc
= edma_cc
[j
];
1823 s8 (*queue_priority_mapping
)[2];
1825 queue_priority_mapping
= cc
->info
->queue_priority_mapping
;
1827 /* Event queue priority mapping */
1828 for (i
= 0; queue_priority_mapping
[i
][0] != -1; i
++)
1829 assign_priority_to_queue(j
,
1830 queue_priority_mapping
[i
][0],
1831 queue_priority_mapping
[i
][1]);
1834 * Map the channel to param entry if channel mapping logic
1837 if (edma_read(j
, EDMA_CCCFG
) & CHMAP_EXIST
)
1840 for (i
= 0; i
< cc
->num_channels
; i
++) {
1841 if (test_bit(i
, cc
->edma_inuse
)) {
1842 /* ensure access through shadow region 0 */
1843 edma_or_array2(j
, EDMA_DRAE
, 0, i
>> 5,
1846 setup_dma_interrupt(i
,
1847 cc
->intr_data
[i
].callback
,
1848 cc
->intr_data
[i
].data
);
1857 static const struct dev_pm_ops edma_pm_ops
= {
1858 SET_LATE_SYSTEM_SLEEP_PM_OPS(NULL
, edma_pm_resume
)
1861 static struct platform_driver edma_driver
= {
1865 .of_match_table
= edma_of_ids
,
1867 .probe
= edma_probe
,
1870 static int __init
edma_init(void)
1872 return platform_driver_probe(&edma_driver
, edma_probe
);
1874 arch_initcall(edma_init
);