Linux 4.1.18
[linux/fpc-iii.git] / arch / arm / common / mcpm_entry.c
blob5f8a52ac7edf2c74ba6ba2547df969a6acfdbd87
1 /*
2 * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
4 * Created by: Nicolas Pitre, March 2012
5 * Copyright: (C) 2012-2013 Linaro Limited
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/irqflags.h>
15 #include <linux/cpu_pm.h>
17 #include <asm/mcpm.h>
18 #include <asm/cacheflush.h>
19 #include <asm/idmap.h>
20 #include <asm/cputype.h>
21 #include <asm/suspend.h>
23 extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
25 void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
27 unsigned long val = ptr ? virt_to_phys(ptr) : 0;
28 mcpm_entry_vectors[cluster][cpu] = val;
29 sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
32 extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
34 void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
35 unsigned long poke_phys_addr, unsigned long poke_val)
37 unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
38 poke[0] = poke_phys_addr;
39 poke[1] = poke_val;
40 __sync_cache_range_w(poke, 2 * sizeof(*poke));
43 static const struct mcpm_platform_ops *platform_ops;
45 int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
47 if (platform_ops)
48 return -EBUSY;
49 platform_ops = ops;
50 return 0;
53 bool mcpm_is_available(void)
55 return (platform_ops) ? true : false;
59 * We can't use regular spinlocks. In the switcher case, it is possible
60 * for an outbound CPU to call power_down() after its inbound counterpart
61 * is already live using the same logical CPU number which trips lockdep
62 * debugging.
64 static arch_spinlock_t mcpm_lock = __ARCH_SPIN_LOCK_UNLOCKED;
66 static int mcpm_cpu_use_count[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
68 static inline bool mcpm_cluster_unused(unsigned int cluster)
70 int i, cnt;
71 for (i = 0, cnt = 0; i < MAX_CPUS_PER_CLUSTER; i++)
72 cnt |= mcpm_cpu_use_count[cluster][i];
73 return !cnt;
76 int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
78 bool cpu_is_down, cluster_is_down;
79 int ret = 0;
81 if (!platform_ops)
82 return -EUNATCH; /* try not to shadow power_up errors */
83 might_sleep();
85 /* backward compatibility callback */
86 if (platform_ops->power_up)
87 return platform_ops->power_up(cpu, cluster);
89 pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
92 * Since this is called with IRQs enabled, and no arch_spin_lock_irq
93 * variant exists, we need to disable IRQs manually here.
95 local_irq_disable();
96 arch_spin_lock(&mcpm_lock);
98 cpu_is_down = !mcpm_cpu_use_count[cluster][cpu];
99 cluster_is_down = mcpm_cluster_unused(cluster);
101 mcpm_cpu_use_count[cluster][cpu]++;
103 * The only possible values are:
104 * 0 = CPU down
105 * 1 = CPU (still) up
106 * 2 = CPU requested to be up before it had a chance
107 * to actually make itself down.
108 * Any other value is a bug.
110 BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 1 &&
111 mcpm_cpu_use_count[cluster][cpu] != 2);
113 if (cluster_is_down)
114 ret = platform_ops->cluster_powerup(cluster);
115 if (cpu_is_down && !ret)
116 ret = platform_ops->cpu_powerup(cpu, cluster);
118 arch_spin_unlock(&mcpm_lock);
119 local_irq_enable();
120 return ret;
123 typedef void (*phys_reset_t)(unsigned long);
125 void mcpm_cpu_power_down(void)
127 unsigned int mpidr, cpu, cluster;
128 bool cpu_going_down, last_man;
129 phys_reset_t phys_reset;
131 if (WARN_ON_ONCE(!platform_ops))
132 return;
133 BUG_ON(!irqs_disabled());
136 * Do this before calling into the power_down method,
137 * as it might not always be safe to do afterwards.
139 setup_mm_for_reboot();
141 /* backward compatibility callback */
142 if (platform_ops->power_down) {
143 platform_ops->power_down();
144 goto not_dead;
147 mpidr = read_cpuid_mpidr();
148 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
149 cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
150 pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
152 __mcpm_cpu_going_down(cpu, cluster);
154 arch_spin_lock(&mcpm_lock);
155 BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
157 mcpm_cpu_use_count[cluster][cpu]--;
158 BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 0 &&
159 mcpm_cpu_use_count[cluster][cpu] != 1);
160 cpu_going_down = !mcpm_cpu_use_count[cluster][cpu];
161 last_man = mcpm_cluster_unused(cluster);
163 if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
164 platform_ops->cpu_powerdown_prepare(cpu, cluster);
165 platform_ops->cluster_powerdown_prepare(cluster);
166 arch_spin_unlock(&mcpm_lock);
167 platform_ops->cluster_cache_disable();
168 __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
169 } else {
170 if (cpu_going_down)
171 platform_ops->cpu_powerdown_prepare(cpu, cluster);
172 arch_spin_unlock(&mcpm_lock);
174 * If cpu_going_down is false here, that means a power_up
175 * request raced ahead of us. Even if we do not want to
176 * shut this CPU down, the caller still expects execution
177 * to return through the system resume entry path, like
178 * when the WFI is aborted due to a new IRQ or the like..
179 * So let's continue with cache cleaning in all cases.
181 platform_ops->cpu_cache_disable();
184 __mcpm_cpu_down(cpu, cluster);
186 /* Now we are prepared for power-down, do it: */
187 if (cpu_going_down)
188 wfi();
190 not_dead:
192 * It is possible for a power_up request to happen concurrently
193 * with a power_down request for the same CPU. In this case the
194 * CPU might not be able to actually enter a powered down state
195 * with the WFI instruction if the power_up request has removed
196 * the required reset condition. We must perform a re-entry in
197 * the kernel as if the power_up method just had deasserted reset
198 * on the CPU.
200 phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
201 phys_reset(virt_to_phys(mcpm_entry_point));
203 /* should never get here */
204 BUG();
207 int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster)
209 int ret;
211 if (WARN_ON_ONCE(!platform_ops || !platform_ops->wait_for_powerdown))
212 return -EUNATCH;
214 ret = platform_ops->wait_for_powerdown(cpu, cluster);
215 if (ret)
216 pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n",
217 __func__, cpu, cluster, ret);
219 return ret;
222 void mcpm_cpu_suspend(u64 expected_residency)
224 if (WARN_ON_ONCE(!platform_ops))
225 return;
227 /* backward compatibility callback */
228 if (platform_ops->suspend) {
229 phys_reset_t phys_reset;
230 BUG_ON(!irqs_disabled());
231 setup_mm_for_reboot();
232 platform_ops->suspend(expected_residency);
233 phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
234 phys_reset(virt_to_phys(mcpm_entry_point));
235 BUG();
238 /* Some platforms might have to enable special resume modes, etc. */
239 if (platform_ops->cpu_suspend_prepare) {
240 unsigned int mpidr = read_cpuid_mpidr();
241 unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
242 unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
243 arch_spin_lock(&mcpm_lock);
244 platform_ops->cpu_suspend_prepare(cpu, cluster);
245 arch_spin_unlock(&mcpm_lock);
247 mcpm_cpu_power_down();
250 int mcpm_cpu_powered_up(void)
252 unsigned int mpidr, cpu, cluster;
253 bool cpu_was_down, first_man;
254 unsigned long flags;
256 if (!platform_ops)
257 return -EUNATCH;
259 /* backward compatibility callback */
260 if (platform_ops->powered_up) {
261 platform_ops->powered_up();
262 return 0;
265 mpidr = read_cpuid_mpidr();
266 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
267 cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
268 local_irq_save(flags);
269 arch_spin_lock(&mcpm_lock);
271 cpu_was_down = !mcpm_cpu_use_count[cluster][cpu];
272 first_man = mcpm_cluster_unused(cluster);
274 if (first_man && platform_ops->cluster_is_up)
275 platform_ops->cluster_is_up(cluster);
276 if (cpu_was_down)
277 mcpm_cpu_use_count[cluster][cpu] = 1;
278 if (platform_ops->cpu_is_up)
279 platform_ops->cpu_is_up(cpu, cluster);
281 arch_spin_unlock(&mcpm_lock);
282 local_irq_restore(flags);
284 return 0;
287 #ifdef CONFIG_ARM_CPU_SUSPEND
289 static int __init nocache_trampoline(unsigned long _arg)
291 void (*cache_disable)(void) = (void *)_arg;
292 unsigned int mpidr = read_cpuid_mpidr();
293 unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
294 unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
295 phys_reset_t phys_reset;
297 mcpm_set_entry_vector(cpu, cluster, cpu_resume);
298 setup_mm_for_reboot();
300 __mcpm_cpu_going_down(cpu, cluster);
301 BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster));
302 cache_disable();
303 __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
304 __mcpm_cpu_down(cpu, cluster);
306 phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
307 phys_reset(virt_to_phys(mcpm_entry_point));
308 BUG();
311 int __init mcpm_loopback(void (*cache_disable)(void))
313 int ret;
316 * We're going to soft-restart the current CPU through the
317 * low-level MCPM code by leveraging the suspend/resume
318 * infrastructure. Let's play it safe by using cpu_pm_enter()
319 * in case the CPU init code path resets the VFP or similar.
321 local_irq_disable();
322 local_fiq_disable();
323 ret = cpu_pm_enter();
324 if (!ret) {
325 ret = cpu_suspend((unsigned long)cache_disable, nocache_trampoline);
326 cpu_pm_exit();
328 local_fiq_enable();
329 local_irq_enable();
330 if (ret)
331 pr_err("%s returned %d\n", __func__, ret);
332 return ret;
335 #endif
337 struct sync_struct mcpm_sync;
340 * __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
341 * This must be called at the point of committing to teardown of a CPU.
342 * The CPU cache (SCTRL.C bit) is expected to still be active.
344 void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
346 mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
347 sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
351 * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
352 * cluster can be torn down without disrupting this CPU.
353 * To avoid deadlocks, this must be called before a CPU is powered down.
354 * The CPU cache (SCTRL.C bit) is expected to be off.
355 * However L2 cache might or might not be active.
357 void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
359 dmb();
360 mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
361 sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
362 sev();
366 * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
367 * @state: the final state of the cluster:
368 * CLUSTER_UP: no destructive teardown was done and the cluster has been
369 * restored to the previous state (CPU cache still active); or
370 * CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
371 * (CPU cache disabled, L2 cache either enabled or disabled).
373 void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
375 dmb();
376 mcpm_sync.clusters[cluster].cluster = state;
377 sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
378 sev();
382 * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
383 * This function should be called by the last man, after local CPU teardown
384 * is complete. CPU cache expected to be active.
386 * Returns:
387 * false: the critical section was not entered because an inbound CPU was
388 * observed, or the cluster is already being set up;
389 * true: the critical section was entered: it is now safe to tear down the
390 * cluster.
392 bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
394 unsigned int i;
395 struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
397 /* Warn inbound CPUs that the cluster is being torn down: */
398 c->cluster = CLUSTER_GOING_DOWN;
399 sync_cache_w(&c->cluster);
401 /* Back out if the inbound cluster is already in the critical region: */
402 sync_cache_r(&c->inbound);
403 if (c->inbound == INBOUND_COMING_UP)
404 goto abort;
407 * Wait for all CPUs to get out of the GOING_DOWN state, so that local
408 * teardown is complete on each CPU before tearing down the cluster.
410 * If any CPU has been woken up again from the DOWN state, then we
411 * shouldn't be taking the cluster down at all: abort in that case.
413 sync_cache_r(&c->cpus);
414 for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
415 int cpustate;
417 if (i == cpu)
418 continue;
420 while (1) {
421 cpustate = c->cpus[i].cpu;
422 if (cpustate != CPU_GOING_DOWN)
423 break;
425 wfe();
426 sync_cache_r(&c->cpus[i].cpu);
429 switch (cpustate) {
430 case CPU_DOWN:
431 continue;
433 default:
434 goto abort;
438 return true;
440 abort:
441 __mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
442 return false;
445 int __mcpm_cluster_state(unsigned int cluster)
447 sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
448 return mcpm_sync.clusters[cluster].cluster;
451 extern unsigned long mcpm_power_up_setup_phys;
453 int __init mcpm_sync_init(
454 void (*power_up_setup)(unsigned int affinity_level))
456 unsigned int i, j, mpidr, this_cluster;
458 BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
459 BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
462 * Set initial CPU and cluster states.
463 * Only one cluster is assumed to be active at this point.
465 for (i = 0; i < MAX_NR_CLUSTERS; i++) {
466 mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
467 mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
468 for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
469 mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
471 mpidr = read_cpuid_mpidr();
472 this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
473 for_each_online_cpu(i) {
474 mcpm_cpu_use_count[this_cluster][i] = 1;
475 mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
477 mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
478 sync_cache_w(&mcpm_sync);
480 if (power_up_setup) {
481 mcpm_power_up_setup_phys = virt_to_phys(power_up_setup);
482 sync_cache_w(&mcpm_power_up_setup_phys);
485 return 0;