Linux 4.1.18
[linux/fpc-iii.git] / arch / arm / kernel / smp.c
blobf11d8252707619cfcf7e1c5f214bbdca75ef90b6
1 /*
2 * linux/arch/arm/kernel/smp.c
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
30 #include <linux/atomic.h>
31 #include <asm/smp.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpu.h>
34 #include <asm/cputype.h>
35 #include <asm/exception.h>
36 #include <asm/idmap.h>
37 #include <asm/topology.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/processor.h>
42 #include <asm/sections.h>
43 #include <asm/tlbflush.h>
44 #include <asm/ptrace.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 #include <asm/mpu.h>
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/ipi.h>
54 * as from 2.5, kernels no longer have an init_tasks structure
55 * so we need some other way of telling a new secondary core
56 * where to place its SVC stack
58 struct secondary_data secondary_data;
61 * control for which core is the next to come out of the secondary
62 * boot "holding pen"
64 volatile int pen_release = -1;
66 enum ipi_msg_type {
67 IPI_WAKEUP,
68 IPI_TIMER,
69 IPI_RESCHEDULE,
70 IPI_CALL_FUNC,
71 IPI_CALL_FUNC_SINGLE,
72 IPI_CPU_STOP,
73 IPI_IRQ_WORK,
74 IPI_COMPLETION,
77 static DECLARE_COMPLETION(cpu_running);
79 static struct smp_operations smp_ops;
81 void __init smp_set_ops(struct smp_operations *ops)
83 if (ops)
84 smp_ops = *ops;
87 static unsigned long get_arch_pgd(pgd_t *pgd)
89 phys_addr_t pgdir = virt_to_idmap(pgd);
90 BUG_ON(pgdir & ARCH_PGD_MASK);
91 return pgdir >> ARCH_PGD_SHIFT;
94 int __cpu_up(unsigned int cpu, struct task_struct *idle)
96 int ret;
98 if (!smp_ops.smp_boot_secondary)
99 return -ENOSYS;
102 * We need to tell the secondary core where to find
103 * its stack and the page tables.
105 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
106 #ifdef CONFIG_ARM_MPU
107 secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
108 #endif
110 #ifdef CONFIG_MMU
111 secondary_data.pgdir = get_arch_pgd(idmap_pgd);
112 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
113 #endif
114 sync_cache_w(&secondary_data);
117 * Now bring the CPU into our world.
119 ret = smp_ops.smp_boot_secondary(cpu, idle);
120 if (ret == 0) {
122 * CPU was successfully started, wait for it
123 * to come online or time out.
125 wait_for_completion_timeout(&cpu_running,
126 msecs_to_jiffies(1000));
128 if (!cpu_online(cpu)) {
129 pr_crit("CPU%u: failed to come online\n", cpu);
130 ret = -EIO;
132 } else {
133 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
137 memset(&secondary_data, 0, sizeof(secondary_data));
138 return ret;
141 /* platform specific SMP operations */
142 void __init smp_init_cpus(void)
144 if (smp_ops.smp_init_cpus)
145 smp_ops.smp_init_cpus();
148 int platform_can_secondary_boot(void)
150 return !!smp_ops.smp_boot_secondary;
153 int platform_can_cpu_hotplug(void)
155 #ifdef CONFIG_HOTPLUG_CPU
156 if (smp_ops.cpu_kill)
157 return 1;
158 #endif
160 return 0;
163 #ifdef CONFIG_HOTPLUG_CPU
164 static int platform_cpu_kill(unsigned int cpu)
166 if (smp_ops.cpu_kill)
167 return smp_ops.cpu_kill(cpu);
168 return 1;
171 static int platform_cpu_disable(unsigned int cpu)
173 if (smp_ops.cpu_disable)
174 return smp_ops.cpu_disable(cpu);
177 * By default, allow disabling all CPUs except the first one,
178 * since this is special on a lot of platforms, e.g. because
179 * of clock tick interrupts.
181 return cpu == 0 ? -EPERM : 0;
184 * __cpu_disable runs on the processor to be shutdown.
186 int __cpu_disable(void)
188 unsigned int cpu = smp_processor_id();
189 int ret;
191 ret = platform_cpu_disable(cpu);
192 if (ret)
193 return ret;
196 * Take this CPU offline. Once we clear this, we can't return,
197 * and we must not schedule until we're ready to give up the cpu.
199 set_cpu_online(cpu, false);
202 * OK - migrate IRQs away from this CPU
204 migrate_irqs();
207 * Flush user cache and TLB mappings, and then remove this CPU
208 * from the vm mask set of all processes.
210 * Caches are flushed to the Level of Unification Inner Shareable
211 * to write-back dirty lines to unified caches shared by all CPUs.
213 flush_cache_louis();
214 local_flush_tlb_all();
216 clear_tasks_mm_cpumask(cpu);
218 return 0;
221 static DECLARE_COMPLETION(cpu_died);
224 * called on the thread which is asking for a CPU to be shutdown -
225 * waits until shutdown has completed, or it is timed out.
227 void __cpu_die(unsigned int cpu)
229 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
230 pr_err("CPU%u: cpu didn't die\n", cpu);
231 return;
233 pr_notice("CPU%u: shutdown\n", cpu);
236 * platform_cpu_kill() is generally expected to do the powering off
237 * and/or cutting of clocks to the dying CPU. Optionally, this may
238 * be done by the CPU which is dying in preference to supporting
239 * this call, but that means there is _no_ synchronisation between
240 * the requesting CPU and the dying CPU actually losing power.
242 if (!platform_cpu_kill(cpu))
243 pr_err("CPU%u: unable to kill\n", cpu);
247 * Called from the idle thread for the CPU which has been shutdown.
249 * Note that we disable IRQs here, but do not re-enable them
250 * before returning to the caller. This is also the behaviour
251 * of the other hotplug-cpu capable cores, so presumably coming
252 * out of idle fixes this.
254 void __ref cpu_die(void)
256 unsigned int cpu = smp_processor_id();
258 idle_task_exit();
260 local_irq_disable();
263 * Flush the data out of the L1 cache for this CPU. This must be
264 * before the completion to ensure that data is safely written out
265 * before platform_cpu_kill() gets called - which may disable
266 * *this* CPU and power down its cache.
268 flush_cache_louis();
271 * Tell __cpu_die() that this CPU is now safe to dispose of. Once
272 * this returns, power and/or clocks can be removed at any point
273 * from this CPU and its cache by platform_cpu_kill().
275 complete(&cpu_died);
278 * Ensure that the cache lines associated with that completion are
279 * written out. This covers the case where _this_ CPU is doing the
280 * powering down, to ensure that the completion is visible to the
281 * CPU waiting for this one.
283 flush_cache_louis();
286 * The actual CPU shutdown procedure is at least platform (if not
287 * CPU) specific. This may remove power, or it may simply spin.
289 * Platforms are generally expected *NOT* to return from this call,
290 * although there are some which do because they have no way to
291 * power down the CPU. These platforms are the _only_ reason we
292 * have a return path which uses the fragment of assembly below.
294 * The return path should not be used for platforms which can
295 * power off the CPU.
297 if (smp_ops.cpu_die)
298 smp_ops.cpu_die(cpu);
300 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
301 cpu);
304 * Do not return to the idle loop - jump back to the secondary
305 * cpu initialisation. There's some initialisation which needs
306 * to be repeated to undo the effects of taking the CPU offline.
308 __asm__("mov sp, %0\n"
309 " mov fp, #0\n"
310 " b secondary_start_kernel"
312 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
314 #endif /* CONFIG_HOTPLUG_CPU */
317 * Called by both boot and secondaries to move global data into
318 * per-processor storage.
320 static void smp_store_cpu_info(unsigned int cpuid)
322 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
324 cpu_info->loops_per_jiffy = loops_per_jiffy;
325 cpu_info->cpuid = read_cpuid_id();
327 store_cpu_topology(cpuid);
331 * This is the secondary CPU boot entry. We're using this CPUs
332 * idle thread stack, but a set of temporary page tables.
334 asmlinkage void secondary_start_kernel(void)
336 struct mm_struct *mm = &init_mm;
337 unsigned int cpu;
340 * The identity mapping is uncached (strongly ordered), so
341 * switch away from it before attempting any exclusive accesses.
343 cpu_switch_mm(mm->pgd, mm);
344 local_flush_bp_all();
345 enter_lazy_tlb(mm, current);
346 local_flush_tlb_all();
349 * All kernel threads share the same mm context; grab a
350 * reference and switch to it.
352 cpu = smp_processor_id();
353 atomic_inc(&mm->mm_count);
354 current->active_mm = mm;
355 cpumask_set_cpu(cpu, mm_cpumask(mm));
357 cpu_init();
359 pr_debug("CPU%u: Booted secondary processor\n", cpu);
361 preempt_disable();
362 trace_hardirqs_off();
365 * Give the platform a chance to do its own initialisation.
367 if (smp_ops.smp_secondary_init)
368 smp_ops.smp_secondary_init(cpu);
370 notify_cpu_starting(cpu);
372 calibrate_delay();
374 smp_store_cpu_info(cpu);
377 * OK, now it's safe to let the boot CPU continue. Wait for
378 * the CPU migration code to notice that the CPU is online
379 * before we continue - which happens after __cpu_up returns.
381 set_cpu_online(cpu, true);
382 complete(&cpu_running);
384 local_irq_enable();
385 local_fiq_enable();
388 * OK, it's off to the idle thread for us
390 cpu_startup_entry(CPUHP_ONLINE);
393 void __init smp_cpus_done(unsigned int max_cpus)
395 int cpu;
396 unsigned long bogosum = 0;
398 for_each_online_cpu(cpu)
399 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
401 printk(KERN_INFO "SMP: Total of %d processors activated "
402 "(%lu.%02lu BogoMIPS).\n",
403 num_online_cpus(),
404 bogosum / (500000/HZ),
405 (bogosum / (5000/HZ)) % 100);
407 hyp_mode_check();
410 void __init smp_prepare_boot_cpu(void)
412 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
415 void __init smp_prepare_cpus(unsigned int max_cpus)
417 unsigned int ncores = num_possible_cpus();
419 init_cpu_topology();
421 smp_store_cpu_info(smp_processor_id());
424 * are we trying to boot more cores than exist?
426 if (max_cpus > ncores)
427 max_cpus = ncores;
428 if (ncores > 1 && max_cpus) {
430 * Initialise the present map, which describes the set of CPUs
431 * actually populated at the present time. A platform should
432 * re-initialize the map in the platforms smp_prepare_cpus()
433 * if present != possible (e.g. physical hotplug).
435 init_cpu_present(cpu_possible_mask);
438 * Initialise the SCU if there are more than one CPU
439 * and let them know where to start.
441 if (smp_ops.smp_prepare_cpus)
442 smp_ops.smp_prepare_cpus(max_cpus);
446 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
448 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
450 if (!__smp_cross_call)
451 __smp_cross_call = fn;
454 static const char *ipi_types[NR_IPI] __tracepoint_string = {
455 #define S(x,s) [x] = s
456 S(IPI_WAKEUP, "CPU wakeup interrupts"),
457 S(IPI_TIMER, "Timer broadcast interrupts"),
458 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
459 S(IPI_CALL_FUNC, "Function call interrupts"),
460 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
461 S(IPI_CPU_STOP, "CPU stop interrupts"),
462 S(IPI_IRQ_WORK, "IRQ work interrupts"),
463 S(IPI_COMPLETION, "completion interrupts"),
466 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
468 trace_ipi_raise(target, ipi_types[ipinr]);
469 __smp_cross_call(target, ipinr);
472 void show_ipi_list(struct seq_file *p, int prec)
474 unsigned int cpu, i;
476 for (i = 0; i < NR_IPI; i++) {
477 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
479 for_each_online_cpu(cpu)
480 seq_printf(p, "%10u ",
481 __get_irq_stat(cpu, ipi_irqs[i]));
483 seq_printf(p, " %s\n", ipi_types[i]);
487 u64 smp_irq_stat_cpu(unsigned int cpu)
489 u64 sum = 0;
490 int i;
492 for (i = 0; i < NR_IPI; i++)
493 sum += __get_irq_stat(cpu, ipi_irqs[i]);
495 return sum;
498 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
500 smp_cross_call(mask, IPI_CALL_FUNC);
503 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
505 smp_cross_call(mask, IPI_WAKEUP);
508 void arch_send_call_function_single_ipi(int cpu)
510 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
513 #ifdef CONFIG_IRQ_WORK
514 void arch_irq_work_raise(void)
516 if (arch_irq_work_has_interrupt())
517 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
519 #endif
521 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
522 void tick_broadcast(const struct cpumask *mask)
524 smp_cross_call(mask, IPI_TIMER);
526 #endif
528 static DEFINE_RAW_SPINLOCK(stop_lock);
531 * ipi_cpu_stop - handle IPI from smp_send_stop()
533 static void ipi_cpu_stop(unsigned int cpu)
535 if (system_state == SYSTEM_BOOTING ||
536 system_state == SYSTEM_RUNNING) {
537 raw_spin_lock(&stop_lock);
538 pr_crit("CPU%u: stopping\n", cpu);
539 dump_stack();
540 raw_spin_unlock(&stop_lock);
543 set_cpu_online(cpu, false);
545 local_fiq_disable();
546 local_irq_disable();
548 while (1)
549 cpu_relax();
552 static DEFINE_PER_CPU(struct completion *, cpu_completion);
554 int register_ipi_completion(struct completion *completion, int cpu)
556 per_cpu(cpu_completion, cpu) = completion;
557 return IPI_COMPLETION;
560 static void ipi_complete(unsigned int cpu)
562 complete(per_cpu(cpu_completion, cpu));
566 * Main handler for inter-processor interrupts
568 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
570 handle_IPI(ipinr, regs);
573 void handle_IPI(int ipinr, struct pt_regs *regs)
575 unsigned int cpu = smp_processor_id();
576 struct pt_regs *old_regs = set_irq_regs(regs);
578 if ((unsigned)ipinr < NR_IPI) {
579 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
580 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
583 switch (ipinr) {
584 case IPI_WAKEUP:
585 break;
587 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
588 case IPI_TIMER:
589 irq_enter();
590 tick_receive_broadcast();
591 irq_exit();
592 break;
593 #endif
595 case IPI_RESCHEDULE:
596 scheduler_ipi();
597 break;
599 case IPI_CALL_FUNC:
600 irq_enter();
601 generic_smp_call_function_interrupt();
602 irq_exit();
603 break;
605 case IPI_CALL_FUNC_SINGLE:
606 irq_enter();
607 generic_smp_call_function_single_interrupt();
608 irq_exit();
609 break;
611 case IPI_CPU_STOP:
612 irq_enter();
613 ipi_cpu_stop(cpu);
614 irq_exit();
615 break;
617 #ifdef CONFIG_IRQ_WORK
618 case IPI_IRQ_WORK:
619 irq_enter();
620 irq_work_run();
621 irq_exit();
622 break;
623 #endif
625 case IPI_COMPLETION:
626 irq_enter();
627 ipi_complete(cpu);
628 irq_exit();
629 break;
631 default:
632 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
633 cpu, ipinr);
634 break;
637 if ((unsigned)ipinr < NR_IPI)
638 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
639 set_irq_regs(old_regs);
642 void smp_send_reschedule(int cpu)
644 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
647 void smp_send_stop(void)
649 unsigned long timeout;
650 struct cpumask mask;
652 cpumask_copy(&mask, cpu_online_mask);
653 cpumask_clear_cpu(smp_processor_id(), &mask);
654 if (!cpumask_empty(&mask))
655 smp_cross_call(&mask, IPI_CPU_STOP);
657 /* Wait up to one second for other CPUs to stop */
658 timeout = USEC_PER_SEC;
659 while (num_online_cpus() > 1 && timeout--)
660 udelay(1);
662 if (num_online_cpus() > 1)
663 pr_warn("SMP: failed to stop secondary CPUs\n");
667 * not supported here
669 int setup_profiling_timer(unsigned int multiplier)
671 return -EINVAL;
674 #ifdef CONFIG_CPU_FREQ
676 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
677 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
678 static unsigned long global_l_p_j_ref;
679 static unsigned long global_l_p_j_ref_freq;
681 static int cpufreq_callback(struct notifier_block *nb,
682 unsigned long val, void *data)
684 struct cpufreq_freqs *freq = data;
685 int cpu = freq->cpu;
687 if (freq->flags & CPUFREQ_CONST_LOOPS)
688 return NOTIFY_OK;
690 if (!per_cpu(l_p_j_ref, cpu)) {
691 per_cpu(l_p_j_ref, cpu) =
692 per_cpu(cpu_data, cpu).loops_per_jiffy;
693 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
694 if (!global_l_p_j_ref) {
695 global_l_p_j_ref = loops_per_jiffy;
696 global_l_p_j_ref_freq = freq->old;
700 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
701 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
702 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
703 global_l_p_j_ref_freq,
704 freq->new);
705 per_cpu(cpu_data, cpu).loops_per_jiffy =
706 cpufreq_scale(per_cpu(l_p_j_ref, cpu),
707 per_cpu(l_p_j_ref_freq, cpu),
708 freq->new);
710 return NOTIFY_OK;
713 static struct notifier_block cpufreq_notifier = {
714 .notifier_call = cpufreq_callback,
717 static int __init register_cpufreq_notifier(void)
719 return cpufreq_register_notifier(&cpufreq_notifier,
720 CPUFREQ_TRANSITION_NOTIFIER);
722 core_initcall(register_cpufreq_notifier);
724 #endif